TANGENT BUNDLES ENDOWED WITH SEMI-SYMMETRIC NON-METRIC CONNECTION ON A RIEMANNIAN MANIFOLD
Abstract
Moreover, theorems on the symmetry property of Ricci tensor and Ricci soliton in the tangent bundle are established.
Keywords
Full Text:
PDFReferences
N. S. Agashe and M. R. Chafle, A semi symmetric non-metric connection in a Riemannian manifold, Indian J. Pure Appl. Math. 23 (1992), 399-409.
A. Barman and G. Ghosh, Semi-symmetric Non-metric Connection on P-Sasakian Manifolds, Analele Universitatii de Vest, Timisoara Seria Matematica-Informatica, LIV, 2,
(2016), 47-58.
S. K. Chaubey and Ahmet Yildiz, Riemannian manifolds admitting a new type os
semi-symmetric non-metric connection, Turk J. Math. 43 (2019), 1887-1904.
S. K. Chaubey and R. H. Ojha, On a semi-symmetric non-metric connection. Filomat
(2012) 63-69.
L. S. Das and M. N. I. Khan, Almost r-contact structure in the tangent bundle, Differential Geometry-Dynamical System 7 (2005), 34-41.
L. S. Das, R. Nivas and M. N. I. Khan, On submanifolds of codimension 2 immersed
in a hsu{quarternion manifold, Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis, 25(1) (2009), 129-135.
L. P. Eisenhart, Riemannian Geometry. Princeton, NJ, USA: Princeton University
Press, 1949.
A. Friedmann and J. A. Schouten, Auber die geometrie der halbsymmetrischen ¨
¨ Aubertragung, Math. Zeitschr. 21 (1924), 211-223.
A. Gezer and C. Kamran, Semi-symmetry properties of the tangent bundle with a
pseudo-Riemannian metric, Italian journal of pure and applied mathematics, 42 (2019)
{58.
H. A. Hayden, Subspaces of a space with torsion, Proc. London Math. Soc. 34 (1932),
-50.
R. S. Hamilton, The Ricci flow on surfaces (Santa Cruz, CA, 1986). In: Isenberg
J. A. (editor), Mathematics and General Relativity. Santa Cruz, CA, USA: American
Mathematical Society, 1988, 237-262.
M. N. I. Khan, Lifts of hypersurfaces with quarter-symmetric semi-metric connection
to tangent bundles. Afrika Matematika 27 (2014), 475-482.
M. N. I. Khan, Lifts of semi-symmetric non-metric connection on a K¨ahler manifold,
Afrika Matematika 27(3)(2016), 345-352.
M. N. I. Khan, Tangent bundle endowed with quarter-symmetric non-metric connection on an almost Hermitian manifold, Facta Universitatis, Series: Mathematics and
Informatics 35 (1), (2020) 167-178.
C. Kamran and A. Gezer, A study on complex semi-symmetric non-metric Fconnections on anti-K¨ahler manifolds, Rendiconti del Circolo Matematico di Palermo
Series 2, 68 (2019), 405{418.
Y. Liang. On semi-symmetric recurrent-metric connection, Tensor N. S. 55 (1994),
-112.
J. Li, G. He and P. Zhao, On Submanifolds in a Riemannian Manifold with a SemiSymmetric Non-Metric Connection, Symmetry, 9 (2017) 112-121.
E. Pak, On the pseudo-Riemannian spaces. Journal of the Korean Mathematical Society 6 (1969) 23-31.
J. Sengupta, U. C. De, and J. Q. Binh, On a type of semi-symmetric non-metric
connection on a Riemannian manifold, Indian Journal of Pure and Applied Mathematics
(2000) 1659-1670.
M. D. Siddiqi and O. Bahadır, η-Ricci solitons on Kenmotsu manifold with generalized
symmetric metric connection, FACTA UNIVERSITATIS (NIS) Ser. Math. Inform. 35(2)
(2020), 295-310.
M. Tani, Prolongations of hypersurfaces of tangent bundles, Kodai Math. Semp. Rep
(1969), 85-96.
H. Weyl, Reine Infinitesimalgeometrie. Mathematische Zeitschrift, 2 (1918) 384-411
(in German).
K. Yano, On semi-symmetric metric connections. Revue Roumaine de Math´ematiques
Pures et Appliqu´ees 15 (1970) 1579-1586.
K. Yano and S. Ishihara, Tangent and Cotangent Bundles, Marcel Dekker Inc., New
York, 1973.
V. Venkatesh, A. Arasaiah, V. S. Vasudeva and N. K. R. Thimmegowda, Some symmetric properties of the Kenmotsu manifold endowed with a semi-symmetric metric
connection, FACTA UNIVERSITATIS (NIS) Ser. Math. Inform. Vol. 34(1) (2019), 35-
DOI: https://doi.org/10.22190/FUMI210111064K
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)