A D-PEARSON EQUATION FOR DUNKL-CLASSICAL ORTHOGONAL POLYNOMIALS

Belgacem Ali Bouras

DOI Number
-
First page
55
Last page
71

Abstract


In this paper,  we show that a monic orthogonal polynomial sequenceis a  Dunkl-classical  sequence if and only if it belongs to aparticular family of D-semicalssical polynomial sequence of classless than or equal to two. In this case, the distributional equationfulfilled by the forms corresponding to these polynomials are given

Keywords


Orthogonal polynomials, Dunkl-classical polynomials; Regular forms; D-semiclassical polynomials.

Full Text:

PDF

References


Y. Ben Cheikh, M. Gaied, {it Characterizations of the

Dunkl-classical orthogonal polynomials}, App. Math. Comput. {bf 187} (2007),

-114.

{S. Belmehdi, {it Generalized Gegenbauer polynomials}, J. Comput. Appl. Math. {bf 133} (2001),

-205.}

{B. Bouras, {it Some characterizations of

Dunkl-classical orthogonal polynomials}, Submitted.}

{T. S. Chihara, {it An Introduction to Orthogonal Polynomials}, Gordon and Breach,

New York, (1978).}

{J. Dini, P. Maroni, Sur la multiplication d'une forme lin'{e}aire par

une fraction rationnelle. Applications aux formes de Laguerre-Hahn.

Ann. Polon. Math. 52 (1990), 175-185.}

{C. F. Dunkl, {it Intefgral kernels reflection group invariance}, Canad. J. Math. {bf 43}

(1991),

-1227.}

{F. Marcell'{a}n, A. Branquinho, J. Petronilho, {it Classical orthogonal polynomials: A functional

approach}, Acta.

Appl. Math. {bf 34} (1994), 283-303.}

{P. Maroni, {it Variation around Classical orthogonal polynomials. Connected problems}, J.

Comput. Appl. Math. {bf 48} (1993), 133-155.}

{M. Sghaier, {it A note on Dunkl-classical orthogonal

polynomials}, Integral. Transforms. Spec. Funct.

{bf 24} (2012), 753-760.}


Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)