AN EXAMINATION OF THE CONDITION UNDER WHICH A CONCHOIDAL SURFACE IS A BONNET SURFACE IN THE EUCLIDEAN 3-SPACE

Muradiye Çimdiker Aslan, Gülşah Aydın Şekerci

DOI Number
https://doi.org/10.22190/FUMI210227047C
First page
627
Last page
641

Abstract


In this study, we examine the condition of the conchoidal surface to be a Bonnet surface in Euclidean 3-space. Especially, we consider the Bonnet conchoidal surfaces which admit an infnite number of isometries. In addition, we study the necessary conditions which have to be fulflled by the surface of revolution with the rotating curve <em>c</em>(<em>t</em>) and its conchoid curve <em>c<sub>d</sub></em>(<em>t</em>) to be the Bonnet surface in Euclidean 3-space.


Keywords

Conchoidal surface, Bonnet surface, Euclidean 3-space.

Full Text:

PDF

References


G. Aydın Şekerci and M. Çimdiker: Bonnet canal surfaces. Dokuz Eylul University Fac. of Engineering J. of Sci. and Engineering 21 (2019), 195-200.

R.M.A. Azzam: Limacon of Pascal locus of the complex refractive indices of interfaces with maximally at reflectance-versus-angle curves for incident unpolarized light. J. Opt. Soc. Am. Opt. Imagen Sci. Vis. 9 (1992), 957-963.

O. Bonnet: Memoire sur la theorie des surfaces applicables sur une surface donnee. J. Ec. polytech. Math. (1867), 72-92.

B. Bulca, S. N. Oruç and K. Arslan: Conchoid curves and surfaces in Euclidean 3-space. BAUN Inst. Sci. Technol. 20 (2018), 467-481.

M. Dede: Spacelike conchoid curves in the Minkowski plane. Balkan Journal of Mathematics 1 (2013), 28-34.

P. M. do Carmo: Differential Geometry of Curves and Surfaces. Prentice-Hall, USA, 1976.

L. P. Eisenhart: A Treatise On The Differential Geometry of Curves and Surfaces. Dover Publications, Inc., Newyork, 1960.

S. Ersoy and K. Eren: Timelike tangent developable surfaces and Bonnet surfaces. Abstract and Applied Analysis 2016 (2016), 1-7.

A. Gray: Modern Differential Geometry of Curves and Surfaces with Mathematica. CCR Press, New York, 1997.

A. H. Kerrick: The limacon of Pascal as a basis for computed and graphic methods of determining astronomic positions. J. Inst. Navigat. 6 (1959), 310-316.

F. Kanbay: Bonnet ruled surfaces. Acta Math. Appl. Sin. Engl. Ser. 21 (2005), 623-630.

B. Odehnal: Generalized conchoids. KoG 21 (2017), 35-46.

B. O'neill: Elementary Differential Geometry. Academic Press, USA, 1997.

M. Peternell, L. Gotthart and J. Sendra : Conchoid surfaces of rational ruled surfaces. Computer Aided Geometric Design 28 (2011), 427-435.

M. Peternell, L. Gotthart and J. Sendra : Conchoid surfaces of spheres. Computer Aided Geometric Design. 30 (2013), 35-44.

M. Peternell, L. Gotthart, J. Sendra and J. R. Sendra: Offsets, conchoids and pedal surfaces. Journal of Geometry 106 (2015), 321-339.

Z. Soyuçok: The problem of non-trivial isometries of surfaces preserving principal curvatures. J. Geom. 52 (1995), 173-188.

F. Szmulowicz: Conchoid of Nicomedes from reflections and refractions in a cone. Am. J. Phys. 64 (1996), 467-471.




DOI: https://doi.org/10.22190/FUMI210227047C

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)