AN EXAMINATION OF THE CONDITION UNDER WHICH A CONCHOIDAL SURFACE IS A BONNET SURFACE IN THE EUCLIDEAN 3-SPACE
Abstract
In this study, we examine the condition of the conchoidal surface to be a Bonnet surface in Euclidean 3-space. Especially, we consider the Bonnet conchoidal surfaces which admit an infnite number of isometries. In addition, we study the necessary conditions which have to be fulflled by the surface of revolution with the rotating curve <em>c</em>(<em>t</em>) and its conchoid curve <em>c<sub>d</sub></em>(<em>t</em>) to be the Bonnet surface in Euclidean 3-space.
Keywords
Full Text:
PDFReferences
G. Aydın Şekerci and M. Çimdiker: Bonnet canal surfaces. Dokuz Eylul University Fac. of Engineering J. of Sci. and Engineering 21 (2019), 195-200.
R.M.A. Azzam: Limacon of Pascal locus of the complex refractive indices of interfaces with maximally at reflectance-versus-angle curves for incident unpolarized light. J. Opt. Soc. Am. Opt. Imagen Sci. Vis. 9 (1992), 957-963.
O. Bonnet: Memoire sur la theorie des surfaces applicables sur une surface donnee. J. Ec. polytech. Math. (1867), 72-92.
B. Bulca, S. N. Oruç and K. Arslan: Conchoid curves and surfaces in Euclidean 3-space. BAUN Inst. Sci. Technol. 20 (2018), 467-481.
M. Dede: Spacelike conchoid curves in the Minkowski plane. Balkan Journal of Mathematics 1 (2013), 28-34.
P. M. do Carmo: Differential Geometry of Curves and Surfaces. Prentice-Hall, USA, 1976.
L. P. Eisenhart: A Treatise On The Differential Geometry of Curves and Surfaces. Dover Publications, Inc., Newyork, 1960.
S. Ersoy and K. Eren: Timelike tangent developable surfaces and Bonnet surfaces. Abstract and Applied Analysis 2016 (2016), 1-7.
A. Gray: Modern Differential Geometry of Curves and Surfaces with Mathematica. CCR Press, New York, 1997.
A. H. Kerrick: The limacon of Pascal as a basis for computed and graphic methods of determining astronomic positions. J. Inst. Navigat. 6 (1959), 310-316.
F. Kanbay: Bonnet ruled surfaces. Acta Math. Appl. Sin. Engl. Ser. 21 (2005), 623-630.
B. Odehnal: Generalized conchoids. KoG 21 (2017), 35-46.
B. O'neill: Elementary Differential Geometry. Academic Press, USA, 1997.
M. Peternell, L. Gotthart and J. Sendra : Conchoid surfaces of rational ruled surfaces. Computer Aided Geometric Design 28 (2011), 427-435.
M. Peternell, L. Gotthart and J. Sendra : Conchoid surfaces of spheres. Computer Aided Geometric Design. 30 (2013), 35-44.
M. Peternell, L. Gotthart, J. Sendra and J. R. Sendra: Offsets, conchoids and pedal surfaces. Journal of Geometry 106 (2015), 321-339.
Z. Soyuçok: The problem of non-trivial isometries of surfaces preserving principal curvatures. J. Geom. 52 (1995), 173-188.
F. Szmulowicz: Conchoid of Nicomedes from reflections and refractions in a cone. Am. J. Phys. 64 (1996), 467-471.
DOI: https://doi.org/10.22190/FUMI210227047C
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)