SOME BOUNDS FOR THE COMPLEX µCEBYEV FUNCTIONAL OF ABSOLUTELY CONTINUOUS FUNCTIONS
Abstract
In this paper we provide several bounds for the modulus of the \textit{%
complex \v{C}eby\v{s}ev functional}%
\begin{equation*}
C\left( f,g\right) :=\frac{1}{b-a}\int_{a}^{b}f\left( t\right) g\left(
t\right) dt-\frac{1}{b-a}\int_{a}^{b}f\left( t\right) dt\int_{a}^{b}g\left(
t\right) dt
\end{equation*}%
under various assumptions for the integrable functions $f,$ $g:\left[ a,b%
\right] \rightarrow \mathbb{C}$. We show amongst others that, if $f$ and $g$
are absolutely continuous on $\left[ a,b\right] $ with $f^{\prime }\in L_{p}%
\left[ a,b\right] ,$ $g^{\prime }\in L_{q}\left[ a,b\right] ,$ $p,$ $q>1$
and $\frac{1}{p}+\frac{1}{q}=1$, then%
\begin{equation*}
\max \left\{ \left\vert C\left( f,g\right) \right\vert ,\left\vert C\left(
\left\vert f\right\vert ,g\right) \right\vert ,\left\vert C\left(
f,\left\vert g\right\vert \right) \right\vert ,\left\vert C\left( \left\vert
f\right\vert ,\left\vert g\right\vert \right) \right\vert \right\}
\end{equation*}%
\begin{equation*}
\leq \left[ C\left( \ell ,F_{\left\vert f^{\prime }\right\vert ^{p}}\right) %
\right] ^{1/p}\left[ C\left( \ell ,F_{\left\vert g^{\prime }\right\vert
^{q}}\right) \right] ^{1/q},
\end{equation*}%
where $F_{\left\vert h\right\vert }:\left[ a,b\right] \rightarrow \mathbb{[}%
0,\infty )$ is defined by $F_{\left\vert h\right\vert }\left( t\right)
:=\int_{a}^{t}$.$\left\vert h\left( t\right) \right\vert dt$ and $\ell :%
\left[ a,b\right] \rightarrow \left[ a,b\right] ,$ $\ell \left( t\right) =t$
is the identity function on the interval $\left[ a,b\right] .$ Applications
for the trapezoid inequality are also provided.
Keywords
Full Text:
PDFReferences
bibitem{CD} P. CERONE and S. S. DRAGOMIR: textit{New bounds for the v{C}%
ebyv{s}ev functional}, Appl. Math. Lett.textit{, }textbf{18} (2005),
-611.
bibitem{CD1} P. CERONE and S. S. DRAGOMIR: textit{A refinement of the Gr%
"{u}ss inequality and applications}, Tamkang J. Math. textbf{38 }(2007),
No. 1, 37-49. Preprint RGMIA Res. Rep. Coll., textbf{5 }(2) (2002), Art. 14.%
texttt{ [Online http://rgmia.org/papers/v5n2/RGIApp.pdf]}.
bibitem{CD2} P. CERONE and S. S. DRAGOMIR: textit{Some new Ostrowski-type
bounds for the v{C}ebyv{s}ev functional and applications}. J. Math.
Inequal. textbf{8} (2014), no. 1, 159--170.
bibitem{C} P. L. CHEBYSHEV: textit{Sur les expressions approximatives des
int`{e}grals d`{e}finis par les outres prises entre les m^{e}me limites},
Proc. Math. Soc. Charkovtextit{, }textbf{2 }(1882), 93-98.
bibitem{CS} X.-L. CHENG and J. SUN: textit{Note on the perturbed trapezoid
inequality}, J. Inequal. Pure Appl. Math.textit{, }textbf{3}(2) (2002),
Art. 29.
bibitem{SSDGr} S. S. DRAGOMIR: textit{A generalization of Gr"{u}ss's
inequality in inner product spaces and applications}. J. Math. Anal. Appl.
textbf{237} (1999), no. 1, 74--82.
bibitem{SSDIndian} S. S. DRAGOMIR: textit{Some integral inequalities of
Gruss type,} Indian J. Pure. Appl. Math. textbf{31} (2000), No. 4, 397-415.
bibitem{SSDJip} S. S. DRAGOMIR: textit{Some Gr"{u}ss type inequalities in
inner product spaces}. J. Inequal. Pure Appl. Math. textbf{4} (2003), no.
, Article 42, 10 pp. texttt{[Online
http://www.emis.de/journals/JIPAM/images/032_03_JIPAM/032_03.pdf].}
bibitem{SSDAnal} S. S. DRAGOMIR: textit{A refinement of Ostrowski's
inequality for the v{C}ebyv{s}ev functional and applications}. Analysis%
textit{ }(Munich) textbf{23} (2003), no. 4, 287--297.
bibitem{SSDPrep} S. S. DRAGOMIR: textit{Bounding the Cebysev functional
for functions of bounded variation and applications}, RGMIA Res. Rep. Coll.
(2011), Art. 5,texttt{ [Online http://rgmia.org/papers/v14/v14a5.pdf].}
bibitem{SSDApL} S. S. DRAGOMIR: textit{New Gr"{u}ss' type inequalities
for functions of bounded variation and applications}, Applied Mathematics
Letters textbf{25} (2012), 1475--1479.
bibitem{SSDGrComp} S. S. DRAGOMIR:textit{ Integral Gr"{u}ss' type
inequalities for complex-valued functions}, RGMIA Res. Rep. Coll. textbf{20}
(2017), Art. 13. texttt{[Online http://rgmia.org/papers/v20/v20a13.pdf].}
bibitem{DMC} S. S. DRAGOMIR M. S. MOSLEHIAN and Y. J. CHO: textit{Some
reverses of the Cauchy-Schwarz inequality for complex functions of
self-adjoint operators in Hilbert spaces.} Math. Inequal. Appl. textbf{17}
(2014), no. 4, 1365--1373. Preprint RGMIA Res. Rep. Colltextit{.}textbf{14}
(2011), Art. 84. texttt{[Online http://rgmia.org/papers/v14/v14a84.pdf].}
bibitem{G} G. GR"{U}SS: textit{"{U}ber das maximum des absoluten
Betrages von} $frac{1}{b-a}int_{a}^{b}fleft( xright) gleft( xright) dx-%
frac{1}{left( b-aright) ^{2}}int_{a}^{b}fleft( xright) dxcdot
int_{a}^{b}gleft( xright) dx,$ Math. Z.textit{ }textbf{39} (1934),
-226.
bibitem{He} C. H. HEIL: textit{Real Analysis Lecture Notes, Absolutely
Continuous and Singular Functions}, texttt{[Online
http://people.math.gatech.edu/symbol{126}heil/handouts/ac.pdf]}.
bibitem{Lupas} A. LUPAc{S}: textit{The best constant in an integral
inequality}, Mathematica (Cluj), Vol. textbf{15} (textbf{38}) (1973), No.
, 219-222.
bibitem{5b} A. M. OSTROWSKI: textit{On an integral inequality}, Aequat.
Math.textit{, }textbf{4} (1970), 358-373.
DOI: https://doi.org/10.22190/FUMI210429015D
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)