SOME VECTORS FIELDS ON THE TANGENT BUNDLE WITH A SEMI-SYMMETRIC METRIC CONNECTION

Aydin Gezer, Erkan Karakas

DOI Number
https://doi.org/10.22190/FUMI210506050G
First page
669
Last page
683

Abstract


Let $M$ is a (pseudo-)Riemannian manifold and $TM$ be its tangent bundle
with the semi-symmetric metric connection $\overline{\nabla }$. In this
paper, we examine some special vector fields, such as incompressible vector
fields, harmonic vector fields, concurrent vector fields, conformal vector
fields and projective vector fields on $TM$ with respect to the
semi-symmetric metric connection $\overline{\nabla }$ and obtain some
properties related to them.


Keywords

Complete lift metric, semi-symmetric metric connection, tangent bundle, vector fields

Full Text:

PDF

References


bibitem{Friedmann} A. FRIEDMANN and J.A. SCHOUTEN: {it Uber die geometrie der

halbsymmetrischen ubertragungen}. Math. Z. {bf 21} (1924), no.1, 211-223.

bibitem{Hayden} H.A. HAYDEN: {it Sub-spaces of a space with torsion}. Proc.

London Math. Soc. {bf S2-34} (1932), 27-50.

bibitem{Imai} T. IMAI: {it Notes on semi-symmetric metric connections}.

Commemoration volumes for Prof. Dr. Akitsugu Kawaguchi's seventieth

birthday. Tensor (N.S.) {bf 24} (1972), 293--296.

bibitem{Imai2} T. IMAI: {it Hypersurfaces of a Riemannian manifold with

semi-symmetric metric connection}. Tensor (N.S.) {bf 23} (1972), 300-306.

bibitem{Sasaki} S. SASAKI: {it On the differential geometry of tangent bundles

of Riemannian manifolds}. Tohoku Math. J. {bf 10} (1958), no.3, 338-354.

bibitem{Yano} K. YANO: {it On semi-symmetric metric connection}. Rev. Roumaine

Math. Pures Appl. {bf 15} (1970), 1579-1586.

bibitem{Yano 2} K. YANO: {it Differential Geometry on Complex and Almost

Complex Spaces}. The Macmillan Company, New York, 1965.

bibitem{Yano and Ishihara} K. YANO and S. ISHIHARA: {it Tangent and Cotangent

Bundles}. Marcel Dekker Inc., New York, 1973.

bibitem{Gezer and Karakas} A. GEZER and E. KARAKAS: {it On a semi-symmetric

metric connection on the tangent bundle with the complete lift metric}. Riv.

Mat. Univ. Parma (N.S) {bf 9} (2018), no.1, 73-84.




DOI: https://doi.org/10.22190/FUMI210506050G

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)