SOME VECTORS FIELDS ON THE TANGENT BUNDLE WITH A SEMI-SYMMETRIC METRIC CONNECTION
Abstract
Let $M$ is a (pseudo-)Riemannian manifold and $TM$ be its tangent bundle
with the semi-symmetric metric connection $\overline{\nabla }$. In this
paper, we examine some special vector fields, such as incompressible vector
fields, harmonic vector fields, concurrent vector fields, conformal vector
fields and projective vector fields on $TM$ with respect to the
semi-symmetric metric connection $\overline{\nabla }$ and obtain some
properties related to them.
Keywords
Full Text:
PDFReferences
bibitem{Friedmann} A. FRIEDMANN and J.A. SCHOUTEN: {it Uber die geometrie der
halbsymmetrischen ubertragungen}. Math. Z. {bf 21} (1924), no.1, 211-223.
bibitem{Hayden} H.A. HAYDEN: {it Sub-spaces of a space with torsion}. Proc.
London Math. Soc. {bf S2-34} (1932), 27-50.
bibitem{Imai} T. IMAI: {it Notes on semi-symmetric metric connections}.
Commemoration volumes for Prof. Dr. Akitsugu Kawaguchi's seventieth
birthday. Tensor (N.S.) {bf 24} (1972), 293--296.
bibitem{Imai2} T. IMAI: {it Hypersurfaces of a Riemannian manifold with
semi-symmetric metric connection}. Tensor (N.S.) {bf 23} (1972), 300-306.
bibitem{Sasaki} S. SASAKI: {it On the differential geometry of tangent bundles
of Riemannian manifolds}. Tohoku Math. J. {bf 10} (1958), no.3, 338-354.
bibitem{Yano} K. YANO: {it On semi-symmetric metric connection}. Rev. Roumaine
Math. Pures Appl. {bf 15} (1970), 1579-1586.
bibitem{Yano 2} K. YANO: {it Differential Geometry on Complex and Almost
Complex Spaces}. The Macmillan Company, New York, 1965.
bibitem{Yano and Ishihara} K. YANO and S. ISHIHARA: {it Tangent and Cotangent
Bundles}. Marcel Dekker Inc., New York, 1973.
bibitem{Gezer and Karakas} A. GEZER and E. KARAKAS: {it On a semi-symmetric
metric connection on the tangent bundle with the complete lift metric}. Riv.
Mat. Univ. Parma (N.S) {bf 9} (2018), no.1, 73-84.
DOI: https://doi.org/10.22190/FUMI210506050G
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)