ON ZETA AND DIRICHLET BETA FUNCTION FAMILIES AS GENERATORS OF GENERALIZED MATHIEU SERIES, PROVIDING APPROXIMATION AND BOUNDS

Pietro Cerone

DOI Number
https://doi.org/10.22190/FUMI210519018C
First page
251
Last page
282

Abstract


Integral representations for a generalized Mathieu series and its companions are used to undertake analysis leading to novel insights for Zeta and Dirichlet Beta function families. The bounds are procured using sharp bounds of Zeta and Dirichlet family bounds to procure approximating and bounds utilising integral representation of generalized Mathieu series results using in particular Hardy-type upper bounds.

Keywords

Generalised Mathieu Series Family, Identities and bounds;Hardy-type upper bounds, Cebysev functional, Zeta and Dirichlet Beta functions, companions and relations

Full Text:

PDF

References


bibitem {ABR} {sc H. Alzer, sc J. L. Brenner {rm and} sc O. G. Ruehr}: textit{ On Mathieu's inequality}, J. Math. Anal. Appl., textbf{218} (1998), 607--610.

bibitem {AL} { sc H. Alzer}: textit{Remark on a double inequality for the Euler zeta function,} Expositions Mathematicae, textbf{23 }(4)(2005), 349-352.

bibitem {Apost} {sc T. M. Apostol}: textit{Analytic Number Theory, } Springer, New York,1976.

bibitem {B} {sc P. S. Bullen}: textit{A Dictionary of Inequalities}, Addison Wesley

Longman Limited, 1998.

bibitem {BBP} {sc '{A}. Baricz, sc P. L. Butzer {rm and} sc T. K. Pog'{a}ny}: textit {Alternating

Mathieu series, Hilbert-Eisenstein series and their generalized Omega

functions}, Analytic number theory, approximation theory, and special

functions, 775--808, Springer, New York, 2014.

bibitem {BZB} {sc J. M. Borwein, sc I. J. Zucker {rm and} sc J. Boersma}: textit {The evaluation of character Euler double sums}, Ramanujian J., textbf {15 }(2008),377-405.

bibitem {C} { sc P. Cerone}: textit {On an identity of the Chebychev functional and some

ramifications}, J. Inequal. Pure & Appl. Math., textbf{3}(1) (2002), Art. 4.

bibitem {C-DB} { sc P. Cerone}: textit {On a double inequality for the Dirichlet Beta

function,} Tamsui Oxford J. of Mathematical Sciences, textbf{24} 2008, 269-276.

bibitem {C-Zr} { sc P. Cerone}: textit { Bounds for Zeta and related functions}, J.

Inequal. Pure & Appl. Math., textbf{6} (5) (2005), Art. 134.

bibitem {C-SF} { sc P. Cerone}: textit { Special functions approximation and bounds via

integral representation}, emph{Advances in Inequalities for Special

Functions} P. Cerone and S. Dragomir (Ed), Nova Science

Publishers,Inc, (2008), 1-36.

bibitem {C-BM} { sc P. Cerone}: textit {Dirichlet Beta function via generalized Mathieu

series family}, emph{Frontiers in functional equations and analytic

ineqialities} (FEAI), G. Anastassiou and J. Rassias (Ed), Springer (2019).

bibitem {C-CKQ} { sc P. Cerone , sc M.A. Chaudhry, sc G. Korvin {rm and} sc A. Quadir}: textit{New

inequalities involving the zeta function} J. Inequal. Pure Appl, Math.

textbf{5} (2) (2004), Art. 43.

bibitem {CD} {sc P. Cerone {rm and} sc S.S. Dragomir}: textit {New upper and lower bounds for the

Chebyshev functional,} J. Inequal. Pure & Appl. Math., textbf{3} (5)

(2002), Art. 77.

bibitem {PC-SSD} {sc P. Cerone {rm and} sc S.S. Dragomir}: textit{Mathematical

Inequalities: A Perspective}, CRC Press Taylor and Fancis Group, A Chapman and

Hall Book, 2011.

bibitem {CL} {sc P. Cerone {rm and} sc C. Lenard}: textit{On integral forms of generalised Mathieu

series,} J. Inequal. Pure Appl. Math. textbf{4} (5) (2003), Art 100, 11

pp. (electronic).

bibitem {CL2} {sc P. Cerone {rm and} sc C. Lenard}: textit{ On generalised Mathieu series and its

companions,} Hacettepe Journal of Mathematics and Statistics, textbf{48} (2019), no. 5, 1367--13870.

bibitem {Conr} {sc J. B. Conrey}: textit{The Reimann Hypothesis}, Notices of the AMS

(2003), 341-353.

bibitem {Em} {sc O. E. Emersleben}: textit{ "{U}ber die Reihe $sum_{k=1}^{infty}%

k(k^{2}+c^{2})^{-2}$,} Math. Ann., textbf{125} (1952), 165--171.

bibitem {Fin} {sc S. R. Finch}: textit{Mathematical Constants}, Cambridge Univ.

Press, Cambridge, 2003.

bibitem {G} {sc I. Gavrea}: textit{Some remarks on Mathieu's series,} {Mathematical

Analysis and Approximation Theory,} 113-117, Burg Verlag, 2002.

bibitem {G2}{sc G. Gr"{u}ss}: textit{"{U}ber das maximum des absoluten Betrages von

$frac{1}{b-a}int_{a}^{b}fleft( xright) gleft( xright) dx-frac

{1}{b-a}int_{a}^{b}fleft( xright) dxcdotfrac{1}{b-a}int_{a}%

^{b}gleft( xright) dx,$} {Math. Z., }textbf{39 } (1934), 215-226.

bibitem {Guo}{sc B.-N. Guo}: textit{Note on Mathieu's inequality}, {RGMIA Res. Rep.

Coll}., textbf{3} (3) (2000), Article 5.

bibitem {GR}{sc I. S. Gradshtein} {rm and } {sc I.M. Ryzhik}: textit{Table in Integrals, Series

and Products,} (1980), Academic Press, New York.

bibitem {H}{sc G. H. Hardy}: textit{Anote on two inequalities, } J. London Math. Soc,

textbf{11} 1936, 167-170.

bibitem {L}{sc L. Landau}: textit{Monotonicity and bounds on Bessel functions},

{Electronic J. of Differential Equations, }(2002), 147-154.

bibitem {Lor}{sc L. Lorenz}: textit{Bidrag tiltalienes theori.} {Tidsskrift

Math.} textbf{1} (1871), 97-114.

bibitem {LGQ}{sc Q.-M. Luo, B.-N. Guo} {rm and } {sc F. Qi}: textit{On evaluation of Riemann zeta

function $zetaleft( sright) ,$} {RGMIA Res. Rep. Coll., }

textbf{6}(1) (2003), Article 8.

bibitem {M}{sc E. Mathieu}: textit{Trait'{e} de physique math'{e}matique,

VI--VII: Th'{e}orie de l''{e}lasticit'{e} des corps solides},

Gauthier-Villars, Paris, 1890.

bibitem {Mel1}{sc V. V. Meleshko}:textit{ Biharmonic problem in a rectangle}, Appl. Sci.

Res. textbf{58} (1997), no. 1-4, 217--249.

bibitem {Mel2}{sc V. V. Meleshko}: textit{Equilibrium of elastic rectangle:

Mathieu-Inglis-Pickett solution revisited}, J. Elasticity textbf{40} (1995), no. 3, 207--238.

bibitem {Mel3}{sc V. V. Meleshko}: textit{Bending of an elastic rectangular clamped

plate: exact versus "engineeringtextquotedblright solutions}, J. Elasticity

textbf{48} (1997), no. 1, 1--50.

bibitem {MP}{sc G. V. Milovanovi'{c}} {rm and } {sc T. K. Pog'{a}ny}: textit{New integral forms of

generalized Mathieu series and related applications}, Appl. Anal. Discrete

Math. textbf{7} (1) (2013), 180--192.

bibitem {mpf}{sc D. S. Mitrinovi'{c}, J. E. Pev{c}ari'{c}} {rm and } {sc A. M. Fink}:

textit{Classical and New Inequalities in Analysis}, Kluwer Academic Publishers,

Dordrecht, 1993.

bibitem {OLBC}{sc F. W. J. Olver, D. W. Lozier, R. F. Boisvert} {rm and } {sc C. W. Clark}:

textit{NIST Handbook of Mathematical Functions, }National Bureau of Standards

and Technology, Cambridge University Press, New York, 2010.

bibitem {PST}{sc T. K. Pog'{a}ny, H. M. Srivastava {rm and } v{Z}. Tomovski}: textit{ Some

families of Mathieu a-seriesand alternating Mathieu a-series, }Appl. Math.

Comput., textbf{173}(2006), 69-108.

bibitem {PT}{sc T. K. Pog'{a}ny {rm and } v{Z}. Tomovski}: textit{Bounds improvement for

alternating Mathieu type series}, J. Math. Inequal. textbf{4} (2010), no. 3, 315--324.

bibitem {W1}{sc J. E. Wilkins, Jr.}: textit{Solution of Problem 97-1}, Siam

Rev., textbf{40} (1), 126-128, 1998.

bibitem {W}{sc G. N. Watson}: textit{A treatise on the theory of Bessel functions}, (1966)

nd Edn., Cambridge University Press.

bibitem {ZM} {sc I. J. Zucker} {rm and } {sc R. C.McPhedran}: textit{Dirichlet L-seies with real and

complex characters and their application to solving double sums,} Proc.

R. Soc. A textbf{464 }(2008), 1405-1422.




DOI: https://doi.org/10.22190/FUMI210519018C

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)