EKELAND'S VARIATIONAL PRINCIPLE IN S^{JS}-METRIC SPACES
Abstract
Keywords
Full Text:
PDFReferences
I. Beg, K. Roy and M. Saha, SJS???? metric and topological spaces, J. Math. Extension 15(4)(2021)
https://www.ijmex.com/index.php/ijmex/article/view/1589/466 in press 1, 2, 2.1
J.M. Borwein and Q.J. Zhu, Techniques of Variational Analysis, Springer, 2005. 1
M. Bota, A. Molnar and C. Varga, On Ekelands variation principle in b-metric spaces, Fixed
Point Theory 12(2)(2011), 21-28 3.10
M. Bukatin and R. Kopperman, S. Mathews and H. Pajoohesh, Partial metric spaces, Amer. Math.
Mon., 116(8)(2009), 708-718. 1
J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer.
Math.Soc., 215(1976), 241-251 1
S. Czerwik, Contraction mappings in b???? metric spaces, Acta Math. Inform. Univ. Ostrav., 1
(1993), 5-11. 1
I. Ekeland, On the variational principle,. J. Math. Anal. Appl., 47(1974), 324-353 1
A.P. Farajzadeh, S Plubtieng and A. Hoseinpour, A generalization of Ekelands variational prin-
ciple by using the -distance with its applications, J. Inequalities and Appl., (2017), 181 1
E. Hashemi and R. Saadati, Ekelands variational principle and minimization Takahashis theorem
in generalized metric spaces, Mathematics 6(6) (2018), 93. 1
M. Jleli and B. Samet, A generalized metric space and related xed point theorems, Fixed Point
Theory and Applications (2015), doi:10.1186/s13663-015-0312-7. 1
I. Meghea, Ekeland Variational Principle with Generalizations and Variants, Old City Publishing,
1
K. Roy, I. Beg and M. Saha, Sequentially compact SJS???? metric spaces, Commun. Optim. Theory
(2020), Article ID 4. 1
K. Roy, M. Saha and I. Beg, Fixed point of contractive mappings of integral type over an SJS???? metric space, Tamkang J. Math. 52(2)(2021), 267-280. 1
N. Souayah and N. Mlaiki, A xed point theorem in Sb???? metric spaces, J. Math. Computer Sci.,
(2016), 131-139.
, 3.7, 3
DOI: https://doi.org/10.22190/FUMI210525081B
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)