A THREE FRACTIONAL ORDER JERK EQUATION WITH ANTI PERIODIC CONDITIONS
Abstract
We study a new Jerk equation involving three fractional derivatives and anti periodic conditions. By Banach contraction principle, we present an existence and uniqueness result for the considered problem. Utilizing Krasnoselskii fixed point theorem we prove another existence result governing at least one solution. We provide an illustrative example to claim our established results. At the end, an approximation for Caputo derivative is proposed and some chaotic behaviours are discussed by means of the Runge Kutta 4th order method.
Keywords
Full Text:
PDFReferences
N. Alam Khan, T. Hameed, M. A. Qureshi, S. Abkar and A. K. Alzahrani: Emulate the chaotic flows of fractional jerk system to scramble the sound and image memo with circuit execution. Phys. Scripta 95 (6) (2020), 065217.
M. A. Alqudah, P. O. Mohammed and T. Abdeljawad: Solution of Singular Integral Equations via Riemann-Liouville Fractional Integrals. Mathematical Problems in Engineering 2020 (2020), 1250970.
Z. Dahmani and M. A. Abdellaoui: On a three point boundary value problem of arbitrary order. Journal of Interdisciplinary Mathematics 19 (5-6) (2016), 893-906.
H. Fazil: Fractional Langevin equations with anti periodic conditions. Chaos, Solitons and Fractals 114 (2018) 332-337.
Z. Fu and J. Heidel: Non-chaotic behaviour in three-dimensional quadratic systems. Nonlinearity 10 (1997) 1289.
H. Garai, H. L. K. Dey and A. Chanda: Positive solutions to a fractional thermostat model in Banach spaces via fixed point results. J. Fixed Point Theory Appl 20 (2018) 106.
H. P. W. Gottlieb: Question #38. What is the simplest jerk function that gives chaos? In Am. J. Phys. 64(5) (1996), 525-525.
M. Houas and Z. Dahmani: On existence of solutions for fractional differential equations with nonlocal multi-point boundary conditions, Lobachevskii Journal of Mathematics 37 (2016), 120-127.
S. T. Kingni, S. Jafari, H. Simo and P. Woafo: Three-dimensional chaotic autonomous system with only one stable equilibrium: Analysis, circuit design, parameter estimation, control, synchronization and its fractional-order form, Eur. Phys. J. Plus
(2014), 76.
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo: Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier, 2006.
C. Li, A. Chen and J. Ye: Numerical approaches to fractional calculus and fractional ordinary differential equation, Journal of Computational Physics 230(9) (2011), 3352-3368.
S. J. Linz and J.C. Sprott: Elementary chaotic
ow, Physics Letters A 259 (3-4) (1999), 240-245.
F. Martinez, P. O. Mohammed and J. E. N. Valdes: Non-conformable fractional Laplace transform, Kragujevac Journal of Mathematics 46(3) (2022), 341-354.
J. Mendoza, L. Araque-Lameda and E. Colina Morles: Understanding chaos through a Jerk circuit, 2016 Technologies Applied to Electronics Teaching (TAEE),
Seville, Spain, (2016), 1-5, doi: 10.1109/TAEE.2016.7528241.
P. O. Mohammed, T. Abdeljawad, F. Jarad and Y.-M. Chu: Existence and Uniqueness of Uncertain Fractional Backward Difference Equations of Riemann-Liouville Type, Mathematical Problems in Engineering 2020 (2020), 6598682.
P. O. Mohammed and F. K. Hamasalh: Twelfth degree spline with application to quadrature, SpringerPlus (2016), DOI 10.1186/s40064-016-3711-2.
B. Munmuangsaen, B. Srisuchinwong and J.C. Sprott: Generalization of the simplest autonomous chaotic system, Physics Letters A 375(12) (2011) 1445-1450.
A. Salem and F. Alzahrani: Langevin equation involving one fractional order with threepoint boundary conditions, Mathematics, 2019.
A. Salem, F. Alzahrani and L. Almaghamsi: Fractional Langevin Equations with Nonlocal Integral Boundary Conditions, Mathematics 7(5) (2019) 402.
A. Sambas, M. Mamat and Z. Salleh: Design, Numerical Simulation of Jerk Circuit and Its Circuit Implementation, Advanced Studies in Theoretical Physics, 2015.
T. Senapati and L. K. Dey: Relation-theoretic metrical xed-point results via w-distance with applications, J. Fixed Point Theory Appl. 19 (2017), 2945-2961.
J. C. Sprott: Some simple chaotic flows. Phys. Rev. E 50 (1994) R647.
J. C. Sprott: Simplest dissipative chaotic flow. Phys. Lett. A 228 (1997), 271-274.
J. C. Sprott: A New Chaotic Jerk Circuit, IEEE Transactions on Circuits and Systems II: Express Briefs, 2011.
K. Zourmba, A. A. Oumate, B. Gambo, J. Y. Effa and A. Mohamadou: Chaos in the incommensurate fractional order system and circuit simulations, International Journal of Dynamics and Control 7 (2019), 94-111.
DOI: https://doi.org/10.22190/FUMI210327018D
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)