ON THE BI-P-HARMONIC MAPS AND THE CONFORMAL MAPS

Seddik Ouakas, Halimi Abderrazak

DOI Number
https://doi.org/10.22190/FUMI210804084O
First page
1155
Last page
1168

Abstract


The objective of this paper is to study the bi-p-harmonicity of a conformal maps. We establish necessary and sucient condition for a conformal map to be bi-p-harmonic and we construct several examples of this type of maps.


Keywords

$p$-harmonic map, bi-$p$-harmonic map, conformal map.

Full Text:

PDF

References


bibitem{allen}

{sc D. Allen}: textit{Relations between the local and global

structure of fnite semigroups}. Ph. D. Thesis, University of

California, Berkeley, 1968.

bibitem{erdos}

{sc P. ErdH{o}s}: textit{On the distribution of the roots of

orthogonal polynomials}. In: Proceedings of a Conference on

Constructive Theory of Functions (G. Alexits, S. B. Steckhin, eds.),

Akademiai Kiado, Budapest, 1972, pp. 145--150.

bibitem{ostrowski}

{sc A. Ostrowski}: textit{Solution of Equations and Systems of

Equations}. Academic Press, New York, 1966.

bibitem{SaffVarga}

{sc E. B. Saff {rm and} R. S. Varga}: textit{On incomplete

polynomials II}. Pacific J. Math. {bf 92} (1981), 161--172.

bibitem{Aprodu}

{sc M. A. Aprodu }: textit{Some remarks on $p$-harmonic maps}. Stud. Cercet. Mat., {bf 50} (1998), 297--305.

bibitem{BaGud}

{sc P. Baird {rm and} S. Gudmundsson}: textit{$p$-harmonic maps and minimal submanifolds}. Mathematische Annalen, {bf 294} (1992), 611--624.

bibitem{CaoLuo}

{sc X. Cao {rm and} Y. Luo}: textit{On $p$-biharmonic submanifolds in non-positively curved manifolds}. Kodai Math. J., {bf 39} (2016), 567--578.

bibitem{Cherif}

{sc A. M. Cherif}: textit{On the $p$-harmonic and $p$-biharmonic maps}. Journal of Geometry, {bf 109} (41) (2018), 1--11.

bibitem{DjeOua}

{sc D. Djebbouri {rm and} S. Ouakkas}: textit{Some results of the $f$-biharmonic maps and applications}. Arab. J. Math., {bf 24} (1) (2018), 70--81.

bibitem{DraTom}

{sc S. Dragomir {rm and} A. Tommasoli}: textit{On $p$-harmonic maps into spheres}. Tsukuba J. Math., {bf 35} (2) (2011), 161--167.

bibitem{Fardoun}

{sc A. Fardoun}: textit{On equivariant $p$-harmonic maps}. Ann. Inst. Henri Poincar e, {bf 15} (1) (1998), 25--72.

bibitem{HanLuo}

{sc Y. Han {rm and} Y. Luo}: textit{Several results concerning nonexistence of proper $p$-biharmonic maps and Liouville type theorems}. Journal of Elliptic and Parabolic Equations, {bf 6} (2020), 409--426.

bibitem{Jiang}

{sc G. Y. Jiang}: textit{2-harmonic maps and their first and second variational formulas}. Chin. Ann. Math. Ser., {bf A7} (1986), 389--402.

bibitem{Kawai}

{sc S. Kawai}: textit{A $p$-harmonic maps and convex functions}. Geometriae Dedicata, {bf 74} (1999), 261--265.

bibitem{MouChe}

{sc K. Mouffoki {rm and} A. M. Cherif}: textit{On the p-biharmonic submanifolds and stress p-bienergy tensors}. arXiv : 2104.12562, 2021.

bibitem{NakTak}

{sc N. Nakauchi {rm and} S. Takakuwa}: textit{A remark on $p$-harmonic maps}. Nonlinear Analysis, Theory, Methods and Applications, {bf 25} (2) (1995), 169--185.

bibitem{OuaDje}

{sc S. Ouakkas {rm and} D. Djebbouri}: textit{Conformal Maps, Biharmonic Maps, and the Warped Product}. Mathematics, {bf 15} (4) (2016), doi : 10.3390/math 4010015.

bibitem{Ou}

{sc Y. L. Ou}: textit{$p$-Harmonic morphisms, biharmonic morphisms, and non-harmonic biharmonic maps}. Journal of Geometry and Physics, {bf 56} (2006), 358--374.

bibitem{Wei}

{sc Z. Wei}: textit{Some results on $p$-harmonic maps and exponentially harmonic maps between Finsler manifolds}. Appl. Math. J. Chinese Univ., {bf 25} (2) (2010), 236--242.




DOI: https://doi.org/10.22190/FUMI210804084O

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)