ON THE BI-P-HARMONIC MAPS AND THE CONFORMAL MAPS
Abstract
The objective of this paper is to study the bi-p-harmonicity of a conformal maps. We establish necessary and sucient condition for a conformal map to be bi-p-harmonic and we construct several examples of this type of maps.
Keywords
Full Text:
PDFReferences
bibitem{allen}
{sc D. Allen}: textit{Relations between the local and global
structure of fnite semigroups}. Ph. D. Thesis, University of
California, Berkeley, 1968.
bibitem{erdos}
{sc P. ErdH{o}s}: textit{On the distribution of the roots of
orthogonal polynomials}. In: Proceedings of a Conference on
Constructive Theory of Functions (G. Alexits, S. B. Steckhin, eds.),
Akademiai Kiado, Budapest, 1972, pp. 145--150.
bibitem{ostrowski}
{sc A. Ostrowski}: textit{Solution of Equations and Systems of
Equations}. Academic Press, New York, 1966.
bibitem{SaffVarga}
{sc E. B. Saff {rm and} R. S. Varga}: textit{On incomplete
polynomials II}. Pacific J. Math. {bf 92} (1981), 161--172.
bibitem{Aprodu}
{sc M. A. Aprodu }: textit{Some remarks on $p$-harmonic maps}. Stud. Cercet. Mat., {bf 50} (1998), 297--305.
bibitem{BaGud}
{sc P. Baird {rm and} S. Gudmundsson}: textit{$p$-harmonic maps and minimal submanifolds}. Mathematische Annalen, {bf 294} (1992), 611--624.
bibitem{CaoLuo}
{sc X. Cao {rm and} Y. Luo}: textit{On $p$-biharmonic submanifolds in non-positively curved manifolds}. Kodai Math. J., {bf 39} (2016), 567--578.
bibitem{Cherif}
{sc A. M. Cherif}: textit{On the $p$-harmonic and $p$-biharmonic maps}. Journal of Geometry, {bf 109} (41) (2018), 1--11.
bibitem{DjeOua}
{sc D. Djebbouri {rm and} S. Ouakkas}: textit{Some results of the $f$-biharmonic maps and applications}. Arab. J. Math., {bf 24} (1) (2018), 70--81.
bibitem{DraTom}
{sc S. Dragomir {rm and} A. Tommasoli}: textit{On $p$-harmonic maps into spheres}. Tsukuba J. Math., {bf 35} (2) (2011), 161--167.
bibitem{Fardoun}
{sc A. Fardoun}: textit{On equivariant $p$-harmonic maps}. Ann. Inst. Henri Poincar e, {bf 15} (1) (1998), 25--72.
bibitem{HanLuo}
{sc Y. Han {rm and} Y. Luo}: textit{Several results concerning nonexistence of proper $p$-biharmonic maps and Liouville type theorems}. Journal of Elliptic and Parabolic Equations, {bf 6} (2020), 409--426.
bibitem{Jiang}
{sc G. Y. Jiang}: textit{2-harmonic maps and their first and second variational formulas}. Chin. Ann. Math. Ser., {bf A7} (1986), 389--402.
bibitem{Kawai}
{sc S. Kawai}: textit{A $p$-harmonic maps and convex functions}. Geometriae Dedicata, {bf 74} (1999), 261--265.
bibitem{MouChe}
{sc K. Mouffoki {rm and} A. M. Cherif}: textit{On the p-biharmonic submanifolds and stress p-bienergy tensors}. arXiv : 2104.12562, 2021.
bibitem{NakTak}
{sc N. Nakauchi {rm and} S. Takakuwa}: textit{A remark on $p$-harmonic maps}. Nonlinear Analysis, Theory, Methods and Applications, {bf 25} (2) (1995), 169--185.
bibitem{OuaDje}
{sc S. Ouakkas {rm and} D. Djebbouri}: textit{Conformal Maps, Biharmonic Maps, and the Warped Product}. Mathematics, {bf 15} (4) (2016), doi : 10.3390/math 4010015.
bibitem{Ou}
{sc Y. L. Ou}: textit{$p$-Harmonic morphisms, biharmonic morphisms, and non-harmonic biharmonic maps}. Journal of Geometry and Physics, {bf 56} (2006), 358--374.
bibitem{Wei}
{sc Z. Wei}: textit{Some results on $p$-harmonic maps and exponentially harmonic maps between Finsler manifolds}. Appl. Math. J. Chinese Univ., {bf 25} (2) (2010), 236--242.
DOI: https://doi.org/10.22190/FUMI210804084O
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)