SOME RESULTS ON MIXED SUPER QUASI-EINSTEIN MANIFOLDS SATISFYING CERTAIN VECTOR FIELDS

Dipankar Hazra

DOI Number
https://doi.org/10.22190/FUMI210819086H
First page
1169
Last page
1179

Abstract


The objective of this paper is to discuss various properties of mixed super quasi-Einstein manifolds admitting certain vector fields. We analyze the behaviour of $ MS\left( QE\right) _{n} $ satisfying Codazzi type of Ricci tensor. We have also constructed a non-trivial example related to mixed super quasi-Einstein manifolds.

Keywords

Mixed super quasi-Einstein manifolds, pseudo quasi-Einstein manifold, Codazzi type of Ricci tensor, cyclic parallel Ricci tensor, Killing vector field, concurrent vector field.

Full Text:

PDF

References


C. L. Bejan: Characterization of quasi-Einstein manifolds. An. Stiint. Univ. Al. I. Cuza Iasi. Mat.(NS) 53 (2007), 67-72.

A. Bhattacharyya, M. Tarafdar and D. Debnath: On mixed super quasi-Einstein manifolds. Differential Geometry-Dynamical Systems 10 (2008), 44-57.

M. C. Chaki: On generalized quasi-Einstein manifolds. Publ. Math. Debrecen

(2001), 683-691.

M. C. Chaki: On super quasi Einstein manifolds. Publicationes Mathematicae Debrecen 64 (2004), 481-488.

M. C. Chaki and R. K. Maity: On quasi-Einstein manifolds. Publ. Math. Debrecen 57 (2000), 297-306.

U. C. De and B. K. De: On quasi Einstein manifolds. Communications of the Korean Mathematical Society 23 (2008), 413-420.

U. C. De and G. C. Ghosh: On quasi Einstein manifolds. Periodica Mathematica Hungarica 48 (2004), 223-231.

U. C. De, N. Guha and D. Kamilya: On generalized Ricci-recurrent manifolds. Tensor(N.S.) 56 (1995), 312-317.

U. C. De and S. Mallick: On generalized quasi-Einstein manifolds admitting certain vector fields. Filomat 29 (2015), 599-609.

P. Debnath and A. Konar: On super quasi Einstein manifold. Publications del'Institut Mathematique 89 (2011), 95-104.

Y. Deng: A note on generalized quasi-Einstein manifolds. Mathematische Nachrichten 288 (2015), 1122-1126.

S. Dey, B. Pal and A. Bhattacharyya: A Non-Flat Riemannian Manifold Admitting Certain Vectors Fields. Journal of Dynamical Systems and Geometric Theories 17 (2019), 221-237.

F. Fu, Y. Han and P. Zhao: Geometric and physical characteristics of mixed super quasi-Einstein manifolds. International Journal of Geometric Methods in Modern Physics 16 (2019), 1950104.

A. Gray: Einstein-like manifolds which are not Einstein. Geom. Dedicata 7 (1978), 259-280.

Y. Han, A. De and P. Zhao: On a semi-quasi-Einstein manifold. Journal of Geometry and Physics 155 (2020), 103739.

D. Hazra: A study on generalized Quasi-Einstein manifolds satisfying certain vector fields. Bull. Cal. Math. Soc. 113 (2021), 73-80.

A. A. Hosseinzadeh and A. Behzadi: Some results on N(k)-quasi Einstein manifolds. Journal of Interdisciplinary Mathematics 23 (2020), 1065-1075.

S. Mallick: Super Quasi-Einstein Manifolds with Applications to General Relativity. Kyungpook Mathematical Journal 58 (2018), 361-375.

C. Özgür: On some classes of super quasi-Einstein manifolds. Chaos, Solitons Fractals 40 (2009), 1156-1161.

E. M. Patterson: Some Theorems on Ricci-Recurrent Spaces. Journal of the London Mathematical Society 27 (1952), 287-295.

J. A. Schouten: Ricci-Calculus. Springer, Berlin, 1954.

A. A. Shaikh: On pseudo quasi-Einstein manifolds. Periodica Mathematica Hungarica 59 (2009), 119-146.

S. Sular and C. Özgür: Characterizations of generalized quasi-Einstein manifolds. An. St. Univ. Ovidius Constanta 20 (2012), 407-416.

M. M. Tripathi and J. S. Kim: On N(k)-quasi Einstein manifolds. Communications of the Korean Mathematical Society 22 (2007), 411-417.




DOI: https://doi.org/10.22190/FUMI210819086H

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)