SOME GEOMETRICAL RESULTS ON NEARLY KÄHLER FINSLER MANIFOLDS
Abstract
This work is intended as an attempt to extend some results of nearly Kählerian Finsler manifolds. We give a condition to generalized $ (a, b, {\bf J})- $manifolds to be weakly Landsberg metric. Furthermore, we find the conditions under which a nearly Kähler Finsler manifold has relatively isotropic Landsberg curvature and relatively isotropic mean Landsberg curvature.
Keywords
Full Text:
PDFReferences
bibitem{chern}
{sc S. S. Chern {rm and} Z. Shen}: textit{Riemann-Finsler geometry}. World Scientific Publishing Company, (2005).
bibitem{DNH}
{sc Z. Didehkhani, B. Najafi {rm and} N. Heidari}:
textit{On nearly K"{a}hler Finsler spaces}, Appl. Applied. Math, {bf 14} (2019), 1243--1268.
bibitem{AG}
{sc A. Gray}: textit{The structure of nearly K"{a}hler manifolds}. Math. Ann. {bf 223} (1976), 233-248.
bibitem{GH}
{sc A. Gray {rm and} L.M. Hervella}: textit{The sixteen classes of almost Hermitian manifolds and their linear invariants}. Math. Ann. Pura Appl. {bf 123} (1980), 35--58.
bibitem{Y}
{sc Y. Ichijy=o }: textit{Finsler metrics on almost complex manifolds}. Rivista di Matematica della Universit"{i}a di Parma. {bf 4} (1988), 1--28.
bibitem{IY}
{sc Y. Ichijy=o}: textit{K"{a}hlerian Finsler manifolds}. J. Math. Tokushima Univ. Parma. {bf 4}(1994), 19-27.
bibitem{IH2}
{sc Y. Ichijy=o {rm and} M. Hashiguchi}: textit{On $(a,b,f)$-metrics}. Rep. Fac. Sci. Kagoshima Univ. (Math., Phys., Chem), {bf 28} (1995), 1--9.
bibitem{IH3}
{sc Y. Ichijy=o {rm and} M. Hashiguchi}: textit{On $(a,b,f)$-metrics II}. Rep. Fac. Sci. Kagoshima Univ. (Math., Phys., Chem), {bf 29} (1995), 1--5.
bibitem{Ka}
{sc E. K"{a}hler}:
textit {"{U}ber eine bemerkenswerte Hermitesche Metric}, Abh. Math. Sem. Hamburg Univ, {bf 9} (1933), 173--186.
bibitem{PT2}
{sc E. Peyghan {rm and} A. Tayebi}: textit{Finslerian complex and K"{a}hlerian structures}. Non-Linear Analysis: RWA, {bf 11}(2010), 3021--3030.
bibitem{Rizza}
{sc G.B. Rizza}: textit{Strutture di Finsler sulle varieta quasi complesse}. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei {bf 33} (1962), 271--275.
bibitem{TN1}
{sc A. Tayebi {rm and} B. Najafi}: textit{Classification of 3-dimensional Landsbergian $(alpha, beta)$-mertrics}. Publ. Math. Debrecen, {bf 96}(2020), 45--62.
bibitem{TN2} {sc A. Tayebi {rm and} B. Najafi}: textit {Weakly stretch Finsler metrics}. Publ Math Debrecen, {bf 91}(2017), 441-454.
bibitem{V2}
{sc S. Vacaru}: textit{Deformation quantization of almost K"{a}hler models and Lagrange-Finsler spaces}. J. Math. Phys {bf 48} (2007) (14 pages).
bibitem{V4}
{sc S. Vacaru}: textit{Finsler and lagrange geometries in Einstein and string gravity}. Int. J. Geom. Methods. Mod. Phys. {bf 5} (2008), 473--511.
DOI: https://doi.org/10.22190/FUMI210922020D
Refbacks
ISSN 0352-9665 (Print)