SOME GEOMETRICAL RESULTS ON NEARLY KÄHLER FINSLER MANIFOLDS

Akbar Dehghan Nezhad, Sareh Beizavi, Akbar Tayebi

DOI Number
https://doi.org/10.22190/FUMI210922020D
First page
295
Last page
305

Abstract


This work is intended as an attempt to extend some results of nearly Kählerian Finsler manifolds. We give a condition to generalized $ (a, b, {\bf J})- $manifolds to be weakly Landsberg metric. Furthermore, we find the conditions under which a nearly Kähler Finsler manifold has relatively isotropic Landsberg curvature and relatively isotropic mean Landsberg curvature.


Keywords

Kähler structure, Nearly Kähler structure, Finsler metric, Landsberg metric

Full Text:

PDF

References


bibitem{chern}

{sc S. S. Chern {rm and} Z. Shen}: textit{Riemann-Finsler geometry}. World Scientific Publishing Company, (2005).

bibitem{DNH}

{sc Z. Didehkhani, B. Najafi {rm and} N. Heidari}:

textit{On nearly K"{a}hler Finsler spaces}, Appl. Applied. Math, {bf 14} (2019), 1243--1268.

bibitem{AG}

{sc A. Gray}: textit{The structure of nearly K"{a}hler manifolds}. Math. Ann. {bf 223} (1976), 233-248.

bibitem{GH}

{sc A. Gray {rm and} L.M. Hervella}: textit{The sixteen classes of almost Hermitian manifolds and their linear invariants}. Math. Ann. Pura Appl. {bf 123} (1980), 35--58.

bibitem{Y}

{sc Y. Ichijy=o }: textit{Finsler metrics on almost complex manifolds}. Rivista di Matematica della Universit"{i}a di Parma. {bf 4} (1988), 1--28.

bibitem{IY}

{sc Y. Ichijy=o}: textit{K"{a}hlerian Finsler manifolds}. J. Math. Tokushima Univ. Parma. {bf 4}(1994), 19-27.

bibitem{IH2}

{sc Y. Ichijy=o {rm and} M. Hashiguchi}: textit{On $(a,b,f)$-metrics}. Rep. Fac. Sci. Kagoshima Univ. (Math., Phys., Chem), {bf 28} (1995), 1--9.

bibitem{IH3}

{sc Y. Ichijy=o {rm and} M. Hashiguchi}: textit{On $(a,b,f)$-metrics II}. Rep. Fac. Sci. Kagoshima Univ. (Math., Phys., Chem), {bf 29} (1995), 1--5.

bibitem{Ka}

{sc E. K"{a}hler}:

textit {"{U}ber eine bemerkenswerte Hermitesche Metric}, Abh. Math. Sem. Hamburg Univ, {bf 9} (1933), 173--186.

bibitem{PT2}

{sc E. Peyghan {rm and} A. Tayebi}: textit{Finslerian complex and K"{a}hlerian structures}. Non-Linear Analysis: RWA, {bf 11}(2010), 3021--3030.

bibitem{Rizza}

{sc G.B. Rizza}: textit{Strutture di Finsler sulle varieta quasi complesse}. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei {bf 33} (1962), 271--275.

bibitem{TN1}

{sc A. Tayebi {rm and} B. Najafi}: textit{Classification of 3-dimensional Landsbergian $(alpha, beta)$-mertrics}. Publ. Math. Debrecen, {bf 96}(2020), 45--62.

bibitem{TN2} {sc A. Tayebi {rm and} B. Najafi}: textit {Weakly stretch Finsler metrics}. Publ Math Debrecen, {bf 91}(2017), 441-454.

bibitem{V2}

{sc S. Vacaru}: textit{Deformation quantization of almost K"{a}hler models and Lagrange-Finsler spaces}. J. Math. Phys {bf 48} (2007) (14 pages).

bibitem{V4}

{sc S. Vacaru}: textit{Finsler and lagrange geometries in Einstein and string gravity}. Int. J. Geom. Methods. Mod. Phys. {bf 5} (2008), 473--511.




DOI: https://doi.org/10.22190/FUMI210922020D

Refbacks





© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)