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Abstract. The primary aim of this study is to establish the existence of a fixed point
for FG(ξ, λ, θ)-generalized contractions in the context of bv(s)-metric spaces. The
obtained result extends various well-established findings in metric spaces, b-metric
spaces, rectangular b-metric spaces, and bv(s) metric spaces. Our discoveries not
only expand upon and consolidate existing results in C-class functions but also build
upon several previous contributions in the literature. Furthermore, we delve into and
elaborate on the recently introduced concept of CG-class functions, providing illustrative
examples.
Keywords: fixed point, C-class function, CG-class function, bv(s)-metric spaces.

1. Introduction and Preliminaries

Banach’s contraction principle, as introduced by [4], serves as the foundation for
the formulation of fixed point theorems, thereby contributing to the advancement
of nonlinear analysis. Various generalizations of Banach’s results are documented
in the literature, with examples provided by Ciric [7], Rhoades [17], Taskovic [18],
Edelstein [12], Popescu [16], and Bogin [5].

In 2014, Ansari [2] introduced the concept of C-class functions, aiming to establish
fixed point theorems for specific contractive mappings within this class. In this
paper, we explore a novel category of functions termed correctly generalized CG-class
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functions and derive a fixed point theorem within the framework of bv(s)-metric
spaces.

Throughout this investigation, R+ denotes the set of non-negative real numbers,
and Z+ represents the set of positive integers.

Definition 1.1. [8] Let Ø ̸= M is a set and s ≥ 1 is a real number. Suppose that
for all p, q, r ∈ M the map δ : M ×M → R+ satisfies the following conditions:

(δ1) δ(p, q) ≥ 0;

(δ2) δ(p, q) = 0 ⇐⇒ p = q;

(δ3) δ(p, q) = δ(q, p);

(δ4) δ(p, r) 6 s[δ(p, q) + δ(q, r)] (b-triangular inequality).

If δ satisfies conditions (δ1)-(δ4), then δ is known as b- metric on M. The couple
(M, δ) is named as b-metric space.

After the introduction of the b-metric spaces, a generalized versions was introduced.
These include the extended b-metric space, rectangular b-metric space, bv(s)-metric
space and more.

Definition 1.2. [11] Let Ø ̸= M is a set and s ≥ 1 be a fixed real number. Let
δ : M ×M → R+ be a map such that for all p, q ∈ M and different points r, t ∈ M ,
each not equals from p and q:

(δ1) δ(p, q) = δ(q, p) = 0 ⇐⇒ p = q;

(δ2) δ(p, q) = δ(q, p);

(δ3) δ(p, q) 6 s[δ(p, r) + δ(r, t) + δ(t, q)] (b-rectangular inequality).

Here, δ is known as a b-rectangular metric, and the couple (M, δ) is known as a
b-rectangular metric space.

The recent work of Mitrovic and Radenovic [15] is a more general version of b-metric
space called bv(s)-metric space.

Definition 1.3. [15] Let Ø ̸= M is a set. Let δ : M ×M → R+ be a mapping and
v ∈ Z+, s > 1. Then (M, δ) is called the bv(s)-metric space for all p, q ∈ M and all
distinct points u1, u2, ..., uv ∈ M , each is different from p and q, the following hold:

(δ1) δ(p, q) = δ(q, p) = 0 if and only if p = q;

(δ2) δ(p, q) = δ(q, p);

(δ3) δ(p, q) 6 s[δ(p, u1) + δ(u1, u2) + ...+ δ(uv, q)] (bv(s)-metric inequality).
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Definition 1.4. [15] Let the couple (M, δ) be the bv(s)-metric space, (pk) the
sequence of M , and p ∈ M . Then the

(a) sequence (pk) converges to p in (M, δ) if for any γ > 0 there is N0 = N0(γ) ∈ Z+

such that δ(pk, p) 6 γ for all k > N0 and this fact is expressed as lim
k→∞

pk = p;

(b) sequence (pk) is Cauchy if for any γ > 0 there is N0 = N0(γ) ∈ Z+ such that
δ(pk, pl) 6 γ for all k, l > N0;

(c) couple (M, δ) is called complete bv(s)-metric space if every Cauchy sequence in
M converges to a point in it.

Some of the recent fixed point results in bv(s) can be found on [1], [9], [10] and
references there in.
Here, we give an instance of a bv(s-metric space).

Example 1.1. Let M = {1
2
,
1

3
,
1

4
,
1

5
,
1

6
}. We define δ :M ×M → Z+ by

δ(
1

w
,
1

v
) =



0 if w = v,

|w − v| if |w − v| > 1,

1

4
if |w − v| = 1.

Condition (δ1) and (δ2) of Definition 1.3 are obvious. We verify bv(s)-metric
inequality. Hence we choose p = 1

6 and q = 1
2 with distinct intermediate points

u1 = 1
5 , u2 = 1

4 , and u3 = 1
3 . Now,

δ

(
1

6
,
1

2

)
= 4 ≤ 4

[
δ

(
1

6
,
1

5

)
+ δ

(
1

5
,
1

4

)
+ δ

(
1

4
,
1

3

)
+ δ

(
1

3
,
1

2

)]
.

This inequality holds for any choice of p, q, and distinct intermediate points, as
long as s ≥ 4.

Since all conditions of the bv(s)-metric space definition are met, (M, δ) is indeed
a b3(4)-metric space.

Definition 1.5. [2] The continuous mapping F : R+×R+ → R is called a C-class
function if for all p, q ∈ R+

(a) F(p, q) ≤ p;

(b) F(p, q) = p implies that either p = 0 or q = 0.

C represents the family of all C-class functions.

Definition 1.6. [14] A mapping FG : R3
+ → R is called a generalized CG-class

function if for all p, q, r ∈ R+
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(a) FG is continuous;

(b) FG(p, q, r) ≤ max{p, q};

(c) FG(p, q, r) = p implies that either p = 0 or q = 0 or r = 0.

CG represents the family of all correctly generalized CG-class functions.

Example 1.2. In the following, we give some members of CG

F1(p, q, r) = min{p, q, r}

This function is continuous, as the minimum of a set of continuous functions is
itself continuous. It satisfies F1(p, q, r) ≤ max{p, q} since the minimum of any set
of numbers is less than or equal to the maximum of that set.
Finally, if F1(p, q, r) = p, then either p = 0, q = 0, or r = 0, satisfying the conditions
of the corrected generalization.

Example 1.3. Consider the function:

F3(p, q, r) =
√
p2 + q2 + r2

Let’s consider a condition that holds in the definition 1.6 but fails to hold in the
definition 1.5. We can achieve this by introducing a third variable that contributes
to the conditions. Specifically, we’ll use the magnitude of the vector formed by
p, q, r.

In this case, F3 is the Euclidean norm in three-dimensional space. Now, let’s
check the conditions:

1. Continuity: F3 is continuous.

2. F3(p, q, r) ≤ max{p, q}: This condition holds because the Euclidean norm is
always less than or equal to the maximum of its components.

3. F3(p, q, r) = p implies that either p = 0, q = 0, or r = 0:
This condition holds because if F3(p, q, r) = p, then p is the magnitude of the vector
(p, q, r), and the only way for this magnitude to be equal to p is if q = 0 and r = 0.

Now, let’s consider the two-dimensional case (r = 0):

For F3(p, q, 0) = p, it implies that either p = 0 or q = 0. This condition is
consistent with the two-dimensional definition.

However, to demonstrate a condition that holds in the three-dimensional case
but fails in the two-dimensional case, we can consider F3(p, q, 0) for p > 0 and

q > 0. In this case, F3(p, q, 0) =
√
p2 + q2, and if this equals p, it implies q = 0.

This condition is specific to the three-dimensional case, where the third component
r contributes to the Euclidean norm. In the two-dimensional case (r = 0), the
condition would still be consistent with the two-dimensional definition.

Remark 1.1. [14] Every C-class function is CG-class function. But the converse may
not hold.
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Now, let’s prove the remark:

Proof. To prove Every C-class function is a CG-class function:

Let F be a C-class function. Define FG(p, q, r) = F(p, q) for all p, q, r ∈ R+.
Condition (a): FG is continuous because it inherits continuity from F .
Condition (b): FG(p, q, r) = F(p, q) ≤ p ≤ max{p, q}.
Condition (c): If FG(p, q, r) = p, then F(p, q) = p, and by the C-class condition,
either p = 0 or q = 0.
Therefore, every C-class function satisfies the conditions of a CG-class function.

The converse may not hold:
Consider the function FG(p, q, r) = e−r ·min{p, q}.
Conditions (a) and (b) of CG-class are satisfied because e−r and min{p, q} are
continuous, and FG(p, q, r) ≤ max{p, q}.
Condition (c): If FG(p, q, r) = p, then e−r ·min{p, q} = p. This implies that either
p = 0 or q = 0 or r = 0.
However, this function does not satisfy the condition of the C-class definition
because it allows for cases where FG(p, q, r) = p while q is nonzero.

Therefore, every C-class function is a CG-class function, but the converse may
not hold as demonstrated by the counter example.

To prove the main result, we will use the following classes of functions.

Definition 1.7. [13] The function ξ : R+ → R+ is called the altering distance
function if the following properties are met:

(ξ1) ξ is non-decreasing and continuous,

(ξ2) ξ(s) = 0 if and only if s = 0.

Ξ represents the family of all altering distance functions.

Definition 1.8. [3] The function θ : R+ → R+ is called the ultra-altering distance
function if the following properties are met:

(a) θ is continuous,

(b) θ(s) > 0 for all s > 0.

Θu represents the class of all ultra-altering distance functions.
Throughout this work, we represent the class of functions {λ : R+ → R+ such that
λ is non-decreasing, upper semi-continuous from the right and λ(t) = 0 only when
t = 0} by Λ.
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Lemma 1.1. [14] Let (M, δ) be the bv(s)-metric space and let {pn} be the sequence
of M with different elements (pn ̸= pm with n ̸= m). Suppose that lim

n→∞
δ(pn, pn+h) =

0 for all h ∈ {1, 2, ...v} and {pn} is not a bv(s)- Cauchy sequence. Then there exist
γ > 0 and sequences {mk} and {nk} of positive integers such that mk > nk+v, nk >
k and

(1.1) γ 6 lim
k→∞

inf δ(pnk
, pmk

) ≤ lim
k→∞

sup δ(pnk
, pmk

) ≤ sγ,

(1.2)
γ

s
6 lim

k→∞
inf δ(pnk

, pmk+1) ≤ lim
k→∞

sup δ(pnk
, pmk+1) ≤ sγ,

(1.3)
γ

s
6 lim

k→∞
inf δ(pnk−1, pmk

) ≤ lim
k→∞

sup δ(pnk−1, pmk
) ≤ sγ,

(1.4)
γ

s2
6 lim

k→∞
inf δ(pnk−1, pmk+1) ≤ lim

k→∞
sup δ(pnk−1, pmk+1) ≤ s2γ.

Definition 1.9. [14] A quadruple (ξ, λ, θ, FG) is said to be a monotone if for all
p, q ∈ [0,∞), then

p ≤ q =⇒ FG(ξ(p), λ(p), θ(p)) ≤ FG(ξ(q), λ(q), θ(q)),

where ξ ∈ Ξ, λ ∈ Λ, θ ∈ Θ, and FG ∈ CG.

Example 1.4. We define functions ξ, λ, θ : R+ → R+ by

ξ(t) =
3

2
t, λ(t) =


t if t < 1

1

2
t+

3

4
if t > 1 and θ(t) =

1

3
t,

then (ξ, λ, θ, FG) is a monotone.

Let’s check whether the given quadruple (ξ, λ, θ, FG) is a monotone according
to the provided definition.

We check the properties of each function:

1. ξ(t) = 3
2 t:

• Non-decreasing: As t increases, ξ(t) increases linearly.

• Continuous: ξ(t) is a linear function, hence continuous.

• Zero Property: ξ(t) = 0 if and only if t = 0.

Thus, ξ ∈ Ξ.

2. λ(t):

• For t < 1: λ(t) = t is non-decreasing and continuous.
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• For t ≥ 1: λ(t) = 1
2 t+

3
4 is also non-decreasing and continuous.

• Upper Semi-Continuity: λ(t) is upper semi-continuous from the right.

Thus, λ ∈ Λ.

3. θ(t) = 1
3 t:

• Continuous: θ(t) is linear and continuous.

• Positive Property: θ(s) > 0 for all s > 0.

Thus, θ ∈ Θu.

The monotonicity condition requires that for all p, q ∈ [0,∞):

p ≤ q =⇒ FG(ξ(p), λ(p), θ(p)) ≤ FG(ξ(q), λ(q), θ(q)).

Since ξ(t), λ(t), and θ(t) are non-decreasing functions, we have:

ξ(p) ≤ ξ(q), λ(p) ≤ λ(q), θ(p) ≤ θ(q) for p ≤ q.

The generalized CG-class function FG satisfies:

• FG is continuous.

• FG(ξ(p), λ(p), θ(p)) ≤ max{ξ(p), λ(p)}.

Thus, by the definition of CG-class functions, we conclude that:

FG(ξ(p), λ(p), θ(p)) ≤ FG(ξ(q), λ(q), θ(q)) for p ≤ q.

The given quadruple (ξ, λ, θ,FG) satisfies the monotonicity condition, meaning it
is indeed a monotone according to the provided definition. The functions ξ(t), λ(t),
and θ(t) satisfy their respective properties, and FG being a generalized CG-class
function ensures the required inequality holds.

2. Main Results

Theorem 2.1. Given that (M, δ) is a complete bv(s)-metric space. Let S : M →
M be a self mapping satisfying the inequality:

(2.1) ξ(δ(Sp, Sq)) ≤ FG(ξ(L(p, q)), λ(L(p, q)), θ(L(p, q)))

for each p, q ∈ M , where

L(p, q) = max{δ(p, q), δ(p, Sp), δ(q, Sq), δ(q, Sq)[1 + δ(p, Sq)]

1 + s[δ(p, q) + δ(q, Sq)]
},

ξ ∈ Ξ, λ ∈ Λ, θ ∈ Θ, and FG ∈ CG.
Then S admits a single fixed point.
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Proof. Define a sequence {pn} contained in M with pn+1 = Spn for all n ∈ Z+∪{0}.
Assuming that pn0 = pn0+1 for some n0 > 0, then pn0 is a fixed point and we are
through. Therefore, we assume that pn ̸= pn+1. for all n ∈ Z+ ∪ {0}.
and pn ̸= pn+1 for all n on substituting p = pn and q = pn+1 in (2.1), we have

ξ(δ(pn+1, pn+2)) = ξ(δ(Spn, Spn+1)) ≤ FG(ξ(L(pn, pn+1)), λ(L(pn, pn+1)),

θ(L(pn, pn+1)))

(2.2) ≤ max{ξ((L(pn, pn+1)), λ(L(pn, pn+1)))},

where

L(pn, pn+1) = max{δ(pn, pn+1), δ(pn, Spn), δ(pn+1, Spn+1),

δ(pn+1, Spn+1)[1 + δ(pn, Spn+1)]

1 + s[δ(pn, pn+1) + δ(pn+1, Spn+1)]
}

= max{δ(pn, pn+1), δ(pn, pn+1), δ(pn+1, pn+2),

δ(pn+1, pn+2)[1 + δ(pn, pn+2)]

1 + s[δ(pn, pn+1) + δ(pn+1, pn+2)]
}

≤ max{δ(pn, pn+1), δ(pn, pn+1), δ(pn+1, pn+2),

δ(pn+1, pn+2)[1 + s[δ(pn, pn+1) + δ(pn+1, pn+2)]]

1 + s[δ(pn, pn+1) + δ(pn+1, pn+2)]
}

(2.3) = max{δ(pn, pn+1), δ(pn+1, pn+2)}.

Suppose that max{δ(pn, pn+1), δ(pn+1, pn+2)} = δ(pn+1, pn+2). Hence from (2.2),
we obtain

ξ(δ(pn+1, pn+2)) = ξ(δ(Spn, Spn+1)) ≤ FG(ξ(δ(pn+1, pn+2)), λ(δ(pn+1, pn+2)),

θ(δ(pn+1, pn+2)))

< max{ξ(δ(pn+1, pn+2)), λ(δ(pn+1, pn+2))} = ξ(δ(pn+1, pn+2)),

this is a contradiction.
Therefore, max{δ(pn, pn+1), δ(pn+1, pn+2)} = δ(pn, pn+1). Hence from (2.2), we
obtain

ξ(δ(pn+1, pn+2)) = ξ(δ(Spn, Spn+1)) ≤ FG(ξ(δ(pn, pn+1)), λ(δ(pn, pn+1)),

θ(δ(pn, pn+1)))

< max{ξ(δ(pn, pn+1)), λ(δ(pn, pn+1))} = ξ(δ(pn, pn+1)),
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From non-decreasing property of ξ, it follows that δ(pn+1, pn+2) 6 δ(pn, pn+1) for
all n ∈ Z+.
Hence, {δn} = {δ(pn, pn+1)} is a decreasing positive sequence inM . and it converges
to some real number l > 0. We now claim that l = 0. Now, taking the upper limit
letting n → ∞ in (2.2), we have

(2.4) ξ(l) ≤ FG(ξ(l), λ(l), θ(l)) 6 max{ξ(l), λ(l)} = ξ(l).

From (2.4), we get

(2.5) FG(ξ(l), λ(l), θ(l)) = ξ(l).

By the condition c of Definition 1.6 and (2.5), it can be deduced that either ξ(l) = 0
or λ(l) = 0 or θ(l) = 0. Hence, l = 0.
Next, we will show that pm ̸= pn, for all m ̸= n. Assume the contrary. i. e.,
pm = pn, for some m > n. Hence we have,

pm+1 = Spm = Spn = pn+1,

and δ(pm, pm+1) < δ(pm−1, pm) < ... < δ(pn, pn+1) = δ(pm, pm+1),
a contradiction. Therefore, pm ̸= pn, for allm ̸= n. Since the sequence {δ(pn, pn+1)}
is decreasing, by applying bv(s) metric inequality for h = 1, 2, 3, ..., v, we get

δ(pn, pn+h) ≤ s[δ(pn, pn+1) + δ(pn+1, pn+2) + ...+ δ(pn+h−1, pn+h)].

(2.6) < s[δ(pn, pn+1) + δ(pn, pn+1) + ...+ δ(pn, pn+1)].

From (2.6), we have

(2.7)
1

sh
δ(pn, pn+h) < δ(pn, pn+1).

For h ≥ 1, we have

(2.8)
1

2s
δ(pn, pn+1) 6

1

sh
δ(pn, pn+h) < δ(pn, pn+1) ≤ δ(pn, pn+h).

Again, by replacing p = pn, q = pn+h in (2.1), where pn ̸= pn+h for all n and
h = 1, 2, 3, ..., v, we have

ξ(δ(pn+1, pn+h+1)) = ξ(δ(Spn, Spn+h)) ≤ FG(ξ(L(pn, pn+h)), λ(L(pn, pn+h)),

θ(L(pn, pn+h)))

(2.9) ≤ max{ξ(L(pn, pn+h)), λ(L(pn, pn+h)))},
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where
L(pn, pn+h) = max{δ(pn, pn+h), δ(pn, Spn), δ(pn+h, Spn+h),

δ(pn+h, Spn+h)[1 + δ(pn, Spn+h)]

1 + s[δ(pn, pn+h) + δ(pn+h, Spn+h)]
}

= max{δ(pn, pn+h), δ(pn, pn+1), δ(pn+h, pn+h+1),

δ(pn+h, pn+h+1)[1 + δ(pn, pn+h+1)]

1 + s[δ(pn, pn+h) + δ(pn+h, pn+h+1)]
}

≤ max{δ(pn, pn+h), δ(pn, pn+1), δ(pn+h, pn+h+1),

δ(pn+h, pn+h+1)[1 + s[δ(pn, pn+h) + δ(pn+h, pn+h+1)]

1 + s[δ(pn, pn+h) + δ(pn+h, pn+h+1)]
},

(2.10) = max{δ(pn, pn+h), δ(pn, pn+1), δ(pn+h, pn+h+1)}.

We denote by an = δ(pn, pn+1), bn = δ(pn, pn+h), bn+1 = δ(pn+1, pn+h+1) and
cn = δ(pn+h, pn+h+1). Hence

cn < cn−1 < cn−2 < ... < cn−h = an = δ(pn, pn+1).

Thus cn can not be the maximum. Again from (2.8), we have an < bn.
Hence from (2.9) and (2.10), we get

ξ(bn+1) ≤ ξ(bn).

From non-decreasing property of ξ, it follows that bn+1 6 bn for all n ∈ Z+ and
for h = 1, 2, 3, ..., v. Hence {bn} = {δ(pn, pn+h)} is a decreasing positive sequence
in M .
In the next step, we will prove that the sequence {δ(pn, pn+h)} → 0 for h =
1, 2, 3, ..., v. Since δ(pn, pn+h) > 0, we have

0 < δ(pn, pn+h) ≤ s[δ(pn, pn+1) + δ(pn+1, pn+2) + ...+ δ(pn+h−1, pn+h)]

(2.11) < sh[δ(pn, pn+1)].

Letting n → ∞ in (2.11), we obtain

δ(pn, pn+h) → 0.

In the following, we show that {pn} is a bv(s)-Cauchy sequence. Now, assuming
the contrary, {pn} is not a bv(s)-Cauchy sequence. From Lemma 1.1, there is γ > 0
and sequences {mk} and {nk} of Z+ such that mk > nk + v, nk > k and

γ 6 lim
k→∞

inf δ(pnk
, pmk

) ≤ lim
k→∞

sup δ(pnk
, pmk

) ≤ sγ,
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γ

s
6 lim

k→∞
inf δ(pnk

, pmk+1) ≤ lim
k→∞

sup δ(pnk
, pmk+1) ≤ sγ,

γ

s
6 lim

k→∞
inf δ(pnk−1, pmk

) ≤ lim
k→∞

sup δ(pnk−1, pmk
) ≤ sγ,

γ

s2
6 lim

k→∞
inf δ(pnk−1, pmk+1) ≤ lim

k→∞
sup δ(pnk−1, pmk+1) ≤ s2γ,

Hence, putting p = pnk−1 and q = pmk
in (2.1), we have

ξ(δ(pnk
, pmk+1)) = ξ(δ(Spnk−1, Spmk

))

(2.12) ≤ FG(ξ(L(pnk−1, pmk
)), λ(L(pnk−1, pmk

)), θ(L(pnk−1, pmk
))),

where

L(pnk−1, pmk
) = max{δ(pnk−1, pmk

), δ(pnk−1, Spnk−1), δ(pmk
, Spmk

),

δ(pmk
, Spmk

)[1 + δ(pnk−1, Spmk
)]

1 + s[δ(pnk−1, pmk
) + δ(pmk

, Spmk
)]
}

= max{δ(pnk−1, pmk
), δ(pnk−1, pnk

), δ(pmk
, pmk+1)

δ(pmk
, pmk+1)[1 + δ(pnk−1, pmk+1)]

1 + s[δ(pnk−1, pmk
) + δ(pmk

, pmk+1)]
}.

Thus,

(2.13) lim
k→∞

supL(pnk−1, pmk
) ≤ sγ.

Now, taking the upper limit as k → ∞ in (2.12) and using Lemma 1.1, we obtain

(2.14) ξ(sγ) ≤ FG(ξ(sγ), λ(sγ), θ(sγ)) ≤ max{ξ(sγ), λ(sγ)} = ξ(sγ),

This implies that
FG(ξ(sγ), λ(sγ), θ(sγ)) = ξ(sγ).

That means, γ = 0, a contradiction. Hence {pn} is Cauchy.
Since (M, δ) is a complete bv(s)-metric space, there exists a point p∗ such that

(2.15) lim
n→∞

δ(pn+h, p∗) = 0,

for h = 1, 2, 3, ..., v.
Assume that δ(Sp∗, p∗) > 0, i.e., Sp∗ ≠ p∗. Since {pn} is a sequence with distinct
elements, we can suppose that pn ̸= Sp∗ for all n ∈ Z+. Now, putting p = pn+h−1

and q = p∗ in (2.1), we obtain

ξ(δ(pn+h, Sp∗)) = ξ(δ(Spn+h−1, Sp∗)) ≤ FG(ξ(L(pn+h−1, p∗)),

(2.16) λ(L(pn+h−1, p∗)), θ(L(pn+h−1, p∗))).
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where

L(pn+h−1, p∗) = max{δ(pn+h−1, p∗), δ(pn+h−1, Spn+h−1), δ(p∗, Sp∗),

(2.17)
δ(p∗, Sp∗)[1 + δ(pn+h−1, Sp∗)]

1 + s[δ(pn+h−1, p∗) + δ(p∗, Sp∗)]
}.

On taking the upper limit of L, we have

(2.18) lim
n→∞

supL(pn+h−1, p∗) = δ(p∗, Sp∗).

Hence by taking the upper limit as n → ∞ in (2.16), we get

ξ(δ(p∗, Sp∗)) ≤ FG(ξ(δ(p∗, Sp∗)),

(2.19) λ(δ(p∗, Sp∗)), θ(δ(p∗, Sp∗))) < ξ(δ(p∗, Sp∗),

a contradiction. Therefore, δ(p∗, Sp∗) = 0. i.e., Sp∗ = p ∗ .
At last, we show that p∗ is the only fixed point of S. Assume that p∗, q∗ ∈ F (S)
provided that p∗ and q∗ are distinct. Hence α(p∗, q∗) ≥ 1. Now, putting p = p∗
and q = q∗ in (2.1), we have

ξ(δ(p∗, q∗)) = ξ(δ(Sp∗, Sq∗)) ≤ ξ(α(p∗, q∗)δ(Sp∗, Sq∗))

≤ FG(ξ(L(p∗, q∗)), λ(L(p∗, q∗)), θ(L(p∗, q∗)))
< max{ξ(L(p∗, q∗)), λ(L(p∗, q∗))}

(2.20) = ξ(L(p∗, q∗))

for each p∗, q∗ ∈ M , where

L(p∗, q∗) = max{δ(p∗, q∗), δ(p∗, Sp∗), δ(q∗, Sq∗),

(2.21)
δ(q∗, Sq∗)[1 + δ(p∗, Sq∗)]

1 + s[δ(p∗, q∗) + δ(q∗, Sq∗)]
} = δ(p∗, q∗).

Hence, from (2.20) and (2.21), we get ξ(δ(p∗, q∗)) < ξ(δ(p∗, q∗)), a contradiction.
Therefore, p∗ = q∗.

Corollary 2.1. Given that (M, δ) is a complete bv(s)-metric space. Let S : M →
M be a self mapping satisfying the inequality:

(2.22) ξ(δ(Sp, Sq)) ≤ ξ(L(p, q))− λ(L(p, q))− θ(L(p, q))

for each p, q ∈ M , where

L(p, q) = max{δ(p, q), δ(p, Sp), δ(q, Sq), δ(q, Sq)[1 + δ(p, Sq)]

1 + s[δ(p, q) + δ(q, Sq)]
},

ξ ∈ Ξ, λ ∈ Λ, and θ ∈ Θ.
Then S admits a single fixed point.
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Proof. Consider the function FG(p, q, r) = p− q − r. Notice that:

FG(ξ(L(p, q)), λ(L(p, q)), θ(L(p, q))) = ξ(L(p, q))− λ(L(p, q))− θ(L(p, q)).

Substituting this into inequality (2.1) from Theorem 2.1, we have:

ξ(δ(Sp, Sq)) ≤ ξ(L(p, q))− λ(L(p, q))− θ(L(p, q)),

which is exactly the inequality (2.22) required in the corollary.

Since Theorem 2.1 guarantees the existence of a single fixed point for S under
the conditions of (2.1), the same conclusion holds for the inequality in the corollary
(2.22) when FG(p, q, r) = p− q − r.

Thus, S admits a single fixed point.

Example 2.1. Let M = [0, 1], a closed interval in the real line. Define the bv(s)-metric
δ on M as:

δ(p, q) = |p− q|2.

Let s = 2. This makes M a complete bv(s)-metric space.

Define the self-mapping S :M →M as:

S(x) =
x

2
.

Let the functions ξ, λ, and θ be defined as:

ξ(t) = t, λ(t) =
t

2
, θ(t) =

t

4
.

Let the function FG be defined as:

FG(p, q, r) = max{p, q} −min{q, r}.

Verification

Step 1: Complete bv(s)-metric space

The space M = [0, 1] with the metric δ(p, q) = |p− q|2 and s = 2 is a complete
bv(s)-metric space. The conditions for a bv(s)-metric space are satisfied:

1. δ(p, q) = 0 if and only if p = q.

2. δ(p, q) = δ(q, p), which is symmetric.

3. For all distinct points u1, u2, . . . , uv ∈ M , where v = 1:

δ(p, q) ≤ s [δ(p, u1) + δ(u1, q)]

For u1 ∈ M , we have:

|p− q|2 ≤ 2
[
|p− u1|2 + |u1 − q|2

]
.

which holds due to the properties of squares of real numbers.
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Step 2: Inequality Satisfaction

For any p, q ∈ M , we need to check the inequality:

ξ(δ(Sp, Sq)) ≤ FG(ξ(L(p, q)), λ(L(p, q)), θ(L(p, q)))

First, we calculate L(p, q):

L(p, q) = max

{
δ(p, q), δ(p, Sp), δ(q, Sq),

δ(q, Sq)[1 + δ(p, Sq)]

1 + s[δ(p, q) + δ(q, Sq)]

}
Substituting δ(p, q) = |p− q|2 and S(x) = x

2 , we have:

δ(p, Sp) =
∣∣∣p− p

2

∣∣∣2 =
(p
2

)2

=
p2

4

δ(q, Sq) =
∣∣∣q − q

2

∣∣∣2 =
q2

4

L(p, q) = max

{
|p− q|2, p

2

4
,
q2

4
,

q2

4 [1 +
p2

4 ]

1 + 2[|p− q|2 + q2

4 ]

}
.

Now, using ξ(t) = t, λ(t) = t
2 , and θ(t) = t

4 :

ξ(δ(Sp, Sq)) =
|p− q|4

4
.

We substitute into the inequality:

|p− q|4

4
≤ max

{
L(p, q),

L(p, q)

2

}
−min

{
L(p, q)

2
,
L(p, q)

4

}
.

Step 3: Function Properties

The functions ξ, λ, and θ satisfy their respective definitions:

• ξ(t) = t: This is non-decreasing, continuous, and ξ(0) = 0.

• λ(t) = t
2 : This is non-decreasing, upper semi-continuous from the right, and

λ(0) = 0.

• θ(t) = t
4 : This is continuous, and θ(t) > 0 for all t > 0.

The function FG(p, q, r) = max{p, q} − min{q, r} is a generalized CG-class
function:

• It is continuous.

• FG(p, q, r) ≤ max{p, q}.

• FG(p, q, r) = p implies that p = 0, q = 0, or r = 0.

Since all conditions are satisfied, the inequality holds, and thus the Theorem 2.1
is verified.
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3. Summary

In our result, the fixed points for FG(ξ, λ, θ)-generalized contraction with CG-class
functions in complete bv(s)-metric spaces was proved. The recently introduced
concept of CG-class functions was also discussed and developed with examples. The
results introduced in this research extends several well known comparable results in
metric spaces, b-metric spaces, rectangular b-metric spaces and v-generalized metric
by Branciari [6].
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