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Ser. Math. Inform. Vol. 37, No 2 (2022), 417-437

https://doi.org/10.22190/FUMI220321029V

Original Scientific Paper

ADDITIVE PROPERTIES OF THE DRAZIN INVERSE FOR
MATRICES AND BLOCK REPRESENTATIONS: A SURVEY
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Abstract. In this paper, a review of a development of the Drazin inverse for the sum
of two matrices has been given. Since this topic is closely related to the problem of
finding the Drazin inverse of a 2× 2 block matrix, the paper also offers a survey of this
subject.
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1. Introduction

The concept of the Drazin inverse was introduced in 1958, by Michael P. Drazin,
in his celebrated paper [1]. Drazin defined this generalized inverse in a class which is
wider than a class of matrices – in associative rings, and named it ”pseudo–inverse”.
The definition which was given by Drazin is as follows.

Definition 1.1. [1] Let R be an associative ring and x ∈ R. If there exists an
element c ∈ R, which satisfies the following relations

(i) cx = xc,

(ii) xm = xm+1c, for some m ∈ N,

(iii) c = c2x,
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then x is pseudo–invertible in R and c is the pseudo–inverse of x, denoted by c = x′.

Furthermore, in [1, Theorem 1], Drazin proved that the pseudo–inverse x′ is unique,
when x is pseudo–invertible by Definition 1.1. In addition, he opened the problem
of additivity of pseudo–inverse and obtained the following result.

Theorem 1.1. [1, Corollary 1] If x1, . . . , xj (j ∈ N, j ≥ 2), are pseudo–invertible
elements of associative ring R, such that xsxt = 0 (s, t ∈ {1, ..., j}, s 6= t), then
x1+...+xj is also pseudo–invertible element in R, with (x1+...+xj)

′ = x1
′+...+xj

′.

Further, in the mentioned paper [1], Drazin remarked that the results that he ob-
tained are also applicable to matrices.

After the publication [1] of Drazin, in the late sixties of the previous century,
this ”pseudo–inverse” was studied more detailed in the matrix concept and it was
named ”the Drazin inverse” [2, 3, 4, 5, 6, 7].

Let Cn×n denote the set of all n × n complex matrices and let A ∈ Cn×n.
We denote by R(A),N (A) and rank(A), the range, the null space and the rank of
matrix A, respectively. The smallest nonnegative integer k, such that rank(Ak) =
rank(Ak+1), is called the index of matrix A, denoted by ind(A). For every matrix
A ∈ Cn×n, such that ind(A) = k, there exists the unique matrix Ad ∈ Cn×n, which
satisfies the following relations:

Ak+1Ad = Ak, AdAAd = Ad, AAd = AdA.

The matrix Ad is called the Drazin inverse of A [8, 9]. Clearly, ind(A) = 0 if and
only if A is nonsingular, and in that case Ad reduces to A−1. Through this paper
we use notation Aπ = I − AAd to denote the projection on N (Ak) along R(Ak).

Also, we agree that A0 = I and
∑k−j
i=1 Ai = 0, for k ≤ j, where i, j, k ∈ N.

The Drazin inverse of square matrices has applications in various areas. Some
of the elementary applications of the Drazin inverse of a square matrix were given
by S.L. Campbel [10, 11]. In the following we have the application of the Drazin
inverse in solving the singular system of differential equations [10, 11].

Let E,F ∈ Cn×n, where E is singular. Assume that there exists a scalar µ such
that µE + F is regular matrix. Then the general solution of the singular system of
differential equations:

Ex′(t) + Fx(t) = 0, t ≥ t0

is given by

x(t) = e−Ê
dF̂ (t−t0)ÊdÊq,

where

Ê = (µE + F )−1E, F̂ = (µE + F )−1F,

and q is an arbitrary vector of dimension n.
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2. The Drazin Inverse for the Sum of Two Matrices

Let P,Q ∈ Cn×n. As we have already noticed in Introduction, the problem
of finding the explicit formula for (P + Q)d was posed by Drazin in 1958 [1]. In
the matrix concept, the result which was obtained by Drazin is: when PQ = 0
and QP = 0, then (P + Q)d = P d + Qd. This problem remained unnoticed until
2001. Namely, in 2001, R. E. Hartwig, G. Wang and Y. Wei studied the problem
of additivity of the Drazin inverse of complex matrices (see [12]). Using Cline’s
formula [13], (AB)d = A((BA)d)2B, and the representation of (P +Q)d:

(P +Q)d =

([
I Q

] [ P
I

])d
=
[
I Q

]([ P PQ
I Q

]d)2 [
P
I

]
,(2.1)

they obtained the result which generalize Drazin’s result, which is presented in the
following theorem.

Theorem 2.1. [12, Theorem 2.1] Let P,Q ∈ Cn×n and let ind(P ) = r, ind(Q) =
s. If PQ =, then

(P +Q)d = Y1 + Y2,

where

Y1 =

s−1∑
i=0

QπQi(P d)i+1, Y2 =

r−1∑
i=0

(Qd)i+1P iPπ.(2.2)

After mentioned publication [12], this topic attracted a great attention and a
plenty of papers on this subject were published. In 2010, H. Yang and X. Liu
[14], also using the representation (2.1), derived the formula for (P + Q)d under
conditions PQP = 0, PQ2 = 0 and thereby generalized the result from Theorem
2.1. In the following theorem we have the mentioned formula for (P +Q)d.

Theorem 2.2. [14, Theorem 2.1] Let P,Q ∈ Cn×n be such that ind(P ) = r,
ind(Q) = s. If PQP = 0 and PQ2 = 0, then

(P +Q)d = Y1 + Y2 +
(
Y1
(
P d
)2

+
(
Qd
)2
Y2 −Qd

(
P d
)2 − (Qd)2 P d)PQ,

where Y1 and Y2 are defined as in (2.2).

Using the representation (2.1) and induction by k ∈ N, in 2011, J. Vǐsnjić and
D. S. Cvetković–Ilić [15], generalized the results from Theorem 2.1 and Theorem
2.2. This result is given in the next theorem.

Theorem 2.3. [15, Theorem 2.1] Let us define for j ∈ N, the set

Uj = {(p1, q1, p2, q2, ..., pj , qj) :

j∑
i=1

pi+

j∑
i=1

qi = j−1, pi, qi ∈ {0, 1, ..., j−1}, i = 1, j}.
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Let P,Q ∈ Cn×n be such that ind(P ) = r and ind(Q) = s and k ∈ N. If

PQ

k∏
i=1

(P piQqi) = 0,(2.3)

for every (p1, q1, p2, q2, ..., pk, qk) ∈ Uk, then

(P +Q)d = Y1 + Y2

+

k−1∑
i=1

(
Y1(P d)i+1 + (Qd)i+1Y2 −

i+1∑
j=1

(Qd)j(P d)i+2−j
)
PQ(P +Q)i−1,

where Y1 and Y2 are defined as in (2.2).

Depending on k ∈ N, we have special cases of Theorem 2.3. For k = 1, the
condition (2.3) is PQ = 0, hence we get Theorem 2.1 as a corollary of Theorem
2.3. In the case k = 2, the condition (2.3) is: PQP = 0 and PQ2 = 0. Therefore,
we have Theorem 2.2 as a direct corollary of Theorem 2.3. If we consider the case
k = 3, we have the following corollary:

Corollary 2.1. [15, Corollary 2.3] Let P,Q ∈ Cn×n be such that ind(P ) = r and
ind(Q) = s. If PQP 2 = 0, PQPQ = 0, PQ2P = 0 and PQ3 = 0 then

(P +Q)d = Y1 + Y2 +

(
Y1(P d)2 + (Qd)2Y2 −

2∑
i=1

(Qd)i(P d)3−i

)
PQ

+

(
Y1(P d)3 + (Qd)3Y2 −

3∑
i=1

(Qd)i(P d)4−i

)
(PQP + PQ2),

where Y1 and Y2 are defined by (2.2).

We remark that every of these results can also be expressed by its symmetrical
formulation (by using the conjugate transpose of matrices P and Q). For example,
symmetrical conditions of the conditions of Corollary 2.1 are: Q2PQ = 0, PQPQ =
0, QP 2Q = 0 and P 3Q = 0. Hence, the additive formula given under conditions
QPQ = 0, QP 2Q = 0, P 3Q = 0 [16, Theorem 3.2], is also a special case of Theorem
2.3. Also, we remark that additive result from Theorem 2.3 is extended to a Banach
algebra (see [17]).

Many other authors also studied the problem of additivity of the Drazin inverse
and offered formulas for (P +Q)d, with some side conditions for matrices P and Q.
In the following list, we give some conditions for matrices P and Q, under which
were obtained formulas for (P + Q)d. Furthermore, a list of authors who derived
mentioned formulas are given and the year of publication of these results.

(1) N. Castro–González, 2005:
P dQ = 0, PQd = 0 and QπPQPπ = 0 [18, Theorem 2.5];
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(2) M. F Mart́ınez–Serrano and N. Castro-González, 2009:
P 2Q = 0 and Q2 = 0 [19, Theorem 2.2];

(3) N. Castro–González, E. Dopazo and M. F. Mart́ınez–Serrano, 2009:
P 2Q = 0 and PQ2 = 0 [20, Theorem 2.3];

(4) C. Bu, C. Feng and S. Bai, 2012:
P 2Q = 0 and Q2P = 0 [16, Theorem 3.1];

(5) C. Bu and C. Zhang, 2013:
S2i−1PS2i−1P = 0, S2i−1PS2i−1QS2(i−1) = 0 and QS2(i−1)PQS2(i−1)Q

2 = 0,
where Si = (P +Q)i and i ≥ 1 [21, Theorem 3.1];

(6) J. Vǐsnjić, 2015:
P 2QP = 0, P 2Q2 = 0, PQ2P = 0 and PQ3 = 0 [22, Theorem 2.1];

(7) L. Sun et al. 2016:
(7.1) P 2QP = 0, PQ2 = 0 and (QP )2 = 0 [23, Theorem 3.1],
(7.2) P 2QP = 0, P 3Q = 0 and Q2 = 0 [23, Theorem 3.3];

(8) E. Dopazo, M.F. Mart́ınez–Serrano, J. Robles, 2016:
(8.1) PQ2 = 0, P 2QPπ = 0 and P dQ = 0 [24, Theorem 4.1 (i)],
(8.2) PQ2 = 0, PQPPπ = 0 and P dQP = 0 [24, Theorem 4.1 (ii)];

(9) X. Yang, X. Liu and F. Chen, 2017:
P 2QP = 0, Q2PQ = 0, Q2P 2 = 0, PQ2P = 0, P 3Q = 0 and Q3P = 0 [25,
Theorem 3.1];

(10) M. Dana and R. Yousefi, 2018:
PQP = 0, QPQ = 0, P 2Q2 = 0 and PQ3 [26, Theorem 4];

(11) R. Yousefi and M. Dana, 2018:
(11.1) P 2QP = 0, P 2Q2 = 0 and QPQ = 0 [27, Theorem 2.1],
(11.2) PQP 2 = 0, PQ2 = 0 and QP 3 = 0 [27, Theorem 3.1];

(12) L. Guo, J. Chen and H. Zou, 2019:
PQiP = 0, for i = 1, 2, . . . , n [28, Theorem 2.1].

Additive properties of the Drazin inverse were investigated not only in the matrix
concept, but also in the class of operators, in rings, in Banach algebra (for example,
see [17, 20, 29, 30, 31, 32, 33, 34, 35]).

3. Representations for the Drazin Inverse of 2× 2 Block Matrices

Let M be a complex block matrix of a form:

M =

[
A B
C D

]
,(3.1)



422 J. Vǐsnjić

where A and D are square matrices, not necessarily of the same size. In 1979, S. L.
Campbell and C. D. Meyer [36] posed the problem of finding the Drazin inverse of
matrix M , in terms of Ad and Dd, with arbitrary blocks A, B, C and D. Since then,
many authors have studied this problem and offered some formulas for Md, with
some restrictions upon the blocks of matrix M . In the present, there is no general
expression of Md, with no side conditions on blocks of matrix M , so this problem
is still an open one. However, it is shown that the Drazin inverse of 2 × 2 block
matrix has applications in several areas, such as differential and difference equations
and perturbation theory of the Drazin inverse (see [10, 11, 12, 36, 37, 38]), so this
topic is still of the great significance. We will present one of known examples of
application of the Drazin inverse of a 2× 2 block matrix (see [38]).

Consider the second-order system:

Ex′′(t) + Fx′(t) +G = 0,(3.2)

where E,F,G ∈ Cn×n and G is nonsingular. Then there is nonzero λ, such that
λ2E + λF +G is invertible. For x(t) = eλty(t), (3.2) is equivalent to:

(λ2E + λF +G)−1Ey′′(t) + (λ2E + λF +G)−1(F + 2λE)y′(t) + y(t) = 0.

For w(t) = y′(t), the above system is equivalent to the first order system:[
0 −I
Ẽ F̃

] [
w
y

]′
+

[
I 0
0 I

] [
w
y

]
=

[
0
0

]
,(3.3)

where Ẽ = (λ2E + λF + G)−1E and F̃ = (λ2E + λF + G)−1(F + 2λE). For

sufficiently small µ, we have that µ

[
0 −I
Ẽ F̃

]
+

[
I 0
0 I

]
is invertible. In order to

express solutions of (3.3), in terms of Ẽ and F̃ , we need to find the Drazin inverse
of 2× 2 block matrix:

Ê =

[
I −µI
µẼ µF̃ + I

]−1 [
0 −µI
µẼ µF̃

]
.

Primarily due to its applications, the topic of finding the Drazin inverse of 2× 2
block matrix M is still studied and new formulas for Md, with less restrictive
conditions for blocks of M , are developed. We remark that the literature on this
subject is truly sizeable and here we will present some of the results, which we found
interesting.

3.1. The connection between Md and (P +Q)d

The problem of finding the Drazin inverse of the sum of two matrices is closely
related to the problem of finding the Drazin inverse of 2× 2 complex block matrix.
We have that

(P +Q)d =

([
P Q

] [ I
I

])d
=
[
P Q

]([ P Q
P Q

]d)2 [
I
I

]
,
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therefore we can see the connection between the Drazin inverse of the sum of two
matrices and the Drazin inverse of 2×2 block matrix (see [27, Theorem 3.1]). Also,
as it is presented in (2.1), the Drazin inverse of the sum P + Q can be expressed

using the Drazin inverse of 2 × 2 block matrix

[
P PQ
I Q

]
. Hence, one can use

this approach and obtain a formula for (P + Q)d, applying formulas for Md (for
example, see [24]).

Conversely, matrix M can be presented as a sum of two matrices, so we can use
formulas for (P +Q)d to derive representations for Md (for example, see [22]). The
last approach is widely used in the current literature and there are many ways to
split matrix M as a sum of two matrices. For example, matrix M can be presented
as a sum:[

A B
0 D

]
+

[
0 0
C 0

]
,

[
A 0
C 0

]
+

[
0 B
0 D

]
,

[
A B
0 0

]
+

[
0 0
C D

]
,

[
A B

CAAd D

]
+

[
0 0

CAπ 0

]
,

[
A2Ad AAdB
C D

]
+

[
AAπ AπB

0 0

]
, etc.

3.2. The Drazin inverse of anti–triangular block matrices

As we have noticed in the previous subsection, matrix M , given by (3.1), can be
presented as a sum of two matrices, where one of them can be triangular (B = 0 or
C = 0 in (3.1)) or anti–triangular (A = 0 or D = 0 in (3.1)). Hence, triangular and
anti–triangular matrices are widely used for deriving formulas for Md, and conse-
quently for (P +Q)d. In 1977, two groups of authors, independently of each other,
derived a general expression of the Drazin inverse of lower and upper triangular ma-
trices. Actually, R. E. Hartwig and J. M. Shoaf [39], obtained mentioned formula
in the ring concept, and C. D. Meyer and N. D. Rose [40] in the matrix concept.
This formula is known as Hartwig–Meyer–Rose formula and it is presented in the
following theorem.

Theorem 3.1. [39, 40] Let M1 and M2 be block matrices of a form:

M1 =

[
A 0
C B

]
, M2 =

[
B C
0 A

]
,

where A and B are square matrices, with ind(A) = k, ind(B) = l. Then max {k, l} ≤
ind(Mi) ≤ k + l, for i ∈ {1, 2}, and

Md
1 =

[
Ad 0
X Bd

]
, Md

2 =

[
Bd X
0 Ad

]
,

where

X = X(B,C,A) =

l−1∑
i=0

(Bd)i+2CAiAπ +

k−1∑
i=0

BπBiC(Ad)i+2 −BdCAd.
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However, until today there is no general expression for the Drazin inverse of
anti–triangular block matrix. This problem was opened in 1983 by S. L. Campbel
[11], as an application in solving second order differential equations. These matrices
are also used in some applications like reducing the sizes of the matrices involved in
numerical analysis, saddle-point problems, optimization problems and graph theory
[10, 41, 42, 43, 44]. Primarily due to its applications, many scientists have investi-
gated special cases of this problem and offered some formulas, which are valid under
certain conditions.

Let N be an anti–triangular block matrix:

N =

[
A B
C 0

]
.(3.4)

In 2005, N. Castro–González and E. Dopazo [45] studied the open problem
of finding a formula for Nd. They noticed that a matrix of a form (3.4), where
A = B = I, is involved in calculating the Drazin inverse of bordered matrices of the

form

[
I P t

Q UV t

]
, where U , V , P and Q are n× k matrices [46]. Therefore, they

derived the formula for matrix N , when A = B = I. This formula is presented in
the next theorem.

Theorem 3.2. [45, Theorem 3.3] Let F =

[
I I
E 0

]
, where E ∈ Cl×l and ind(E) =

r. Then

F d =

[
Z1E

π Ed + Z2E
π

EdE + Z2EE
π −Ed + (Z1 − Z2)Eπ

]
,

where

Z1 =

r−1∑
j=0

(−1)jC(2, j)Ej , Z2 =

r−1∑
j=0

(−1)jC(2j + 1, j)Ej and C(n, k) =

(
n
k

)
.

Using the result from Theorem 3.2, N. Castro–González and E. Dopazo derived
the representation for Nd, under assumptions CAdA = C and BCAd = AdBC:

Theorem 3.3. [45, Theorem 4.1] Let N be matrix of a form (3.4). If CAdA = C
and BCAd = AdBC, then

Nd =

[ (
T1 +AdBCT2

)
(BC)πA

(
(BC)d + T1(BC)π

)
B

C
(
(BC)d + T1(BC)π

)
C
(
−A

(
(BC)d

)2
+ T2(BC)π

)
B

]
,

where

T1 =

r−1∑
j=0

C(2j, j)(Ad)2j+2(BC)j and T2 =

r−1∑
j=0

C(2j + 1, j)(Ad)2j+3(BC)j ,

with ind((Ad)2BC) = r and C(n, k) =

(
n
k

)
.
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In 2009, M. F. Mart́ınez–Serrano and N. Castro-González [19] investigated the
Drazin inverse for 2×2 block matrix M . As corollaries of their results, they derived
formulas for the Drazin inverse of anti–triangular block matrix N , defined as in
(3.4), under condition ABC = 0 and also under condition BCA = 0.

Theorem 3.4. [19, Corollary 3.9, Corollary 3.10] Let N be a matrix of a form
(3.4), with ind(BC) = r and ind(A2) = s.

(i) If ABC = 0, then

Nd =

[
(Ψ1A

d + Ψ2)A (Ψ1A
d + Ψ2)B

C(Ψ1A
d + Ψ2) C

(
Ψ1(Ad)2 + (BC)dΨ2A− (BC)dAd

)
B

]
,

where

Ψ1 =

r−1∑
i=0

(BC)π(BC)i(Ad)2i+1 and Ψ2 =

s−1∑
i=0

((BC)d)i+1(BC)iA2iAπ.

(ii) If BCA = 0, then

Nd =

[
A(AdΦ1 + Φ2) (AdΦ1 + Φ2)B

C(AdΦ1 + Φ2) C
(
(Ad)2Φ1 +AΦ2(BC)d −Ad(BC)d

)
B

]
,

where

Φ1 =

r−1∑
i=0

(Ad)2i+1(BC)i(BC)π and Φ2 =

s−1∑
i=0

A2iAπ((BC)d)i+1.

Also in 2009, C. Deng and Y. Wei [43] investigated the Drazin inverse of a 2× 2
anti–triangular operator matrix of a form (3.4). They obtained formulas for Nd,
which are valid when the following conditions are satisfied:

(i) ABC = 0 [43, Theorem 3.3];

(ii) BCAπ = 0 and AAdBC = 0 [43, Theorem 3.6];

(iii) AπAB = 0 and BCAAd = 0 [43, Theorem 3.8].

(3.5)

Results mentioned above were generalized by E. Dopazo, M. F. Mart́ınez–Serrano
and J. Robles [24], in 2016. Namely, these authors obtained explicit representations
for Nd in the following cases:


(a) ABCAπ = 0 and AAdBC = 0 [24, Theorem 2.1];

(b) AπBCA = 0 and BCAAd = 0 [24, Theorem 2.3];

(c) BCAπA = 0, BCAπB = 0 and AdBCA = 0 [24, Theorem 2.4];

(d) AAπBC = 0, CAπBC = 0 and ABCAd = 0 [24, Theorem 2.6].

(3.6)
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Furthermore, in 2021, D. Zhang, Y. Yin and D. Mosić [47] studied the Drazin
inverse of anti–triangular block matrix N of a form (3.4), for C = I and also for
arbitrary C. Actually, they derived the representation for the Drazin inverse of the

matrix

[
A B
I 0

]
, when AAdBAAd = 0, BAπB = 0 and BAπA = 0 [47, Theorem

3.2]. Further, they used a factorization of N :[
A B
C 0

]
=

[
I 0
0 C

] [
A B
I 0

]
and obtained the formula for Nd under conditions AAdBCAAd = 0, BCAπBC = 0
and BCAπA = 0 [47, Theorem 3.3]. Mentioned formula is generalization of the
case (c) from the list (3.6) and the case (ii) from the list (3.5).

Recently, J. Vǐsnjić and I. Ilić [48] offered representations for Nd when the
following conditions are satisfied:

(1) AAπBCA = 0, CAπBCA = 0 and AdBCAd = 0 [48, Theorem 3.1];

(2) ABCAπA = 0, ABCAπB = 0 and AdBCAd = 0 [48, Theorem 3.2].

We remark that the case (1) from the list above is a generalization of the cases
(b) and (d) from the list (3.6), and also of the case (ii) from Theorem 3.4. In
addition, the case (2) from the previous list is an extension of the cases (a) and (c)
from the list (3.6), and also of the cases (i) and (ii) from the list (3.5).

Lately, D. Zhang, Y. Yin and D. Mosić [49] generalized the case BCA = 0 from
Theorem 3.4, for operator matrix. Actually, these authors derived the formula for
Nd when BCA3 = 0, BCABC = 0 and BCA2BC = is valid [49, Theorem 3.2].

3.3. The Drazin inverse of block matrices with zero or nonsingular
generalized Schur complement

Let M be a complex block matrix of a form (3.1). In the case when A is
nonsingular, the Schur complement of A in M is defined by Z = D − CA−1B [8].
It is well known that, if A is regular matrix, then the invertibility of a 2× 2 block
matrix M is equivalent to the invertibility of the Schur complement of A in M [50],
and in that case:

M−1 =

[
A−1 +A−1BZ−1CA−1 −A−1BZ−1

−Z−1CA−1 Z−1

]
.(3.7)

If A is a singular matrix, we define the generalized Schur complement, based on the
Drazin inverse of A [8], in the following way:

S = D − CAdB.(3.8)

Through the rest of this paper, we will assume that generalized Schur complement
S is defined as in (3.8).
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In 1989, J. Miao [51] studied the problem of finding the Drazin inverse of a com-
plex block matrix M , with some restrictions on the generalized Scuhr complement.
In the case when the generalized Schur complement is nonsingular and some certain
conditions hold, this author obtained the following representation for Md.

Theorem 3.5. [51] Let M be a complex block matrix of a form (3.1). If CAπ = 0,
AπB = 0 and the generalized Schur complement S = D − CAdB is nonsingular,
then:

Md =

[
Ad +AdBS−1CAd −AdBS−1
−S−1CAd S−1

]
.

In 1998, Y. Wei [52] also considered representations for the Drazin inverse of
complex block matrices and extended the result from Theorem 3.5. Namely, this
author proved that when condition of invertibility of the generalized Schur comple-
ment is replaced with some weaker conditions, then the Drazin inverse of a 2 × 2
block matrix M can be expressed analogously to the expression (3.7) of the ordinary
inverse of nonsingular block matrix.

Theorem 3.6. [52, Theorem 1] Let M be a complex block matrix of a form (3.1).
If CAπ = 0, AπB = 0, BSπ = 0, SπC = 0 and DSπ = 0, then

Md =

[
Ad +AdBSdCAd −AdBSd
−SdCAd Sd

]
.(3.9)

Many other authors also investigated when the Drazin inverse of a 2 × 2 block
matrix M adopts the form (3.9) and offered some results on this topic (for example,
see [53, 54, 55, 56]).

Together with the case when the generalized Schur complement is nonsingular,
the case when the generalized Schur complement is equal to zero is also studied. In
the mentioned paper [51] of J. Miao, the author derived the representation for Md,
in the case when the generalized Schur complement is equal to zero and conditions
CAπ = 0 and AπB = 0 are satisfied. This well–known result is presented in the
following theorem.

Theorem 3.7. [51] Let M be a complex block matrix of a form (3.1), such that
S = 0. If CAπ = 0 and AπB = 0 then:

Md =

[
I

CAd

] (
(AW )d

)2
A
[
I AdB

]
,

where W = AAd +AdBCAd.

In 2006, the paper [38] of R. E. Hartwig, X. Li and Y. Wei was published, where
representations for the Drazin inverse of 2 × 2 block matrices were studied in the
cases when the generalized Schur complement is either nonsingular or zero. In the
mentioned paper, authors obtained representations for Md, which generalize the
representations from Theorem 3.5 and 3.7. These representations are presented in
the next two theorems.
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Theorem 3.8. [38, Theorem 3.1] Let M be a complex block matrix of a form (3.1),
such that the generalized Schur complement S is nonsingular. If CAπB = 0 and
AAπB = 0, then

Md =

(
I +

[
0 AπB
0 0

]
R

)
R

(
I +

r−1∑
i=0

Ri+1

[
0 0

CAπAi 0

])
,

where ind(A) = r and

R =

[
Ad +AdBS−1CAd −AdBS−1
−S−1CAd S−1

]
.

As a corollary of the result above, R. E. Hartwig, X. Li and Y. Wei also obtained
a representation for Md, when CAπB = 0, CAπA = 0 and S is nonsingular (see
[38, Corollary 3.2]). In the case when S = 0, these authors derived the following
result.

Theorem 3.9. [38, Theorem 4.1] Let M be a complex block matrix of a form (3.1),
such that S = 0. If CAπB = 0 and AAπB = 0, then

ind(M) ≤ ind(AW ) + ind(A) + 2

and

Md =

(
I +

[
0 AπB
0 0

]
R1

)
R1

(
I +

r−1∑
i=0

Ri+1
1

[
0 0

CAπAi 0

])
,

where ind(A) = r,

R1 =

[
I

CAd

] (
(AW )d

)2
A
[
I AdB

]
and W = AAd +AdBCAd.

Furthermore, in [38, Corollary 4.2], a representation for Md is derived when
CAπB = 0, CAπA = 0 and S = 0, as a corollary of Theorem 3.9.

In the years that came after the publication [38], many authors have been con-
sidering this topic. In the case when S is nonsingular, there were few generalizations
of known results. Namely, in 2009, M. F. Mart́ınez–Serrano and N. Castro-González
[19] extended the result from Theorem 3.8 and of its corollary [38, Corollary 3.2].
These representations are given under the following conditions:

(i) A2AπB = 0, CAAπB = 0, CAπB = 0 and S is nonsingular [19, Theorem
3.11];

(ii) CA2Aπ = 0, CAAπB = 0, CAπB = 0 and S is nonsingular [19, Corollary
3.12].
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In 2012, C. Bu, C. Feng and P. Dong [57] also studied representations for Md

in the case when S is nonsingular. In order to extend the results from Theorem 3.8
and of its corollary [38, Corollary 3.2], these authors offered the representations for
Md when the following conditions are satisfied:

(a) AAπBC = 0, AAπBD = 0, CAπBC = 0, CAπBD = 0 and S = 0 [57,
Theorem 3.2];

(b) BCAπA = 0, DCAπA = 0, BCAπB = 0, DCAπB = 0 and S = 0 [57,
Theorem 3.3].

It turned out that the conditions (a) from the list above are equivalent to the
conditions of Theorem 3.8 and that the conditions (b) are equivalent to the condi-
tions of [38, Corollary 3.2] (see [58, Remark 3.5]).

L. Xia and B. Deng [59] also studied the case when S is nonsingular. Actually,
in 2017, a paper of these authors was published, where a representations for Md

are derived, when the following conditions are satisfied:

(I) AπBC = 0, CAπB = 0, BD + AB = 0 and S is nonsingular [59, Theorem
3.5];

(II) BCAπ = 0, CAπB = 0, CA + DC = 0 and S is nonsingular [59, Theorem
3.6].

Contrary to the case when the generalized Schur complement is nonsingular,
many authors offered representations for Md in the case when the generalized Schur
complement is equal to zero, which extend representations from Theorem 3.9 and
[38, Corollary 4.2]. In the following list, we give some of the conditions, under which
are derived representations for Md in the case when S = 0.

(1) M. F Mart́ınez–Serrano and N. Castro-González, 2009:
(1.1) A2AπB = 0, CAAπB = 0, BCAπB = 0 and S = 0 [19, Theorem 3.1],
(1.2) CA2Aπ = 0, CAAπB = 0, CAπBC = 0 and S = 0 [19, Theorem 3.2],
(1.3) ABCAπ = 0, BCAπ is nilpotent and S = 0 [19, Theorem 3.3],
(1.4) AπBCA = 0, AπBC is nilpotent and S = 0 [19, Corollary 3.4],
(1.5) ABC = 0 and S = 0 [19, Theorem 3.6],
(1.6) BCA = 0 and S = 0 [19, Corollary 3.7];

(2) H. Yang and X. Liu, 2010:
(2.1) AAπBC = 0, CAπBC = 0 and S = 0 [14, Theorem 3.3],
(2.2) BCAπA = 0, BCAπB = 0 and S = 0 [14, Theorem 3.3];

(3) C. Bu, C. Feng and S. Bai, 2012:
(3.1) ABCAπ = 0, AπABC = 0 and S = 0 [16, Theorem 4.1],
(3.2) ABCAπ = 0, CBCAπ = 0 and S = 0 [16, Theorem 4.3],
(3.3) CAπBC = 0, A2AπBC=0, CAAπBC = 0 and S = 0 [16, Theorem 4.4];
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(4) J. Vǐsnjić, 2015:
(4.1) ABCAπA = 0, ABCAπB = 0 and S = 0 [22, Theorem 3.1],
(4.2) AAπBCA = 0, CAπBCA = 0 and S = 0 [22, Theorem 3.2];

(5) L. Sun et al, 2016:
(5.1) A2AπBC = 0, BCAπBC = 0, CAAπBC = 0 and S = 0 [23, Theorem
4.1],
(5.2) BCA2Aπ = 0, BCAAπB = 0, BCAπBC = 0 and S = 0 [23, Theorem
4.2],
(5.3) A2BC = 0, ABCA = 0, ABCB = 0 and S = 0 [23, Theorem 4.3],
(5.4) BCA2 = 0, ABCA = 0, CBCA = 0 and S = 0 [23, Theorem 4.4];

(6) X. Yang, X. Liu and F. Chen, 2017:
A2BCAπA = 0, A2BCAπB = 0, AπABC = 0 and S = 0 [25, Theorem 4.1];

(7) M. Dana and R. Yousefi, 2018:
CAAπB = 0, A2AπBC = 0, AπBCA2 = 0, AπBCB = 0 and S = 0 [26,
Theorem 8];

(8) R. Yousefi and M. Dana, 2018:
(8.1) AAπBC = 0, BCAπB = 0 and S = 0 [27, Theorem 2.3],
(8.2) CAπBC = 0, BCAAπ = 0 and S = 0 [27, Theorem 2.4],
(8.3) BCAd = 0, BCAAπB = 0, CA2Aπ = 0 and S = 0 [27, Theorem 3.3],
(8.4) AdBC = 0, CAAπBC = 0, A2AπB = 0 and S = 0 [27, Theorem 3.4].

3.4. The Drazin inverse of block matrices with no restrictions on
generalized Schur complement

Let M be a 2× 2 block matrix of the form (3.1), with arbitrary blocks A, B, C
and D. As it was already mentioned, the problem of finding the formula for Md was
posed in 1979 [36] and it remains open. However, it was studied by many authors
and some special cases of this problem are solved.

In 2001, D. S. Djordjević and P. S. Stanimirović [37] studied the problem of
finding the representation for Md, under some specific conditions, in the concept
of operators. The result obtained by these authors is presented in the following
theorem, in the matrix concept.

Theorem 3.10. [37, Theorem 5.3] Let M be a matrix of the form (3.1). If BC =
0, DC = 0 and BD = 0, then

Md =

[
Ad (Ad)2B

C(Ad)2 Dd + C(Ad)3B

]
.

In the paper [38], published in 2006, R. E. Hartwig, X. Li and Y. Wei derived
the following two representations for Md:
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Theorem 3.11. [38, Lemma 2.2] Let M be a matrix of the form (3.1). If BC = 0,
DC = 0 and D is nilpotent, then

Md =

[
I

CAd

]
Ad
[
I

j−1∑
i=0

(Ad)i+1BDi

]
,

where j = ind(D). Furthermore, ind(M) ≤ ind(A) + ind(D) + 1.

Corollary 3.1. [38, Corollary 2.3] Let M be a matrix of the form (3.1). If BC =
0, BD = 0 and D is nilpotent, then

Md =

 I
j−1∑
i=0

DiC(Ad)i+1

Ad [ I AdB
]
,

where j = ind(D). In addition, ind(M) ≤ ind(A) + ind(D) + 1.

In 2008, D. S. Cvetković–Ilić [60] obtained the representation for Md when
BC = 0 and DC = 0, without additional condition BD = 0 from Theorem 3.10, or
D is nilpotent matrix from Theorem 3.11. This representation for Md is given in
the next theorem.

Theorem 3.12. [60, Corollary 2.1] Let M be a matrix of the form (3.1) and
ind(A) = r, ind(D) = s. If BC = 0 and DC = 0, then

Md =

[
Ad X

C(Ad)2 Dd + CXDd + CAdX

]
,

where

X = X(A,B,D) =

s−1∑
i=0

(Ad)i+2BDiDπ +

r−1∑
i=0

AπAiB(Dd)i+2 −AdBDd(3.10)

In the mentioned paper [60], the author also obtained the formula for Md, when
AB = 0 and CB = 0. This representation for Md is given in the following theorem.

Theorem 3.13. [60, Corollary 2.2] Let M be a matrix of the form (3.1) and
ind(A) = r, ind(D) = s. If AB = 0 and CB = 0, then

Md =

[
Ad +BXAd +BDdX B(Dd)2

X Dd + CXDd

]
,

where X = X(D,C,A) is defined by (3.10).

In 2009, D. S. Cvetković–Ilić [61] derived another representation for Md, when
the blocks of matrix M satisfy conditions CA = 0 and CB = 0. This representation
is presented in the next theorem.
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Theorem 3.14. [61, Theorem 2.1] Let M be a matrix of the form (3.1) and
ind(A) = r, ind(D) = s. If AB = 0 and CB = 0, then

Md =

[
Ad +X2C X1

(Dd)2C Dd

]
,

where

Xi =

s−1∑
j=0

(Ad)i+j+1BDjDπ +

r−1∑
j=0

AπAjB(Dd)i+j+1 −
i−1∑
j=0

(Ad)j+1B(Dd)i−j ,

for i ∈ {1, 2}.

M. Catral, D. D. Olesky and P. Van Den Driessche, in the paper [44] published
in 2009, obtained a general expression of the Drazin inverse of a bipartite matrix[

0 B
C 0

]
. This formula is given in the following theorem.

Theorem 3.15. [44, Theorem 2.1] Let M be matrix of a form (3.1), such that
A = 0 and D = 0. Then

Md =

[
0 (BC)dB

C(BC)d 0

]
.

Furthermore, if ind(BC) = s, then ind(A) ≤ 2s+ 1.

All of the previous mentioned results were generalized a lot of times. In the
contiuation, we have provided a list of some of the conditions under which were
obtained mentioned generalizations:

(1) N. Castro–González, E. Dopazo, M. F. Mart́ınez–Serrano, 2009:
(1.1) BCA = 0, BD = 0 and BC is nilpotent [20, Theorem 4.2],
(1.2) BCA = 0, DC = 0 and BD = 0 [20, Theorem 4.4],
(1.3) BCA = 0, DC = 0 and D is nilpotent [20, Theorem 4.5];

(2) E. Dopazo and M. F. Mart́ınez–Serrano, 2010:
(2.1) BC = 0, BDC = 0 and BD2 = 0 [62, Theorem 2.2],
(2.2) BDπC = 0, BDDd = 0 and DDπC = 0 [62, Theorem 2.5],
(2.3) BD = 0, DπCA = 0 and DπCB = 0 [62, Theorem 2.7];

(3) A. S. Cvetković and G. V. Milovanović, 2010: (3.1) ABC = 0, DC = 0 and
BD = 0 [63, Theorem 1],
(3.2) ABC = 0, DC = 0 and BC is nilpotent [63, Theorem 2],
(3.3) ABC = 0, DC = 0 and D is nilpotent [63, Theorem 3];

(4) C. Bu and K. Zhang, 2010:
(4.1) ABC = 0 and DC = 0 [64, Theorem 2.2],
(4.2) ABC = 0 and BD = 0 [64, Theorem 2.3];
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(5) D. S. Cvetković–Ilić, 2011:
(5.1) BCA = 0 and BD = 0 [17, Theorem 1.5],
(5.2) ABC = 0 and DC = 0 [17, Theorem 1.6],

(6) H. Yang and X. Liu, 2011:
(6.1) BCA = 0, BCB = 0, DCA = 0 and DCB = 0 [14, Theorem 3.1],
(6.2) ABC = 0, ABD = 0, CBC = 0 and CBD = 0 [14, Theorem 3.2];

(7) J. Ljubisavljević and D. S. Cvetković–Ilić, 2011:
(7.1) BCA = 0, BCB = 0, ABD = 0 and CBD = 0 [15, Theorem 3.1],
(7.2) BCA = 0, DCA = 0, CBC = 0 and CBD = 0 [15, Theorem 3.2],
(7.3) BDπC = 0, BDDd = 0, DDπCA = 0 and DDπCB = 0 [15, Theorem
3.3],
(7.4) BD = 0, DπCA2 = 0, DπCAB = 0 and DπCBC = 0 [15, Theorem
3.4];

(8) J. Ljubisavljević and D. S. Cvetković–Ilić, 2013:
(8.1) BCA = 0, DCA = 0 and DCB = 0 [65, Theorem 3.1],
(8.2) BCA = 0, ABD = 0 and CBD = 0 [65, Theorem 3.2],
(8.3) BCA = 0, DCA = 0 and CBD = 0 [65, Theorem 3.3],
(8.4) ABC = 0, ABD = 0 and CBD = 0 [65, Theorem 3.4],
(8.5) ABC = 0, ABD = 0 and DCB = 0 [65, Theorem 3.5],
(8.6) ABC = 0, DCA = 0 and DCB = 0 [65, Theorem 3.6];

(9) D. Zhang, Y. Yin and D. Mosić, 2022:
(9.1) BCA3 = 0, BCA2BC = 0, BCABC = 0, ABD = 0 and CBD = 0 [49,
Theorem 4.1],
(9.2) BCA3 = 0, BCA2BC = 0, BCABC = 0, DCA = 0 and DCB = 0 [49,
Theorem 4.2],
(9.3) BCA3 = 0, BCA2BC = 0, BCABC = 0, BDC = 0 and D2C = 0 [49,
Theorem 4.3].

4. Conclusion

At the moment, there is no formula for (P +Q)d without any side conditions for
matrices P and Q. Hence, this problem remains open. Since the problem of finding
the explicit representation for Md is closely connected to the problem of finding the
Drazin inverse of a sum of two matrices, this problem also remains open. However,
since the Drazin inverse of matrices has many applications, it is important to find as
many formulas as we can for computing the Drazin inverse of a sum of two matrices
(and for the Drazin inverse of a 2× 2 block matrix).
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31. D. S. Cvetković–Ilić, Y. Wei: Representation for the Drazin inverse of oper-
ators on Banach spaces. Electron. J. Linear Algebra 18 (2009) 613–627.

32. D. S. Cvetković–Ilić, C. Deng: The Drazin invertibility of the difference and
the sum of two idempotent operators. Journal of Computational and Applied
Mathematics 233(8) (2010) 1717–1722.
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