FACTA UNIVERSITATIS (NIS)
SER. MATH. INFORM. Vol. 34, No 2 (2019), 341-357
https://doi.org/10.22190/FUMI1902341H

EXISTENCE AND STABILITY RESULTS FOR FRACTIONAL
DIFFERENTIAL EQUATIONS WITH TWO CAPUTO
FRACTIONAL DERIVATIVES

Mohamed Houas and Mohamed Bezziou

© 2019 by University of Nis, Serbia | Creative Commons Licence: CC BY-NC-ND
Abstract. In this paper, we discuss the existence, uniqueness and stability of solutions
for a nonlocal boundary value problem of nonlinear fractional differential equations with
two Caputo fractional derivatives. By applying the contraction mapping and O’Regan
fixed point theorem, the existence results are obtained. We also derive the Ulam-Hyers
stability of solutions. Finally, some examples are given to illustrate our results.
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1. Introduction

Boundary value problems for fractional differential equations with nonlocal bound-
ary conditions constitute a very interesting and important class of problems (see
[4, 5]). Differential equations of fractional order with nonlocal boundary conditions
arise in a variety of different areas of applied mathematics and physics. For example,
heat conduction, chemical engineering, underground water flow, thermo-elasticity,
and plasma physics can be reduced to nonlocal problems with integral boundary
conditions. For more details, we refer the reader to [6, 25]. Recently, by applying
different fixed point theorems such as the Banach fixed point theorem, Schaefer’s
fixed point theorem, Krasnoselskii’s fixed point theorem, the Leray-Schauder non-
linear alternative and the fixed point theorem of O’Regan, many researchers have
obtained some interesting results of the existence and uniqueness of solutions to
boundary value problems for fractional differential equations with nonlocal bound-
ary value problems [1, 2, 7, 8, 9, 14, 15, 18, 23, 24] and the references therein.
Ulam’s stability problem [17] has been attracted by several famous researchers.
Since then, a large number of monographs have been published in connection with
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various generalizations of Ulam’s type stability theory or the Ulam-Hyers stability
theory. For some recent development on Ulam’s type stability, we refer the reader
to [3, 12, 16, 17, 19, 20, 21, 22]. The stability of fractional differential equations has
been investigated by many authors [19, 21, 22].

Motivated by the above papers, we study the existence, uniqueness and stability
of solutions to the following fractional boundary value problem with tow Caputo
fractional derivatives involving nonlocal boundary conditions:

D (DP + ) x(t) = )+ [y 52, — f(s,x(s))ds, t €[0,T],

(1.1)

z(0)=xz0+g(x) —an(ns (s)ds, 0 <n<T,

where D®, DP denote the Caputo fractional derivatives, with 0 < a, 3 < 1,1 <
a+B8 <2, f:0,T]xR = Rand g : C([0,T],R) = R are given continuous
functions, and o,p > 0, A\, zo, 0 are real constants In (1.1), g (x) may be regarded
as g (z) = 37" kjx (t;), where kj, j = 1,...,m are given constants and 0 < to <
<ty < 1.

The paper is organized as follows: In Section 2, we recall some preliminaries and
lemmas that we need in the sequel. In Section 3, we present our main results for
the existence, uniqueness and stability of solutions to the fractional boundary value
problem (1.1). Some examples to illustrate our results are presented in Section 4.

2. Preliminaries
In this section, we present some useful definitions and lemmas [10, 11, 13]:

Definition 2.1. The Riemann-Liouville fractional integral operator of order 9 >
0, for a continuous function f on [a, b] is defined as:

¢
Iﬁf(t):ﬁ/ (f—T)ﬁ_lf(T)dT, >0, a<t<b

I°f(t)=f(1),
where T' () := f0+oo e "u’du.

Definition 2.2. The fractional derivative of f € C" ([a,b]) in Caputo’s sense is
defined as:

t
D”f(t):ﬁ/ t—7)"""" ) (r)dr, n—1<9, ne N*, a<t<b.
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The following lemmas give some properties of Riemann-Liouville fractional in-
tegrals and the Caputo fractional derivative [10, 11]:

Lemma 2.1. Letd,s >0, f € L*([a,b]). Then I°I*f(t) = I+ f(t), D’I°f(t) =
f@®), t €la,b].

Lemma 2.2. Lets> 19 >0, f € L([a,b]). Then DYI*f(t) = I*"V f(t), t € [a,b].
We also give the following lemmas [10]:

Lemma 2.3. Ford > 0, the general solution to the fractional differential equation
DYz (t) = 0 is given by

z(t) =co+cit+cat? + .y t"
where ¢; e R,1=0,1,2,..,n—1, n=[¢] + 1.
Lemma 2.4. Let ¥ > 0. Then
1Dz (t) = x(t) + co + 1t + cot? + ... + ¢ 1t" 1,
for some ¢; e R;i=0,1,2,...,n—1, n=1[J] + 1.
We also need the following auxiliary result:

Lemma 2.5. For a given h € C ([0,T],R), the solution to the fractional boundary
value problem

D* (D + N a(t)=h(t), te[0,T], 0<a,f <1,

(2.1)
2(0)=z9+g(z), z(T)=0IPx(n),
is given by
22)  z(t)
) Lt —s)?!
- / W“S)ds‘% Tt
AT ) M (T (T — )P
S A e L e e e O
A6tB n (,,7 _ S)a+3+1)—1 AAGEB " A
+FW+&)A IWa+ﬁ+p)h@ﬁh_I%ﬂ+1yA (5t (8)ds
(0P —T (p+1))t°
i <A T(p+ DI (B+1) +1> (zo0 +g(2)),
where
(2.3)

_ FB+p+1)T(B+1) 5 5
A= r(6+p+1)Tﬂ—F(6+1)9n6+pvr(5+P+1>T #T(B+1) 07,
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Proof. By Lemmas 5 and 6, we have

(2.4) 2 (t) = I*Bh(t) — Pz () — ﬁtﬁ —e,

for some arbitrary constants cg,c; € R.

Using the boundary condition: z (0) = zg + g (x), we obtain

c1=—(x0+g(x)).

Thanks to Lemma 3, we get

P (t) = IR () = M () — gisay ™ = iyt

Applying the boundary condition: z (T") = 6IPx (n), we obtain
co = A[I*"Ph(T) — APz (T) — 0I°TPTPh (n) + NOIP Pz ()

0 P __
—OE ) (0 + g (2))]

where A defined by (2.3). Substituting the value of ¢y and ¢; in (2.4), we obtain
the solution (2.2). O

In view of Lemma 4, we define the operator: ¢ : X — X as

(2.5)6z (1)
A Lt—s)t
_ /wa(s,x(s))ds—/\/o s
AP (T ) M [T(T = )"
_F(B‘Fl)/o T (a+A) f(s’x(s>>ds+l—‘(ﬁ+l)/(J T (3) x(s)ds

MG [ (=) T N
F(ﬂ+1)/o T(a+B+p) f(s’x(s))ds_r(ﬂﬂ)/o "TaT L (s)ds

(On? —T (p+1))t°
*(Arwnr(ml)

T 1) (v + g (&),

We also introduce the operators ¢, ¢2 : X — X, such that

(2.691 (t)
_ Ft—s)* P! Pt —s)
- /0 W“S’I(SW“A/O Ty T
AP [T(T -5 M T (T — )P
_F(ﬂ+1)/0 T(a+tp) f(Saiﬂ(S))d8+F(ﬂ+1)/(J T 5) x(s)ds

AOtP "y — S)a+6+p71 AAGLB U
+F(6+1)/o A F(B+1)/o T @ (8)ds,
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and
P _ 8
e ewo= (s ) g ).
Clearly
(2.8) ¢ () (t) = ¢ (t) + oz (1), t € [0,T].

3. Main Results

345

We denote by X = C([0,T],R) the Banach space of all continuous functions from
[0, T] into R endowed with a topology of uniform convergence with the norm defined

by ||z]| = sup {|= ()] : t € [0, T]}.

For computational convenience, we set the notations:
Tat+B To+B+o
+
Fa+B+1) T(a+B+o+1)
|A| T8 To+B TatB+to
+
rge+1) 'ia+p8+1) T(a+B+0+1)
19| na-i-,@-i-p 16| na-‘rﬂ-‘rp-i-a
Fa+pB+p+1) F(a+ﬂ+p+a+1)} ’

(3.1) A =

(3.2) A = |A (6P —T (p+ 1)) T7

S R R

A T?

(3.3) Agzr(ﬂH) [1+F

|A|T? |AQ| PP ]
B+1) T'(B+p+1))°

and

(3.4)

Tat+B To+B+0
= +
P [P(a+6+1) T(a+pB+o+1)
AT (e
L(B+1) \Fet8t) " T(a+B+0+1)

|9| na+6+p |9| na+ﬁ+p+o
Tla+tB+p+1) I‘(a—l—B—I—p—i—a—i-l))] Il

Now, we impose the following hypotheses:

(H1) : There exists a constant w > 0 such that for all ¢ € [0,7] and z,y €

C([OvT]vR)v we have |f(t,$) _f(tuy” Sw”‘r—y”v
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(H2) : There exists a positive constant w < A% and a continuous function
© :[0,00) = [0,00)such that ¢ (u) < wu and |g(x) — g (y)| < @ (||l —y||), for all
z,y € C([0,T]).

(H3):¢(0)=0.
(H4) : There exists a non-negative function « (¢) € C ([0, T],R) and there exists
a nondecreasing function v : [0,00) — (0,00), such that |f (¢t,z)| < v (¢) ¢ (Jz|) for

all (t,z) € [0,T] x X.

(H5) : (Sup)pw(r)J:Al\zo\ > 17(A21A1w), where A, p and As are given respec-
r€(0,00

tively in (3.2), (3.3) and (3.4).

3.1. Existence and uniqueness of solutions

The first result is concerned with the existence and uniqueness of solutions to frac-
tional boundary value problems and is based on the Banach contraction principle.

Theorem 3.1. Let f : [0,7] x R — R be a continuous function. Assume that
(H1) and (H2) hold. If the inequality

(3.5) Aw+ANwm<1l—Ay

is valid, then the fractional boundary value problem (1.1) has a unique solution on

[0,T].

Proof. For z,y € X and by (H1) and (H2) we have:

o)~ 6 )
< o { [ R ) ey o)l

t at+B+o—1
+ [ R e o) = f (s (s ds

t et
[ () =y (o) s

Al / (s, (5)) = £ (s, (5))] ds

B T gyetAto—1
il [ IR e () = £ (s ()] ds

T
B B—1
+ \Allﬁili) /0 ) x(s)—y(s)|ds

8 ’7 a+B+p—1
+A'ﬂi'i/0 r<a’+ﬂ+p> 1 (s, () = f (s,y (s)] ds



Existence and Stability Results for Fractional Differential Equations 347

Rl [ R (9 - £ (s (o) ds
RIS [ O 6~y ds

+ (SRR 1)l @) — g Wl

e (P At

iy [ i i [

+ o [ o+ il [ Opi )
[ s gy [T

ja0t? [ (—s)PHe1 |A(B7P T (p+1))|t?
+ r(6+1)/0 By EE) ds} + ( SV NGES 1) w} [z —yll

IN

+1Al

IN

TatB TatB+o \A|TB Tot+B
{ |:F(a+,3+1) I'(at+B+o+1) r'(8+1) (F(a-i—@-i—l)

Tot+B+o ‘9|na+5+p |9‘na+5+p+a
+ TaiprorD T TatBm7D F(a+B+P+U+1))}W

IAT? |A|T? |AQ|nPtP |A(OnP =T (p+1)|T”
+ [F(ﬁ—ﬂ) (1 Tt F<5+7;+1>)} + ( MerDrr) T 1) w} lz =yl
= (Aw+ Ay +Mw) |z -yl

Thanks to (3.5), we conclude that ¢ is a contraction. As a consequence of the
Banach fixed point theorem, we deduce that ¢ has a fixed point which is a solution
to the fractional boundary value problem (1.1). O

In the next result, we prove the existence of solutions to the fractional boundary
value problem by applying the following Lemma.

Lemma 3.1. (O’Regan Lemma) [15]. Denote by V' an open set in a closed, convex
set C of a Banach space E. Assume 0 € V. Also assume that ¢ (f/) is bounded
and that ¢ : V — C is giwen by ¢ = @1+ @2, in which ¢1 : V — E is continuous and
completely continuous and ¢ : V — E is a nonlinear contraction (i.e., there exists
a nonnegative nondecreasing function ¢ : (0,00) — (0,00) satisfying ¢ (u) < u for
v >0 such that |2 (x) — d2 (W)|| < @z —yl| for all z,y € V). Then, either

(I): ¢ has a fized point x € V; or

(IT) : there exists a point x € AV and 0 < p < 1 with = p¢ (x), where V
(respectively OV ) represents the closure (respectively the boundary) of V.
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Let
Q:={xeC(0,T],R): || <d},

and denote the maximum number by
Ns :=max{|f (¢t,2)|: (t,z) € [0,T] x [§, =]} .

Theorem 3.2. Let f : [0,7] x R — R be a continuous function. Suppose that
(H2),(H3),(H4) and (H5) are satisfied.

Then the boundary value problem (1.1) has at least one solution on [0, 7.

Proof. Consider the operator ¢ : X — X defined by:

¢ (x) (t) = 1 () () + da (2) (t), t € [0,T],
where the operators ¢; and ¢ are defined respectively in (2.6) and (2.7).
From (Hs) there exists a number dp > 0 such that
do 1
0 00) L Azl 1= (Aat M)’
We shall prove that the operators ¢, and ¢5 satisfy all the conditions in Lemma 9.

Stepl : We show that the operator ¢, : 5, — X is continuous and completely
continuous. Let us consider the set

(3.6)

3.7) Qs == {z € C([0,T],R) : ||| < o}
and show that ¢; (ﬁgo) is bounded. For each x € Qso, we have
61 (@)
t a+p—-1 t a+pB+o—1
(t—>s) / (t—>s)
< su ——— |f(s,x(s))|ds + —— | f (s,x (s))| ds
mﬁ%{A o st [ e f (s )
)8 T p gya+e-1
++Ay/ il (o)l ds+ ey | [ T 17 (s, (o) ds

sy tito—1 s
+/’ﬂqm;—u&x<|w+w/‘”m o (s)ds
sy ti+r—1 sy tBtpto—1
+|9|/ (77 s If (5,2 ( |d8+|9|/ a+ﬁ+p+a) |f (s, (s))|ds

SBH)
+|)\9|/ G sl (s)|ds]}

TOt+ﬁ Ta+ﬁ+0 |A‘TB Tﬂ+5
{ MatBtD) | TlathtorD) T T(BTD (F(a+6+1)

IN

Tot+B+to |9ma+ﬂ+p ‘9|na+ﬁ+p+v N
* TaisrorD T TarpiorD T NathtprorD 50

AIT? AITP | A0
0D (1 trem F(5+p+1)) %o
= ANs, H’YH + Asdg.
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Thus the operator ¢; (ﬁgo) is uniformly bounded. For any 0 < t; < to < T, we
have

[p1 (t2) — pr (t1)]

ty atpB—1 atpB—1 ta _
(ta—s) —(t1—s) _gyetB-1
< [Tl Lipanids+ |7 Sl i7 (o (o) ds
1

t1 NatBto—1 atBto—1 t2 _
(tag—s) (t1—s) _gyetBto—1
+/ 5 FaThTo) L s, (s ))|d8+/ e 1 (5,2 (s)) | ds
[(t2—s)P 71 —(t1—5)P " B
|A'/ 10 |ds+|A|/ Gl Jo (s)] ds
t 9 atpB—1 _g)atBto—1
+rm [|A| / Tl 1f (5, () ds + |A / T |f (s, (s))| ds

_)B-1 T _gyatBtp—1
SIVN / Co o (o) s+ 180] [T ORI (s (o)) s
0 0

T —gyetBtpto—1 R
+ |A9|/ e I (s, ()] ds + |)‘A9|/ Crtrmr o () ds]
0 0

Nao ||7]] jotB —t“*ﬂ‘ n N, [|7]] jotpre _etoto
F(a+B+1) ! T(a+B+o+1)17 !
n [IAIN(s0 el ( Toth Totite

rB+1) \I'(ae+8+1) T(a+B+o+1)
|9| na+6+p |9| na+6+p+a

F'a+p+p+1) F(a+ﬂ+p+a+1)>
n Al 0o (1 |A[ TP |AG] P ﬂ ’tﬁ _tﬁ‘

L (B+1) L(B+1) T(B+p+1) t

which is independent of = and tends to zero as t; — t;. Thus, ¢; is equicontinuous.
Hence, by the Arzela—Ascoli theorem, ¢; (ﬁgo) is a relatively compact set. Now,
let the sequence z,, C Qs, with ¥, — x. Then z,, (t) — z (¢) uniformly valid on
[0,T7], then for each ¢ € [0,T], we have. From the uniform continuity of f (¢,z) on
the compact set [0,7T] x [dp, —do], it follows that || f (¢, z, (t)) — f (t,z (2))]| — O is
uniformly valid on J. Hence ||¢1 (z,,) (t) — ¢1 (2) (£)|| = 0 as n — oo, which proves
the continuity of ¢ (ﬁgo) .

Step2 : The operator ¢ : Qs, — X is contractive, this is the consequence of
(H2).
Step3 : The set ¢; (Qs,) is bounded. For any z € Qj, and by (Hz) and (Hs),

we have

1$2 ()] < As (Jzo + wbo) ,

combining, with the set ¢ (ﬁgo) being bounded, then the set ¢ (ﬁgo) is bounded.
Step4 : Finally, will be show that the case (II) in Lemma 9 does not hold. On the
contrary, we suppose that (/) holds. Then, there exist u € (0,1) and = € 99Qs,,
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such that x = u¢ (z) . So we have ||z|| = do and
x (t)
¢ _g)ats-1 ¢ _g)atBto—1
= 1 UO %f(s,w(s))ds—i—/o [ (5,2 (5)) ds
" ) A [T @syere
—A , @ x (s)ds — TED J,  T@th) f(s,2(s))ds
Atﬂ T (T*S)a+5+071 )\Atﬁ T (T*S)Bfl
_F(,@'i‘l) 0 T'(a+B+0) f (S’ €z (S)) ds + T(B+1) o T(8) x (S) ds
n 7
AGtP (n—s)etPtr-1 AGL8 (n—s)otB+pto—1
rrdts [ ORI o s+ ey [ ORI s )
n
AAGE? ) A(nP =T (p+1))t?
_F<5+t1>/0 ety (s) ds + (—(F<Z+1>r(z<)5+)1)> + 1) (o +9($)>] , t€[0,T].

Using the hypotheses (H3) — (H5) we get

t(p_ g)thA-1 t(p_ gyetBto—1
/07(t ) ’y(s)ds—l—/o —(t( ) 7 (s)ds

=l < I'(a+p5) IF'a+B8+0)
A8 (T (T — )P
* (ﬂ+1)/ Tatp 0%
|A| tﬁ T (T _ S)a+6+a—l
(6+1)/ Tatfto) 1%

"7
IAgltﬁ a+ﬁ+p 1
F(5+1/0 a+ﬁ+p v (s)ds
Aole? [T (p_gyetBtpto—1
RS [ SR (s w el
T
t—s)P- |A¢? (T—s)8~1
/0 e d5+r<5+1>/0 9
n
|Ag|¢? (n—s)Ptr—t
fosis [ oo as] e

A @GP —TD(pt1))]1?

+ 1A

y (3.3) and (3.7), we obtain

Tﬂ+5 Tﬂ+5+6 ‘A'TB TOt+ﬁ Ta+ﬁ+0
b < |:F(a+,3+1) T Ty T T (r(a+6+1) * Tt D
\9\n°‘+5+p Ielna+5+p+d
+ Tatgrpr) T Natprprorn )| l0l1% (%)

I\T? |A|T? |AQ|nPtP |A(67P =T (p+1))|T”
+ {wm) (1 trem t F(ﬁJ:;Jrl)) + ( TrDrETD T 1) w} %

|A(@7P =T (p+1)|T*?
+( FerOrErD 1) ol
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which implies
do < p (8o) + (A2 + A1) do + A1 |zo] -
However,
0o < 1
P (60) + Axfzo] = 1= (A2 + M)’

which contradicts (3.6). Consequently, the operators ¢; and ¢o satisfy all the
conditions in Lemma 9. Hence, the operator ¢ has at least one fixed point x € Qs,,
which is the solution of the fractional boundary value problem (1.1). This completes
the proof. O

3.2. Ulam-Hyers stability

In this section, we will study Ulam’s type stability of the fractional boundary value
problem (1.1).

Let € > 0, we consider the equation

DY (DP + ) 2 (t) = f (t,2 (1)) + /0 U (5,0 (5)) ds

and the following inequality

(38) [D*(DP+X)y(t)— f(ty(t) - / W f (s,y(s) ds| < e, t€[0,T],

with y (0) = yo + g (), y (T') = 017y ().

Definition 3.1. The fractional boundary value problem (1.1) is Ulam-Hyers stable
if there exists a real number k£ > 0 such that for each solution y € X to the inequality
(3.8) there exists a solution x € X of the fractional boundary value problem (1.1)
with

|z =yl < ke.

Definition 3.2. The fractional boundary value problem (1.1) is generalized Ulam-
Hyers stable if there exists z € C (RT,R"),2(0) = 0 such that for each solution
y € X to the inequality (3.8), there exists a solution x € X of the fractional
boundary value problem (1.1) with

lz —yll < z(e).
Theorem 3.3. Let f : [0,T] x R — R be a continuous function. Suppose that

(H1) — (Hy) holds. In addition, we assume that:

(Hﬁ) s[up] ‘Da (Dﬁ + )\) €T (t)‘ Z AN50 H’}/” + (A2 + Alw) 50 + Al |$0| .
te[0,T
If

I'ic+1)
. IR ok

then the fractional boundary value problem (1.1) has the Ulam-Hyers stability in X .
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Proof. For each € > 0, y € X, we have

D*(DP + Ny (t) = f (t,y () — /0 2l F (s, () ds| < e,

with 4 (0) = o + g (y), y (T) = 017y (n) .
Let us denote by = € X the unique solution of the fractional boundary value
problem(1.1).

According to the assumptions of Theorem 8, we have
|z (8)] < ANs, [[7]] 4 (A2 + A1) 6o + Ay |zl , ¢ € [0,T].

By (Hg), we get

sup |z (t)| < sup |D* (DP + ) z(t)].
te[0,T te[0,T]

Then

sup [z (t) —y ()] < sup |D* (D +X) (x(t) -y (1))
te[0,T] te[0,T]

D (DP + \)a (t) — f (t, (1)) _/0 <f;s(3f)’lf(s,x(s))ds

< sup
t€[0,T)

DY (DP N YO+ 1ty 0) + [ R sy () ds

f (o) + /0 (7 f (5,2 (s)) ds

) = [ R ) ds

2e + (1—1—“%:—11)) wtes[%];;] |z (t) —y (¥)].

IN

Hence

X — < +E = kE.
” y” - 1_(1"'1“(3;11))“’

Thus, the fractional boundary value problem (1.1) has the Ulam-Hyers stability in
X. O

Remark 3.1. By putting z () = ke, z (¢) = 0 yields that the fractional boundary value
problem (1.1) has the generalized Ulam-Hyers stability in X.

4. Examples

To illustrate our main results, we treat the following examples.
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Example 4.1. Let us consider the following fractional boundary value problem:

s (ps 43 — e Tt a(t)] 1 2
Dz (Dz + %) z(t) = <(25ﬁ+€7ﬂ)(1+‘x(t)‘) + 1 +cosh (¢ —|—2)>
3
t (t—s)2 e T z(s)] 1 2
(4.1) +Jo T 5 ((25ﬁ+e—ws)<1+\x<s)\> + 3+ cosh (s +2)> ds, t€[0,1],

0 =2+ (@), ) =3 fF G as0< <,

— e a(t)] 1 2 3
1:2) = e o T g Heosh (0 42), 9(@) = 72 (0).

Let z,y € R and ¢ € [0,1]. Then
-7t
[f(tx) = f(ty)l < WW—M < Mﬁh—yﬁ

Hence the condition (H1) holds with w = Also, for z,y € C'[0,1], we have

1
25 /mte— 7

1
- < |z —ql.
lg (t,x) —g(t,y)| < 19 |z — yl

Hence (Hz) is satisfied with @ = -5. We can find that

L = C(B+p+1)I(B+1) N
A T TL(B+p+1)TB-T(B+1)0nB+r — 0.917 167
A . o= TP Ta+B+to |A|T8 —
~ T(a+B+1) T(at+B+o+1) INGESD) (F(a+5+1)
Tetite o[> FAtP |o|n>TA+PTe _
+ I'(a+B+o0+1) T(a+B+p+1) TatptprorD ) — 2.222 17
. _ 1A@nP-T(p+1)|T? .
Ao = “rerorern — T 1= 192083,
R PN i |A|T? |AgnBTP Y
A 2= r(B+1) (1 + T(B+1) + TB+tprD) ) — 0.350 33.

Therefore, we have

Aw+ A <1—As.
Hence, by Theorem 6, the fractional boundary value problem (4.1) has a unique solution
on [0,1].

Example 4.2. Consider the following fractional boundary value problem:

D% (D% + 1 ) J’,‘(t) _ tanh(t+617t)\/(1+t)sin(1271)

I e%(\zkhﬁ«kl)

17

o r(g) 25e¥(\x(s)\+t2+l)

(4.2) + o (tfsff’l <tanh(t+e“)x/<1+t> sin(w“’(sﬂ)) ds,t € [0,1],
3
T

©, 2 =4 JF Srflaso<e <1,

with a = %7/8 = 2_167)‘ = 1_1770- = %,ZL’O = 579 = %71) = %777 = % and f(t,:l’) =
tanh t+elft 4/ (14t) sin 221
( 1+3)t ( )79 T) = ln_lsx (OF

25¢” 5 (|o|+t24+1)
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For any z,y € C'[0,1], we have

< In3

lg(z) =g (W)l < =47 e —ll,

which implies that the function g (z) = %2z () is contractive. Moreover, g (0) = 0. Hence,

the condition (H3) is satisfied. Also for z,y € and ¢t € [0,1], we have

tanh (t +e' 7)) /(1 + 1)
1 (6] < b - i T
e 5

an el—t A/
So, we take v (t) = M and ¢ (|z|) = |z| + 1, then the condition (Hy) is

25e 5
satisfied. With the given v;;lues, it is found that

7l = 4.5912 x 1072,
. — To+8 To+B+o \A\Tﬁ ot
g Pla+p+1) T Tlatftot) T T(B+]) \T(ats+])
To+B+0o ‘0‘na+ﬁ+p ‘0‘7la+ﬁ+p+a _
+ TatprerD + FatpD T Tatimsrorn ) | NIl = 013510,
L = C(B+p+1)I'(B+1) _
A 1 = rErrnTP—T(arnerTr = 0-9364L,
A o= Tt Tothte A|TS [ pots
© T T'(a+B+1) + T'(a+B+o+1) T(B+1) |:F(a+ﬁ+1)
Toa+B+0o ‘g‘naJrBer \G\n“+5+P+“ o
t Tor81o7D 1 TatstotD T TlatBptotD | = 2.563 6,
— B

T(p+DI(A+D)
A2

IAIT? NN A
T(B+1) (1 + T(B+1) + T(B+p+1) ) — 0.12943.

and the condition

50 > 1
Avlzol+p¥(d0) 1-(Arw+A2)’
implies that dgp > 0.622 71. Clearly all the conditions of Theorem 10 are satisfied. Hence by
the conclusion of Theorem 10, the fractional boundary value problem (4.2) has a solution
on [0,1].

Example 4.3. Consider:
(4.3)

2 5 2 _ : t)
D? (Ds + 1—9) z (1) = oD (smht—|— 0L |:c(t)|) +1+1In(t+3)

1
t —s)3 .
+f3 e (23(111“1“)“) (smht el |x(s)|) +1+1n (5+3)) ds, t €0,1],

1
n x(l4 3 (5-9)°
z(0) =321, ciljr‘;t(t)i‘)‘, (1) = ﬂfo3 (?(%)) ds.

where 0 < t1 < t2 < ... < tp < 1,¢,0 = 1,2,...,n, are given positive constants with
) 1

i1 6 < 3
Consider the fractional boundary value problem (4.3), with, a = %, 8 = %, A=

N

2 _ 4 g _ _ 7 . _ 1 _ e~ Tta(b)] 1

5 0=73 0= V2, p= &n =3 and f(t,z) = Ve ™) =] + 5 + cosh (t +2),
n t;
glx)=3"a 1‘ﬁ(z(t)i\)‘.
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Let t € [0,1] and z,y € R. Then

1

2 (n(t+1)+1)

0.0) = £t < | <

1
o =31 < g5 lo =l

Hence the condition (H1) holds with w = 2. Also, for any =,y € C ([0,1]), we have
lg(z) — g <D cilz—yl.
i=1

So, (Hy) is satisfied with @ = Y7 ¢ < 1.
Thus the condition

I'(c+1)

=4.3478x 107 < ———— "~/
“ T(o+1)+17]

= 0.543 5.

is satisfied. It follows from Theorem 8 that the fractional boundary value problem (4.3) has
a unique solution on [0, 1], and from Theorem 13, the fractional boundary value problem
(4.3) has the Ulam-Hyers stability.

REFERENCES

1. S. Belarbi and Z. Dahmani: Some applications of Banach fixed point and Leray
Schauder theorems for fractional boundary value problems. Journal of Dynamical Sys-
tems and Geometric Theories. 11(1-2), 2013, 53-79.

2. M. Benchohra, S. Hamani and S.K. Ntouyas: Boundary value problems for differential
equations with fractional order and nonlocal conditions. Nonlinear Anal. 71, 2009, 2391—
2396.

3. R. Ben Taher, M. EL Fetnassi and M. Rachidi: On the stability of some rational dif-
ference equations and Ostrowski conditions. Journal of Interdisciplinary Mathematics.
16(1), 2013, pp. 19-36.

4. A. V. Bitsadze: On the theory of nonlocal boundary value problems. Dokl. Akad. Nauk
SSSR. 277, 1984, 17-19.

5. L. Byszewski: Theorems about existence and uniqueness of solutions of a semilinear
evolution nonlocal Cauchy problem. J. Math. Anal. Appl. 162, 1991, 494-505.

6. M. Houas: Ezxistence of solutions for fractional differential equations involving two
Riemann-Liouville fractional orders. Anal. Theory Appl. 34 (3)2018, 253-274.

7. M. Houas, Z. Dahmani and M. Benbachir: New results for a boundary value problem for
differential equations of arbitrary order. International Journal of Modern Mathematical
Sciences. 7(2), 2013, 195-211.

8. M. Houas and Z. Dahmani: New results for multi-point boundary value problems in-
volving a sequence of Caputo fractional derivatives. Electronic Journal of Mathematics
and its Applications. 1 (2), 2015, 48-62.

9. M. Houas and Z. Dahmani: On existence of solutions for fractional differential equa-
tions with nonlocal multi-point boundary conditions. Lobachevskii Journal of Mathe-
matics. 37(2), 2016, 120-127.



356 M. Houas and M. Bezziou

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

A.A. Kilbas and S.A. Marzan: Nonlinear differential equation with the Caputo fraction
derivative in the space of continuously differentiable functions. Differential Equations.
41(1), 2005, 84-89.

V. Lakshmikanthan and A.S. Vatsala: Basic theory of fractional differential equations.
Nonlinear Anal. 69(8), 2008, 2677-2682.

N. Lungu and D. Popa: Hyers-Ulam stability of a first order partial di erential equation.
J. Math. Anal. Appl. 385, 2012, 86-91.

F. Mainardi: Fractional calculus, Some basic problem in continuum and statistical
mechanics. Fractals and fractional calculus in continuum mechanics. Springer, Vienna.
1997.

S K. Ntouyas: boundary value problems for nonlinear fractional differential equations
and inclusions with nonlocal and fractional integral boundary conditions. Opuscula
Math. 33(1), 2013, 117-138.

D. O’Regan: Fized-point theory for the sum of two operators. Appl. Math. Lett. 9,
1996 1-8.

I. A. Rus: Ulam stabilities of ordinary differential equations in a Banach space.
Carpathian J. Math. 26, 2010, 103-107.

S.M. Ulam: A collection of mathematical problems. Interscience, New York. 1968.

Z. Wei, C. Pang and Y. Ding: Positive solutions of singular Caputo fractional dif-
ferential equations with integral boundary conditions. Commun. Nonlinear Sci. Numer.
Simul. 17, 2012, 3148-3160.

J.R Wang and Z. Lin: Ulam’s type stability of Hadamard type fractional integral equa-
tions. Filomat. 28(7), 2014, 1323-1331.

J.R. Wang, M. Feckan and Y. Zhou: Ulam’s type stability of impulsive ordinary dif-
ferential equations. J. Math. Anal. Appl. 395, 2012, 258-264.

J.R. Wang, L. Lv and Y. Zhou: Ulam stability and data dependence for fractional
differential equations with Caputo derivative. Electronic Journal of Qualitative Theory
of Differential Equations. 63, 2011, 1-10.

J.R. Wang and X. Li: Ulam-Hyers stability of fractional Langevin equations. Applied
Mathematics and Computation. 258, 2015, 72-83.

R.Yan, S. Sun, Y. Sun and Z. Han: Boundary value problems for fractional differ-
ential equations with nonlocal boundary conditions. Advances in Difference Equations.
2013:176, 2013, 1-12.

W. Zhon and W. Lin: Nonlocal and multiple-point boundary value problem for frac-
tional differential equations. Computers and Mathematics with Applications. 59(3),
2010, 1345-1351.

J. Zhao, P. Wang and W. Ge: Ezistence and nonezistence of positive solutions for a
class of third order BV P with integral boundary conditions in Banach spaces. Commun.
Nonlinear Sci. Numer. Simul. 16, 2011, 402-413.



Existence and Stability Results for Fractional Differential Equations

Houas Mohamed

Laboratory FIMA

UDBKM, University of Khemis Miliana
44125 Khemis Miliana, Algeria
houas-mohamed@yahoo.fr

Bezziou Mohamed
Faculty SEI,

University of Mostaganem
Algeria

m.bezziou@univ-dbkm.dz

357



