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Abstract. In this paper, some applications of the Hilbert matrix in image processing
and cryptology are mentioned and an algorithm related to the Hilbert view of a digital
image is given. New matrix domains are constructed and some of their properties
are investigated. Furthermore, dual spaces of new matrix domains are computed and
matrix transformations are characterized. Finally, examples of transformations of new
spaces are given.
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1. Introduction

1.1. Hilbert Matrix and Applications

We consider the matrices H and Hn as follows:

H =















1 1/2 1/3 1/4 · · ·
1/2 1/3 1/4 · · ·
1/3 1/4 · · ·
1/4 · · ·
...

...















Hn =















1 1/2 1/3 1/4 · · · 1/n
1/2 1/3 1/4 · · ·
1/3 1/4 · · ·
...

...
1/n · · · 1/(2n− 1)














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It is well known that these matrices are called the infinite Hilbert matrix and
the n× n Hilbert matrix, respectively. A famous inequality of Hilbert ([8], Section
9) asserts that the matrix H determines a bounded linear operator on the Hilbert
space of square summable complex sequences. Also, n × n Hilbert matrices are
well-known examples of extremely ill-conditioned matrices.

Frequently, Hilbert matrices are used in both mathematics and computational
science. For example, in image processing, Hilbert matrices are commonly used.
Any 2D array of natural numbers in the range [0, n] for all n ∈ N can be viewed as
a greyscale digital image.

We take the Hilbert matrix Hn(n×n matrix). If we use the Mathematica, then
we can write

hilbert = HilbertMatrix[5]//MatrixForm

and we can obtain

H =













1 1/2 1/3 1/4 1/5
1/2 1/3 1/4 1/5 1/6
1/3 1/4 1/5 1/6 1/7
1/4 1/5 1/6 1/7 1/8
1/5 1/6 1/7 1/8 1/9













Now, we use MatrixPlot to obtain the image shown in Fig. 1..1

Fig. 1..1: 2D Plot

With the following algorithm that used the Mathematica script[16], we can ob-
tain the Hilbert view of a digital image:

i. Extract an n× n subimage h from your favorite greyscale digital image.
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Fig. 1..2: 3D Plot

ii. Multiply the subimage h by the corresponding Hilbert n × n matrix. Let
hilbertim = h. ∗HilbertMatrix[n].

iii. Produce a 2D MatrixPlot for hilbertim like the one in Fig. 1..1

iv. Use the following scrip to produce a 3D plot for hilbertim like the one in
Fig. 1..2

ListP lot3D[HilbertMatrix[n],→ 0,Mesh → None].

Again, cryptography is an example of Hilbert matrix applications. Cryptography
is a science of using mathematics to encrypt and decrypt data. A classical crypt-
analysis involves an interesting combination of analytical reasoning, application of
mathematical tools and pattern finding. In some studies related to cryptographic
methods, the Hilbert matrix is used for authentication and confidentiality[18]. It is
well known that the Hilbert matrix is very unstable [15] and so it can be used in
security systems.

2. The Hilbert matrix, difference operator and new spaces

Let ω, ℓ∞, c, c0, φ denote sets of all complex, bounded, convergent, null con-
vergent and finite sequences, respectively. Also, for the sets of convergent, bounded
and absolutely convergent series, we denote cs, bs and ℓ1.

Let A = (ank), (n, k ∈ N) be an infinite matrix of complex numbers and X , Y
be subsets of ω. We write Anx =

∑

∞

k=0 ankxk and Ax = (Anx) for all n ∈ N. All
the series Anx converge. The set XA = {x ∈ ω : Ax ∈ X} is called the matrix
domain of A in X . We write (X : Y ) for the space of those matrices which send the
whole of sequence space X into the sequence space Y in this sense.



362 M. Kirişci, H. Polat

A matrix A = (ank) is called a triangle if ank = 0 for k > n and ann 6= 0 for all
n ∈ N. For the triangle matrices A, B and a sequence x, A(Bx) = (AB)x holds. We
remark that a triangle matrix A uniquely has an inverse A−1 = B and the matrix
B is also a triangle.

Let X be a normed sequence space. If X contains a sequence (bn) with the
property that for every x ∈ X , then there is a unique sequence of scalars (αn) such
that

lim
n→∞

∥

∥

∥

∥

∥

x−

n
∑

k=0

αkbk

∥

∥

∥

∥

∥

= 0.

Thus, (bn) is called Schauder basis for X .

In [11], new sequence spaces are defined and some topological and structural
properties are investigated. A flow chart of the stages of the newly constructed se-
quence spaces and the algorithms of the workings at each step are given by Kirisci
[11].

The difference operator was first used in the sequence spaces by Kızmaz[12]. The
idea of difference sequence spaces of Kızmaz was generalized by Çolak and Et[6, 7].
The difference matrix ∆ = δnk defined by

δnk :=

{

(−1)n−k , (n− 1 ≤ k ≤ n)
0 , (0 < n− 1 or n > k)

The difference operator order of m is defined by ∆m : ω → ω, (∆1x)k =
(xk − xk−1) and ∆mx = (∆1x)k ◦ (∆m−1x)k for m ≥ 2.

The triangle matrix ∆(m) = δ
(m)
nk defined by

δnk :=

{

(−1)n−k
(

m
n−k

)

, (max{0, n−m} ≤ k ≤ n)

0 , (0 ≤ k < max{0, n−m} or n > k)

for all k, n ∈ N and for any fixed m ∈ N.

We can also mention Fibonacci matrices as an example of difference matrices[9].

The Hilbert matrix is defined by Hn = [hij ] = [ 1
i+j−1 ]

n
i,j=1 for each n ∈ N. The

inverse of Hilbert matrix is defined by

H−1
n = (−1)i+j(i + j − 1)

(

n+ i − 1

n− j

)(

n+ j − 1

n− i

)(

i+ j − 1

i− 1

)2

(2.1)
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for all k, i, j, n ∈ N[5]. Polat [17], has defined new spaces by using the Hilbert
matrix. Let hc, h0, h∞ be convergent Hilbert, null convergent Hilbert and bounded
Hilbert spaces, respectively. Then, we have:

X = {x ∈ ω : Hx ∈ Y }

where X = {hc, h0, h∞} and Y = {c, c0, ℓ∞}.

Now, we will give new difference Hilbert sequence spaces as below:

hc

(

∆(m)
)

=
{

x ∈ ω : ∆(m)x ∈ hc

}

h0

(

∆(m)
)

=
{

x ∈ ω : ∆(m)x ∈ h0

}

h∞

(

∆(m)
)

=
{

x ∈ ω : ∆(m)x ∈ h∞

}

.

These new spaces, as the set of all sequences whose ∆(m)−transforms are in the
Hilbert sequences spaces which are defined by Polat[17].

We also define the H∆(m)−transform of a sequence, as below:

yn =
(

H∆(m)x
)

n
=

n
∑

k=1

[

n
∑

i=k

1

n+ i− 1
(−1)i−k

(

m

i− k

)

]

xk(2.2)

for each m,n ∈ N. Here and after by H(m), we denote the matrix H(m) = H∆(m) =
[hnk] defined by

hnk =
n
∑

i=k

1

n+ i− 1
(−1)i−k

(

m

i− k

)

for each k,m, n ∈ N.

Theorem 2.1. The Hilbert sequences spaces derived by the difference operator of
m are isomorphic copies of the convergent, null convergent and bounded sequence
spaces.

Proof. We will only prove that the null convergent Hilbert sequence space
is an isomorphic copy of the null convergent sequence space. To prove the fact
h0(∆

(m)) ∼= c0, we should show the existence of a linear bijection between the
spaces h0(∆

(m)) and c0. Consider the transformation T , defined with the notation
(2.2) from h0(∆

(m)) to c0 by x → y = Tx. The linearity of T is clear. Further, it is
trivial that x = 0 whenever Tx = 0 and hence T is injective. Let y ∈ c0 and define
the sequence x = (xn) by

xn =

n
∑

k=1

[

n
∑

i=k

(

m+ n− i− 1

n− i

)

h−1
ik

]

yk(2.3)



364 M. Kirişci, H. Polat

where h−1
ik is defined by (2.1). Then,

lim
n→∞

(

H∆(m)x
)

k
= lim

n→∞

n
∑

k=1

1

n+ k − 1
∆(m)xk

=

n
∑

k=1

1

n+ k − 1

m
∑

i=0

(−1)i
(

m

i

)

xk−i

=

n
∑

k=1

[

n
∑

i=k

1

n+ i − 1
(−1)i−k

(

m

i− k

)

]

xk = lim
n→∞

yn = 0.

Thus, we have that x ∈ h0(∆
(m)). Consequently, T is surjective and is norm pre-

serving. Hence, T is linear bijection which implies that the null convergent Hilbert
sequence space is an isomorphic copy of the null convergent sequence space.

It is well known that the spaces c, c0 and ℓ∞ are BK−spaces. Considering the
fact that ∆(m) is a triangle, we can say that the Hilbert sequences spaces derived
by the difference operator of m are BK−spaces with the norm

‖x‖∆ = ‖H∆(m)x‖∞ = sup
n

∣

∣

∣

∣

∣

n
∑

k=1

1

n+ k − 1

m
∑

i=0

(−1)i
(

m

i

)

xk−i

∣

∣

∣

∣

∣

.(2.4)

In the theory of matrix domain, it is well known that the matrix domain XA

of a normed sequence space X has a basis if and only if X has a basis whenever
A = (ank) is a triangle. Then, we have:

Corollary 2.2. Define the sequence b(k) = (b
(k)
n (∆(m)))n∈N by

b(k)n (∆(m)) :=

{
∑n

i=k

(

m+n−i−1
n−i

)

h−1
ik , (n ≥ k)

0 , (n < k)

for every fixed k ∈ N. The following statements hold:

i. The sequence b(k)(∆(m)) = (b
(k)
n (∆(m)))n∈N is a basis for the null convergent

Hilbert sequence space, and for any x ∈ h0(∆
(m)) has a unique representation of

the form

x =
∑

k

(

H∆(m)x
)

k
b(k).

ii. The set {t, b(1), b(2), · · · } is a basis for the convergent Hilbert sequence space, and
for any x ∈ hc(∆

(m)) has a unique representation of form

x = st+
∑

k

[(

H∆(m)x
)

k
− s

]

b(k)

where t = tn(∆
(m)) =

∑n
k=1

∑n
i=k

(

m+n−i−1
n−i

)

h−1
ik for all k ∈ N and s = limk→∞(H∆(m)x)k.
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If we take into consideration the fact that a space which has a Schauder basis
is separable, then we can give the following corollary:

Corollary 2.3. The convergent Hilbert and null convergent Hilbert sequence spaces
are separable.

3. Dual Spaces and Matrix Transformations

Let x and y be sequences, X and Y be subsets of ω and A = (ank)
∞

n,k=0 be an infinite

matrix of complex numbers. We write xy = (xkyk)
∞

k=0, x
−1 ∗Y = {a ∈ ω : ax ∈ Y }

and M(X,Y ) =
⋂

x∈X x−1 ∗Y = {a ∈ ω : ax ∈ Y for all x ∈ X} for the multiplier
space of X and Y . In the special cases of Y = {ℓ1, cs, bs}, we write xα = x−1 ∗ ℓ1,
xβ = x−1 ∗ cs, xγ = x−1 ∗ bs and Xα = M(X, ℓ1), X

β = M(X, cs), Xγ = M(X, bs)
for the α−dual, β−dual, γ−dual of X . By An = (ank)

∞

k=0 we denote the se-
quence in the n−th row of A, and we write An(x) =

∑

∞

k=0 ankxk n = (0, 1, ...) and
A(x) = (An(x))

∞

n=0, provided An ∈ xβ for all n.

Lemma 3.1. [4, Lemma 5.3] Let X,Y be any two sequence spaces. A ∈ (X : YT )
if and only if TA ∈ (X : Y ), where A an infinite matrix and T a triangle matrix.

Lemma 3.2. [1, Theorem 3.1] Let U = (unk), be an infinite matrix of complex
numbers for all n, k ∈ N. Let BU = (bnk) be defined via a sequence a = (ak) ∈ ω
and inverse of the triangle matrix U = (unk) by

bnk =

n
∑

j=k

ajvjk

for all k, n ∈ N. Then,

Xβ
U = {a = (ak) ∈ ω : BU ∈ (X : c)}.

and

Xγ
U = {a = (ak) ∈ ω : BU ∈ (X : ℓ∞)}.

Now, we list the following useful conditions.



366 M. Kirişci, H. Polat

Table 3.1:

To → ℓ∞ c bs cs
From ↓

c0 1. 2. 3. 4.

c 1. 5. 3. 6.

ℓ∞ 1. 7. 3. 8.

sup
n

∑

k

|ank| < ∞(3.1)

lim
n→∞

ank − αk = 0(3.2)

lim
n→∞

∑

k

ank exists(3.3)

lim
n→∞

∑

k

|ank| =
∑

k

∣

∣

∣
lim
n→∞

ank

∣

∣

∣
(3.4)

lim
n

ank = 0 for all k(3.5)

sup
m

∑

k

∣

∣

∣

∣

∣

m
∑

n=0

∣

∣

∣

∣

∣

< ∞(3.6)

∑

n

ank convergent for all k(3.7)

∑

n

∑

k

ank convergent(3.8)

lim
n

ank exists for all k(3.9)

lim
m

∑

k

∣

∣

∣

∣

∣

∞
∑

n=m

ank

∣

∣

∣

∣

∣

= 0(3.10)

Lemma 3.3. For the characterization of the class (X : Y ) with X = {c0, c, ℓ∞}
and Y = {ℓ∞, c, cs, bs}, we can give the necessary and sufficient conditions from
Table 3.1, where

1. (3.1) 2. (3.1), (3.9) 3. (3.6) 4. (3.6), (3.7)
5. (3.1), (3.9), (3.3) 6. (3.6), (3.7), (3.8) 7. (3.9), (3.4) 8. (3.10)

Let h−1
nk is defined by (2.1). For the proof of Theorem 3.4, we define the matrix

V = (vnk) as below:

vnk =

[

n
∑

i=k

(

m+ n− i− 1

n− i

)

h−1
ik an

]

(3.11)
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Theorem 3.4. The β− and γ− duals of the Hilbert sequence spaces derived by the
difference operator of m defined by

[

hc0

(

∆(m)
)]β

= {a = (ak) ∈ ω : V ∈ (c0 : c)}

[

hc

(

∆(m)
)]β

= {a = (ak) ∈ ω : V ∈ (c : c)}

[

h∞

(

∆(m)
)]β

= {a = (ak) ∈ ω : V ∈ (ℓ∞ : c)}
[

hc0

(

∆(m)
)]γ

= {a = (ak) ∈ ω : V ∈ (c0 : ℓ∞)}
[

hc

(

∆(m)
)]γ

= {a = (ak) ∈ ω : V ∈ (c : ℓ∞)}
[

h∞

(

∆(m)
)]γ

= {a = (ak) ∈ ω : V ∈ (ℓ∞ : ℓ∞)}

Proof. We will only show the β− and γ− duals of the null convergent Hilbert
sequence spaces derived by difference operator of m. Let a = (ak) ∈ ω. We begin
the equality

n
∑

k=1

akxk =

n
∑

k=1

k
∑

i=1





k
∑

j=i

(

m+ k − j − 1

k − j

)

h−1
ij



 akyi(3.12)

=
n
∑

k=1







k
∑

i=1





k
∑

j=i

(

m+ k − j − 1

k − j

)

h−1
ij



 ai







yk

= (V y)n

where V = (vnk) is defined by (3.11). Using (3.12), we can see that ax = (akxk) ∈ cs
or bs whenever x = (xk) ∈ hc0(∆

(m)) if and only if V y ∈ c or ℓ∞ whenever
y = (yk) ∈ c0. Then, from Lemma 3.1 and Lemma 3.2, we obtain the result that

a = (ak) ∈
(

hc0(∆
(m))

)β
or a = (ak) ∈

(

hc0(∆
(m))

)γ
if and only if V ∈ (c0 : c) or

V ∈ (c0 : ℓ∞), which is what we wished to prove.

Therefore, the β− and γ− duals of new spaces will help us in the characteriza-
tion of the matrix transformations.

Let X and Y be arbitrary subsets of ω. We shall show that the characterizations
of the classes (X,YT ) and (XT , Y ) can be reduced to that of (X,Y ), where T is a
triangle.

It is well known that if hc0(∆
(m)) ∼= c0, then the equivalence

x ∈ hc0(∆
(m)) ⇔ y ∈ c0

holds. Then, the following theorems will be proved and given some corollaries
which can be obtained in a way similar to that of Theorems 3.5 and 3.6. Then,
using Lemmas 3.1 and 3.2, we have:



368 M. Kirişci, H. Polat

Theorem 3.5. Consider the infinite matrices A = (ank) and D = (dnk). These
matrices get associated with each other the following relations:

dnk =

∞
∑

j=k

(

m+ n− j − 1

n− j

)

h−1
jk anj(3.13)

for all k,m, n ∈ N. Then, the following statements are true:
i. A ∈ (hc0(∆

(m)) : Y ) if and only if {ank}k∈N ∈ [hc0(∆
(m))]β for all n ∈ N and

D ∈ (c0 : Y ), where Y be any sequence space.
ii. A ∈ (hc(∆

(m)) : Y ) if and only if {ank}k∈N ∈ [hc(∆
(m))]β for all n ∈ N and

D ∈ (c : Y ), where Y be any sequence space.
iii. A ∈ (h∞(∆(m)) : Y ) if and only if {ank}k∈N ∈ [h∞(∆(m))]β for all n ∈ N and
D ∈ (ℓ∞ : Y ), where Y be any sequence space.

Proof. We assume that the (3.13) holds between the entries of A = (ank)
and D = (dnk). Let us remember that from Theorem 2.1, the spaces hc0(∆

(m))
and c0 are linearly isomorphic. Firstly, we choose any y = (yk) ∈ c0 and consider

A ∈ (hc0(∆
(m)) : Y ). Then, we obtain thatDH∆(m) exists and {ank} ∈

(

hc0∆
(m)

)β

for all k ∈ N. Therefore, the necessity of (3.13) yields and {dnk} ∈ cβ0 for all k, n ∈ N.
Hence, Dy exists for each y ∈ c0. Thus, if we take m → ∞ in the equality

m
∑

k=1

ankxk =

m
∑

k=1





k
∑

i=1

k
∑

j=i

(

m+ k − j − 1

k − j

)

h−1
ij



 ank =
∑

k

dnkyk

for all m,n ∈ N, then, we understand that Dy = Ax. So, we obtain that D ∈ (c0 :
Y ).

Now, we consider that {ank}k∈N ∈ (hc0∆
(m))β for all n ∈ N and D ∈ (c0 : Y ).

We take any x = (xk) ∈ hc0∆
(m). Then, we can see that Ax exists. Therefore, for

m → ∞, from the equality

m
∑

k=1

dnkyk =
m
∑

k=1

ankxk

for all n ∈ N, we obtain that Ax = Dy. Therefore, this shows that A ∈ (hc0(∆
(m) :

Y ).

Theorem 3.6. Consider that the infinite matrices A = (ank) and E = (enk) with

enk :=

n
∑

k=1

n
∑

j=k

1

n+ j − 1
(−1)j−k

(

m

j − k

)

ajk.(3.14)

Then, the following statements are true:
i. A = (ank) ∈ (X : hc0(∆

(m)) if and only if E ∈ (X : c0)
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ii. A = (ank) ∈ (X : hc(∆
(m)) if and only if E ∈ (X : c)

iii. A = (ank) ∈ (X : h∞(∆(m)) if and only if E ∈ (X : ℓ∞)

Proof. We take any z = (zk) ∈ X . Using the (3.14), we have

m
∑

k=1

enkzk =

m
∑

k=1





n
∑

k=1

n
∑

j=k

1

n+ j − 1
(−1)j−k

(

m

j − k

)

ajk



 zk(3.15)

for all m,n ∈ N. Then, for m → ∞, equation (3.15) gives us that (Ez)n =
{H∆(m)(Az)}n. Therefore, one can immediately observe from this that Az ∈
hc0(∆

(m) whenever z ∈ X if and only if Ez ∈ c0 whenever z ∈ X . Thus, the
proof is completed.

4. Examples

If we choose any sequence spaces X and Y in Theorem 3.5 and 3.6 in the previous
section, then we can find several consequences in every choice. For example, if
we take the space ℓ∞ and the spaces which are isomorphic to ℓ∞ instead of Y in
Theorem 3.5, we obtain the following examples:

Example 4.1. The Euler sequence space er
∞

is defined by ([3] and [2])

er
∞

= {x ∈ ω : sup
n∈N

|
n
∑

k=0

(

n

k

)

(1− r)n−krkxk| < ∞}.

We consider the infinite matrix A = (ank) and define the matrix C = (cnk) by

cnk =

n
∑

j=0

(

n

j

)

(1− r)n−jrjajk (k, n ∈ N).

If we want to get necessary and sufficient conditions for the class (hc0(∆
(m)) : er

∞
)

in Theorem 3.5, then, we replace the entries of the matrix A by those of the matrix
C.

Example 4.2. Let Tn =
∑n

k=0 tk and A = (ank) be an infinite matrix. We define
the matrix G = (gnk) by

gnk =
1

Tn

n
∑

j=0

tjajk (k, n ∈ N).

Then, the necessary and sufficient conditions in order for A belongs to the class
(hc0(∆

(m)) : rt
∞
) are obtained from in Theorem 3.5 by replacing the entries of the

matrix A by those of the matrix G; where rt
∞

is the space of all sequences whose
Rt−transforms is in the space ℓ∞ [14].
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Example 4.3. In the space rt
∞
, if we take t = e, then this space becomes a Cesaro

sequence space of non-absolute type X∞ [13]. As a special case, example 4.2 includes
the characterization of class (hc0(∆

(m)) : rt
∞
).

Example 4.4. The Taylor sequence space tr
∞

is defined by ([10])

tr
∞

= {x ∈ ω : sup
n∈N

|

∞
∑

k=n

(

k

n

)

(1 − r)n+1rk−nxk| < ∞}.

We consider the infinite matrix A = (ank) and define the matrix P = (pnk) by

pnk =
∞
∑

k=n

(

k

n

)

(1− r)n+1rk−najk (k, n ∈ N).

If we want to get necessary and sufficient conditions for the class (hc0(∆
(m)) : tr

∞
)

in Theorem 3.5, then, we replace the entries of the matrix A by those of the matrix
P .

If we take the spaces c, cs and bs instead of X in Theorem 3.6, or Y in Theorem
3.5 we can write the following examples. Firstly, we give some conditions and the
following lemmas:

lim
k

ank = 0 for all n ,(4.1)

lim
n→∞

∑

k

ank = 0,(4.2)

lim
n→∞

∑

k

|ank| = 0,(4.3)

lim
n→∞

∑

k

|ank − an,k+1| = 0,(4.4)

sup
n

∑

k

|ank − an,k+1| < ∞(4.5)

lim
k

(ank − an,k+1) exists for all k(4.6)

lim
n→∞

∑

k

|ank − an,k+1| =
∑

k

∣

∣

∣
lim
n→∞

(ank − an,k+1)
∣

∣

∣
(4.7)

sup
n

∣

∣

∣

∣

lim
k

ank

∣

∣

∣

∣

< ∞(4.8)

Lemma 4.5. Consider that the X ∈ {ℓ∞, c, bs, cs} and Y ∈ {c0}. The necessary
and sufficient conditions for A ∈ (X : Y ) can be read as the following from Table
4.1:

9. (4.3) 10. (3.1), (3.5), (4.2) 11. (4.1), (4.4) 12. (3.5), (4.5)

13. (4.1), (4.6), (4.7) 14. (4.5), (3.9) 15. (4.1), (4.5) 16. (4.5), (4.8)
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Table 4.1:

From → ℓ∞ c bs cs
To ↓
c0 9. 10. 11. 12.

c 7. 5. 13. 14.

ℓ∞ 1. 1. 15. 16.

5. Conclusion

In 1894, Hilbert introduced the Hilbert matrix. Hilbert matrices are notable ex-
amples of poorly conditioned (ill-conditioned) matrices, making them notoriously
difficult to use in numerical computation. In other words, Hilbert matrices whose
entries are specified as machine-precision numbers are difficult to invert using nu-
merical techniques. That is why we offered some examples related to the usage
of the Hilbert matrix such as image processing and cryptography. We also pro-
vided an algorithm. Further, we constructed new spaces with the Hilbert matrix
and difference operator of order m. We calculated dual spaces of new spaces and
characterized some matrix classes. In the last section, we gave some examples of
matrix classes. Images of new spaces can be plotted using the Mathematica as a
continuation of this study. Again, different applications of cryptography can be
investigated.
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1. B. Altay and F. Başar: Certain topological properties and duals of the domain of
a triangle matrix in a sequence spaces, J. Math. Anal. Appl., 336 (2007), 632–645.
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