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SYSTOLIC ALGORITHMS FOR MATRIX MULTIPLICATION ON SPACE
OPTIMAL 1D SYSTOLIC ARRAYS

B. M. Randjelović, E. I. Milovanović, I. Ž. Milovanović

Abstract. In this paper we define and discuss various systolic algorithms for synthesis of
one-dimensional systolic arrays (1DSA) with two-dimensional links, suitable for multi-
plication of rectangular matrices. It is shown that by choosing appropriate algorithm it
is always possible to design optimal systolic array with respect to dimension of matrices.
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1. Introduction

Matrix multiplication is one of the essential operations in various fields of sci-
ence, engineering and technology, such as signal and image processing, system
theory, statistical and numerical analysis, biomedical researches, etc. This oper-
ation is characterized by intensive computational complexity and regularity, and
it is often required under real time constraints. Today’s high performance com-
puting systems exploit one or more forms of parallelism to achieve high speed
computations. To fulfill the desired throughput rates for time-critical and com-
putationally intensive problems, special-purpose, high-speed computing systems
optimized for processing specific tasks have been designed. A systolic array is a
type of special-purpose system that can be used for implementing such tasks.

Let A = (aik) and B = (bkj) be two rectangular matrices of order N1 × N3 and
N3 ×N2, respectively. In this paper we derive all systolic algorithms, which can be
used for synthesis of 1DSA, suitable for computing matrix product C = A · B. We
are interested in algorithms for three different type of systolic arrays: static (type
I), bidirectional (type II) and unidirectional (type III). All arrays should be space
optimal with respect to dimensions of matrices N1, N2 and N3, i.e. have a minimal
number of processing elements (PE), for the given problem size (see, for example
[3],[4],[5] and [12]). The procedure of SA synthesis will be given briefly, since it is
discussed in the literature thoroughly (see [1],[4] and [5]). Explicit formulas for the
PEs locations and initial data schedule in the (x, y)-plane will be given.
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Proposed algorithms are compared with the ones proposed in [6, 7, 8, 3, 11]
for matrix-vector multiplication, and with those proposed in [4, 5, 12], for matrix
multiplication, with respect to space optimality.

2. Mathematical background

There are many different methods for computing the product of two matrices
C= A · B, where A = (aik) and B = (bkj) are rectangular matrices of order N1 × N3
and N3 × N2, respectively. Apart from straightforward methods, which are given
at the beginning, several more methods are discussed: middle product algorithm,
dual middle product algorithm, and method of inner products (see [13]).

The standard method for computing C = (cij) is given by the following recur-
rence relations

c(0)
i j := 0,

c(k)
i j := c(k−1)

i j + aikbkj, k = 1, 2, . . . ,N3

c(N3)
i j = cij

for i = 1, 2, . . . ,N1, j = 1, 2, . . . ,N2.

Middle product algorithm, dual middle product algorithm, and inner product
algorithm, are defined as follows:

C = A · B =
[

A�B•1 A�B•2 · · · A�B•N2

]
,(2.1)

C = A · B =
[
�A1•B �A2•B · · · �AN1•B

]
,(2.2)

C = A · B =
N3∑
k=1

�A•k�Bk•,(2.3)

where �Ai• and �Bk• denote i-th and k-th row-vectors, and �A•k and �B• j, k-th and j-th
column-vectors, of matrices A and B, respectively.

As we have already mentioned, we consider 1DSAs with two-dimensional
links. Without loss of generality, we design algorithms for computing a part
of matrix C, from (2.1), (2.2) and (2.3). Namely, we derive systolic algorithms
for computing column-vector �C•1 = A�B•1, row-vector �C1• = �A1•B and only first
iteration of the resulting matrix C(1) = �A•1�B1•. Matrix C can be obtained by repeating
the corresponding computations n times.

All algorithms in this paper are considered in the three-dimensional Cartesian
space, generated by unity vectors

�e1 = [1 0 0]T , �e2 = [0 1 0]T and �e3 = [0 0 1]T .(2.4)
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To compute column-vector �C•1 = A�B•1, row-vector �C1• = �A1•B and C(1) = �A•1�B1•,
the following basic algorithms can be used:

Algorithm I

for k := 1 to N3 do
for i := 1 to N1 do

a(i, 1, k) := a(i, 0, k)
b(i, 1, k) := b(0, 1, k)
c(i, 1, k) := c(i, 1, k− 1) + a(i, 1, k)b(i, 1, k)

where a(i, 0, k) ≡ aik, b(0, 1, k) ≡ bk1, c(i, 1, k) ≡ c(k)
i1 , c(i, 1, 0) ≡ c(0)

i1 = 0, for each
i = 1, 2, . . . ,N1, k = 1, 2, . . . ,N3.

Algorithm II

for k := 1 to N3 do

for j := 1 to N2 do

a(1, j, k) := a(1, 0, k)
b(1, j, k) := b(0, j, k)
c(1, j, k) := c(1, j, k − 1) + a(1, j, k)b(1, j, k)

where a(1, 0, k) ≡ a1k, b(0, j, k) ≡ bkj, c(1, j, k) ≡ c(k)
1 j , c(1, j, 0) ≡ c(0)

1 j = 0, for each

j = 1, 2, . . . ,N2, k = 1, 2, . . . ,N3.

Algorithm III
for j := 1 to N2 do

for i := 1 to N1 do

a(i, j, 1) := a(i, 0, 1)
b(i, j, 1) := b(0, j, 1)
c(i, j, 1) := c(i, j, 0) + a(i, j, 1)b(i, j, 1)

where a(i, 0, 1) ≡ ai1, b(0, j, 1) ≡ b1 j, c(i, j, 1) ≡ c(1)
i j , c(i, j, 0) ≡ c(0)

i j = 0, for each
i = 1, 2, . . . ,N1, j = 1, 2, . . . ,N2.

3. Systolic algorithms and systolic arrays

Algorithms I, II and III have global data dependencies and, consequently, they
are not convenient for systolic processing. To make them systolic, it is necessary to
remove global data dependencies.

Denote with �rb, �ra and �rc data dependency vectors of matrices B, A and C,
respectively. For Algorithm I, we have �rb = [i 0 0 ]T, for Algorithm II we have
�ra =

[
0 j 0

]T. For Algorithm III we have �ra =
[
0 j 0

]T and �rb = [i 0 0 ]T. Since these
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vectors are not constant, but depend of index-variables, above algorithms have
global dependencies, so they are not systolic (see [2], [10], [14]).

Systolization of Algorithms I, II and III is performed by removing global de-
pendencies and by localization ([1], [14]). This is achieved by the substitution of
dependency vectors �rb, �ra and �rc, in all three algorithms, with vectors�eb

3
= [1 0 0]T,

�ea
3
= [0 1 0]T and �ec

3
= [0 0 1]T. The obtained systolic algorithms have the follow-

ing form:

Algorithm 1

for k := 1 to N3 do

for i := 1 to N1 do

a(i, 1, k) := a(i, 0, k)

b(i, 1, k) := b(i − 1, 1, k)

c(i, 1, k) := c(i, 1, k− 1) + a(i, 1, k)b(i, 1, k)

Algorithm 2

for k := 1 to N3 do

for j := 1 to N2 do

a(1, j, k) := a(1, j − 1, k)

b(1, j, k) := b(0, j, k)

c(1, j, k) := c(1, j, k − 1) + a(1, j, k)b(1, j, k)

Algorithm 3

for j := 1 to N2 do

for i := 1 to N1 do

a(i, j, 1) := a(i, j − 1, 1)

b(i, j, 1) := b(i − 1, j, 1)

c(i, j, 1) := c(i, j, 0) + a(i, j, 1)b(i, j, 1)

Each algorithm can be joined to a unique oriented graph G = (P,D), where
P =
{
�r =
[
i j k
]T} and D =

[
�rb �ra �rc

]T. The set of nodes P =
{
�r =
[
i j k
]T} corresponds to

the points where the computations are performed in the corresponding algorithm.
Directed edges between the nodes are defined by the columns of data dependency
matrix D =

[
�rb �ra �rc

]T.

Denote by �μ =
[
μ1 μ2 μ3

]T, μ2
1 + μ

2
2 + μ

2
3 � 0, projection direction vector. The

projection of graph G = (P,D) along direction �μ on the plane orthogonal to �μ, is
either a directed graph with loops, or a directed graph, or a directed multigraph,
or some other similar structure. We refer to all of them as a graph and denote
by Γ = (Q,Δ). Graph Γ is placed in a two-dimensional Cartesian space, i.e. in
(x, y)-plane. This graph corresponds to the systolic array (SA) that implements the
systolic algorithm. Set of vertices, Q, corresponds to a set of processing elements
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(PEs) in the SA, while set of directed edges, Δ, corresponds to a communication
channels in the array.

Each projection vector �μ =
[
μ1 μ2 μ3

]T corresponds to the matrix

S =

[
s21 s22 s23

s31 s32 s33

]

which is called a valid transformation matrix.

Note that the transformation matrix is not unique for a given projection vector.
For details about the selection of the appropriate projection vectors and corre-
sponding transformation matrices for a given algorithm, see [1].

The Vertices of graph Γ, i.e. locations of PEs, in the (x, y)-plane and direction of
edges (communication channels) are determined from the following equations

PE→ [ x y
]T = S · �p, �p ∈ P and Δ = S ·D =

[
�e 2

b
�e 2

a �e 2
c

]T
.(3.1)

Equations (3.1) uniquely define the systolic array that implements the correspond-
ing algorithm.

Algorithm 1 can be joined with directed coordinate graph G1 = (P1,D1), defined
by

P1 =
{
�p = [ i 1 k ]T | 1 � i � N1, 1 � k � N3

}

D1 =
[
�e 3

b
�e 3

a �e 3
c

]T
=

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ .

Possible projection vectors (see [9]) are �μ = [1 0 0]T, �μ = [0 0 1]T, �μ = [1 0 1]T

and �μ = [1 0 − 1]T.

One of the valid transformation matrices that corresponds to the projection
vector �μ = [1 0 0]T have the following form

S =
[

0 1 0
0 0 1

]
.

Using transformation matrix S, directed graph G1 = (P1,D1) is mapped into directed
graph with loops Γ1 = (Q1,Δ1). Having in mind (3.1), we obtain

PE →
[

x
y

]
=

[
1
k

]
, Δ1 =

[
�e 2

b
�e 2

a �e 2
c

]T
=

[
0 1 0
0 0 1

]
,(3.2)

for each k = 1, 2, . . . ,N3. According to (3.2), we conclude that systolic array, SA1,
consists of Ω = N3 processing elements (PEs) (see [3]). Since �e 2

b = [0 0]T, the ob-
tained array is static ( type I), i.e. one of the matrices is resident in the array. During
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the realization of Algorithm 1,the elements of column-vector �B•1 are resident, while
the elements of column-vector �C1• are pipelined through the array.

For projection vector �μ = [0 0 1]T, one of the valid transformations is

S =

[
1 0 0
0 1 0

]
.

According to (3.1), this transformation maps directed graph G1 = (P1,D1) into
directed graph with loops Γ2 = (Q2,Δ2) (i.e. the array SA2) defined by

PE →
[

x
y

]
=

[
i
1

]
, Δ2 =

[
�e 2

b
�e 2

a �e 2
c

]T
=

[
1 0 0
0 1 0

]
,(3.3)

for each i = 1, 2, . . . ,N1. Based on (3.3), we conclude that systolic array, SA2,
consists of Ω = N1 PEs (see [3]). Since �e 2

c = [0 0]T, the array is also static (type I),
with the elements of the resulting matrix C resident in the array and the elements
of column-vectors �B•1 pipelined through the array.

One of the valid transformation matrices for projection vector �μ = [1 0 1]T is of
the form

S =
[

1 0 −1
0 1 0

]
.

This transformation maps graph G1 = (P1,D1) into directed graph with Ω = N1 +
N3 − 1 nodes. The corresponding systolic array does not have an optimal number
of PEs. To obtain the array with an optimal number of PEs we have to adjust graph
G1 = (P1,D1) to the projection vector �μ = [1 0 1]T. This is accomplished by mapping
set P1 =

{
�p = [ i 1 k ]T | 1 � i � N1, 1 � k � N3

}
into P2 =

{
�p = [ u 1 w ]T

}
, where

⎡⎢⎢⎢⎢⎢⎢⎣
u
1
w

⎤⎥⎥⎥⎥⎥⎥⎦ =
[
�μ �e2 �e3

] ·
⎡⎢⎢⎢⎢⎢⎢⎣

i
1
k

⎤⎥⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎢⎣

0
0
−1

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

i
1

i + k − 1

⎤⎥⎥⎥⎥⎥⎥⎦ ,

for each i = 1, 2, . . . ,N1 and k = 1, 2, . . . ,N3. The Obtained directed graph G2 =
(P2,D1), that is also coordinate, uniquely corresponds to the following systolic
algorithm, equivalent to Algorithm 1:

Algorithm 4
for k := 1 to N3 do
for i := 1 to N1 do
a(i, 1, i + k − 1) := a(i, 0, i + k − 1)
b(i, 1, i + k − 1) := b(i − 1, 1, i + k − 1)
c(i, 1, i + k − 1) := c(i, 1, i + k − 2) + a(i, 1, i + k − 1)b(i, 1, i+ k − 1)

where a(i, 0, t + N3) ≡ a(i, 0, t), b(0, 1, t + N3) ≡ b(0, 1, t), for each i = 1, 2, . . . ,N1,
t = 1, 2, . . . ,N3. Using (3.1), directed graph G2 = (P2,D1) can be mapped into
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directed graph Γ3 = (Q3,Δ3), defined by

PE →
[

x
y

]
=

[
1 − k

1

]
, Δ3 =

[
�eb

2 �ea
2 �ec

2 ]T
=

[
1 0 −1
0 1 0

]
,(3.4)

for each k = 1, 2, . . . ,N3. According to (3.4), we conclude that corresponding systolic
array, SA3, consists ofΩ = N3 PEs (see [3]). Since�e 2

b = −�e 2
c , the array is bidirectional

(type II). the elements of column-vectors �B•1 and �C1•, are pipelined through the
array in opposite directions.

For the projection vector �μ = [1 0 − 1]T, one of the possible transformation
matrices is

S =

[
1 0 1
0 1 0

]
.

According to (3.1), directed graph G1 = (P1,D1), is mapped into a directed multi-
graph defined by

PE →
[

x
y

]
=

[
i + k

1

]
, Δ =

[
�e 2

b
�e 2

a �e 2
c

]T
=

[
1 0 1
0 1 0

]
.

The corresponding SA consists of Ω = N1 + N3 − 1 PEs (see [3]), which is not
an optimal number for the given problem size. On the other hand, since �e 2

b = �e
2

c ,
Algorithm 1 cannot be implemented on this array correctly. However, this problem
could be solved in two steps.

First, we will interpolate the set of nodes P1 of graph G1, with the set of nodes

P̄1 =

{
�p =
[

i − 1
2

1 k
]T
| 1 � i � N1, 1 � k � N3

}
.

After that, we adjust set P1 ∪ P̄1 to projection vector �μ = [1 0 − 1]T. The adjust-
ment is implemented as mapping of P1∪P̄1 into P3∪P̄3, where P3 =

{
�p = [ u 1 w ]T

}
and P̄3 =

{
�p =
[

u − 1
2 1 w

]T}
, defined by

⎡⎢⎢⎢⎢⎢⎢⎣
u
1
w

⎤⎥⎥⎥⎥⎥⎥⎦ = [�μ �e2 �e3
] ·
⎡⎢⎢⎢⎢⎢⎢⎣

i
1
k

⎤⎥⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎢⎣

0
0

N1

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

i
1

−i + k +N1

⎤⎥⎥⎥⎥⎥⎥⎦
for each i = 1, 2, . . . ,N1 and k = 1, 2, . . . ,N3. Directed edges in the obtained graph
G3 = (P3 ∪ P̄3,D3) are determined by column-vectors of the matrix

D3 =
[
�e 3

b
�e 3

a �e 3
c

]T
=

⎡⎢⎢⎢⎢⎢⎢⎣
1
2 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ .
This graph corresponds to the following systolic algorithm, equivalent to Algo-
rithm 1:
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Algorithm 5

for k := 1 to N3 do

for i := 1 to N1 do

b(i − 1
2 , 1,−i+ k +N1) := b(i − 1, 1,−i+ k +N1)

b(i, 1,−i + k +N1) := b(i − 1
2 , 1,−i + k +N1)

a(i, 1,−i+ k +N1) := a(i, 0,−i+ k +N1)
c(i, 1,−i+ k +N1) := c(i, 1,−i+ k +N1 − 1) + a(i, 1,−i+ k +N1)b(i, 1,−i+ k +N1)

where a(i, 0, t + N3) ≡ a(i, 0, t), b(0, 1, t + N3) ≡ b(0, 1, t), for each i = 1, 2, . . . ,N1,
t = 1, 2, . . . ,N3.

Using valid transformation

S =
[

1 0 1
0 1 0

]
,

and (3.1), graph G3 = (P3 ∪ P̄3,D3) is mapped into directed multi-graph Γ4 =
(Q4 ∪ Q̄4,Δ4), defined by

PE →
[

x
y

]
=

[
k +N1

1

]
, d →

[
x
y

]
=

[
k +N1 − 1

2
1

]
,

Δ4 =
[
�e 2

b
�e 2

a �e 2
c

]T
=

[
1
2 0 1
0 1 0

]
,

(3.5)

for each k = 1, 2, . . . ,N3. The corresponding array, SA4, consists ofΩ = N3 PEs (see
[3]). Since �e 2

b =
1
2�e

2
c , we conclude that the array is unidirectional (type III). During

implementation of Algorithm 5 on SA4 the elements of column-vectors �B·1 and �C1•
are pipelined through the array in the same direction.

Systolic arrays SA1, SA2, SA3 and SA4, for matrix-vector multiplication, are
well-studied in literature (see [6], [2], [4]).

In the case of Algorithm 2, possible projection vectors are �μ = [0 1 0]T, �μ =
[0 0 1]T, �μ = [0 1 1]T and �μ = [0 1 − 1]T. Corresponding graph G5 = (P5,D5) is
defined by

P5 =
{
�p =
[

1 j k
]T | 1 � j � N2, 1 � k � N3

}

D5 =
[
�e 3

b
�e 3

a �e 3
c

]T
=

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ .

One of the valid transformation matrices for projection vector �μ = [0 1 0]T is

S =

[
1 0 0
0 0 1

]
.
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Based on expression (3.1), directed graph G5 = (P5,D5) is mapped into directed
graph with loops Γ5 = (Q5,Δ5), defined by

PE →
[

x
y

]
=

[
1
k

]
, Δ5 =

[
�e 2

b
�e 2

a �e 2
c

]T
=

[
1 0 0
0 0 1

]
,(3.6)

for each k = 1, 2, . . . ,N3. According to (3.6), the corresponding systolic array, SA5,
consists of Ω = N3 PEs (see [3]). Since �e 2

a = [0 0]T, the array SA5 is static (type I).
During realization of Algorithm 2, the elements of row-vector �A1• are resident in
the array, while the elements of column-vector �C1• are pipelined.

For projection vector �μ = [0 0 1]T one of the valid transformations is

S =

[
1 0 0
0 1 0

]
.

Using this transformation, according to (3.1), graph G5 = (P5,D5) is mapped into
directed graph with loops Γ6 = (Q6,Δ6), defined by

PE →
[

x
y

]
=

[
1
j

]
, Δ6 =

[
�e 2

b
�e 2

a �e 2
c

]T
=

[
1 0 0
0 1 0

]
,(3.7)

for each j = 1, 2, . . . ,N2. The corresponding systolic array, SA6, consists of Ω = N2

PEs (see [3]). Since �e 2
c = [0 0]T, the array is static (type I). During implementation

of Algorithm 2 on the SA6, the elements of column-vector �C1• are resident while
the elements of row-vector �A1• are pipelined through the array.

Similarly as in the case of the array SA3, for projection vector �μ = [0 1 1]T we
consider the following systolic algorithm, equivalent to Algorithm 2:

Algorithm 6
for k := 1 to N3 do
for j := 1 to N2 do
a(1, j, k + j − 1) := a(1, j − 1, k + j − 1)
b(1, j, k + j − 1) := b(0, j, k + j − 1)
c(1, j, k + j − 1) := c(1, j, k + j − 2) + a(1, j, k + j − 1)b(1, j, k + j − 1)

where a(1, 0, t + N3) ≡ a(1, 0, t), b(0, j, t + N3) ≡ b(0, j, t), for j = 1, 2, . . . ,N2, k =
1, 2, . . . ,N3.

The corresponding directed graph G6 = (P6,D6) is defined by

P6 =
{
�p =
[

1 j k + j − 1
]T | 1 ≤ j ≤ N2, 1 ≤ k ≤ N3

}
.

One of the valid transformations that corresponds to the projection vector �μ =
[0 1 1]T is

S =

[
0 1 −1
1 0 0

]
.
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Using this transformation, directed graph G6 = (P6,D5) is mapped into directed
multi-graph Γ7 = (Q7,Δ7), defined with

PE →
[

x
y

]
=

[
1 − k

1

]
, Δ7 =

[
�e 2

b
�e 2

a �e 2
c

]T
=

[
0 1 −1
1 0 0

]
,(3.8)

for each k = 1, 2, . . . ,N3. From (3.8) we conclude that the corresponding systolic ar-
ray, SA7, consists ofΩ = N3 PEs (see [3]). Since�e 2

a = −�e 2
c , SA7 is bidirectional (type

II). Elements �A•1 and �C1• are pipelined through the array in opposite directions.

Similarly to systolic array SA4, for projection vector �μ = [0 1 − 1]T, we consider
the following systolic algorithm, equivalent to Algorithm 2:

Algorithm 7

for k := 1 to N3 do

for j := 1 to N2 do

a(1, j − 1
2 ,− j + k +N2) := a(1, j − 1,− j + k +N2)

a(1, j,− j + k +N2) := a(0, j,− j + k +N2)
b(1, j,− j + k +N2) := b(0, j,− j + k +N2)
c(1, j,− j+ k+N2) := c(1, j,− j+ k+N2 − 1)+ a(1, j,− j+ k+N2)b(1, j,− j+ k+N2)

where a(1, 0, t + N3) ≡ a(1, 0, t), b(0, j, t + N3) ≡ b(0, j, t), for each j = 1, 2, . . . ,N2,
t = 1, 2, . . . ,N3.

The corresponding directed graph G7 = (P7,D7) is defined by

P7 =
{
�p =
[

1 j − j + k −N2
]T | 1 � j � N2, 1 � k � N3

}

D7 =
[
�e 2

b
�e 2

a �e 2
c

]T
=

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 1

2 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ .
One of valid transformations that corresponds to projection vector �μ = [0 1 − 1]T

is

S =
[

0 1 1
1 0 0

]
.

Using this transformation and (3.1), directed graph G7 = (P7,D7) is mapped into
directed multigraph Γ8 = (Q8,Δ8), defined by

PE →
[

x
y

]
=

[
k +N2

1

]
, Δ8 =

[
�e 2

b
�e 2

a �e 2
c

]T
=

[
0 1

2 1
1 0 0

]
,(3.9)

for each k = 1, 2, . . . ,N3. Based on (3.9), we conclude that the array SA8 consists
of Ω = N3 PEs (see [3]). Since �e 2

a =
1
2�e

2
c , the array SA8 is unidirectional (type III).

The elements of vectors �A1• and �C1• are pipelined through the array in the same
direction.
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For the Algorithm 3, possible projection vectors are �μ = [1 0 0]T, �μ = [0 1 0]T,
�μ = [1 1 0]T and �μ = [1 − 1 0]T. Directed graph G8 = (P8,D8) that corresponds to
this algorithm is defined by

P8 =
{
�p =
[

i j 1
]T | 1 � i � N1, 1 � j � N2

}

D8 =
[
�e 3

b
�e 3

a �e 3
c

]T
=

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ .

One of the valid transformation matrices for projection vector �μ = [1 0 0]T is

S =
[

0 1 0
0 0 1

]
.

According to (3.1), directed graph G8 = (P8,D8) is mapped into directed graph with
loops Γ9 = (Q9,Δ9), determined by

PE →
[

x
y

]
=

[
j
1

]
, Δ9 =

[
�e 2

b
�e 2

a �e 2
c

]T
=

[
0 1 0
0 0 1

]
,(3.10)

for each j = 1, 2, . . . ,N3. The corresponding systolic array, SA9, consists of Ω = N2

PEs (see [3]). Since �e 2
b = [0 0]T, the array SA9 is static (type I). The elements of

vector �A•1 are pipelined through the array.

For the projection vector �μ = [0 1 0]T, one of the valid transformations is

S =
[

1 0 0
0 0 1

]
.

Based on (3.1), directed graph G8 = (P8,D8) is mapped into directed graph with
loops Γ10 = (Q10,Δ10), defined by

PE →
[

x
y

]
=

[
i
1

]
, Δ10 =

[
�e 2

b
�e 2

a �e 2
c

]T
=

[
1 0 0
0 0 1

]
,(3.11)

for i = 1, 2, . . . ,N1. The corresponding systolic array, SA10, consists of Ω = N1 PEs
(see, [3]). Since �e 2

a = [0 0]T , array is static (type I). The elements of vector �B1• are
pipelined through the array.

For projection vector �μ = [1 1 0]T, we will consider the following two algo-
rithms, equivalent to Algorithm 3, in order to minimize the corresponding arrays.

Algorithm 8

for j := 1 to N2 do

for i := 1 to N1 do
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b(i, i + j − 1, 1) := b(i − 1, i + j − 1, 1)

a(i, i + j − 1, 1) := a(i, i + j − 2, 1)

c(i, i + j − 1, 1) := c(i, i + j − 1, 0)+ a(i, i + j − 1, 1)b(i, i+ j − 1, 1)

where b(0, t + N2, 1) ≡ b(0, t, 1), c(0, t + N2, 1) ≡ c(0, t, 1), for each i = 1, 2, . . . ,N1,
t = 1, 2, . . . ,N2.

Algorithm 9

for j := 1 to N2 do

for i := 1 to N1 do

b(i + j − 1, j, 1) := b(i + j − 2, j, 1)

a(i + j − 1, j, 1) := a(i + j − 1, j − 1, 1)

c(i + j − 1, j, 1) := c(i + j − 1, j, 0) + a(i + j − 1, j, 1)b(i + j − 1, j, 1)

where a(t + N1, 0, 1) ≡ a(t, 0, 1), c(t + N1, j, 1) ≡ c(t, j, 1), for each t = 1, 2, . . . ,N1,
j = 1, 2, . . . ,N2.

For Algorithm 8 the corresponding directed graph, G9 = (P9,D9), is determined
by

P9 =
{
�p =
[

i i + j − 1 1
]T | 1 � i � N1, 1 � j � N2

}

D9 =
[
�e 3

b
�e 3

a �e 3
c

]T
=

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ .

One of the valid transformation matrices for projection vector �μ = [1 1 0]T is

S =
[

1 −1 0
0 0 1

]
.

Having in mind (3.1), directed graph G9 = (P9,D9) is mapped into directed multi-
graph Γ11 = (Q11,Δ11), defined by

PE →
[

x
y

]
=

[
1 − j

1

]
, Δ10 =

[
�e 2

b
�e 2

a �e 2
c

]T
=

[
1 −1 0
0 0 1

]
,(3.12)

for j = 1, 2, . . . ,N2. From (3.12) we conclude that the corresponding array, SA11,
consists of Ω = N2 PEs (see [3]). Since �e 2

b = −�e 2
a , the array SA11 is bidirectional

(type II). The elements of vectors �A•1 and �B1• are pipelined through the array in
opposite directions.

For Algorithm 9, the corresponding directed graph, G10 = (P10,D10), is deter-
mined by

P10 =
{
�p =
[

i + j − 1 j 1
]T | 1 � i � N1, 1 � j � N2

}
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D10 =
[
�e 3

b
�e 3

a �e 3
c

]T
=

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ .
Using valid transformation

S =
[

1 −1 0
0 0 1

]
,

according to (3.1), directed graph G10 = (P10,D10) is mapped into directed multi-
graph Γ12 = (Q12,Δ12), defined by

PE →
[

x
y

]
=

[
i − 1

1

]
, Δ10 =

[
�e 2

b
�e 2

a �e 2
c

]T
=

[
1 −1 0
0 0 1

]
,(3.13)

for i = 1, 2, . . . ,N1. From (3.13) we conclude that the corresponding systolic array,

SA12, consists of Ω = N1 PEs (see [3]). Since �e 2
b = −�e 2

a , the array SA12 is bidirec-

tional (type II). The elements of vectors �A•1 and �B1• are pipelined through the array
in opposite directions.

The arrays SA11 and SA12 were designed in [4].

For the projection vector �μ = [1 − 1 0]T, instead of Algorithm 3, we use the
following two equivalent algorithms:

Algorithm 10

for j := 1 to N2 do
for i := 1 to N1 do

b(i − 1
2 ,−i + j +N1, 1) := b(i − 1,−i + j +N1, 1)

b(i,−i + j +N1, 1) := b(i − 1
2 ,−i + j +N1, 1)

a(i,−i + j +N1, 1) := a(i,−i + j +N1 − 1, 1)
c(i,−i + j +N1, 1) := c(i,−i + j +N1, 0) + a(i,−i + j +N1, 1)b(i,−i+ j +N1, 1)

where b(i, t + N2, 1) ≡ b(i, t, 1), c(i, t + N2, 1) ≡ c(i, t, 1), for each i = 1, 2, . . . ,N1, and
t = 1, 2, . . . ,N2.

Algorithm 11
for j := 1 to N2 do

for i := 1 to N1 do
a(i − j +N2, j − 1

2 , 1) := a(i − j +N2, j − 1, 1)

a(i − j +N2, j, 1) := a(i − j +N2, j − 1
2 , 1)

b(i − j +N2, j, 1) := b(i − j +N2 − 1, j, 1)
c(i − j +N2, j, 1) := c(i − j +N2, j, 0) + a(i − j +N2, j, 1)b(i − j +N2, j, 1)

where a(t + N1, 0, 1) ≡ a(t, 0, 1), c(t + N1, j, 1) ≡ c(t, j, 1), for each t = 1, 2, . . . ,N1, and
j = 1, 2, . . . ,N2.
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Directed graph, G11 = (P11 ∪ P̄11,D11), that corresponds to Algorithm 10 is
defined by

P11 =
{
�p =
[

i − i + j +N1 1
]T} ,

P̄11 =

{
�p =
[

i − 1
2
− i + j +N1 1

]T}
,

D11 =

⎡⎢⎢⎢⎢⎢⎢⎣
1
2 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ .

For projection direction �μ = [1 − 1 0]T a valid transformation is

S =

[
1 1 0
0 0 1

]

According to this transformation and (3.1), directed graph G11 = (P11 ∪ P̄11,D11) is
mapped into directed multigraph Γ13 = (Q13 ∪ Q̄13,Δ13), defined by

PE →
[

x
y

]
=

[
j +N1

1

]
, d →

[
x
y

]
=

[
j +N1 − 1

2
1

]
,

Δ13 =
[
�e 2

b
�e 2

a �e 2
c

]T
=

[
1
2 1 0
0 0 1

]
,

(3.14)

for j = 1, 2, . . . ,N2. From (3.14) we conclude that corresponding systolic array, SA13,
consists of Ω = N2 PEs (see [3]). Since �e 2

b =
1
2�e

2
a , the array SA13 is unidirectional

(type III). Elements of vectors �A•1 and vector-row �B1• are pipelined through the
array in the same direction.

Directed graph, G12 = (P12 ∪ P̄12,D12), that corresponds to Algorithm 11 is
defined by

P12 =
{
�p =
[ −i + j +N2 j 1

]T} ,
P̄12 =

{
�p =
[
−i + j +N2 j − 1

2
1
]T}
,

D12 =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 1

2 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ .

Using transformation matrix

S =

[
1 1 0
0 0 1

]
,
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according to (3.1), this graph is mapped into directed multigraph Γ14 = (Q14 ∪
Q̄14,Δ14), defined by

PE →
[

x
y

]
=

[
i +N2

1

]
, d →

[
x
y

]
=

[
i +N2 − 1

2
1

]
,

Δ14 =
[
�e 2

b
�e 2

a �e 2
c

]T
=

[
1 1

2 0
0 0 1

]
,

(3.15)

for i = 1, 2, . . . ,N1. From (3.15) we conclude that the corresponding systolic array
SA14, consists ofΩ = N1 PEs ([3]). Since �e 2

a =
1
2�e

2
b , the SA14 is unidirectional (type

III). The elements of vectors �A•1 and �B•1 are pipelined through the array in the same
direction.

4. Discussion

Table 4. lists the arrays obtained in this paper, the algorithm used to design the
corresponding array, type of the array, the number of PE and the used projection
vector. It can be concluded that, regardless of the mutual relation between N1, N2
and N3, it is always possible to derive a systolic algorithm which can be used to
design a space-optimal systolic array of either of the three types.

SA Algorithm Type �μ Ω

SA1 1 I �μ = [1 0 0]T N3

SA2 1 I �μ = [0 0 1]T N1

SA5 2 I �μ = [0 1 0]T N3

SA6 2 I �μ = [0 0 1]T N2

SA9 3 I �μ = [1 0 0]T N2

SA10 3 I �μ = [0 1 0]T N1

SA3 4 II �μ = [1 0 1]T N3

SA7 6 II �μ = [0 1 1]T N3

SA11 8 II �μ = [1 1 0]T N2

SA12 9 II �μ = [1 1 0]T N1

SA4 5 III �μ = [1 0 − 1]T N3

SA8 7 III �μ = [0 1 − 1]T N3

SA13 10 III �μ = [1 − 1 0]T N2

SA14 11 III �μ = [1 − 1 0]T N1

Table 4.1: Survey of the systolic arrays
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Thus, for example, when N2 � min{N1,N3}, space-optima SA of type I is ob-
tained according to Algorithm 2 and Algorithm 3 for projection vectors �μ = [0 0 1]T

and �μ = [1 0 0]T, respectively; a space-optimal bidirectional array of type II is ob-
tained from Algorithm 8 using projection vector �μ = [1 1 0]T; a space-optimal
unidirectional array of type III is obtained from Algorithm 10 using projection
vector �μ = [1 − 1 0]T.
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vanović: Transformation matrices for systolic array synthesis. J. Elecrotechn. Math. 7(1)
(2003), 9–15.

2. H.T. Kung: Why systolic architecture?. Computer 15(1) (1982), 37–46.
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