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Abstract. Let G be a 4-dimensional Lie group with an invariant para-hypercomplex
structure and let F = β + aα + β2/α be a left invariant (α, β)-metric, where α is a
Riemannian metric and β is a 1-form on G, and a is a real number. We prove that the
flag curvature of F with parallel 1-form β is non-positive, except in Case 2, in which
F admits both negative and positive flag curvature. Then, we determine all geodesic
vectors of (G,F ).
Keywords: para-hypercomplex structure; (α, β)-metric; Riemannian metric; flag cur-
vature.

1. Introduction

Hypercomplex and para-hypercomplex structures are interesting and practical
structures in differential geometry [13]. These structures have been used in theo-
retical physics and HKT-geometry, intensively [11]. According to V. V. Cortés and
C. Mayer studies, the para-hypercomplex structures emerged as target manifold of
hypermultiplets in Euclidean theories with rigid N = 2 supersymmetry [9]. M.
L. Barberis classified the invariant hypercomplex structures on a simply-connected
4-dimensional real Lie group [3, 5]. In [6], N. Blažić and S. Vukmirović classified
4-dimensional Lie algebras admitting a para-hypercomplex structure.

Finsler geometry has many applications in mechanics, physics and biology [1].
Among Finsler metrics, (α, β)-metrics, which were first introduced by M. Mat-
sumoto, are the important ones [16].
In [20] the third author introduced a new class of (α, β)-metrics given by F =
β+aα+β2/α where a ∈ ( 1

4 ,∞) and studied the locally dually flatness for this type
of metrics [21]. One of the key quantities in Riemannian geometry is the sectional
curvature. In Finsler geometry, we have the notion of flag curvature as a natural
extension of the notion of the sectional curvature [2].
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In the present study, we consider the left invariant 4-dimensional para-hypercomplex
Lie groups and construct some Berwaldian left invariant (α, β)-metrics of type
F = β + aα + β2/α on them. We get a formula for the flag curvature of F and
prove that F is non- positive flag curvature except one case, consequently, F is not
of constant Ricci curvature.

Let (G,α) be a Lie group G furnished by a left invariant Riemannian metric
α. There is a natural kind of geodesics of (G,α) which are closely related to the
algebraic ingredient of G. More precisely, we are interested in those geodesics which
are in the form γ(t) = exp(tX) for some tangent vector X in the Lie algebra of G,
i.e., g := TeG. In other words, those geodesics which are orbits of one parameter
subgroups of G. In this case, X is called a geodesic vector. This notion was extended
to Finsler geometry by Latifi [14]. Here, we also obtain all geodesic vectors of the
invariant (α, β)-metric F = β + aα+ β2/α.

2. Preliminaries

Let us recall some known facts about para-hypercomplex structures and Finsler
spaces. Let M be a smooth manifold and {Ji}i=1,2,3 be a family of fiberwise endo-
morphisms of TM such that

J2
1 = −IdTM ,(2.1)

J2
2 = IdTM , J2 6= ±IdTM ,(2.2)

J1J2 = −J2J1 = J3,(2.3)

and

Ni = 0 i = 1, 2, 3,(2.4)

where Ni is the Nijenhuis tensor corresponding to Ji defined as follows:

N1(X,Y ) = [J1X, J1Y ]− J1
(
[X, J1Y ] + [J1X,Y ]

)
− [X,Y ],

and

Ni(X,Y ) = [JiX, JiY ]− Ji
(
[X, JiY ] + [JiX,Y ]

)
+ [X,Y ], i = 2, 3,

for all vector fields X, Y on M . A para-hypercomplex structure on a smooth
manifold M is a triple {Ji}i=1,2,3 such that J1 is a complex structure and Ji,
i = 2, 3, are two non-trivial integrable product structures on M satisfying (2.3).

Definition 2.1. A para-hypercomplex structure {Ji}i=1,2,3 on a Lie group G is
said to be left invariant if for any a ∈ G the following diagram is commutative:

TG
TLa //

Ji
��

TG

Ji
��

TG
TLa

// TG
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That is
Ji = TLa ◦ Ji ◦ TLa−1 , i = 1, 2, 3

where La : G → G given by La(x) = ax is the left translation along a and TLa is
its derivation.

A Finsler metric on M is a function F : TM → [0,∞) which has the following
properties: (i) F is C∞ on TM0 := TM \ {0}; (ii) F is positively 1-homogeneous
on the fibers of the tangent bundle TM , and (iii) for each y ∈ TxM , the following
quadratic form gy on TxM is positive definite,

gy(u, v) :=
1

2

∂2

∂s∂t

[
F 2(y + su+ tv)

]
|s,t=0 = gij(x, y)uivj ,

u = ui
∂

∂xi
, v = vj

∂

∂xj
∈ TxM,

where gij = 1
2
∂2F 2

∂yi∂yj is called the fundamental tensor of F .

An important class of Finsler metrics is the class of (α, β)-metrics which was
first introduced by M. Matsumoto in 1992 [16]. An (α, β)-metric on a manifold M is
a Finsler metric with the form F = αφ(βα ), where α(x, y) =

√
gij(x)yiyj , β(x, y) =

bi(x)yi is a Riemannian metric and a 1-form on the manifold M , respectively and
φ : (−b0, b0)→ R+ is a C∞ function satisfying

φ(s)− sφ
′
(s) > 0, φ(s)− sφ

′
(s) + (b2 − s2)φ

′′
(s) > 0,(2.5)

for all |s| ≤ b < b0 in which b := ‖β‖ denotes the norm of β with respect to α
(see [17], [26] and [28]).

Given a Finsler manifold (M,F ), then a global vector field G given by G =
yi ∂
∂xi − 2Gi(x, y) ∂

∂yi , where

Gi :=
1

4
gil
{

2
∂gjl
∂xk

− ∂gjk
∂xl

}
yjyk(2.6)

is called the associated spray to (M,F ). The projection of an integral curve of G is
called a geodesic in M . For Riemannian metrics, Gi(x, y) are quadratic with respect
to y. For a general Finsler metric F , we define the Berwald curvature of F by

Bijkl :=
∂3Gi

∂yj∂yk∂yl
.(2.7)

A Finsler metric is called Berwald metric if its Berwald curvature vanishes [18].

A Finsler metric F on a Lie group G is called left invariant if for all a ∈ G and
Y ∈ TaG

F (a, Y ) = F (e, (La−1)∗aY ).(2.8)
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One of the main quantities in Finsler geometry is the flag curvature which is
defined as follows:

K(P, Y ) =
gY (R(U, Y )Y, U)

gY (Y, Y ).gY (U,U)− g2Y (Y,U)
,(2.9)

where P = span{U, Y } is a 2-plane in TxM , R(U, Y )Y = ∇U∇Y Y − ∇Y∇UY −
∇[U,Y ]Y and ∇ is the Chern connection induced by F (for more details, see [4, 25]).

In [6], N. Blažić and S. Vukmirović classified 4-dimensional Lie algebras admit-
ting left invariant para-hypercomplex structures. H. R. Salimi Moghaddam obtained
some curvature properties of left invariant Riemannian metrics on such Lie groups
[23]. In each case, let Gi be the connected 4-dimensional Lie group correspond-
ing to the considered Lie algebra gi and 〈, 〉 is an inner product on gi such that
{X,Y, Z,W} is an orthonormal basis for gi. Additionally, we use g for the left
invariant Riemannian metric on Gi induced by 〈, 〉 and use ∇ for its Levi-Civita
connection. Let us denote the Riemannian curvature tensor of g by R. Further-
more, suppose that U = aX + bY + cZ + dWand V = ãX + b̃Y + c̃Z + d̃W are any
two independent vectors in gi.
Now, we list all five classes of 4-dimensional Lie algebras admitting an invariant
para-hypercomplex structure and non-zero parallel vector fields. These classes of
Lie algebras were first introduced in [6].

Case 1. [6] Let g1 be the Lie algebra spanned by the basis {X,Y, Z,W} with the
following Lie algebra structure:

[X,Y ] = Y, [X,W ] = W.(2.10)

Hence, using Koszula’s formula, we have

Table 2.1: Taken from [23]

X Y Z W
∇X 0 0 0 0
∇Y −Y X 0 0
∇Z 0 0 0 0
∇W −W 0 0 X

Therefore, for U and V we have

R(V,U)U = (ab̃− bã)(bX − aY ) + (ad̃− dã)(dX − aW ) + (bd̃− db̃)(dY − bW ).

Case 2. [6] The Lie algebra of Case 2 has the following Lie bracket:

[X,Y ] = Z.(2.11)
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Therefore

Table 2.2: Taken from [23]

X Y Z W
∇X 0 1

2Z − 1
2Y 0

∇Y − 1
2Z 0 1

2X 0
∇Z − 1

2Y
1
2X 0 0

∇W 0 0 0 0

Hence for U and V we have

R(V,U)U =
3

4
(ãb− bã)(bX − aY ) +

1

4
(ac̃− cã)(aZ − cX) +

1

4
(bc̃− cb̃)(bZ − cY ).

Case 3. [6] The Lie algebra structure of g3 is in the following form:

[X,Y ] = X.(2.12)

Hence,

Table 2.3: Taken from [23]

X Y Z W
∇X −Y X 0 0
∇Y 0 0 0 0
∇Z 0 0 0 0
∇W 0 0 0 0

as a result, for U and V we have

R(V,U)U = (ab̃− bã)(bX − aY ).

Case 4. [6] In the Lie algebra structure of Case 4, there are two real parameters
λ and η. This Lie algebra has the following structure:

[X,Z] = X, [X,W ] = Y, [Y,Z] = Y, [Y,W ] = λX + ηβY, λ, η ∈ R,

thus
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Table 2.4: Taken from [23]

X Y Z W

∇X −Z −(1+λ)
2 W X 1+λ

2 Y

∇Y −(1+λ)
2 W −(Z + ηW ) Y (1+λ)

2 X + ηY
∇Z 0 0 0 0

∇W λ−1
2 Y 1−λ

2 X 0 0

Therefore, we have

R(V,U)U = −
{

(ab̃− bã)
(
b
(1 + λ)2 − 4

4
X + a

4− (1 + λ)2

4
Y
)

+ (ac̃− cã)
(
aZ + b

1 + λ

2
W − cX − d1 + λ

2
Y
)

+ (ad̃− dã)

×
(
a
−λ2 + 2λ+ 3

4
W + b

1 + λ

2
Z + bηW − c1 + λ

2
Y

+ d
(1 + λ)(λ− 3)

4
X − dηY

)
+ (bc̃− cb̃)

(
a

1 + λ

2
W + bZ + bηW − cY − d1 + λ

2
X − dβY

)
+ (bd̃− db̃)

(
a

1 + λ

2
Z + aηW + bηZ + b

3λ2 + 4η2 + 2λ− 1

4
W

− c
1 + λ

2
X − cηY − d3λ2 + 4η2 + 2λ− 1

4
Y − ηdX

)}
.(2.13)

Case 5. [6] The last Lie algebra is g5 with the following Lie algebra structure:

[X,Y ] = W, [X,W ] = −Y, [Y,W ] = −X.(2.14)

Thus

Table 2.5: Taken from [23]

X Y Z W
∇X 0 3

2W X − 3
2Y

∇Y 1
2W −W 0 − 1

2X
∇Z 0 0 0 0
∇W − 1

2Y
1
2X 0 0

Thus for U and V we have
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R(V,U)U = −1

4
{(ab̃− bã)(bX − aY ) + (ad̃− dã)(dX − aW ) + 7(bd̃− db̃)(−dY + bW )}.

3. Flag curvature of F = β + aα2+β2

α

Let us give a formula for the fundamental tensor of invariant (α, β)-metrics of type

F = β + aα2+β2

α , where a ∈ ( 1
4 ,∞) and α is a left invariant Riemannian metric on

a 4-dimensional Lie group G. We consider a left invariant vector field B on G and
we let β be the 1-form associated to B with respect to α, that is, for any x ∈ G
and y ∈ TxG , βx(y) = αx(B(x), y). Moreover, in the reminder of this section, we
require B to be parallel with respect to α, i.e., ∇BB = 0, where ∇ is the Levi-Civita
connection of α. It is known that in this case, the Chern connection of F coincides
to the Levi-Civita connection of α, hence F is a Berwald metric [1].

For any non- zero tangent vector Y ∈ TxM , denote the fundamental tensors of
F and α by gY and g, respectively. By definition, we have

gY (U, V ) :=
1

2

∂2

∂s∂t

[
F 2(Y + sU + tV )

]
|s,t=0, U, V ∈ TxM.(3.1)

g(U, V ) :=
1

2

∂2

∂s∂t

[
α2(Y + sU + tV )

]
|s,t=0, U, V ∈ TxM.(3.2)

It is easy to see that

gY (U, V ) =
4g(X,Y )4g(U, Y )g(V, Y )

g(X,Y )3
+

3g(X,Y )3g(U, Y )g(V, Y )

g(Y, Y )
5
2

− g(X,Y )3

g(Y, Y )2

(
g(X,Y )g(U, V ) + 4g(X,U)g(V, Y ) + 4g(X,V )g(U, Y )

)
− g(X,Y )

g(Y, Y )
3
2

(
ag(U, Y )g(V, Y ) + g(X,Y )2g(U, V ) + 3g(X,Y )g(X,U)g(V, Y )

+ 3g(X,Y )g(X,V )g(U, Y )
)

+
6

g(Y, Y )

(
g(X,Y )2g(X,U)g(X,V )

)
+

1√
g(Y, Y )

(
ag(X,Y )g(U, V ) + 6g(X,Y )g(X,U)g(X,V ) + ag(X,U)g(V, Y )

+ ag(X,V )g(U, Y )
)

+ a2g(U, V ) + g(X,U)g(X,V ) + 2ag(X,U)g(X,V ).(3.3)

Remark 3.1. We know that F = β + aα2+β2

α
is an (α, β)-metric with φ(s) = s2 + s+ a,

i.e., F = αφ( β
α

). By applying the formula obtained by Z. Shen [7], we can also get the
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formula of gY (U, V ). Indeed, we have

gY (U, V ) = φ2(s)g(U, V ) + φ(s)φ
′
(s)

(
− sg(U, V ) + g(X,U)

g(V, Y )√
g(Y, Y )

+ g(X,V )
g(U, Y )√
g(Y, Y )

− sg(U, V )g(V, Y )

g(Y, Y )

)
+

(
φ(s)φ

′′
(s) + (φ

′
(s))2

)(
g(X,U)g(X,V )− sg(X,U)

g(V, Y )√
g(Y, Y )

− sg(X,V )
g(U, Y )√
g(Y, Y )

+ s2
g(U, V )g(V, Y )

g(Y, Y )

)
,(3.4)

where s = g(X,Y )√
g(Y,Y )

. It is easy to see that 3.3 and 3.4 coincide.

Let G be a 4-dimensional Lie group admitting an invariant para-hypercomplex
structure. As mentioned above, all such Lie groups are classified in [6] [23]. Now
we consider the cases 1-5 discussed in [23] and give the explicit formula for their
flag curvature in each case. Let Y := U in (3.4), in all cases.

Case 1. Here, the only left invariant and parallel vector field with respect to α is

given by B = qZ with 1
4 < |q| < ∞. Note that here s = g(qZ,U)√

g(U,U)
= cq, where we

have used g(U,U) = 1. In this case, it follows from (3.4)

gU (R(V,U)U, V ) = −
(
(φ(s))2 − sφ(s)φ

′
(s)
)(

(ab̃− bã)2 + (ad̃− dã)2 + (bd̃− db̃)2
)

gU (U,U) = (φ(s))2

gU (V, V ) =
(
φ(s)φ

′′
(s) + (φ

′
(s))2

)
(c̃q)2 + (φ(s))2 − cqφ(s)φ

′
(s)

gU (U, V ) = φ(s)φ
′
(s)(c̃q).

Let P = span{U, V }. In [5], Latifi gives a formula for the flag curvature of a
left invariant (α, β)-metric. Using this formula, we get the following

K(P,U) =
−
(
(φ(s))2 − sφ(s)φ

′
(s)
){

(ab̃− bã)2 + (ad̃− dã)2 + (bd̃− db̃)2
}(

φ(s))2
{

(φ(s)φ′′(s) + (φ′(s))2
)
(c̃q)2 + (φ(s))2 − cqφ(s)φ′(s)

}
−
(
φ(s)φ′(s)(c̃q)

)2 .
Hence, K(P,U) 6 0. It means that (G,F ) has non-positive flag curvature.

Remark 3.2. In [12], L. Huang proved that a left invariant Finsler metric F on a Lie
groupG admits a direction in which the flag curvature is non-negative, provided dim[g, g] ≤
dimg−2. Thus, Case 1 shows that we can not replace non-negative with positive in Huang’s
theorem.
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Case 2. We see that the only left invariant and parallel vector field with respect

to α is given by X = qW with 1
4 < |q| < ∞. Thus s = g(qW,U)√

g(U,U)
= qd. A similar

argument as in the Case 1 yields

g(RV,U)U, V ) =
(
(φ(s))2 − φ(s)φ

′
(s)
){
− 3

4
(ab̃− bã)2 +

1

4
(ac̃− cã)2 +

1

4
(bc̃− cb̃)2

}
gU (U,U) = (φ(s))2

gU (V, V ) =
(
φ(s)φ

′′
(s) + (φ

′
(s))2

)
(d̃q)2 + (φ(s))2 − dqφ(s)φ

′
(s)

gU (U, V ) = φ(s)φ
′
(s)(d̃q).

We obtain the flag curvature as follows:

K(P,U) =

(
(φ(s))2 − φ(s)φ

′
(s)
){
− 3

4 (ab̃− bã)2 + 1
4 (ac̃− cã)2 + 1

4 (bc̃− cb̃)2
}

φ2(s)
{(
φ(s))2 − dqφ(s)φ′(s) + (φ(s)φ′′(s) + (φ′(s))2

)
(d̃q)2

}
−
(
φ(s)φ′(s)(d̃q)

)2 .
Unlike Case 1, in this case (G,F ) admits both positive and negative flag curva-

ture.
Case 3. According to [23], (G3, g) admits a parallel left invariant vector field
X = q1Z + q2W such that 1

4 < |q21 + q22 | < ∞. As in the previous cases, we get
s = cq1 + dq2.

gU (RV,U)U, V ) = −
(
φ(s))2 − sφ(s)φ

′
(s)
)(
ab̃− bã

)2
gU (U,U) = (φ(s))2

gU (V, V ) =
(
φ(s)φ

′′
(s) + (φ

′
(s))2

)
(c̃q1 + d̃q2) + (φ(s))2 −

(
cq1 + dq2

)
φ(s)φ

′
(s)

gU (U, V ) = φ(s)φ
′
(s)
(
c̃q1 + d̃q2

)
Therefore, the flag curvature of F is as follows:

K(P,U) =
−
{
φ2(s)− sφ(s)φ

′
(s)
}

(ab̃− bã)2

Ψ
,(3.5)

where

Ψ := φ2{(φφ′′ + φ′2)(c̃q1 + d̃q2) + φ2 − (cq1 + dq2)φφ
′} − (φφ

′
(c̃q1 + d̃q2))2 > 0.

Case 4. In [23], it has been shown that vector fields which are parallel to
(G4, g), are of the form X = qW such that 1

4 < |q| <∞. Thus s = dq and we have:

gU (RV,U)U, V ) = −((φ(s))2 − sφ(s)φ
′
(s))((ac̃− cã)2 + (bc̃− cb̃)2)

gU (U,U) = (φ(s))2

gU (V, V ) =
(
φ(s)φ

′′
(s) + (φ

′
(s))2

)(
d̃q)2 + (φ(s))2 − dqφ(s)φ

′
(s)
)

gU (U, V ) = φ(s)φ
′
(s)(d̃q).
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We have the flag curvature of F as follows:

K(P,U) =

(
− (φ(s))2 − dqφ(s)φ

′
(s)
){

(ac̃− cã)2 + (bc̃− cb̃)2
}

(φ(s))2{
(
φ(s)φ′′(s) + φ′(s)2

)
(d̃q)2 + φ2(s)− dqφ(s)φ′(s)} − (φ(s)φ′(s)(d̃q))2

,

which are always non-positive.
Case 5. In [23], it has been shown that the parallel left invariant vector fields are
of the form X = qZ such that 1

4 < |q| <∞. Thus s = cq and we get:

gU (RV,U)U, V ) = −1

4

(
(φ(s))2 − cqφ(s)φ

′
(s)
){

(ab̃− bã)2 + (ad̃− dã)2 + 7(bd̃− db̃)2
}

gU (U,U) = (φ(s))2

gU (V, V ) =
(
φ(s)φ

′′
(s) + (φ

′
(s))2

)
(c̃q)2 + (φ(s))2 − cqφ(s)φ

′
(s)

gU (U, V ) = φ(s)φ
′
(s)(c̃q),

Moreover, the flag curvature is given by the following:

K(P,U) =
− 1

4

(
(φ(s))2 − cqφ(s)φ

′
(s)
){

(ab̃− bã)2 + (ad̃− dã)2 + 7(bd̃− db̃)2
}

(φ(s))2
{(
φ(s)φ′′(s) + φ′(s)2

)
(c̃q)2 + (φ(s))2 − cqφ(s)φ′(s)

}
−
(
φ(s)φ′(s)(c̃q)

)2 .
which are always non-positive.

Sumarizing the above results, we get the following.

Theorem 3.1. In all above cases, except for the Case 2, the flag curvature of F
is non-positive. Moreover, in Case 2, (G,F ) admits both positive and negative flag
curvature.

Remark 3.3. In [10], S. Deng proved that if a G-invariant Randers metric F = α + β
on a homogeneous manifold G

H
, which is Douglas type, has negative flag curvature, then

the sectional curvature of α is negative. Case 5 shows that this fact is no longer true for

(α, β)-metric of type F = β + aα+ β2

α
.

4. Geodesic vectors

In this section, we discuss the geodesic vectors of a left invariant Finsler metric

F = β + aα2+β2

α on a 4-dimensional Lie group G admitting an invariant para-
hypercomplex structure. We still asume that β is parallel with respect to α. Let us
recall the definition of geodesic vectors.
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Definition 4.1. Let F be a left invariant Finsler metric on a Lie group G. A non-
zero tangent vector B ∈ TeG is said to be a geodesic vector of F , if the 1-parameter
subgroup t −→ exp(tB), t ∈ R+ is a geodesic of F .

To find all geodesic vectors of a left invariant Finsler metric F = β + aα2+β2

α on
a 4-dimensional Lie group G admitting an invariant para-hypercomplex structure,
we need the following propositions.

Proposition 4.1. (see [14]) Let G be a connected Lie group with Lie algebra g,
and let F be a left-invariant Finsler metric on G. Then a non-zero vector B ∈ g is
a geodesic vector of F if and only if for every Z ∈ g

gB([B,Z], B) = 0,(4.1)

Proposition 4.2. Let G be a connected Lie group with Lie algebra g, and let F be
a left-invariant (α, β)- Berwald Finsler metric on G. Then a non-zero vector B ∈ g
is a geodesic vector of F if and only if it is a geodesic vector of α.

Now, we find all geodesic vectors in each case of all five classes given in [23], while

they equipped with Left invariant Finsler metric F = β+ aα2+β2

α . Using Proposition

4.1 and 4.2, we obtain all geodesic vectors of F = β + aα2+β2

α as follows.

Theorem 4.1. The geodesic vectors of left invariant finsler metric F = β+ aα2+β2

α
are given by the following

geodesic vectors

Case 1 {aX + cZ | a, c ∈ R}
Case 2 {aX + bY + cZ + dW | bc = ac = 0}
Case 3 {bY + cZ + dW | b, c, d ∈ R}
Case 4 {aX + cZ + dW | ac = adλ = 0}
Case 5 {aX + bY + cZ + dW | ad = ab = 0}

Now, we obtain a relation between the geodesic vectors of a general (α, β)-metric
F and a Riemannian metric g.

Theorem 4.2. Let G be a Lie group and F = αφ(βα ) be an (α, β)-metric arising
from a Riemannian metric g and a left invariant vector filed B, i.e., α(x, y) =√
gx(y, y) and β(x, y) = αx(B, y) Suppose that Y ∈ g is a unit vector for which

g(B, [Y, Z]) = 0 for all Z ∈ g. Then Y is a geodesic vector of (M,F ) if and only if
Y is a geodesic vector of (M, g).

Proof. Using (3.3) and taking into account g(B, [Y,Z]) = 0 for all Z ∈ g, we
have

gY (Y, [Y,Z]) =
(
φ2(s)− φ(s)φ

′
(s) g(B,Y )√

g(Y,Y )

)
g(Y, [Y, Z]),(4.2)
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Let Y be a geodesic vector of g. Replacing (4.1) into (4.2) and using g(B, [Y, Z]) =
0, we have Y is a geodesic vector of (M,F ).
Conversely, let Y be a unit geodesic vector of (M,F ). We have(

φ2(s)− φ(s)φ
′
(s)g(X,Y )

)
g(Y, [Y, Z]) = 0,(4.3)

This completes the proof.

Theorem 4.3. Let (G,F ) be a connected Lie group and F = β + aα2+β2

α
be a left- invariant Finsler metric of Berwald type on G defined by the Rie-
mannian metric α and the vector field B. Then (G,F ) is complete.

Proof. Since F is of the Berwald type then (G,F ) and (G,α) have the
same connection also ∇B = 0 where ∇ is Riemannian connection of α. On
the other hand (G,α) is a Lie group and hence a complete space. As (G,F )
and (G,α) have the same geodesics. We show that these geodesics have
constant Finsler speed. Let σ(t) , −∞ < t < ∞ be a geodesic for F , we
have

F (σ(t), σ̇(t)) = gσ(t)(B, σ̇(t)) + a
√
gσ(t)(σ̇(t)), σ̇(t)) +

g2σ(t)(B, σ̇(t))√
gσ(t)(σ̇(t)), σ̇(t))

Since gσ(t)(σ̇(t), σ̇(t)) is constant, it is enough to show that gσ(t)(B, σ̇(t)) is
also constant. we have

d

dt
(gσ(t)(B, σ̇(t)) = gσ(t)(∇σ̇(t)B, σ̇(t)) + gσ(t)(B,∇σ̇(t)σ̇(t)) = 0(4.4)

Then this yields that these geodesics have constant Finsler speed.
The following Proposition can be found in [14].

Proposition 4.3. Let (M,F ) be a forward geodesically complete Finsler
manifold. If X is a vector field such that F (X) is bounded, then X is a
forward complete vector field.

Using Proposition 4.3, we get the following.

Theorem 4.4. Let (G,F ) be a connected Lie group and F = β + aα2+β2

α
be a left- invariant Finsler metric of Berwald type. Then the vector field B
is complete.
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