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1. Introduction

In the study of the differential geometries of surfaces in 3-spaces, it is the most
popular to examine curvature properties or the relationships between the corre-
sponding curvatures of them. Let M be a surface in 3-spaces and (x, y, z) rectan-
gular coordinates. It is well known that M is called as translation or factorable
(homothetical) surface if it is locally described as the graph of z = f(x) + g(y)
or z = f(x)g(y), respectively. Translation surfaces having constant mean curva-
ture (CMC) or constant Gaussian curvature (CGC) in 3-spaces have been studied
in [1, 4, 15, 16, 22, 23]. Furthermore, translation surfaces in 3-spaces satisfying
Weingarten condition have been studied by Dillen et. all in [10], by Sipus in [22]
and also by Sipus and Dijvak in [23]. On the other hand, factorable (homoth-
etical) surfaces whose curvatures satisfy certain conditions have been investigated
in [2, 3, 17]. As an exception, surfaces with vanishing curvature have been also
very much focused. It is well known that M is called as flat or minimal surface
if the Gaussian curvature or the mean curvature vanishes, respectively. The study
of flat or minimal surfaces have found many applications in differential geometry
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and also physics, (see in [5, 11, 24, 25]). Very recently, as a generalization of these
surfaces, Difi, Ali and Zoubir described a new type surfaces called with translation-
factorable (TF) surfaces in Euclidean 3-space in [9]. Moreover, author investigated
these surfaces in Galilean 3-spaces, in [14]. In that paper, authors studied on the
position vector of this new type surface in the 3-dimensional Euclidean space and
Lorentzian-Minkowski space satisfying the special condition ∆ri = λiri, where ∆
denotes the Laplace operator.

The main interest of this paper is to obtain the complete classification of Transla-
tion-Factorable (TF-) surfaces with vanishing Gaussian curvatures in 3-spaces, start-
ing from this new type of surface, called as Translation-Factorable (TF-) surfaces,
defined in [9]. In Sect. 2, we introduce the notations that we are going to use and
give a brief summary of basic definitions in theory of surfaces in Euclidean and
Minkowski 3-spaces. In Sect. 3 and 4, we give the complete classification of TF-flat
surfaces in the Euclidean 3-space and Minkowski 3-space, respectively.

2. Preliminiaries

Let Euclidean and Minkowski 3-spaces denote with E3 and E3
1, respectively. One

may introduce an euclidean and Lorentzian inner products between u = (u1, u2, u3)
and v = (v1, v2, v3) as

〈u, v〉 = (dξ0)2 + (dξ1)2 + (dξ2)2 and 〈u, v〉L = (dξ0)2 + (dξ1)2 − (dξ2)2.

Here (ξ0, ξ1, ξ2) is rectangular coordinate system of 3-spaces. These inner products
induce in E3 and E3

1 a norm in a natural way:

‖u‖ =
√
|〈u, u〉| and ‖u‖L =

√
|〈u, u〉|L,

respectively. In addition, the corresponding cross products in E3 and E3
1 shall be

showed here by ∧ and ∧L, respectively: notice that ∧L should be computed as

u ∧L v = e1

∣∣∣∣ u2 u3
v2 v3

∣∣∣∣− e2 ∣∣∣∣ u1 u3
v1 v3

∣∣∣∣− e3 ∣∣∣∣ u1 u2
v1 v2

∣∣∣∣ .
Let M2 be a surface in E3 or E3

1. If M2 is parameterized by an immersion

x(u1, u2) =
(
x1(u1, u2), x2(u1, u2), x3(u1, u2)

)
,

then M2 is a regular surface if and only if the corresponding cross products of x1
and x2 don’t vanish anywhere. Here, xk = ∂x/∂uk, k = 1, 2. So, the normal vector
field N of a regular surface M2 in E3 or E3

1 is given by

(2.1) N =
x1 ∧ x2
‖x1 ∧ x2‖

or NL =
x1 ∧L x2
‖x1 ∧L x2‖L

.

The first fundamental form of x : U −→M2 ⊂ E3 (or E3
1) is defined as:

(2.2) I = gijdu
iduj , gij = 〈xi, xj〉 or gij = 〈xi, xj〉L .
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The second fundamental form II in simply and pseudo-isotropic spaces is with
differentiable coefficients

(2.3) II = hijdu
iduj , hij = 〈N, xij〉 or hij = 〈N, xij〉L .

Therefore, the Gaussian curvature K and the mean curvature H of surface Σ are
defined by, respectively,

K =
h11h22 − h122

W 2
,(2.4)

H =
g11h22 − 2g12h12 + g22h11

2W 2
,(2.5)

where W =
√
|g11g22 − g122|. Note that if g11g22 − g122 < 0 or g11g22 − g122 > 0,

then the surface M2 in E3
1 is called as time-like or space-like surface, respectively.

Now, first we would like to give the definition of the translation-factorable (TF-)
surfaces in E3 defined in [9]. And then we would like to complete the definition of
translation-factorable (TF-) surfaces in E3

1 given in same paper as follows:

Definition 2.1. Let M2 be a surface in Euclidean 3-space. Then M is called a
translation-factorable (TF-) surface if it can be locally written as following:

(2.6) x(s, t) = (s, t, B(f(s)g(t)) +A(f(s) + g(t))) ,

where f and g are some real functions and A,B are non-zero constants.

Definition 2.2. Let M2 be a surface in Minkowski 3-space, E3
1. Then M is called

a translation-factorable (TF-) surface if it can be locally written as one of the
followings:

(2.7) x(s, t) = (s, t, B(f(s)g(t)) +A(f(s) + g(t))) ,

or

(2.8) x(s, t) = (A(f(s) + g(t)) +B(f(s)g(t)), s, t)) ,

which are called as first and second type and where f and g are some real functions
and A,B are non-zero constants.

Remark 2.1. From Definition 2.2, one can be directly seen when taking A = 0 and
B 6= 0, then surface becomes a factorable surface studied in [17]. On the other hand, if
one can take B = 0 and A 6= 0, then surface is a translation surface studied in [15].
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3. Classification of Translation-Factorable surfaces with vanishing
Gaussian curvature in E3

As mentioned in the previous section, the TF-surfaces can be parametrized as in
(2.6) in Euclidean 3-spaces. In this section, we calculate the Gaussian curvature for
the TF-surfaces in E3. And then, we examine when it vanishes. Finally, we give the
complete classification of of the TF-surfaces with vanishing Gaussian curvatures.

Let M2 be a TF-surface in Euclidean 3-space, E3. Hence it can be parametrized
as

(3.1) x(s, t) = (s, t, B(f(s)g(t)) +A(f(s) + g(t))) .

Thus, the partial derivatives and N, the unit normal vector field defined by (2.1)
of this type surface are obtained by

xs = (1, 0, (Bg(t) +A)f ′(s)),(3.2)

xt = (0, 1, g′(t)(Bf(s) +A)),(3.3)

N =
1

W
(−f ′(s)(Bg(t) +A),−g′(t)(Bf(s) +A), 1).(3.4)

Here W =

√
1 + g′(t)

2
(Bf(s) +A)

2
+ f ′(s)

2
(Bg(t) +A)

2
and by ′, we have de-

noted derivatives with respect to corresponding parameters. For readability, here
and in the rest of the paper, we will lower the parameters of the f(s) and g(t)
functions. Now, by considering the above into the second equalities in (2.2) and
(2.3), respectively, we get

(3.5)

g11 = 1 + f ′
2
(Bg +A)

2
,

g12 = g′f ′(Bf +A)(Bg +A),

g22 = 1 + g′
2
(Bf +A)

2
,

and

(3.6) h11 =
f ′′(Bg +A)

W
, h12 =

Bf ′g′

W
, h22 =

g′′(Bf +A)

W
,

where W 2 = 1 + g′
2
(Bf +A)

2
+ f ′

2
(Bg +A)

2
. Hence, by substituting of the last

two statements into (2.4) gives

(3.7) K =
f ′′g′′(Bf +A)(Bg +A)−B2(f ′)2(g′)2

1 + g′2(Bf +A)
2

+ f ′2(Bg +A)
2

where f and g are some real functions and A,B are non-zero constants.

Now, we would like to investigate the vanishing Gaussian curvature problem for
TF-surfaces in E3. As well known, the surfaces with vanishing Gaussian curvature
are called flat. Now, we examine TF- flat surface in Euclidean 3-space, whose
Gaussian curvature is identically zero. Then the following classification theorem is
valid.
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Theorem 3.1. Let M2 be a TF-surface defined by (3.1) in the Euclidean 3-space.
Then, M2 is a flat surface if and only if it can be parametrized as one of the
followings:

1. M2 is a part of a plane,

2. M2 is a regular surface in E3 parametrized by

(3.8) x(s, t) = (s, t, g(t)(Bc+A) +Ac) ,

where f = c is a constant function or

(3.9) x(s, t) = (s, t, f(s)(Bc+A) +Ac)

where g = c is a constant function.

3. f and g are given by

(3.10) f(s) = − 1

B
eB(c1s+c2) +

A

B
, g(t) = − 1

B
eB(c1t+c2) +

A

B
.

4. f and g are given by

(3.11)
f(s) = −A

B
+B

C
C−1

(
(C − 1)(c1s+ c2)

) 1
1−C

,

g(t) = −A
B

+B
C

C−1

(
(C − 1)(c1t+ c2)

) 1
1−C

.

Proof. Let M2 be the TF- flat surface. Thus, from (3.7), it is clear that is sufficient
that

(3.12) f ′′g′′(Bf +A)(Bg +A)−B2(f ′)2(g′)2 = 0.

Let us consider on the following possibilities:

Case (1): f ′ = 0 and g′ = 0. Then, the equation (3.12) is trivially satisfied. By
considering these assumptions in (3.1), respectively, we obtain M2 is an open part
of plane. Thus, we have Case (1) of Theorem 3.1.

Case (2): f ′ = 0 or g′ = 0. First, assume that f ′ = 0, i.e., f be constant. In
case, the equation (3.12) is trivially satisfied. But, in case g is a arbitrary smooth
function. Thus, we get (3.8). Similarly, by considering the assumption of g as
g′ = 0, we can get (3.9) in Theorem 3.1.

Case (3): Let f ′′ = 0 or g′′ = 0, but not both. First, assume that f ′′ = 0, i.e.,
f be a linear function. In this case, one get g′ = 0 to provide the equation (3.12).
Second, let g′′ = 0. Then by the similar way, f ′ = 0 must be. Note that one can
easily see that these cases are covered by Case (2).

Case (4): Let f ′, g′, f ′′ and g′′ be non-zero. Then, the equation (3.12) can be
rewritten as

(3.13)
f ′′(A+Bf)

B(f ′)2
=

B(g′)2

g′′(A+Bg)
= C,
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for non-zero constant C. We are going to consider the following cases seperately:

Case (4a): C = 1. In this case (3.13) implies that

(3.14) f ′′(A+Bf) = B(f ′)2 and B(g′)2 = g′′(A+Bg),

from which, we get (3.10) in Case (3) in Theorem 3.1.

Case (4b): C 6= 1. In this case we solve (3.13) to obtain (3.11).

Conversely, a direct computation yields that the Gaussian curvature of each of
surfaces given in Theorem 3.1 vanishes identically.

4. Classification of Translation-Factorable surfaces with vanishing
Gaussian curvature in E3

1

In this section, we study two types of TF-surfaces in the 3-dimensional Minkowski
space. Let M2 be a TF-surface parametrized in (2.7) or (2.8) in Minkowski 3-spaces.
Namely, M2 can be parametrized as

(4.1) x(s, t) = (s, t, A(f(s) + g(t)) +Bf(s)g(t)) ,

or

(4.2) x(s, t) = (A(f(s) + g(t)) +Bf(s)g(t), s, t)) ,

which are called as first and second type TF-surfaces .

First, we would like to consider on the type I TF-surface parametrized as in
(4.1). Thus, we have,

xs = (1, 0, f ′(A+Bg)),(4.3)

xt = (0, 1, g′(A+Bf)).(4.4)

Also, NL the unit normal vector field of M2 defined by (2.1) is given by

(4.5) NL =
1

W
(f ′(A+Bg),−g′(A+Bf), 1).

Here with ′, we have denoted derivatives with respect to corresponding parameters
and

(4.6) W =

√∣∣∣1− g′2(A+Bf)
2 − f ′2(A+Bg)

2
∣∣∣.

By considering (4.3), (4.4) and (4.5) into the third equalities in (2.2) and (2.3),
respectively, we obtain
(4.7)

g11 = 1−f ′2(A+Bg)
2
, g12 = −f ′g′(A+Bf)(A+Bg), g22 = 1−g′2(A+Bf)

2
,

and

(4.8) h11 =
f ′′(Bg +A)

W
, h12 =

Bf ′g′

W
, h22 =

g′′(Bf +A)

W
.
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Thus, by substituting of these above statements into (2.4) gives

(4.9) KL =
f ′′g′′(Bf +A)(Bg +A)−B2(f ′)2(g′)2

W 4

where f and g are some real functions, A,B are non-zero constants and W is given
as in (4.6).

Now, we would like to give the following theorem being the classification of type
I TF-surfaces with vanishing Gaussian curvature in E3

1.

Theorem 4.1. Let M2 be a type I TF-surface defined by (4.1) in the Minkowski
3-space. Then,

1. M2 is a type I space-like flat surface if and only if it can be parametrized as
one of the followings:

(a) M2 is a part of a plane,

(b) M2 is a space-like surface in E3
1 parametrized by

(4.10) x(s, t) = (s, t, g(t)(A+Bc) +Ac) ,

where f = c is a constant function and −1
A+Bc < g′ < 1

A+Bc or

(4.11) x(s, t) = (s, t, f(s)(A+Bc) +Ac)

where g = c is a constant function and −1
A+Bc < f ′ < 1

A+Bc .

(c) f and g are given by

(4.12) f(s) = − 1

B
eB(c1s+c2) +

A

B
, g(t) = − 1

B
eB(c1t+c2) +

A

B
,

such that satisfy the condition (4.18).

(d) f and g are given by

(4.13)
f(s) = −A

B
+B

C
C−1

(
(C − 1)(c1s+ c2)

) 1
1−C

,

g(t) = −A
B

+B
C

C−1

(
(C − 1)(c1t+ c2)

) 1
1−C

such that satisfy the condition (4.18).

2. M2 is a type I time-like flat surface if and only if it can be parametrized as
one of the followings:

(a) M2 is a time-like surface in E3
1 parametrized by

(4.14) x(s, t) = (s, t, g(t)(Bc+A) +Ac) ,

where f = c is a constant function or

(4.15) x(s, t) = (s, t, f(s)(Bc+A) +Ac)

where g = c is a constant function.
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(b) f and g are given by

(4.16) f(s) = − 1

B
eB(c1s+c2) +

A

B
, g(t) = − 1

B
eB(c1t+c2) +

A

B
.

(c) f and g are given by

(4.17)
f(s) = −A

B
+B

C
C−1

(
(C − 1)(c1s+ c2)

) 1
1−C

,

g(t) = −A
B

+B
C

C−1

(
(C − 1)(c1t+ c2)

) 1
1−C

.

Proof. Let M2 be a type I TF- flat surface. First, let M2 be a type I space-like
surface. Then from (4.6), we have

(4.18) g′
2
(A+Bf)

2
+ f ′

2
(A+Bg)

2
< 1.

Since M2 is a flat surface, then from (4.9), it is clear that is sufficient that

(4.19) f ′′g′′(A+Bf)(A+Bg)−B2(f ′)2(g′)2 = 0.

Let us consider on the following possibilities:

Case (1): f ′ = 0 and g′ = 0. Then, the equation (4.18) and (4.19) are trivially
satisfied. By considering these assumptions in (4.1), respectively, we obtain M2 is
an open part of plane. Thus, we have Case (1a) of Theorem 4.1.

Case (2): f ′ = 0 or g′ = 0. First, assume that f ′ = 0, i.e., f be a constant. In
case, the equation (4.19) is trivially satisfied and also from (4.18) yields g is satisfied
−1

A+Bc < g′ < 1
A+Bc . Thus, we get (4.10). Similarly, by considering the assumption

of g as g′ = 0, we can get (4.11) in Theorem 4.1.

Case (3): Let f ′′ = 0 or g′′ = 0, but not both. First, assume that f ′′ = 0, i.e.,
f ′ = c1 and f = c1s+ c2 be a linear function. In this case, one get g′ = 0, namely
g = C1, to provide the equation (4.19). Thus, from (4.18), we get the condition
1 < c21C

2
1 . Second, let g′′ = 0. Then by the similar way, f ′ = 0 must be. Note that

one can easily see that these cases are covered by Case (1b).

Case (4): Let f ′, g′, f ′′ and g′′ be non-zero. Then, the equation (4.19) can be
rewritten as

(4.20)
f ′′(A+Bf)

B(f ′)2
=

B(g′)2

g′′(A+Bg)
= C,

for non-zero constant C. We are going to consider the following cases seperately:

Case (4a): C = 1. In this case (4.20) implies that

(4.21) f ′′(A+Bf) = B(f ′)2 and B(g′)2 = g′′(A+Bg),

from which, we get (4.12) in Case (1c) in Theorem 4.1.
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Case (4b): C 6= 1. In this case we solve (4.20) to obtain (4.13).

Secondly, let M2 be a type I time-like surface in E3
1. Then from (4.6), we have

(4.22) g′
2
(A+Bf)

2
+ f ′

2
(A+Bg)

2
> 1.

In view of this condition, the proof of the second case can be made similar to the
previous case.

Conversely, a direct computation yields that the Gaussian curvature of each of
surfaces given in Theorem 4.1 vanishes identically.

Now, secondly let M2 be a type II TF-surfaces given as in (4.2). Thus, we have,

xs = (f ′(A+Bg), 1, 0),(4.23)

xt = (g′(A+Bf), 0, 1).(4.24)

Also, NL the unit normal vector field of M2 defined by (2.1) is given by

(4.25) NL =
1

W
(1,−f ′(A+Bg), g′(A+Bf)).

Here with ′, we have denoted derivatives with respect to corresponding parameters
and

(4.26) W =

√∣∣∣1 + f ′2(A+Bg)
2 − g′2(A+Bf)

2
∣∣∣.

By considering (4.23), (4.24) and (4.25) into the third equalities in (2.2) and (2.3),
respectively, we obtain
(4.27)

g11 = 1 + f ′
2
(A+Bg)

2
, g12 = f ′g′(A+Bf)(A+Bg), g22 = g′

2
(A+Bf)

2 − 1,

and

(4.28) h11 =
f ′′(Bg +A)

W
, h12 =

Bf ′g′

W
, h22 =

g′′(Bf +A)

W
.

Thus, by substituting of these above statements into (2.4) gives

(4.29) KL =
f ′′g′′(Bf +A)(Bg +A)−B2(f ′)2(g′)2

W 4

where f and g are some real functions, A,B are non-zero constants and W is given
as in (4.26). As well knowing that if M2 is a space-like surface then, from (4.26)
yields

(4.30) g′
2
(A+Bf)

2 − f ′2(A+Bg)
2
< 1.

On the other hand, if M2 is a time-like surface then, from (4.26) yields

(4.31) g′
2
(A+Bf)

2 − f ′2(A+Bg)
2
> 1.

Now we would like to give the following theorem being the classification of type II
TF-flat surfaces in E3

1.
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Theorem 4.2. Let M2 be a type II TF-surface defined by (4.2) in the Minkowski
3-space. Then,

1. M2 is a type II space-like flat surface if and only if it can be parametrized as
one of the followings:

(a) M2 is a part of a plane,

(b) M2 is a space-like surface in E3
1 parametrized by

(4.32) x(s, t) = (s, t, g(t)(A+Bc) +Ac) ,

where f = c is a constant function and −1
A+Bc < g′ < 1

A+Bc or

(4.33) x(s, t) = (s, t, f(s)(A+Bc) +Ac)

where g = c is a constant function and 0 < f ′2(A+Bc)2 + 1.

(c) f and g are given by

(4.34) f(s) = − 1

B
eB(c1s+c2) +

A

B
, g(t) = − 1

B
eB(c1t+c2) +

A

B
,

such that satisfy the condition (4.30).

(d) f and g are given by

(4.35)
f(s) = −A

B
+B

C
C−1

(
(C − 1)(c1s+ c2)

) 1
1−C

,

g(t) = −A
B

+B
C

C−1

(
(C − 1)(c1t+ c2)

) 1
1−C

such that satisfy the condition (4.30).

2. M2 is a type I time-like flat surface if and only if it can be parametrized as
one of the followings:

(a) M2 is a time-like surface in E3
1 parametrized by

(4.36) x(s, t) = (s, t, g(t)(Bc+A) +Ac) ,

where f = c is a constant function or

(4.37) x(s, t) = (s, t, f(s)(Bc+A) +Ac)

where g = c is a constant function.

(b) f and g are given by

(4.38) f(s) = − 1

B
eB(c1s+c2) +

A

B
, g(t) = − 1

B
eB(c1t+c2) +

A

B
,

such that satisfy the condition (4.31).
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(c) f and g are given by

(4.39)
f(s) = −A

B
+B

C
C−1

(
(C − 1)(c1s+ c2)

) 1
1−C

,

g(t) = −A
B

+B
C

C−1

(
(C − 1)(c1t+ c2)

) 1
1−C

such that satisfy the condition (4.31).

Proof. In view of the condition (4.6), the proof of this theorem can be made similar
to the previous Theorem 4.1.
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