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ON m-PROJECTIVE CURVATURE TENSOR OF GENERALIZED
SASAKIAN-SPACE-FORMS

Shravan K. Pandey and R.N. Singh

Abstract. The aim of the paper is to characterize generalized Sasakian-space-forms
satisfying certain curvature conditions on the m-projective curvature tensor. We study
m-projectively semisymmetric, m-projectively flat, ξ-m-projectively flat, and m-proje-
-ctively recurrent generalized Sasakian-space-forms. W ∗.S = 0 and W ∗.R = 0 on
generalized Sasakian-space-forms are also studied.
Keywords: generalized Sasakian-space-forms, m-projectively semisymmetric,
m-projectively flat, m-projectively recurrent, ξ-m-projectively flat.

1. Introduction

Studying the almost Hermitian manifold, Alfred Gray, a well-known geometri-
cian, formulated a principle according to which the so-called curvature identities
for the Riemann-Christoffel tensor are key to understanding differential-geometric
properties of such manifolds [13]. Many papers are devoted to the study of geomet-
ric consequences of these identities and to their analogs for almost contact metric
structures. As a continuation of this line of research, we consider some curvature
properties of generalized Sasakian-space-forms regarding the m-projective curvature
tensor.

A generalized Sasakian-space-form was defined by P. Alegre, D. E. Blair and
A. Carriazo in [1] as an almost contact metric manifold (M2n+1, φ, ξ, η, g) whose
curvature tensor R is given by

(1.1) R = f1R1 + f2R2 + f3R3,

where f1, f2, f3 are some differential functions on M2n+1 and

R1(X,Y )Z = g(Y,Z)X − g(X,Z)Y,

R2(X,Y )Z = g(X,φZ)φY − g(Y, φZ)φX + 2g(X,φY )φZ,

Received December 05, 2016; accepted June 10, 2017.
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362 S. K. Pandey and R.N. Singh

R3(X,Y )Z = η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ,

for any vector field X, Y, Z on M2n+1. In such a case we denote the manifold
as M(f1, f2, f3). This kind of manifold appears as a generalization of the well-
known Sasakian-space-forms by taking f1 = c+3

4 , f2 = f3 = c−1
4 . It is known

that any three-dimensional (α, β)−trans-Sasakian manifold with α, β depending
on ξ is a generalized Sasakian-space-form [2].P.Alegre, A.Carriazo, Y.H.Kim and
D.W.Yoon give results in [3] about B.Y.Chen’s inequality on submanifolds of gen-
eralized complex space-forms and generalized Sasakian-space-forms. R. Al-Ghefari,
F.R. Al-Solamy and M.H.Shahid analyse in [4] and [5] CR-submanifolds of gen-
eralized Sasakian-space-forms. In [9], U.K.Kim studied conformally flat general-
ized Sasakian-space-forms and locally symmetric generalized Sasakian-space-forms.
U.C.De and A.Sarkar [7] studied generalized Sasakian-space-forms regarding the
projective curvature tensor. On the other hand, in 1971, G.P.Pokhariyal and
R.S.Mishra [12]defined a tensor field W ∗ on a Riemannian manifold as

′W ∗(X,Y, Z, U) =′R(X,Y, Z, U)− 1

2(n− 1)
[S(Y,Z)g(X,U)− S(X,Z)g(Y,U)

+ g(Y, Z)S(X,U)− g(X,Z)S(Y,U)],

(1.2)

where ′W ∗(X,Y, Z, U) = g(W ∗(X,Y )Z,U) and ′R(X,Y, Z, U) = g(R(X,Y )Z,U).
Such a tensor field W ∗ is known as m-projective curvature tensor. Later, R. H.Ojha
[10] defined and studied the properties of the m-projective curvature tensor in
Sasakian and Kähler manifolds. He also showed that it bridges the gap between
the conformal curvature tensor, conharmonic curvature tensor and concircular cur-
vature tensor on one side and the H-projective curvature tensor on the other.

Motivated by the above studies, we study here the flatness and symmetry prop-
erty of generalized Sasakian-space-forms regarding the m-projective curvature ten-
sor. The paper is organized as follows. In section 2, some preliminary results are
recalled. In section 3, we study m-projectively semisymmetric generalized Sasakian-
space-forms. Section 4 deals with m-projectively flat generalized Sasakian-space-
forms. ξ-m-projectively flat generalized Sasakian-space-forms are studied in Section
5 and necessary and sufficient condition are obtained for a generalized Sasakian-
space-form to be ξ-m-projectively flat. In Section 6, m-projectively recurrent gen-
eralized Sasakian-space-forms are studied. Section 7 is devoted to the study of
generalized Sasakian-space-forms satisfying W ∗.S = 0. The last section discusses
generalized Sasakian-space-forms satisfying W ∗.R = 0.

2. Preliminaries

If on an odd dimensional differentiable manifold M2n+1 of the differentiability class
Cr+1 there exists a vector-valued real linear function φ, a 1-form η, the associated
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vector field ξ and the Riemannian metric g satisfying

(2.1) φ2X = −X + η(X)ξ, φ(ξ) = 0,

(2.2) η(ξ) = 1, g(X, ξ) = η(X), η(φX) = 0,

(2.3) g(φX, φY ) = g(X,Y )− η(X)η(Y ),

for arbitrary vector fields X and Y , then (M2n+1, g) is said to be an almost contact
metric manifold [6] and the structure (φ, ξ, η, g) is called an almost contact metric
structure to M2n+1. In view of the equations (2.1), (2.2) and (2.3), we have

(2.4) g(φX, Y ) = −g(X,φY ), g(φX,X) = 0,

(2.5) (∇Xη)(Y ) = g(∇Xξ, Y ).

Again we know that [1] in a (2n+ 1)-dimensional generalized Sasakian-space-form

R(X,Y )Z = f1{g(Y,Z)X − g(X,Z)Y }
+ f2{g(X,φZ)φY − g(Y, φZ)φX + 2g(X,φY )φZ}
+ f3{η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y,Z)η(X)ξ}

(2.6)

for all vector fields X, Y, Z on M2n+1, where R denotes the curvature tensor of
M2n+1.

(2.7) S(X,Y ) = (2nf1 + 3f2 − f3)g(X,Y )− (3f2 + (2n− 1)f3)η(X)η(Y ),

(2.8) QX = (2nf1 + 3f2 − f3)X − (3f2 + (2n− 1)f3)η(X)ξ,

(2.9) r = 2n(2n+ 1)f1 + 6nf2 − 4nf3).

For generalized Sasakian-space-forms we also have

(2.10) R(X,Y )ξ = (f1 − f3)[η(Y )X − η(X)Y ],

(2.11) R(ξ,X)Y = −R(X, ξ)Y = (f1 − f3)[g(X,Y )ξ − η(Y )X],

(2.12) η(R(X,Y )Z) = (f1 − f3)[η(X)g(Y,Z)− η(Y )g(X,Z)],

(2.13) S(X, ξ) = 2n(f1 − f3)η(X),
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(2.14) Qξ = 2n(f1 − f3)ξ,

where Q is the Ricci operator, i.e. g(QX,Y ) = S(X,Y ).

A generalized Sasakian space-form is said to be η-Einstein if its Ricci tensor S
is of the form

(2.15) S(X,Y ) = ag(X,Y ) + bη(X)η(Y ),

for arbitrary vector fields X and Y, where a and b are smooth functions on M2n+1.
For a (2n+1)-dimensional (n > 1) almost contact metric manifold the m-projective
curvature tensor W ∗ is given by [12]
(2.16)

W ∗(X,Y )Z = R(X,Y )Z− 1

2(n− 1)
[S(Y, Z)X−S(X,Z)Y+g(Y,Z)QX−g(X,Z)QY ].

The m-projective curvature tensorW ∗ for a generalized Sasakian-space-form is given
by

W ∗(X,Y )ξ = − (f1 − f3)

(n− 1)
[η(Y )X − η(X)Y ]− 1

2(n− 1)
[η(Y )QX − η(X)QY ],

(2.17)

(2.18) η(W ∗(X,Y )ξ) = 0,

W ∗(ξ, Y )Z = − (f1 − f3)

(n− 1)
[g(Y, Z)ξ − η(Z)Y ]− 1

2(n− 1)
[S(Y,Z)ξ − η(Z)QY ],

(2.19)

η(W ∗(ξ, Y )Z) = − (f1 − f3)

(n− 1)
[g(Y, Z)− η(Y )η(Z)]

− 1

2(n− 1)
[S(Y, Z)− 2n(f1 − f3)η(Y )η(Z)]

(2.20)

and

η(W ∗(X,Y )Z) = − (f1 − f3)

(n− 1)
[g(Y,Z)η(X)− g(X,Z)η(Y )]

− 1

2(n− 1)
[S(Y,Z)η(X)− S(X,Z)η(Y )].

(2.21)

3. m-Projectively Semisymmetric Generalized Sasakian-Space-Forms

Definition 3.1. A (2n+1)−dimensional (n > 1) generalized Sasakian-space-form
is said to be m-projectively semisymmetric [7] if it satisfies (R(X,Y ).W ∗)(U, V )Z =
0, where R(X,Y ) is to be considered a derivation of the tensor algebra at each point
of the manifold for tangent vectorsX,Y andW ∗ is the m-projective curvature tensor
of the space-forms.

Theorem 3.1. If a (2n + 1)−dimensional (n > 1) generalized Sasakian-space-
form is m-projectively semisymmetric then either f1 = f3 or M2n+1 is an Einstein
manifold.
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Proof: Let us suppose that the generalized Sasakian-space-form is m-projectively
semisymmetric. Then we can write

(3.1) (R(ξ,X).W ∗)(Y,Z)U = 0.

The above equation can be written as
(3.2)
R(ξ,X)W ∗(Y,Z)U−W ∗(R(ξ,X)Y,Z)U−W ∗(Y,R(ξ,X)Z)U−W ∗(Y, Z)R(ξ,X)U = 0.

In view of the equation (2.11) the above equation reduces to

(f1 − f3)[g(X,W ∗(Y, Z)U)ξ − η(W ∗(Y, Z)U)X − g(X,Y )W ∗(ξ, Z)U

+ η(Y )W ∗(X,Z)U − g(X,Z)W ∗(Y, ξ)U + η(Z)W ∗(Y,X)U

− g(X,U)W ∗(Y,Z)ξ + η(U)W ∗(Y, Z)X] = 0.

(3.3)

Now, taking the inner product of the above equation with ξ and using the equation
(2.2), we get

(f1 − f3)[′W ∗(Y, Z, U,X)− η(W ∗(Y,Z)U)η(X)− g(X,Y )η(W ∗(ξ, Z)U)

+ η(Y )η(W ∗(X,Z)U)− g(X,Z)η(W ∗(Y, ξ)U) + η(Z)η(W ∗(Y,X)U)

− g(X,U)η(W ∗(Y,Z)ξ) + η(U)η(W ∗(Y, Z)X)] = 0,

(3.4)

which on using the equations (2.18), (2.20) and (2.21) gives

(f1 − f3)[′R(Y,Z, U,X)− 1

2(n− 1)
{g(Z,U)S(Y,X)− g(Y, U)S(X,Z)

+ {S(X,Z)η(Y )− S(X,Y )η(Z)}η(U) + 2n(f1 − f3){η(Z)g(X,Y )

− η(Y )g(X,Z)}η(U)}+
(f1 − f3)

(n− 1)
{g(Z,U)g(X,Y )− g(Y,U)g(X,Z)}]

= 0.

(3.5)

Putting Z = U = ei in the above equation and taking summation over i, 1 ≤ i ≤
2n+ 1, we get

(3.6) (f1 − f3)[S(X,Y ) + (−n)(f1 − f3)g(X,Y )] = 0.

This gives either f1 = f3 or

S(X,Y ) = n(f1 − f3)g(X,Y ),

which shows that M2n+1 is an Einstein manifold. This completes the proof.

4. m-Projectively Flat Generalized Sasakian-Space-Forms

Theorem 4.1. A (2n+ 1)−dimensional (n > 1) generalized Sasakian-space-form
is m-projectively flat if and only if f1 = 3f2

2(1−n) = f3 provided any arbitrary vector

field Z is not pointwise collinear with the characteristic vector field ξ.
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Proof: For a (2n+1)−dimensional (n > 1) m-projectively flat generalized Sasakian-
space-form, we have from the equation (2.16)

(4.1) R(X,Y )Z =
1

2(n− 1)
[S(Y,Z)X − S(X,Z)Y + g(Y, Z)QX − g(X,Z)QY ].

In view of the equations (2.7) and (2.8) the above equation takes the form

R(X,Y )Z =
1

2(n− 1)
[2(2nf1 + 3f2 − f3){g(Y,Z)X − g(X,Z)Y }

− (3f2 + (2n− 1)f3){η(Y )X − η(X)Y }η(Z)

− (3f2 + (2n− 1)f3){g(Y, Z)η(X)− g(X,Z)η(Y )}ξ].

(4.2)

By virtue of the equation (2.6) the above equation reduces to

f1{g(Y,Z)X − g(X,Z)Y }+ f2{g(X,φZ)φY − g(Y, φZ)φX

+ 2g(X,φY )φZ}+ f3{η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ

− g(Y, Z)η(X)ξ} =
1

2(n− 1)
[2(2nf1 + 3f2 − f3){g(Y,Z)X − g(X,Z)Y }

− (3f2 + (2n− 1)f3){η(Y )X − η(X)Y }η(Z)

− (3f2 + (2n− 1)f3){g(Y,Z)η(X)− g(X,Z)η(Y )}ξ].

(4.3)

Now, replacing Z by φZ in the above equation, we obtain

f1{g(Y, φZ)X − g(X,φZ)Y }+ f2{−g(X,Z)φY + g(Y,Z)φX

− 2g(X,φY )Z + η(X)η(Z)φY − η(Y )η(Z)φX + 2η(Z)g(X,φY )ξ}
+ f3{g(X,φZ)η(Y )− g(Y, φZ)η(X)}ξ

=
1

2(n− 1)
[2(2nf1 + 3f2 − f3){g(Y, φZ)X − g(X,φZ)Y }

− (3f2 + (2n− 1)f3){g(Y, φZ)η(X)− g(X,φZ)η(Y )}ξ],

(4.4)

which by putting X = ξ takes the form

−2(f1 − f3)g(Y, φZ)ξ = 0.

Then either

(4.5) f1 = f3

or

(4.6) g(Y, φZ) = 0.

Suppose g(Y, φZ) = 0. Replacing Z by φZ in the equation (4.6) yields

g(Y, φ2Z) = 0,
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which implies
Z = η(Z)ξ.

This shows that Z is collinear with ξ.
Again replacing X by φX in the equation (4.3), we get

f1{g(Y,Z)φX − g(φX,Z)Y }+ f2{g(X,Z)φY − η(X)η(Z)φY

+ g(Y, φZ)X − g(Y, φZ)η(X)ξ + 2g(X,Y )φZ − 2η(X)η(Y )φZ}
+ f3{−η(Y )η(Z)φX + g(φX,Z)η(Y )ξ}

=
1

2(n− 1)
[2(2nf1 + 3f2 − f3){g(Y, Z)φX − g(φX,Z)Y }

− (3f2 + (2n− 1)f3)η(Y )η(Z)φX + (3f2 + (2n− 1)f3)g(φX,Z)η(Y )ξ].

(4.7)

Now putting Y = ξ in the above equation, we obtain

[(2n+ 1)f1 + 3f2 − 3f3](η(Z)φX − g(φX,Z)ξ) = 0.

Since η(Z)φX − g(φX,Z)ξ 6= 0 in general, we obtain

(4.8) (2n+ 1)f1 + 3f2 − 3f3 = 0.

From the equations (4.5) and (4.8), we have

(4.9) f1 =
3f2

2(1− n)
.

Thus, in view of the equations (4.5) and (4.9), we have

(4.10) f1 =
3f2

2(1− n)
= f3.

Conversely, suppose f1 = 3f2
2(1−n) = f3 satisfies a generalized Sasakian-space-form,

then we have

(4.11) S(X,Y ) = 0,

(4.12) QX = 0.

Also, in view of the equation (2.16), we have

(4.13) ′W ∗(X,Y, Z, U) = ′R(X,Y, Z, U),

where ′W ∗(X,Y, Z, U) = g(W ∗(X,Y )Z,U) and ′R(X,Y, Z, U) = g(R(X,Y )Z,U).
Putting Y = Z = ei in the equation (4.13) and taking summation over i, 1 ≤ i ≤
2n+ 1, we get

(4.14)

2n+1∑
i=1

′W
∗
(X, ei, ei, U) =

2n+1∑
i=1

′R(X, ei, ei, U) = S(X,U).
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In view of the equations (4.13) and (2.6), we have

′W ∗(X,Y, Z, U) = f1{g(Y, Z)g(X,U)− g(X,Z)g(Y, U)}
+ f2{g(X,φZ)g(φY,U)− g(Y, φZ)g(φX,U)

+ 2g(X,φY )g(φZ,U)}+ f3{η(X)η(Z)g(Y,U)

− η(Y )η(Z)g(X,U) + g(X,Z)η(Y )η(U)− g(Y,Z)η(X)η(U)}.

(4.15)

Now, putting Y = Z = ei in the above equation and taking summation over i,
1 ≤ i ≤ 2n+ 1, we get

2n+1∑
i=1

′W
∗
(X, ei, ei, U) = 2nf1g(X,U) + 3f2g(φX, φU)

− f3{(2n− 1)η(X)η(U) + g(X,U)}.

(4.16)

In view of the equations (4.16), (4.14) and (4.11), we have

(4.17) 2nf1g(X,U) + 3f2g(φX, φU)− f3{(2n− 1)η(X)η(U) + g(X,U)} = 0.

Putting X = W = ei in the above equation and taking summation over i, 1 ≤ i ≤
2n+ 1, we get f1 = 0. Then in view of the equation (4.10), f2 = f3 = 0. Therefore,
we obtain from the equation (2.6)

(4.18) R(X,Y )Z = 0.

Hence in view of the equations (4.18), (4.11) and (4.12), we have W ∗(X,Y )Z = 0.
This completes the proof.

5. ξ-m-Projectively Flat Generalized Sasakian-Space-Forms

Definition 5.1. A (2n+1)−dimensional (n > 1) generalized Sasakian-space-form
is said to be ξ-m-projectively flat [14], if W ∗(X,Y )ξ = 0 for all X,Y ∈ TM.

Theorem 5.1. A (2n+ 1)−dimensional (n > 1) generalized Sasakian-space-form
is ξ-m-projectively flat if and only if it is an η−Einstein manifold.

Proof: Let us consider a generalized Sasakian-space-form is ξ-m-projectively flat,
i.e. W ∗(X,Y )ξ = 0. Then in view if equation (2.16), we have

(5.1) R(X,Y )ξ =
1

2(n− 1)
[S(Y, ξ)X − S(X, ξ)Y + g(Y, ξ)QX − g(X, ξ)QY ].

By virtue of the equations (2.2), (2.10) and (2.13) the above equation reduces to

(5.2) η(Y )QX − η(X)QY = −2(f1 − f3)[η(Y )X − η(X)Y ],
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which by putting Y = ξ gives

(5.3) QX = 2(f1 − f3)[−X + (n+ 1)η(X)ξ].

Now, taking the inner product of the above equation with U, we get

(5.4) S(X,U) = 2(f1 − f3)[−g(X,U) + (n+ 1)η(X)η(U)],

which shows that generalized Sasakian-space-form is an η-Einstein manifold. Con-
versely, suppose the equation (5.4) is satisfied. Then by virtue of the equations
(5.3) and (5.1), we have W ∗(X,Y )ξ = 0. This completes the proof.

6. m-Projectively Recurrent Generalized Sasakian-Space-Forms

Definition 6.1. A non-flat Riemannian manifoldM2n+1 is said to be m-projectively
recurrent if its m-projective curvature tensor W ∗ satisfies the condition

(6.1) ∇W ∗ = A⊗W ∗,

where A is a non-zero 1-form.

Theorem 6.1. If a (2n+1)−dimensional (n > 1) generalized Sasakian-space-form
is m-projectively recurrent, then either f1 = f3 or it is an Einstein manifold.

Proof: We define a function f2 = g(W ∗,W ∗) on M2n+1, where the metric g is
extended to the inner product between the tensor fields. Then we have

f(Y f) = f2A(Y ).

This can be written as

(6.2) Y f = f(A(Y )), (f 6= 0).

From the above equation, we have

X(Y f)− Y (Xf) = {XA(Y )− Y A(X)−A([X,Y ])}f.

Since the left hand side of the above equation is identically zero and f 6= 0 on
M2n+1. Then

(6.3) dA(X,Y ) = 0,

i.e. 1-form A is closed.
Now from

(∇YW
∗)(Z,U)V = A(Y )W ∗(Z,U)V,

we have

(6.4) (∇X∇YW
∗)(Z,U)V = {XA(Y ) +A(X)A(Y )}W ∗(Z,U)V.
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In view of the equations (6.3) and (6.4) , we have

(R(X,Y ).W ∗)(Z,U)V = [2dA(X,Y )]W ∗(Z,U)V

= 0.
(6.5)

Thus in view of Theorem (3.1), we have either f1 = f3 or M2n+1 is an Einstein
manifold.

7. Generalized Sasakian-Space-Forms Satisfying W ∗.S = 0.

Theorem 7.1. A (2n+ 1)−dimensional (n > 1) generalized Sasakian-space-form
satisfying W ∗.S = 0 is an η-Einstein manifold.

Proof: Let us consider a generalized Sasakian-space-formM2n+1 satisfyingW ∗(ξ,X).S =
0. In this case we can write

(7.1) S(W ∗(ξ,X)Y,Z) + S(Y,W ∗(ξ,X)Z) = 0.

In view of the equation (2.19) the above equation reduces to

(f1 − f3)[2n(f1 − f3){g(X,Y )η(Z) + g(X,Z)η(Y )}

− {η(Y )S(X,Z) + η(Z)S(X,Y )}] +
1

2
[2n(f1 − f3){S(X,Y )η(Z)

+ S(X,Z)η(Y )} − {η(Y )S(QX,Z) + η(Z)S(QX,Y )}] = 0.

(7.2)

Now, putting Z = ξ in the above equation, we get

(7.3) S(QX,Y ) = 2(f1 − f3)[(n− 1)S(X,Y ) + 2n(f1 − f3)g(X,Y )].

By virtue of the equation (2.7) the above equation takes the form

S(X,Y ) =
2n(f1 − f3)

K
[2(f1 − f3)g(X,Y ) + (3f2 + (2n− 1)f3)η(X)η(Y )],

where K = 2nf1 + 3f2 + (2n − 3)f3, which shows that M2n+1 is an η-Einstein
manifold. This completes the proof.

8. Generalized Sasakian-Space-Forms Satisfying W ∗.R = 0.

Theorem 8.1. A (2n+ 1)−dimensional (n > 1) generalized Sasakian-space-form
satisfying W ∗.R = 0 is an η-Einstein manifold.
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Proof: Suppose M2n+1 satisfying (W ∗(ξ,X).R)(Y, Z)U = 0, then it can be writ-
ten as

W ∗(ξ,X)R(Y, Z)U −R(W ∗(ξ,X)Y,Z)U −R(Y,W ∗(ξ,X)Z)U

−R(Y,Z)W ∗(ξ,X)U = 0,
(8.1)

which on using the equation (2.19) takes the form

(f1 − f3)

(n− 1)
[−g(X,R(Y, Z)U)ξ + η(R(Y,Z)U)X + g(X,Y )R(ξ, Z)U

− η(Y )R(X,Z)U + g(X,Z)R(Y, ξ)U − η(Z)R(Y,X)U

+ g(X,U)R(Y, Z)ξ − η(U)R(Y, Z)X]− 1

2(n− 1)
[S(X,R(Y, Z)U)ξ

− η(R(Y,Z)U)QX − S(X,Y )R(ξ, Z)U + η(Y )R(QX,Z)U

− S(X,Z)R(Y, ξ)U + η(Z)R(Y,QX)U − S(X,U)R(Y, Z)ξ

+ η(U)R(Y, Z)QX] = 0.

(8.2)

Taking the inner product of the above equation with ξ, we get

(f1 − f3)

(n− 1)
[−g(X,R(Y,Z)U) + η(R(Y,Z)U)η(X) + g(X,Y )η(R(ξ, Z)U)

− η(Y )η(R(X,Z)U) + g(X,Z)η(R(Y, ξ)U)− η(Z)η(R(Y,X)U)

+ g(X,U)η(R(Y, Z)ξ)− η(U)η(R(Y,Z)X)]− 1

2(n− 1)
[S(X,R(Y,Z)U)

− η(R(Y, Z)U)η(QX)− S(X,Y )η(R(ξ, Z)U) + η(Y )η(R(QX,Z)U)

− S(X,Z)η(R(Y, ξ)U) + η(Z)η(R(Y,QX)U)− S(X,U)η(R(Y, Z)ξ)

+ η(U)η(R(Y, Z)QX)] = 0.

(8.3)

Now using the equations (2.6), (2.11) and (2.12) in the above equation, we get

(f1 − f3)[−f1{g(Z,U)g(X,Y )− g(Y,U)g(X,Z)}
− f2{g(Y, φU)g(φZ,X)− g(Z, φU)g(φY,X) + 2g(Y, φZ)g(φU,X)}
− f3{η(Y )η(U)g(X,Z)− η(Z)η(U)g(X,Y ) + g(Y, U)η(Z)η(X)

− g(Z,U)η(Y )η(X)}+ (f1 − f3){g(Z,U)g(X,Y )− g(Y, U)g(X,Z)}]

− 1

2
[f1{g(Z,U)S(X,Y )− g(Y,U)S(X,Z)}+ f2{g(Y, φU)S(φZ,X)

− g(Z, φU)S(φY,X) + 2g(Y, φZ)S(φU,X)}+ f3{η(Y )η(U)S(X,Z)

− η(Z)η(U)S(X,Y ) + 2n(f1 − f3)η(X)η(Z)g(Y, U)

− 2n(f1 − f3)η(X)η(Y )g(Z,U)} − (f1 − f3){g(Z,U)S(X,Y )

− g(Y, U)S(X,Z)}] = 0.

(8.4)

Putting Z = U = ei in the above equation and summing over i, 1 ≤ i ≤ 2n+ 1, we
get

(8.5) S(X,Y ) = 2(f1 − f3)[−g(X,Y ) + (n+ 1)η(X)η(Y )],
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which shows that M2n+1 is an η−Einstein manifold. This completes the proof.
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RICCI SOLITONS IN α-COSYMPLECTIC MANIFOLDS ∗

Jay Prakash Singh and Chawngthu Lalmalsawma

Abstract. The aim of the paper is to study Ricci solitons in α-cosymplectic manifolds.
Projective, pseudo projective and Weyl conformal curvatures in an α-cosymplectic man-
ifolds admitting Ricci solitons have been studied under certain curvature conditions.
Also, gradient Ricci solitons in α-cosymplectic manifolds have been studied.
Keywords: Ricci soliton, gradient Ricci soliton, α-cosymplectic manifolds, cosympletic
manifolds, α-Kenmatsu manifolds

1. Introduction

The concept of Ricci soliton was introduced by Hamilton [8] while studying the
Ricci flow on surfaces. It is a generalization of an Einstein metric and is defined as
a triple (g, V, λ) with g a Riemannian metric, V a vector field, and λ a real scalar
such that

£V g + 2S + 2λg = 0,(1.1)

where S is the Ricci tensor of type (0, 2) and £ denotes the Lie derivative operator
along the vector field V .

The Ricci soliton is said to be shrinking, steady and expanding accordingly as λ
is negative, zero and positive, respectively [6]. If the vector field V is the gradient
of a potential function −f , then g is called a gradient Ricci soliton and the equation
(1.1) assumes the form

∇∇f = S + λg.(1.2)

In 2008 Sinha and Sharma [17] started the study of Ricci solitons in contact
manifolds. Later Ricci solitons in contact and almost contact manifolds were studied
by many authors such as: Ricci solitons in contact metric manifolds by Tripathi
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[18], Ricci solitons in manifolds with a quasi-constant curvature by Bejan [2], Ricci
solitons in Lorentzian α-Sasakian manifolds by Bagewadi [1], Ricci solitons and
gradient Ricci solitons in three-dimensional trans-Sasakian manifolds by Turan, De
and Yildiz [19], Ricci solitons in Kenmotsu manifolds by Nagaraja [12], etc.

The paper is organized as follows: after the introduction and preliminaries, in
Section 3 we prove that the Ricci soliton in a Ricci semi-symmetric α-cosymplectic
manifold of dimension n (n ≥ 2), is steady. Section 4 is dedicated to the study of
the pseudo-projective semi-symmetric manifold and the projective semi-symmetric
manifold. In Section 5 we prove that a Weyl semi-symmetric α-Kenmotsu manifold
of dimension n (n ≥ 2), admitting a Ricci soliton is conformally flat. In Section 6
we study the α-cosymplectic manifold satisfying P (ξ,X) · S = 0. Finally, we prove
that if a gradient Ricci soliton in an α-cosymplectic manifold of dimension n (n ≥ 2)
is expanding, then it is an η-Einstein manifold.

2. Preliminaries

An n-dimensional smooth manifold M is said to be an almost contact metric mani-
fold if it admits an almost contact metric structure (φ, ξ, η, g) consisting of a tensor
field φ of type (1, 1), a vector field ξ, a 1-form η and a Riemannian metric g com-
patible with (φ, ξ, η) satisfying [3]

φ2 = −I + η ⊗ ξ, η(ξ) = 1, φξ = 0, η ◦ φ = 0,

and

g(φX, φY ) = g(X,Y )− η(X)η(Y ).

On such a manifold, the fundamental form Φ of M is defined as

Φ(X,Y ) = g(φX, Y ), X, Y ∈ Γ(TM).

In 1967 Blair [4] defined the cosymplectic structure as a quasi-Sasakian structure
satisfying dη = 0. It is to be noted that the notion of cosymplectic manifold
introduced by Libermann [11] is different from that of Blair [4]. An almost contact
metric manifold (M,φ, ξ, η, g) is said to be almost cosymplectic [7] if dη = 0 and
dΦ = 0, where d is the exterior differential operator. The manifold defined by
M = N × R, where N is an almost Kählerian manifold and R is the real line is
the simplest example of the almost cosymplectic manifold [13]. An almost contact
manifold (M,φ, ξ, η) is said to be normal if the Nijenhuis torsion

Nφ(X,Y ) = [φX, φY ]− φ[φX, Y ]− φ[X,φY ] + φ2(X,Y ) + 2dη(X,Y )ξ

vanishes for any vector fields X and Y . A normal almost cosymplectic manifold is
a cosymplectic manifold.

An almost contact metric manifold M is said to be almost α-Kenmotsu if dη = 0
and dΦ = 2αη ∧ Φ, α being a non-zero real constant.
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Kim and Pak [10] combined almost α-Kenmotsu and almost cosymplectic man-
ifolds into a new class called almost α-cosymplectic manifolds, where α is a scalar.
If we join these two classes, we obtain a new notion of an almost α-cosymplectic
manifold, which is defined by the following formula

dη = 0, dΦ = 2αη ∧ Φ,

for any real number α. A normal almost α-cosymplectic manifold is called an α-
cosymplectic manifold. An α-cosymplectic manifold is either cosymplectic under
the condition α = 0 or α-Kenmotsu under the condition α 6= 0, for α ∈ IR.

On such an α-cosymplectic manifold, we have

(∇Xφ)Y = α
[
g(φX, Y )ξ − η(Y )φX

]
(2.1)

and

∇Xξ = −αφ2X = α[X − η(X)ξ].(2.2)

On an α-cosymplectic manifold M , the following relations are held ([14], [15])

R(ξ,X)Y = α2
[
η(Y )X − g(X,Y )ξ

]
,(2.3)

R(X,Y )ξ = α2
[
η(X)Y − η(Y )X

]
,(2.4)

S(ξ,X) = −α2(n− 1)η(X),(2.5)

η
(
R(X,Y )Z

)
= α2

[
η(Y )g(X,Z)− η(X)g(Y,Z)

]
.(2.6)

Using (2.2) we have

£ξg(X,Y ) = 2αg(X,Y )− 2αη(X)η(Y ).(2.7)

From (1.1) and (2.7) we get

S(X,Y ) = αη(X)η(Y )− (λ+ α)g(X,Y ).(2.8)

Equation (2.8) yields

QX = αη(X)ξ − (λ+ α)X,(2.9)

S(X, ξ) = −λη(X),(2.10)

r = (1− n)α− λn.(2.11)

Comparing (2.5) and (2.10) we get

λ = α2(n− 1).(2.12)

Since α2 ≥ 0, for α ∈ IR, from Equation (2.12) we get λ ≥ 0, for all n ≥ 2. Thus
we can state the following:
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Lemma 2.1. A Ricci soliton in an n-dimensional α-cosymplectic manifold, n ≥ 2,
is either steady or expanding.

We have already stated that an α-cosymplectic manifold is either cosymplectic
under the condition α = 0 or α-Kenmotsu under the condition α 6= 0, for α ∈ IR.
Thus we can state the following lemmas:

Lemma 2.2. A Ricci soliton in an n-dimensional α-cosymplectic manifold, n ≥ 2,
is steady if and only if it is a cosymplectic manifold.

Lemma 2.3. A Ricci soliton in an n-dimensional α-cosymplectic manifold, n ≥ 2,
is expanding if and only if it is an α-Kenmotsu manifold.

3. Ricci semi-symmetric α-cosymplectic manifold, n ≥ 2

Consider an α-cosymplectic manifold which is Ricci semi-symmetric. Then we have
[5]

R(X,Y ) · S = 0.

Now we assume that the condition

R(ξ,X) · S(Y,Z) = 0(3.1)

holds in M .

From (3.1) it follows that

S(R(ξ,X)Y,Z) + S(Y,R(ξ,X)Z) = 0.(3.2)

Using (2.3), (2.8) and (2.10), we get from (3.2)

α2
[
2αη(X)η(Y )η(Z)− αη(Y )g(X,Z)− αη(Z)g(X,Y )

]
= 0,

or

α3
[
2η(X)η(Y )η(Z)− η(Y )g(X,Z)− η(Z)g(X,Y )

]
= 0.(3.3)

Contracting (3.3) over X and Y we get

α3(n− 1)η(Z) = 0.(3.4)

In general, η(Z) 6= 0. Therefore, α = 0. Thus we can state the following:

Theorem 3.1. A Ricci semi-symmetric α-cosymplectic manifold, n ≥ 2, admit-
ting Ricci soliton is a cosymplectic manifold.

By virtue of Lemma 2.2 we have

Corollary 3.1. A Ricci soliton in a Ricci semi-symmetric α-cosymplectic mani-
fold, n ≥ 2, is steady.
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4. Pseudo projective semi-symmetric α-cosymplectic manifold, n ≥ 2

We consider the pseudo projective curvature tensor P of type (1, 3) which is defined
by [16]

P (X,Y )Z = aR(X,Y )Z + b[S(Y, Z)X − S(X,Z)Y ]

− r

n

( a

n− 1
+ b
)
[g(Y,Z)X − g(X,Z)Y ],(4.1)

where R is a Riemannian curvature tensor of type (1, 3), r is the scalar curvature
and a and b are a non-zero constant. From (4.1) we can define a (0, 4) type pseudo-
projective curvature tensor P̂ as follows

P̂ (X,Y, Z,W ) = aR̂(X,Y, Z,W ) + b[S(Y,Z)g(X,W )− S(X,Z)g(Y,W )]

− r

n

( a

n− 1
+ b
)
[g(Y, Z)g(X,W )− g(Y, U)g(Y,W )].

where R̂ is a Riemannian curvature tensor of type (0, 4), from which it follows that

n∑
i=1

P̂ (ei, Y, Z, ei) = [a+ (n− 1)b]
[
S(Y,Z)− r

n
g(Y, Z)

]
.(4.2)

Again from (4.1) we obtain

η
(
P (X,Y )Z

)
=
[
aα2 +

r

n

( a

n− 1
+ b
)

+ (λ+ α)b
]
×
[
η(Y )g(X,Z)− η(X)g(Y, Z)

]
,

or

η
(
P (X,Y )Z

)
= β[η(Y )g(X,Z)− η(X)g(Y,Z)],(4.3)

where β =
[
aα2 + r

n

(
a

n−1 + b
)

+ (λ+ α)b
]
.

Now we assume that the condition

R(ξ,X) · P (Y,Z)W = 0(4.4)

holds in M .

From (4.4) it follows that

R(ξ,X)P (Y,Z)W − P (R(ξ,X)Y,Z)W − P (Y,R(ξ,X)Z)W

−P (Y, Z)R(ξ,X)W = 0.(4.5)

Using (2.3) in (4.5) we find

α2
[
η
(
P (Y,Z)W

)
X − P̂ (Y, Z,W,X)ξ − η(Y )P (X,Z)W

+g(X,Y )P (ξ, Z)W − η(Z)P (Y,X)W + g(X,Z)P (Y, ξ)W

−η(W )P (Y,Z)X + g(X,W )P (Y,Z)ξ
]

= 0,(4.6)
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where P̂ (Y,Z,W,X) = g
(
X,P (Y,Z)W

)
.

Taking the inner product of (4.5) with ξ we get

α2
[
η
(
P (Y, Z)W

)
η(X)− P̂ (Y,Z,W,X)− η(Y )η

(
P (X,Z)W

)
+g(X,Y )η

(
P (ξ, Z)W

)
− η(Z)η

(
P (Y,X)W

)
+ g(X,Z)η

(
P (Y, ξ)W

)
−η(W )η

(
P (Y,Z)X

)
+ g(X,W )η

(
P (Y,Z)ξ

)]
= 0.(4.7)

By virtue of (4.3), (4.7) yields

α2
[
P̂ (Y,Z,W,X) + β

{
g(X,Y )g(Z,W )− g(X,Z)g(Y,W )

}]
= 0.(4.8)

Contracting (4.8) over X and Y and using (4.2) we get

α2
[
[a+ (n− 1)b]

{
S(Z,W )− r

n
g(Z,W )

}
+ β(n− 1)g(Z,W )

]
= 0.(4.9)

We suppose that the α-cosymplectic manifold is an α-Kenmotsu manifold i.e.,
α 6= 0. Thus (4.9) can be written as

S(Z,W ) =
[ r
n
− β(n− 1)

a+ (n− 1)b

]
g(Z,W ),

or

S(Z,W ) = ρg(Z,W ),(4.10)

where ρ =
[
r
n −

β(n−1)
a+(n−1)b

]
.

Hence we have the following theorem:

Theorem 4.1. A pseudo-projective semi-symmetric α-Kenmotsu manifold, n ≥ 2,
admitting a Ricci soliton is an Einstein manifold.

Again, contracting (4.9) over Z and W , we get

n(n− 1)α2β = 0.(4.11)

From (4.11) it follows that

α2β = 0,

or

α2
[
aα2 +

r

n

( a

n− 1
+ b
)

+ (λ+ α)b
]

= 0.(4.12)
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If we put a = 1 and b = − 1
(n−1) then (4.1) takes the form

P (X,Y )Z = R(X,Y )Z − 1

(n− 1)
[S(Y, Z)X − S(X,Z)Y ]

= P̃ (X,Y )Z,(4.13)

where P̃ (X,Y )Z is the projective curvature tensor and is a particular case of P .

Now putting a = 1 and b = − 1
(n−1) in (4.12) and making use of (2.12) we get

α3 = 0,

or

α = 0.(4.14)

Thus we can state the following:

Theorem 4.2. A projective semi-symmetric α-cosymplectic manifold, n ≥ 2, ad-
mitting a Ricci soliton is a cosymplectic manifold.

By virtue of Lemma 2.2 we have

Corollary 4.1. A Ricci soliton in a projective semi-symmetric α-cosymplectic
manifold, n ≥ 2, is steady.

5. Weyl semi-symmetric α-cosymplectic manifold, n > 2

We consider the Weyl conformal curvature tensor C of type (1, 3) which is defined
by

C(X,Y )Z = R(X,Y )Z − 1

n− 2

[
g(Y,Z)QX − g(X,Z)QY + S(Y, Z)X

−S(X,Z)Y
]

+
r

(n− 1)(n− 2)
[g(Y,Z)X − g(X,Z)Y ],(5.1)

where R is a Riemannian curvature tensor of type (1, 3). From (4.1) we can define
a (0, 4) type Weyl conformal curvature tensor Ĉ as follows:

Ĉ(X,Y, Z,W ) = R̂(X,Y, Z,W )− 1

n− 2

[
g(Y,Z)S(X,W )

− g(X,Z)S(Y,W ) + S(Y,Z)g(X,W )− S(X,Z)g(Y,W )
]

+
r

(n− 1)(n− 2)
[g(Y,Z)g(X,W )− g(X,Z)g(Y,W )],

where R̂ is a Riemannian curvature tensor of type (0, 4). From which it follows that

n∑
i=1

Ĉ(ei, Y, Z, ei) = 0.(5.2)
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Again, from (5.1) we obtain

η
(
C(X,Y )Z

)
= 0.(5.3)

Now we assume that the condition

R(ξ,X) · C(Y,Z)W = 0(5.4)

holds in M .

From (5.4) it follows that

R(ξ,X)C(Y,Z)W − C(R(ξ,X)Y, Z)W − C(Y,R(ξ,X)Z)W

−C(Y,Z)R(ξ,X)W = 0.(5.5)

Using (2.3) in (5.5) we find

α2
[
η
(
C(Y, Z)W

)
X − Ĉ(Y,Z,W,X)ξ − η(Y )C(X,Z)W

+g(X,Y )C(ξ, Z)W − η(Z)C(Y,X)W + g(X,Z)C(Y, ξ)W

−η(W )C(Y, Z)X + g(X,W )C(Y,Z)ξ
]

= 0,(5.6)

where Ĉ(Y,Z,W,X) = g
(
X,C(Y, Z)W

)
.

Taking the inner product of (5.6) with ξ we get

α2
[
η
(
C(Y,Z)W

)
η(X)− Ĉ(Y, Z,W,X)− η(Y )η

(
C(X,Z)W

)
+g(X,Y )η

(
C(ξ, Z)W

)
− η(Z)η

(
C(Y,X)W

)
+ g(X,Z)η

(
C(Y, ξ)W

)
−η(W )η

(
C(Y, Z)X

)
+ g(X,W )η

(
C(Y, Z)ξ

)]
= 0.(5.7)

By virtue of Equation (5.3), (5.7) yields

α2Ĉ(Y,Z,W,X) = 0.(5.8)

We suppose that the α-cosymplectic manifold is an α-Kenmotsu manifold i.e.,
α 6= 0. Then we have

Ĉ(Y,Z,W,X) = 0.(5.9)

Thus we can state the following:

Theorem 5.1. A Weyl semi-symmetric α-Kenmotsu manifold, n > 2, admitting
a Ricci soliton is conformally flat.
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6. α-cosymplectic manifold, n ≥ 2 satisfying P (ξ,X) · S = 0

Making use of (2.3), (2.8) and (2.10) in (4.1) we get

P (ξ, Y )Z =
[
α2a+

r

n

( a

n− 1
+ b
)

+ λb
]
[η(Z)Y − g(Y,Z)ξ]

+αb[η(Y )η(Z)ξ − g(Y, Z)ξ],

or

P (ξ, Y )Z = β[η(Z)Y − g(Y,Z)ξ] + γ[η(Y )η(Z)ξ − g(Y,Z)ξ],(6.1)

where β =
[
α2a+ r

n

(
a

n−1 + b
)

+ λb
]

and γ = αb.

Now we consider that a given manifold satisfies

P (ξ,X) · S(Y,Z) = 0,

from which it follows that

S(P
(
ξ,X)Y,Z

)
+ S

(
Y, P (ξ,X)Z

)
= 0.(6.2)

Using (6.1) in (6.2) yields

βη(Y )S(X,Z)− βg(X,Y )S(ξ, Z) + γη(X)η(Y )S(ξ, Z)

−γg(X,Y )S(ξ, Z) + βη(Z)S(X,Y )− βg(X,Z)S(ξ, Y )

+γη(X)η(Z)S(ξ, Y )− γg(X,Z)S(ξ, Y ) = 0.(6.3)

Making use of (2.8) and (2.10) in (6.3) we get(
αβ − λγ

)
[2η(X)η(Y )η(Z)− g(X,Z)η(Y )

−g(X,Y )η(Z)] = 0.(6.4)

Contracting (6.4) over X and Y we get(
αβ − λγ

)
(1− n)η(Z) = 0.(6.5)

Putting Z = ξ in (6.5) yields(
αβ − λγ

)
(1− n) = 0,(6.6)

from which it follows that (
αβ − λγ

)
= 0,

or

α
[
α2a+

r

n

( a

n− 1
+ b
)]

= 0.(6.7)
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We suppose that the α-cosymplectic manifold is an α-Kenmotsu manifold i.e.,
α 6= 0. Then (6.7) yields [

α2a+
r

n

( a

n− 1
+ b
)]

= 0,

or

α2 = − r
n

( 1

n− 1
+
b

a

)
.(6.8)

Thus we can state the following:

Theorem 6.1. If an α-cosymplectic manifold, n ≥ 2, admitting a Ricci soliton
and satisfying P (ξ,X) · S = 0 is an α-Kenmotsu manifold, then it satisfies α2 =
− r
n

(
1

n−1 + b
a

)
.

By virtue of Lemma 2.3 we have

Corollary 6.1. If a Ricci soliton in an α-cosymplectic manifold, n ≥ 2, satisfying
P (ξ,X) · S = 0 is expanding, then α2 = − r

n

(
1

n−1 + b
a

)
.

For a = 1 and b = − 1
(n−1) , from (6.6)

α3 = 0,

or

α = 0.(6.9)

Thus we can state the following:

Theorem 6.2. An α-cosymplectic manifold, n ≥ 2, admitting a Ricci soliton and
satisfying P̃ (ξ,X) · S = 0 is a cosymplectic manifold.

By virtue of Lemma 2.3 we have

Corollary 6.2. A Ricci solitons in an α-cosymplectic manifold, n ≥ 2, satisfying
P̃ (ξ,X) · S = 0 is steady.

7. Gradient Ricci soliton in α-cosymplectic manifolds

From Equation (1.2) we have

∇∇f = S + λg.(7.1)

This can be written as

∇YDf = QY + λY,(7.2)
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where D is the gradient operator of g. Using (7.2) we can obtain

R(X,Y )Df = (∇XQ)Y + (∇YQ)X.(7.3)

Taking the inner product of (7.3) with ξ we get

g
(
R(X,Y )Df, ξ

)
= g
(
(∇XQ)Y, ξ

)
+ g
(
(∇YQ)X, ξ

)
.(7.4)

Using (2.2) and (2.9) we have

g
(
(∇ξQ)Y, ξ

)
= 0,(7.5)

and

g
(
(∇YQ)ξ, ξ

)
= 0.(7.6)

By virtue of (7.5) and (7.6), Equation (7.4) yields

g
(
R(ξ, Y )Df, ξ

)
= 0.(7.7)

Again, using (2.3) in (7.7) we get

g
(
R(ξ, Y )Df, ξ

)
= α2

[
η(Y )η(Df)− g(Y,Df)

]
.(7.8)

From (7.7) and (7.8) we have

α2
[
η(Y )η(Df)− g(Y,Df)

]
= 0.(7.9)

Now we suppose that α 6= 0, i.e., the given manifold is an α-Kenmotsu manifold.
Equation (7.9) yields

η(Y )η(Df) = g(Y,Df).(7.10)

From (7.10) we obtain

Df = (ξf)ξ.(7.11)

Using (7.11) in (7.2)

Y (ξf)ξ + α(ξf)
[
Y − η(Y )ξ

]
= QY + λY.(7.12)

Taking the inner product of (7.12) with X, we obtain

Y (ξf)η(X) + α(ξf)
[
g(X,Y )− η(X)η(Y )

]
= S(X,Y ) + λg(X,Y ).(7.13)

Putting X = ξ and using (2.10) in (7.13) we get

Y (ξf) = S(ξ, Y ) + λη(Y ) = 0.(7.14)
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From (7.14) it is clear that ξf is constant. Thus (7.13) in (7.14) yields

α(ξf)
[
g(X,Y )− η(X)η(Y )

]
= S(X,Y ) + λg(X,Y ),

or

S(X,Y ) =
[
α(ξf)− λ

]
g(X,Y )− α(ξf)η(X)η(Y ).(7.15)

Hence we can state the following:

Theorem 7.1. If an α-cosymplectic manifold, n ≥ 2, admitting a gradient Ricci
soliton is an α-Ketmotsu manifold, then it is an η-Einstein manifold.

By virtue of Lemma 2.2 we have

Corollary 7.1. If a gradient Ricci soliton in an α-cosymplectic manifold, n ≥ 2,
is expanding, then it is an η-Einstein manifold.
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PROJECTIVE CHANGE BETWEEN RANDERS METRIC AND
EXPONENTIAL (α, β)-METRIC

Ganga Prasad Yadav and Paras Nath Pandey

Abstract. In this paper, we find conditions to characterize the projective change be-

tween two (α, β)-metrics, such as exponential (α, β)-metric, L = αe
β
α and Randers

metric L = α + β on a manifold with dim n > 2, where α and α are two Riemannian
metrics, β and β are two non-zero 1-forms. We also discuss special curvature properties
of two classes of (α, β)-metrics.

Keywords: Finsler space, (α, β)-metric, projective change, Randers metric, Berwlad,
Riemannian metric.

1. Introduction

M. Matsumoto [10] introduced the concept of (α, β)-metric on a differentiable
manifold with local coordinates xi, where α2 = aij(x)yiyj is a Riemannian metric
and β = bi(x)yi is a 1-form on Mn. M. Hashiguchi and Y. Ichijyo [6] studied some
special (α, β)-metrics and obtained interesting results. In the projective Finsler
geometry, there is a remarkable theorem called Rapcsak [14] theorem, which plays
an important role in the projective geometry of Finsler spaces. In fact, this theorem
gives the necessary and sufficient condition for a Finsler space to be projective to
another Finsler space.

The projective change between two Finsler spaces has been studied by many
authors ([2], [5], [8], [11], [12], [16]). In 1994, S. Bacso and M. Matsumoto [2]
studied the projective change between Finsler spaces with (α, β)-metric. In 2008,
H. S. Park and Y. Lee [11] studied the projective changes between a Finsler space
with (α, β)-metric and the associated Riemannian metric. The authors Z. Shen and
Civi Yildirim [16] studied a class of projectively flat metrics with a constant flag
curvature. In 2009, Ningwei Cui and Yi-Bing Shen [5] studied projective change
between two classes of (α, β)-metrics. Also the author N. Cui [4] studied the S-
curvature of some (α, β)-metrics. In this paper, we find conditions to characterize
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the projective change between two (α, β)-metrics, such as the exponential (α, β)-

metric, L = αe
β
α and Randers metric L = α + β on a manifold with dim n > 2,

where α and α are two Riemannian metrics, β and β are two non-zero 1-forms. In
addition, we discuss special curvature properties of two classes of (α, β)-metrics.

2. Preliminaries

The terminology and notation are referred to ([15], [9], [1]). Let Mn be a real
smooth manifold of dimension n and let Fn = (Mn, L) be a Finsler space on the
differentiable manifold Mn endowed with the fundamental function L(x, y). We use
the following notation:

(2.1)



gij = 1
2 ∂̇i∂̇jL

2,

Cijk = 1
2 ∂̇kgij ,

hij = gij − lilj ,
γijk = 1

2g
ir(∂jgrk + ∂kgrj − ∂rgjk),

Gi = 1
2γ

i
jky

jyk, Gij = ∂̇jG
i,

Gijk = ∂̇kG
i
j , G

i
jkl = ∂̇lG

i
jk,

where ∂̇i ≡ ∂
∂yi .

Definition 2.1. A change L → L of a Finsler metric on the same underlying
manifold M is called projective change if any geodesic in (M,L) remains to be
geodesic in (M,L) and vice versa.

A Finsler metric is projectively related to another metric if they have the same
geodesic as point sets. In Riemannian geometry, two Riemannian metrics α and α
are projectively related if and only if their spray coefficients have the relation [5]

(2.2) Giα = Giα + λxky
kyi,

where λ = λ(x) is a scalar function on the based manifold.

Two Finsler metric F and F are projectively related if and only if their spray
coefficients have the relation [5]

(2.3) Gi = G
i
+ P (y)yi,

where P (y) is a scalar function and homogeneous of degree one in yi.

Definition 2.2. A Finsler metric is called a projectively flat metric if it is projec-
tively related to a locally Minkowskian metric.

For a given Finsler metric L = L(x, y), the geodesic of L is given by

(2.4)
d2xi

dt2
+ 2Gi(x,

dx

dt
) = 0,
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where Gi = Gi(x, y) are called geodesic coefficients, which are given by

(2.5) Gi =
gil

4

{
[L2]xmyly

m − [L2]xl

}
.

Let φ = φ(s), |s| < b0, be a positive C∞ satisfying the following

(2.6) φ(s)− sφ′(s) + (b2 − s2)φ′′(s) > 0, (|s| ≤ b < b0).

Let α =
√
aij(x)yiyj be a Riemannian metric, β = biy

i is a 1-form satisfying

‖βx‖α < b0 for all x ∈ M , then L = αφ(s), s = β
α , is called an (regular) (α, β)-

metric. In this case, the fundamental form of the metric tensor induced by L is
positive definite. Let ∇β = bi|jdx

i ⊗ dxj be the covariant derivative of β with
respect to α.
Denote

rij =
1

2
(bi|j + bj|i) sij =

1

2
(bi|j − bj|i).

β is closed if and only if sij = 0 [17]. Let sj = bisij , s
i
j = ailslj , s0 = siy

i, si0 = sijy
j

and r00 = rijy
iyj .

The relation between the geodesic coefficient Gi of L and the geodesic coefficient
Giα of α is given by

(2.7) Gi = Giα + αQsi0 + {r00 − 2Qαs0}{ψbi + Θα−1yi},

where

Θ =
φφ′ − s(φφ′′ + φ′φ′)

2φ((φ− sφ′) + (b2 − s2)φ′′)
,

Q =
φ′

φ− sφ′
,

ψ =
1

2

φ′′

(φ− sφ′) + (b2 − s2)φ′′
.

Definition 2.3. [5] Let

(2.8) Di
jkl =

∂3

∂yj∂yk∂yl

(
Gi − 1

n+ 1

∂Gm

∂ym
yi
)
,

where Gi is the spray coefficient of L. The tensor D = Di
jkl∂i ⊗ dxj ⊗ dxk ⊗ dxl is

called the Douglas tensor. A Finsler metric is called a Douglas metric if the Douglas
tensor vanishes.

We know that the Douglas tensor is a projective invariant [13]. Note that the
spray coefficients of a Riemannian metric are quadratic forms and one can see that
the Douglas tensor vanishes (2.8). This shows that the Douglas tensor is a non-
Riemannian quantity. In what follows, we use quantities with a bar to denote the
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corresponding quantities of metric L. We compute the Douglas tensor of a general
(α, β)-metric. Let

(2.9) Ĝi = Giα + αQsi0 + ψ{r00 − 2Qαs0}bi.

Using (2.9) in (2.7), we have

(2.10) Gi = Ĝi + Θ{r00 − 2Qαs0}α−1yi.

Clearly, Gi and Ĝi are projective equivalents according to (2.3). They have the
same Douglas tensor. Let

(2.11) T i = αQsi0 + ψ{r00 − 2Qαs0}bi.

Then Ĝi = Giα + T i, thus

Di
jkl = D̂i

jkl

=
∂3

∂yj∂yk∂yl

(
Giα −

1

n+ 1

∂Gmα
∂ym

yi + T i − 1

n+ 1

∂Tm

∂ym
yi
)

=
∂3

∂yj∂yk∂yl

(
T i − 1

n+ 1

∂Tm

∂ym
yi
)
.(2.12)

To simplify (2.12), we use the following identities

αyk = α−1yk, syk = α−2(bkα− syk),

where yi = aily
l, αyk = ∂α

∂yk
. Then

[αQsm0 ]ym = α−1ymQs
m
0 + α−2Q′[bmα

2 − βym]sm0

= Q′s0

and

ψ(r00 − 2Qαs0)bm]ym = ψ′α−1(b2 − s2)[r00 − 2Qαs0]

+ 2ψ[r0 −Q′(b2 − s2)s0 −Qss0],

where rj = birij and r0 = riy
i. Thus from (2.11), we get

Tmym = Q′s0 + ψ′α−1(b2 − s2)[r00 − 2Qαs0]

+ 2ψ[r0 −Q′(b2 − s2)s0 −Qss0].(2.13)

We assume that the (α, β)-metrics L and L have the same Douglas tensor, i.e.,

Di
jkl = D̂i

jkl. Thus from (2.8) and (2.12), we get

∂3

∂yj∂yk∂yl

(
T i − T i − 1

n+ 1
(Tmym − T

m

ym)yi
)

= 0.
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Then there exists a class of scalar functions Hi
jk = Hi

jk(x), such that

(2.14) Hi
00 = T i − T i − 1

n+ 1
(Tmym − T

m

ym)yi,

where Hi
00 = Hi

jky
jyk.

Theorem 2.1. [4] For the special form of (α, β)-metric, L = α + εβ + k
(
β2

α

)
,

where ε, k are non-zero constant, the following are equivalent:

• L has an isotropic S-curvature, i.e., S = (n+1)c(x)L for some scalar function
c(x) on M .

• L has an isotropic mean Berwald curvature.

• β is a killing one form of constant length with respect to α. This is equivalent
to r00 = s0 = 0.

• L has a vanished S-curvature, i.e., S = 0.

• L is a weak Berwald metric, i.e., E = 0.

3. Projective Change between Randers Metric and Exponential
(α, β)-metric

In this section, we find the projective relation between two (α, β)-metrics on the

same underlying manifold M of dimension n > 2. For (α, β)-metric L = αe
β
α , one

can prove by (2.6) that L is a regular Finsler metric if and only if 1-form β satisfies
the condition ‖βx‖α < 1 for any x ∈M . The geodesic coefficient are given by (2.7)
with

(3.1)


Θ = 1−2s

2(1+b2−s−s2) ,

Q = 1
1−s ,

ψ = 1
2(1+b2−s−s2) .

Using (3.1) in (2.7), we get

Gi = Giα +
α2

α− β
si0 +

1

2(α2 − β2 + α2b2 − αβ)

[
r00 −

2α2

α− β
s0

]
× [α2bi + (α− 2β)yi].(3.2)

For the Randers metric L = α + β, one can also prove by (2.6) that L is a regular
Finsler metric if and only if ‖βx‖α < 1 for any x ∈M . The geodesic coefficients are
given by (2.7) with

(3.3) Θ =
1

2(1 + s)
, Q = 1, ψ = 0.

First, we prove the following lemma:
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Lemma 3.1. Let L = αe
β
α and L = α+β be two (α, β)-metrics on a manifold M

with dimension n > 2. Then they have the same Douglas tensor if and only if both
metrics are Douglas metrics.

Proof. First, we prove the sufficient condition. Let L and L be Douglas metrics and
the corresponding Douglas tensor Di

jkl and D̂i
jkl. Then by the definition of Douglas

metric, we have Di
jkl = 0 and D̂i

jkl = 0, that is, both metrics have the same Douglas

tensor. Next, we prove the necessary condition. If L and L have the same Douglas
tensor, then (2.14) holds.
Using (2.13), (3.1) and (3.3) in (2.14), we have

(3.4) Hi
00 =

Aiα7 +Biα6 + Ciα5 +Diα4 + Eiα3 + F iα2

Kα6 + Uα5 +Mα4 +Nα3 + V α2 +R
− α si0,

where

Ai = (1 + b2)[2si0(1 + b2)− 2s0],

Bi = (1 + b2)[r00b
i − 2β(3 + b2)si0 + 2βs0b

i

− 2λss0(1 + s)yi − 2λr0y
i]− 2λs0y

i,

Ci = β(3 + 2b2)(2λr0y
i − r00bi)− 2λβss0(2 + b2)yi

+ 4λβs0(1 + b2)yi + 2β2(1− 2b2)si0 − λb2r00yi,
Di = 2β3(3 + 2b2)si0 + r00β

2(2 + b2)bi

+ 2λβ(βs0 + 2βs2s0 − βb2r0 − 2βr0 − s2r00)yi,

Ei = β2r00[βbi + λ(3b2 − 4s2 − 2βb2)yi]

+ 2λβ3(ss0 − r0 − 2s0)yi − 2β4si0,

F i = 2λβ3(βr0 − βs0 + s2r00)yi

− 2β5si0 − β4r00b
i,

λ =
1

n+ 1

and

K = 2(1 + b2)2, U = 4β(b4 − 3b2 − 2), M = 2β2(b2 + 2)2,

N = 4β3(1 + b2), V = −4β4(2 + b2), R = 2β6.

Then (3.4) is equivalent to

Aiα7 +Biα6 + Ciα5 +Diα4 + Eiα3 + F iα2

= (Kα6 + Uα5 +Mα4 +Nα3 + V α2 +R)(Hi
00 + α si0).(3.5)

Replacing yi in (3.5) by −yi, we have

− Aiα7 +Biα6 − Ciα5 +Diα4 − Eiα3 + F iα2

= (Kα6 − Uα5 +Mα4 −Nα3 + V α2 +R)(Hi
00 − α si0).(3.6)



Projective Change Between Randers Metric and Exponential (α, β)-metric 395

Subtracting (3.6) from (3.5), we get

Aiα7 + Ciα5 + Eiα3 = (Uα5 +Nα3)Hi
00

+ (Kα6 +Mα4 + V α2 +R)α si0.(3.7)

From (3.7), we have

α2[Aiα5 + Ciα3 + Eiα− (Uα3 +Nα)Hi
00

−α si0(Kα4 +Mα2 + V )] = Rα si0.(3.8)

From (3.8), Rα si0 has the factor α2, i.e., the term Rα si0 = 2β6 α si0 has the factor
α2. We can study two cases for Riemannian metric.
Case (i): If α 6= µ(x)α, then Rsi0 = 2β6si0 has the factor α2. Note that β2 has no
factor α2. Then the only possibility is that βsi0 has the factor α2. Then for each i
there exists a scalar function ηi = ηi(x) such that βsi0 = ηiα2 which is equivalent
to bjs

i
k + bks

i
j = 2ηiαjk. When n > 2 and we assume that ηi 6= 0, then

2 ≥ rank(bjs
i
k) + rank(bks

i
j)

> rank(bjs
i
k + bks

i
j)

= rank(2ηiαjk) > 2,

which is impossible unless ηi = 0. Then βsi0 = 0. Since β 6= 0, we have si0 = 0,
which says that β is closed.
Case (ii): If α = µ(x)α, then (3.7), becomes

Rµ(x)si0 = α2[Aiα4 + Ciα2 + Ei − (Uα2 +N)Hi
00

− µ(x)si0(Kα4 +Mα2 + V )].(3.9)

From (3.9), we can see that µ(x)Rsi0 has the factor α2. i.e., µ(x)Rsi0 = 2µ(x)si0β
6

has the factor α2. Note that µ(x) 6= 0 for all x ∈M and β2 has no factor α2. The
only possibility is that βsi0 has the factor α2. As the similar reason in case (i), we
have si0 = 0, when n > 2, which says that β is closed.

M. Hashiguchi [7] proved that the Randers metric L = α+β is a Douglas metric
if and only if β is closed. Thus L is a Douglas metric. Since L is projectively related
to L, then both L and L are Douglas metrics.

Theorem 3.1. The Finsler metric L = αe
β
α is projectively related to L = α + β

if and only if the following conditions are satisfied

(3.10)


Giα = Giα + θyi − τξα2bi,

bi|j = τ [(1 + 2b2)aij − 3bibj ],

dβ = 0,

where bi = aijbj, b = ‖β‖α, bi|j denotes the coefficient of the covariant derivatives
of β with respect to α, τ = τ(x) is a scalar function and θ = θiy

i is a 1-form on a
manifold M with dimension n > 2.
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Proof. First, we prove the necessary condition. Since the Douglas tensor is invariant
under projective changes between two Finsler metrics, if L is projectively related
to L, then they have the same Douglas tensor. According to Lemma 3.1, we obtain
that both L and L are Douglas metrics.

We know that the Randers metric L = α+ β is a Douglas metric if and only if
β is closed, i.e., dβ = 0.

The Finsler metric L = αe
β
α is a Douglas metric if and only if

(3.11) bi|j = τ [(1 + 2b2)− 3bibj ],

for some scalar function τ = τ(x) [3], where bi|j denotes the coefficient of the
covariant derivatives of β = biy

i with respect to α. In this case, β is closed. Since
β is closed, sij = 0⇒ bi|j = bj|i. Thus si0 = 0 and s0 = 0.
By using (3.11), we have r00 = τ [(1 + 2b2)α2− 3β2]. Substituting all these in (3.2),
we get

(3.12) Gi = Giα + τ
[(1 + 2b2)(α3 − 2α2β)− 3αβ2 + 6β3]

2(α2 − β2 + b2α2 − αβ)
yi + τξα2bi,

where ξ = τ [(1+2b2)α2−3β2]bi

2(α2−β2+b2α2−αβ) .

Since L is projectively related to L, this is a Randers change between L and α.
Noticing that β is closed, then L is projectively related to α. Thus, there is a scalar
function P = P (y) on TM − {0} such that

(3.13) Gi = Giα + Pyi.

From (3.12) and (3.13), we have

(3.14)

[
P +

3αβ2 − 6β3 − (1 + 2b2)(α3 − 3α2β)

2(α2 − β2 + b2α2 − αβ)

]
yi = Giα −Giα + τξα2bi.

Note that the RHS of the above equation is a quadratic form. Then there must be
one form θ = θiy

i on M , such that

P +
3αβ2 − 6β3 − (1 + 2b2)()α3 − 3α2β

2(α2 − β2 + b2α2 − αβ)
= θ.

Thus (3.14) becomes

(3.15) Giα = Giα + θyi − τξα2bi.

Equations (3.11) and (3.12) together with (3.15) complete the proof of the necessity.
Since β is closed, it suffices to prove that L is projectively related to α. From (3.12)
and (3.15), we have

Gi = Giα +

[
θ +

τ [(1 + 2b2)(α3 − 3α2β)− 3αβ2 + 6β3]

2(α2 − β2 + b2α2 − αβ)

]
yi,

that is, L is projectively related to α
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From the above theorem, we get the following corollaries.

Corollary 3.1. The Finsler metric L = αe
β
α is projectively related to L = α + β

if and only if they are Douglas metrics and the spray coefficients of α and α have
the following relation

Giα = Giα + θyi − τξα2bi,

where bi = aijbj, τ = τ(x) is a scalar function and θ = θiy
i is one form on a

manifold M with dimension n ≥ 2.

Further, we assume that the Randers metric L = α + β is locally Minkowskian,
where α is a Euclidean metric and β = biy

i is one form with bi =constant. Then
(3.10) can be written as

(3.16)

{
Giα = θyi − τξα2bi,

bi|j = τ [(1 + 2b2)aij − 3bibj ].

Thus, we state

Corollary 3.2. The Finsler metric αe
β
α is projectively related to L = α+ β if and

only if L is projectively flat, that is, L is projectively flat if and only if (3.16) holds.

4. Special Curvature Properties of two (α, β)-metrics

We know that the Berwald curvature tensor of a Finsler metric L is defined by
[9]

(4.1) G = Gijkldx
j ⊗ ∂i ⊗ dxk ⊗ dxl,

where Gijkl = [Gi]yjykyl and Gi are the spray coefficients of L. The mean Berwald
curvature tensor is defined by

(4.2) E = Eijdx
i ⊗ dxj ,

where Eij = 1
2G

m
mij .

A Finsler space is said to be of the isotropic mean Berwald curvature if

(4.3) Eij =
n+ 1

2
c(x)Lyiyj ,

where c(x) is scalar function on M .

In this section, we assume that (α, β)-metric L = αe
β
α has some special curvature

properties.

Theorem 4.1. The Finsler metric L = αe
β
α having an isotropic S-curvature or

isotropic mean Berwald curvature is projectively related to L = α+ β if and only if
the following conditions hold:
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• α is projectively related to α,

• β is parallel with respect to α, i.e., bi|j = 0,

• β is closed, i.e., dβ = 0,

where bi|j denotes the coefficient of the covariant derivative of β with respect to α.

Proof. The sufficiency is obvious from Theorem (3.2). For the necessary condition,
from Theorem 3.1, if L is projectively related to L, then

bi|j = τ [(1 + 2b2)aij − 3bibj ],

where τ = τ(x) is scalar function. Transvecting the above equation with yi and yj ,
we have

(4.4) r00 = τ [(1 + 2b2)α2 − 3β2].

From Theorem 2.4, if L has an isotropic S-curvature or an equivalently isotropic
mean Berwald curvature, then r00 = 0. If τ 6= 0, then (4.4) gives

(4.5) (1 + 2b2)α2 − 3β2 = 0,

which is equivalent to

(4.6) (1 + 2b2)aij − 3bibj = 0.

Transvecting (4.6) with ail, we get

(4.7) (1 + 2b2)δlj − 3blbj = 0.

Contracting l and j in (4.7), we have n+ (2n− 3)b2 = 0, which is impossible. Thus
τ = 0. Substituting in Theorem 3.2, we complete the proof.
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SOME RESULTS ON GENERALIZED (k, µ)-PARACONTACT
METRIC MANIFOLDS

Sourav Makhal

Abstract. The aim of this paper is to study the Codazzi type of the Ricci tensor in
generalized (k, µ)-paracontact metric manifolds. We also study the cyclic parallel Ricci
tensor in generalized (k, µ)-paracontact metric manifolds. Further, we characterize
generalized (k, µ)-paracontact metric manifolds whose structure tensor φ is η-parallel.
Finally, we investigate locally φ-Ricci symmetric generalized (k, µ)-paracontact metric
manifolds.

Keywords: Generalized (k, µ)-paracontact metric manifold, Codazzi type of tensor,
cyclic parallel Ricci tensor, η-parallel φ-tensor, locally φ-Ricci symmetric.

1. Introduction

In 1985, Kaneyuki and Williams [8] introduced the idea of paracontact geometry.
A systematic investigation on paracontact metric manifolds was done by Zamkovoy
[12]. Recently, Cappelletti-Montano et al [5] introduced a new type of paracontact
geometry, the so-called paracontact metric (k, µ) space, where k and µ are constants.
This is known [2] about the contact case k ≤ 1, but in the paracontact case there is
no restriction of k. Recently, three-dimensional generalized (k, µ)-paracontact met-
ric manifolds were studied by Kupeli Erken et al [9, 10].
Zamkovoy [12] studied paracontact metric manifolds and some remarkable sub-
classes named para-Sasakian manifolds. In particular, in recent years, many authors
have pointed to the importance of paracontact geometry and, in particular, para-
Sasakian geometry. Several papers have established relationships with the theory of
para-Kahler manifolds and its role in pseudo-Riemannian geometry and mathemat-
ical physics. A normal paracontact metric manifold is a para-Sasakian manifold.
An almost paracontact metric manifold is a para-sasakian manifold if and only if
[12]

(1.1) (∇Xφ)Y = −g(X,Y )ξ + η(Y )X.
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A. Gray [7] introduced the notion of cyclic parallel Ricci tensor and Codazzi
type of Ricci tensor. The Ricci tensor S of type (0,2) is said to be cyclic parallel if
it is non-zero and satisfies the condition

(1.2) (∇ZS)(X,Y ) + (∇XS)(Y, Z) + (∇Y S)(Z,X) = 0.

Again, a Riemannian or a pseudo-Riemannian manifold is said to be of Codazzi
type if its Ricci tensors of type (0,2) is non-zero and satisfy the following condition

(1.3) (∇XS)(Y, Z) = (∇Y S)(X,Z),

for all vector fields X, Y , Z. On a contact metric manifold there is an associated
CR-structure which is integrable if and only if the structure tensor φ is η-parallel,
that is,

g((∇Xφ)Y, Z) = 0,

for all vector fields X,Y, Z in the contact distribution D(η = 0). In 2005, Boeckx
and Cho [3] considered a milder condition that h is η-parallel, that is,

g((∇Xh)Y, Z) = 0,

for all vector fields X, Y , Z in the contact distribution D.

The paper is organized in the following way:
In Section 2, we discuss some basic results of paracontact metric manifolds. Further,
we characterize the Codazzi type of the Ricci tensor in generalized (k, µ)-paracontact
metric manifolds. In Section 4, we investigate the cyclic parallel Ricci tensor in gen-
eralized (k, µ)-paracontact metric manifolds. In the next section we study η-parallel
φ-tensor in a generalized (k, µ)-paracontact metric manifold. Finally, we investigate
locally φ-Ricci symmetric generalized (k, µ)-paracontact metric manifolds.

2. Preliminaries

An odd dimensional smooth manifold Mn(n > 1) is said to be an almost para-
contact manifold [8] if it carries a (1, 1)-tensor φ, a vector field ξ and a 1-form η
satisfying :
(i) φ2X = X − η(X)ξ, for all X ∈ χ(M),
(ii)η(ξ) = 1, φ(ξ) = 0, η ◦ φ = 0,
(iii) the tensor field φ induces an almost paracomplex structure on each fiber of
D = ker(η), that is, the eigen distributions D+

φ and D−
φ of φ corresponding to the

eigenvalues 1 and −1, respectively, have an equal dimension n.

An almost paracontact structure is said to be normal [8] if and only if the (1, 2)
type torsion tensor Nφ = [φ, φ]− 2dη ⊗ ξ vanishes identically, where [φ, φ](X,Y ) =
φ2[X,Y ] + [φX, φY ]− φ[φX, Y ]− φ[X,φY ]. A para-Sasakian manifold is a normal
paraconatact metric manifold. If an almost paracontact manifold admits a pseudo-
Riemannian metric g such that

(2.1) g(φX, φY ) = −g(X,Y ) + η(X)η(Y ),
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for X, Y ∈ χ(M), then we say that (M,φ, ξ, η, g) is an almost paracontact metric
manifold. Any such pseudo-Riemannian metric is of signature (n+1, n). An almost
paracontact structure is said to be a paracontact structure if g(X,φY ) = dη(X,Y )
[12]. In a paracontact metric manifold we define (1, 1)-type tensor fields h by
h = 1

2£ξφ, where £ξφ is the Lie derivative of φ along the vector field ξ. Then
we observe that h is symmetric and anti-commutes with φ. Also h satisfies the
following conditions [12]:

(2.2) hξ = 0, tr(h) = tr(φh) = 0,

(2.3) ∇Xξ = −φX + φhX,

for all X ∈ χ(M), where ∇ denotes the Levi-Civita connection of the pseudo-
Riemannian manifold.
Moreover, h vanishes identically if and only if ξ is a Killing vector field. In this
case, (M,φ, ξ, η, g) is said to be a K-paracontact manifold [11].

Generalized (k, µ)-paracontact metric manifolds were studied by Erken et al.
[10] and Erken [9]. A generalized (k, µ)-paracontact metric manifold means a three-
dimensional paracontact metric manifold which satisfies the curvature condition

(2.4) R(X,Y )ξ = k(η(Y )X − η(X)Y ) + µ(η(Y )hX − η(X)hY ),

where k and µ are smooth functions.

In a generalized (k 6= −1, µ)-paracontact manifold the following results hold
[4, 5, 9, 10]

(2.5) h2 = (1 + k)φ2,

(2.6) ξ(k) = 0,

(2.7) Qξ = 2kξ,

(2.8) (∇ξh)(Y ) = µh(φY ),

(∇Xh)Y − (∇Y h)X = −(1 + k)[2g(X,φY )ξ + η(X)φY − η(Y )φX]

+(1− µ)(η(X)φhY − η(Y )φhX),(2.9)

(2.10) (∇Xφ)Y = −g(X − hX, Y )ξ + η(Y )(X − hX), for k 6= −1

(2.11) h gradµ = gradk,
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(2.12) (∇Xη)(Y ) = −g(φX, Y ) + g(φhX, Y ),

(2.13) QX = (
r

2
− k)X + (−r

2
+ 3k)η(X)ξ + µhX, k 6= −1,

where X is any vector fields on M , Q is the Ricci operator of M , r denotes the
scalar curvature of M .
From ( 2.13), we have

(2.14) S(X,Y ) = (
r

2
− k)g(X,Y ) + (−r

2
+ 3k)η(X)η(Y ) + µg(hX, Y ), k 6= −1.

3. The Codazzi type of the Ricci tensor in generalized
(k, µ)-paracontact metric manifolds

In this section we characterize generalized (k, µ)-paracontact metric manifolds
whose Ricci tensor is of Codazzi type.
Then we have

(3.1) (∇XS)(Y,Z) = (∇Y S)(X,Z),

which implies r =constant.

Now from (2.14) we have

(∇XS)(Y, Z) = { (Xr)

2
− (Xk)}g(Y,Z) + {− (Xr)

2
+ 3(Xk)}η(Y )η(Z)

+{−r
2

+ 3k}{(∇Xη)(Y )η(Z) + η(Y )(∇Xη)(Z)}+ (Xµ)g(hY, Z)

+µg((∇Xh)(Y ), Z)(3.2)

and

(∇Y S)(X,Z) = { (Y r)

2
− (Y k)}g(X,Z) + {− (Y r)

2
+ 3(Y k)}η(X)η(Z)

+{−r
2

+ 3k}{(∇Y η)(X)η(Z) + η(X)(∇Y η)(Z)}+ (Y µ)g(hX,Z)

+µg((∇Y h)(X), Z).(3.3)

Using (3.2) and (3.3) in (3.1) yields

{ (Xr)

2
− (Xk)}g(Y,Z) + {− (Xr)

2
+ 3(Xk)}η(Y )η(Z)

+{−r
2

+ 3k}{(∇Xη)(Y )η(Z) + η(Y )(∇Xη)(Z)}+ (Xµ)g(hY, Z)

+µg((∇Xh)(Y ), Z) = {Y r
2
− Y k}g(X,Z)

+{− (Y r)

2
+ 3(Y k)}η(X)η(Z) + {−r

2
+ 3k}{(∇Y η)(X)η(Z)

+η(X)(∇Y η))(Z)}+ (Y µ)g(hX,Z) + µg((∇Y h)(X), Z).(3.4)
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Substituting Z = ξ in (3.4) gives

{ (Xr)

2
− (Xk)}η(Y ) + {− (Xr)

2
+ 3(Xk)}η(Y ) + {−r

2
+ 3k}{(∇Xη)(Y )

+η(Y )(∇Xη))(ξ)}+ µη((∇Xh)(Y )) = {Y r
2
− Y k}η(X)

+{− (Y r)

2
+ 3(Y k)}η(X) + {−r

2
+ 3k}{(∇Y η)(X) + η(X)(∇Y η))(ξ)}

+µη((∇Y h)(X)).(3.5)

Putting X = ξ in (3.5) and using r =constant, we obtain

(3.6) µη((∇ξh)(Y )) = 2(Y k) + µη((∇Y h)(ξ)) = 0.

Applying (2.8) in (3.6), we have (Y k) = 0, which implies k =constant. Hence from
(2.11), we get either h = 0 or µ =constant. Thus, we can state the following

Theorem 3.1. If in a generalized (k, µ)-paracontact metric manifold with k 6= −1
the Ricci tensor is of Codazzi type, then the manifold is either a (k, µ)-paracontact
metric manifold or a K-paracontact manifold.

4. The cyclic parallel Ricci tensor in generalized (k, µ)-paracontact
metric manifolds

This section is devoted to the study of the cyclic parallel Ricci tensor in gener-
alized (k, µ)-paracontact metric manifolds
If the Ricci tensors is cyclic parallel, then we have

(4.1) (∇ZS)(X,Y ) + (∇XS)(Y, Z) + (∇Y S)(Z,X) = 0,

which implies r = constant.

Now from the equation (2.14), we obtain

{ (Zr)

2
− (Zk)}g(X,Y ) + {− (Zr)

2
+ 3(Zk)}η(X)η(Y )

+{−r
2

+ 3k}{(∇Zη)(X)η(Y ) + η(X)(∇Zη)(Y )}+ (Zµ)g(hX, Y )

+µg((∇Zh)(X)Y ) + {Xr
2
−Xk}g(Y,Z) + {− (Xr)

2
+ 3(Xk)}η(Y )η(Z)

+{−r
2

+ 3k}{(∇Xη)(Y )η(Z) + η(Y )(∇Xη)(Z)}+ (Xµ)g(hY,Z)

+µg((∇Xh)(Y ), Z) + {(Y r)− (Y k)}g(Z,X) + {− (Y r)

2
+ 3(Y k)}η(Z)η(X)

+{−r
2

+ 3k}{(∇Y η)(Z)η(X) + η(Z)(∇Y η)(X)}+ (Y µ)g(hZ,X)

+µg((∇Y h)(Z), X) = 0.(4.2)
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Substituting X = Y = ξ and applying (2.8) in (4.2) yields

(4.3) 2(Zk) + (−r
2

+ 3k)(∇ξη)(Z) + (−r
2

+ 3k)(∇ξη)(Z) = 0.

Now using (2.12) in (4.3), we have

(4.4) (Zk) = 0.

Therefore, k =constant. Hence from (2.11), we have either h = 0 or µ =constant.
This leads to the following:

Theorem 4.1. If in a generalized (k, µ)-paracontact metric manifold with k 6= −1
the Ricci tensor is cyclic parallel, then the manifold is either a (k, µ)-paracontact
metric manifold or a K-paracontact manifold.

5. The η-parallel φ-tensor in generalized (k, µ)-paracontact metric
manifolds

In this section we study the η-parallel φ-tensor in generalized (k, µ)-paracontact
metric manifolds
If the (1, 1) tensor φ is η-parallel, then we have [1]

(5.1) g((∇Xφ)Y, Z) = 0.

From (2.10) and (5.1), we get

(5.2) −g(X,Y )η(Z) + g(hX, Y )η(Z) + g(X,Z)η(Y )− g(hX,Z)η(Y ) = 0.

Putting Z = ξ in (5.2) yields

(5.3) −g(X,Y ) + g(hX, Y ) + η(X)η(Y ) = 0.

Substituting X = hX in (5.3), we have

(5.4) −g(hX, Y )− (k + 1)g(X,Y ) + (k + 1)η(X)η(Y ) = 0.

Adding (5.3) and (5.4), we obtain

(5.5) (k + 2){g(X,Y )− η(X)η(Y )} = 0.

Thus we have k = −2, that is, k = constant. Using (2.11) we have h gradµ = 0.
Therefore, either h = 0 or µ =constant.
Thus we can state the following:

Theorem 5.1. If in a generalized (k, µ)-paracontact metric manifold with k 6= −1,
the tensor φ is η-parallel, then the manifold is either a (k, µ)-paracontact metric
manifold or a K-paracontact manifold.
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6. Locally φ-Ricci symmetric generalized (k, µ)-paracontact manifolds

A paracontact metric manifold is said to be locally φ-Ricci symmetric [6] if it
satisfies

(6.1) φ2(∇XQ)(Y ) = 0,

for all vector fields X, Y orthogonal to ξ, where Q is the Ricci operator defined by
g(QX,Y ) = S(X,Y ).

Taking the covariant derivative of (2.13) with respect to Y and applying φ2 we
get

(6.2) −{ (Y r)

2
− Y k}X − (Y µ)hX + µφ2((∇Y h)X) = 0.

Interchanging X and Y in (6.2), we have

(6.3) −{ (Xr)

2
−Xk}Y − (Xµ)hY + µφ2((∇Xh)Y ) = 0.

Subtracting (6.3) from (6.2), we obtain

{ (Y r)

2
− Y k}X − { (Xr)

2
−Xk}Y + (Y µ)hX − (Xµ)hY

+µφ2((∇XhY )− (∇Y hX)) = 0.(6.4)

Applying (2.9) in (6.4), we get

(6.5) { (Y r)

2
− Y k}X − { (Xr)

2
−Xk}Y + (Y µ)hX − (Xµ)hY = 0.

Substituting X = ξ in (6.5) yields

(6.6) −1

2
(ξr)Y − (ξµ)hY + {Y r

2
− Y k}ξ = 0.

Taking the inner product with Z from (6.6), we have

(6.7) −1

2
(ξr)g(Y, Z)− (ξµ)g(hY, Z) = 0.

Let {ei}, i = 1, 2, 3 be a local orthonormal basis in the tangent space TPM at each
point p ∈ M . Substituting Y = Z = ei in (6.7) and summing over i = 1 to 3, we
infer that ξr = 0, since k 6= −1.
This leads to the following:

Theorem 6.1. If a generalized (k, µ)-paracontact metric manifold with k 6= −1,
is locally φ-Ricci symmetric, then the characteristic vector field ξ leaves the scalar
curvature invariant.
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ON TZITZEICA CURVES IN EUCLIDEAN 3-SPACE E3

Bengü Bayram, Emrah Tunç, Kadri Arslan and Günay Öztürk

Abstract. In this study, we consider Tzitzeica curves (Tz-curves) in a Euclidean 3-
space E3. We characterize such curves according to their curvatures. We show that
there is no Tz-curve with constant curvatures (W-curves). We consider Salkowski (TC-
curve) and anti-Salkowski curves.
Keywords: Tz-curves, W-curves, TC-curves

1. Introduction

Gheorgha Tzitzeica, a Romanian mathematician (1872-1939), introduced a class
of curves, nowadays called Tzitzeica curves, and a class of surfaces of the Euclidean
3-space called Tzitzeica surfaces. A Tzitzeica curve in E3 is a spatial curve x = x(s)
for which the ratio of its torsion κ2 and the square of the distance dosc from the
origin to the osculating plane at an arbitrary point x(s) of the curve is constant,
i.e.,

(1.1)
κ2
d2osc

= a

where dosc = 〈N2, x〉 and a 6= 0 is a real constant, N2 is the binormal vector of x.

In [3] the authors gave the connections between the Tzitzeica curve and the
Tzitzeica surface in a Minkowski 3-space and the original ones from the Euclidean
3-space. In [7] the authors determined the elliptic and hyperbolic cylindrical curves
satisfying Tzitzeica condition in a Euclidean space. In [12], the elliptic cylindrical
curves verifying Tzitzeica condition were adapted to the Minkowski 3-space. In [2],
the authors gave the necessary and sufficient condition for a space curve to become
a Tzitzeica curve. The new classes of symmetry reductions for the Tzitzeica curve
equation were determined. In [1], the authors were interested in the curves of
Tzitzeica type and they investigated the conditions for non-null general helices,
pseudo-spherical curves and pseudo-spherical general helices to become of Tzitzeica
type in a Minkowski space E3

1.
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A Tzitzeica surface in E3 is a spatial surface M given with the parametrization
X(u, v) for which the ratio of its Gaussian curvature K and the distance dtan from
the origin to the tangent plane at any arbitrary point of the surface is constant, i.e.,

(1.2)
K

d4tan
= a1

for a constant a1. The orthogonal distance from the origin to the tangent plane is
defined by

(1.3) dtan =
〈
X,
−→
U
〉

where X is the position vector of the surface and
−→
U is a unit normal vector of the

surface.

The asymptotic lines of a Tzitzeica surface with a negative Gausssian curvature
are Tzitzeica curves [7]. In [18], the authors gave the necessary and sufficient condi-
tion for the Cobb-Douglas production hypersurface to be a Tzitzeica hypersurface.
In addition, a new Tzitzeica hypersurface was obtained in parametric, implicit and
explicit forms in [8]

In this study, we consider Tzitzeica curves (Tz-curves) in a Euclidean 3-space
E3. Furthermore, we investigate a Tzitzeica curve in a Euclidean 3-space E3 whose
position vector x = x(s) satisfies the parametric equation

(1.4) x(s) = m0(s)T (s) +m1(s)N1(s) +m2(s)N2(s),

for some differentiable functions, mi(s), 0 ≤ i ≤ 2, where {T,N1, N2} is the Frenet
frame of x. We characterize such curves according to their curvatures. We show
that there is no Tzitzeica curve in E3 with constant curvatures (W-curves). We give
the relations between the curvatures of the Tz-Salkowski curve (TC-curve) and the
Tz-anti-Salkowski curve.

2. Basic Notations

Let x : I ⊂ R → E3 be a unit speed curve in a Euclidean 3-space E3. Let us
denote T (s) = x′(s) and call T (s) a unit tangent vector of x at s. We denote the
curvature of x by κ1(s) = ‖x′′(s)‖. If κ1(s) 6= 0, then the unit principal normal
vector N1(s) of the curve x at s is given by x

′′
(s) = κ1(s)N1(s). The unit vector

N2(s) = T (s) × N1(s) is called the unit binormal vector of x at s. Then we have
the Serret-Frenet formulae:

T ′(s) = κ1(s)N1(s),

N ′
1(s) = −κ1(s)T (s) + κ2(s)N2(s),(2.1)

N ′
2(s) = −κ2(s)N1(s),

where κ2(s) is the torsion of the curve x at s (see, [10]).
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If the Frenet curvature κ1(s) and torsion κ2(s) of x are constant functions then
x is called a screw line or a helix [9]. Since these curves are the traces of 1-parameter
family of the groups of Euclidean transformations then F. Klein and S. Lie called
them W-curves [14]. It is known that a curve x in E3 is called a general helix if
the ratio κ2(s)/κ1(s) is a nonzero constant [16]. Salkowski (resp. anti-Salkowski)
curves in a Euclidean space E3 are generally known as the family of curves with A
constant curvature (resp. torsion) but non-constant torsion (resp. curvature) with
an explicit parametrization [15, 17] (for T.C-curve see also [13]).

For a space curve x : I ⊂ R → E3, the planes at each point of x(s) spanned
by {T,N1} , {T,N2} and {N1, N2} are known as the osculating plane, the rectifying
plane and normal plane, respectively. If the position vector x lies on its rectifying
plane, then x(s) is called rectifying curve [5]. Similarly, the curve for which the
position vector x always lies in its osculating plane is called osculating curve. Finally,
x is called normal curve if its position vector x lies in its normal plane.

Rectifying curves characterized by the simple equation

(2.2) x(s) = λ(s)T (s) + µ(s)N2(s),

where λ(s) and µ(s) are smooth functions and T (s) and N2(s) are tangent and
binormal vector fields of x, respectively [5, 6].

For a regular curve x(s), the position vector x can be decomposed into its
tangential and normal components at each point:

(2.3) x = xT + xN .

A curve in E3 is called N -constant if the normal component xN of its position
vector x is of constant length [4, 11]. It is known that a curve in E3 is congruent
to an N -constant curve if and only if the ratio κ2

κ1
is a non-constant linear function

of an arc-length function s, i.e., κ2

κ1
(s) = c1s+ c2 for some constants c1 and c2 with

c1 6= 0 [4]. Further, an N -constant curve x is called first kind if
∥∥xN∥∥ = 0, otherwise

second kind [11].

3. Tzitzeica Curves in E3

In the present section we characterize Tzitzeica curves in E3 in terms of their
curvatures.

Definition 3.1. Let x : I ⊂ R → E3 be a unit speed curve with curvatures
κ1(s) > 0 and κ2(s) 6= 0. If the torsion of x satisfies the condition

(3.1) κ2(s) = a.d2osc,

for some real constant a then x is called Tzitzeica curve (Tz-curve), where

(3.2) dosc = 〈N2, x〉

is the orthogonal distance from the origin to the osculating plane of x.
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We have the following result.

Proposition 3.1. Let x : I ⊂ R → E3 be a unit speed curve in E3. If x is a
Tz-curve, then the equation

(3.3) κ′2 〈x,N2〉+ 2κ22 〈x,N1〉 = 0

holds.

Proof. Let x be a unit speed curve in E3, then by the use of the equations (3.1) and
(3.2) we get

(3.4)
κ2(s)

〈N2, x〉2
= a 6= 0.

Further, differentiating the equation (3.4), we obtain the result.

Definition 3.2. Let x : I ⊂ R → E3 be a unit speed curve with curvatures
κ1(s) > 0 and κ2(s) 6= 0. Then x is a spherical curve if and only if

(3.5)
κ2(s)

κ1(s)
=

(
κ′1(s)

κ2(s)κ21(s)

)′

holds [9].

Theorem 3.1. Let x : I ⊂ R → E3 be a unit speed spherical curve in E3. If x is
a Tz-curve then the equation

(3.6)
κ′2(s)

2κ32(s)
=
κ1(s)

κ′1(s)

holds between the curvatures of x.

Proof. Let x be a unit speed spherical curve in E3. Then we have

(3.7) ‖x‖ = r

where r is the radius of the sphere. Differentiating the equation (3.7) with respect
to s, we get

(3.8) 〈x, T 〉 = 0.

Further, differentiating the equation (3.8), we have

(3.9) 〈x,N1〉 = − 1

κ1
.

By differentiating the equation (3.9), we obtain

(3.10) 〈x,N2〉 =
κ′1
κ21κ2

.

Finally, substituting (3.9) and (3.10) into (3.3), we get the result.
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Corollary 3.1. Let x : I ⊂ R → E3 be a unit speed spherical Tz-curve in E3.
Then the torsion of x satisfies the equation

(3.11) κ2 =

√
κ′′1κ1 − 2 (κ′1)

2

3κ21
.

Proof. Substituting (3.6) into (3.5), we get the result.

Corollary 3.2. Let x : I ⊂ R → E3 be a unit speed anti-Salkowski spherical
Tz-curve in E3. Then the curvature of x is given by

(3.12) κ1 =

√
3κ2

c1 sin
(√

3κ2s
)
− c2 cos

(√
3κ2s

)
where c1, c2 are integral constants and κ2 is the constant torsion of x.

Proof. Let x : I ⊂ R→ E3 be a unit speed anti-Salkowski spherical Tz-curve in E3.
Then from (3.11), we obtain the differential equation

(3.13) κ′′1κ1 − 2 (κ′1)
2 − 3κ21κ

2
2 = 0

which has the solution (3.12).

Lemma 3.1. Let x : I ⊂ R→ E3 be a unit speed curve in E3 whose position vector
satisfies the parametric equation

(3.14) x(s) = m0(s)T (s) +m1(s)N1(s) +m2(s)N2(s)

for some differentiable functions, mi(s), 0 ≤ i ≤ 2. If x is a Tz-curve then we get

m′
0 − κ1m1 = 1,

m′
1 + κ1m0 − κ2m2 = 0,(3.15)

m′
2 + κ2m1 = 0,

κ′2m2 + 2κ22m1 = 0.

Proof. Let x : I ⊂ R → E3 be a unit speed curve in E3. Then, by taking the
derivative of (3.14) with respect to the parameter s and using the Frenet formulae,
we obtain

x′(s) = (m′
0(s)− κ1(s)m1(s))T (s)

+(m′
1(s) + κ1(s)m0(s)− κ2(s)m2(s))N1(s)(3.16)

+(m′
2(s) + κ2(s)m1(s))N2(s).

Further, using the equations (3.3) and (3.16), we get (3.15).
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Theorem 3.2. Let x : I ⊂ R → E3 be a unit speed anti-Salkowski Tz-curve in
E3 (with the curvatures κ1 > 0 and κ2 6= 0) given with the parametrization (3.14).
Then x is congruent to a rectifying curve with the parametrization

(3.17) x(s) = (s+ c1)T (s) + c2N2(s)

where c1 and c2 are integral constants.

Proof. Let x be a unit speed anti-Salkowski Tz-curve in E3. Then, the torsion κ2
of x is constant. From the equation (3.15), we get

m0 = s+ c1

m1 = 0(3.18)

m2 = c2

where c1 and c2 are integral constants. Finally, substituting (3.18) into (3.14), we
get the result.

Corollary 3.3. Let x : I ⊂ R→ E3 be a unit speed anti-Salkowski Tz-curve in E3

(with curvatures κ1 > 0 and κ2 6= 0) given with the parametrization (3.14). Then
x is congruent to N -constant curve of second kind.

Corollary 3.4. Let x : I ⊂ R→ E3 be a unit speed Salkowski Tz-curve in E3 (with
the curvatures κ1 > 0 and κ2 6= 0) given with the parametrization (3.14). Then we
have

(3.19) m′′
1 +

(
κ21 + 3κ22

)
m1 + κ1 = 0

where the curvature κ1 of x is a real constant.

Proof. Let x be a unit speed Salkowski Tz-curve in E3. Hence, the curvature κ1 of
x is constant, from the equation (3.15), we get the result.

Corollary 3.5. There is no Tz-curve with a constant curvature and a constant
torsion. (i.e. Tz-W-curve)

Proof. Let x be a unit speed Tz-curve in E3 with a constant curvature and a constant
torsion. (i. e. Tz-W-curve). Then, using (3.15), we obtain

(3.20)
κ1(s)

κ2(s)
=

c2
s+ c1

which is a contradiction.
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Ser. Math. Inform. Vol. 33, No 3 (2018), 417–449

https://doi.org/10.22190/FUMI1803417A

A NEW LOG-LOCATION REGRESSION MODEL WITH
INFLUENCE DIAGNOSTICS AND RESIDUAL ANALYSIS

Emrah Altun, Haitham M. Yousof and G. G. Hamedani

Abstract. A new four-parameter lifetime model called Odd Log-Logistic Burr XII dis-
tribution is defined and investigated. Some of its mathematical properties are derived.
Some useful characterization results based on the ratio of two truncated moments,
based on the hazard function, as well as on the conditional expectation of certain func-
tions of a random variable, are presented. The maximum likelihood method is used to
estimate the model parameters by means of a graphical Monte Carlo simulation study.
Moreover, we introduce a new log-location regression model based on the proposed
distribution. The Jackknife estimation method as an alternative method is used to
estimate the unknown parameters of a new regression model. The generalized cook
distance and likelihood distance measures are used to detect possible influential ob-
servations. Martingale and modified deviance residuals are defined to detect outliers
and evaluate the model assumptions. The potentiality of the new regression model is
illustrated by means of a real data set.

Keywords: Regression Model; Burr XII Distribution; Residual Analysis; Influential
Diagnostics; Simulation; Jackknife Estimation Method.

1. Introduction

The Pearson system of distributions was originally introduced as an effort for mod-
eling visibly skewed observations. It was well known at the time how to adjust a
theoretical model to fit the first two cumulants or moments of observed data. In his
original paper and analogously to the Pearson system of densities, Burr [4] proposed
another system of distributions that includes twelve types of cdfs (cumulative dis-
tribution function) which yield a variety of density shapes. This system is obtained
by considering cdfs satisfying a differential equation whose solution is given by

G (t) =
1

exp
[
−
∫
ψ (t) dt

]
+ 1

,
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where ψ (t) is chosen such that G (t) is a cdf on the real line. Twelve choices
for ψ (t) made by Burr resulted in twelve distributions which might be useful for
modeling Data. The principal aim in choosing one of these forms of distributions
is to facilitate the mathematical analysis to which it is subjected, while attaining a
reasonable approximation. Burr ([4], [5], [6]) and others (see Burr and Cislak [7],
Hatke [18], Rodriguez [24]) devoted special attention to one of these forms, denoted
by type XII, whose distribution function G(x) is

(1.1) G(t;α, β, λ) =

{
1−

[
1 +

(
t

λ

)α]−β
}
, x ≥ 0.

Both α and β are shape parameters, λ > 0 is a scale parameter. A location pa-
rameter can easily be introduced to make (1.1) a four parameter model. The cor-
responding probability density function (pdf) of (1.1) is

(1.2) g(t;α, β, λ) = αβλ−αtα−1

[
1 +

(
t

λ

)α]−β−1

, x > 0.

The Burr XII (BXII) model has many applications in different areas including ac-
ceptance sampling plans, reliability and failure time modeling. Tadikamalla [28]
studied the BXII model and its related models, namely: Pareto type II (Lomax),
log-logistic, compound Weibull gamma and Weibull exponential distributions. Zim-
mer et al. [31] proposed a new three-parameter Burr XII distribution. This dis-
tribution, having Weibull and logistic as sub-models, is a very popular distribution
for modeling lifetime data and phenomena with monotone failure rates. Shao [29]
studied the maximum likelihood estimation for the three-parameter BXII model.
Soliman [27] studied the estimation of parameters from progressively censored data
using the Burr-XII model. Recently, Silva et al. [25] proposed a new location-scale
regression model based on the BXII model; Silva et al. [26] proposed a residual for
the log-BXII regression distribution whose empirical model is close to normality;
Afify et al. [2] studied the Weibull BXII distribution; Cordeiro et al. [11] proposed a
double BXII model with forty special cases; Yousof et al. [30] proposed and studied
the Topp Leone generated Burr XII distribution, among others.

Gleaton and Lynch [14] defined the cdf of the so-called odd log-logistic-G (OLL-G)
family (for x > 0) by

(1.3) F (x; θ, ξ) =
G(x, ξ)θ

G(x, ξ)θ + Ḡ(x, ξ)θ
.

The OLL-G density function is

(1.4) f(x; θ, ξ) =
θg(x, ξ)

[
G(x, ξ)Ḡ(x, ξ)

]θ−1

[
G(x, ξ)θ + Ḡ(x, ξ)θ

]2 ,
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where θ > 0 is the shape parameter and ξ = ξk = ( ξ1, ξ2, ...) is a parameters vector.
A random variable (rv) X with pdf (1.4) is denoted by X ∼OLL-G (θ, ξ). In the
last decade, researchers have showed a great interest in introducing a new family
of distributions by adding parameter(s) to OLL-G family. Recent extensions of the
OLL-G family can be cited as follows: the Zografos-Balakrishnan odd log-logistic
family of distributions by Cordeiro et al. [8], the generalized odd log-logistic family
by Cordeiro et al. [9], the beta dd log-logistic generalized family of distributions by
Cordeiro et al. [10], and a new generalized odd log-logistic family of distributions
by Haghbin et al. [16].

Here, a new extension of the BXII distribution is proposed by means of the
OLL-G family. Inserting (1.1) and (1.2) in (1.3) and (1.4), the cdf and pdf of the
odd log-logistic BXII (OLLBXII) distribution are defined as

(1.5) F (x) = F (x; θ, α, β, λ) =

Ai︷ ︸︸ ︷{
1−

[
1 +

(x
λ

)α]−β
}θ

{
1−

[
1 +

(
x
λ

)α]−β
}θ

+
[
1 +

(x
λ

)α]−θβ

︸ ︷︷ ︸
Bi

, x ≥ 0,

and

(1.6)

f(x) = f(x; θ, α, β, λ) = θαβλ−αxα−1
[
1 +

(
x
λ

)α]−β−1

×
({

1−[1+( x
λ )

α
]
−β

}
[1+( x

λ )
α
]
−β

)θ−1

({
1−[1+( x

λ )
α
]
−β

}θ
+[1+( x

λ )
α
]
−θβ

)2 , x > 0,

respectively.

The paper is organized as follows: The graphical presentation and motivation
for the new model are presented in Section 2. In Section 3, we derive some math-
ematical properties of the new model. In Section 4, some useful characterization
results based on the ratio of two truncated moments, based on the hazard function,
and based on the conditional expectation of certain functions of a random variable
are presented. In Section 5, the maximum likelihood method is discussed to esti-
mate the model parameters by means of a Monte Carlo simulation study. A new
log-location regression model and its estimation via maximum likelihood method
and Jackknife estimation method, sensitivity analysis, and residual analysis are pre-
sented and displayed in Section 6. In Section 7, two applications to real data sets are
performed to demonstrate the empirically importance of the new model. Finally,
some conclusions and future work are given in Section 8.



420 E. Altun, H. M. Yousof and G. G. Hamedani

2. Graphical presentation and motivation

The importance of pdf (1.6) can be summarized as follows: the OLLBXII model
contains some well-known models as its sub-models. More clearly, the BXII model
is a special sub-model when θ = 1. For θ = λ= α = 1 and θ = λ= β = 1, we
have the standard Lomax and standard log-logistic distributions, respectively. For
λ= α = 1 we have the OLL-Lomax distribution. For λ= β = 1 we have the OLL-LL
distribution. For β → 1 we have the OLL-Weibull distribution.
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Fig. 2.1: The pdf plots of OLLBXII distribution for several parameter values.

We are motivated to introduce OLLBXII distribution because it contains a num-
ber of the aforementioned known lifetime models as illustrated above. The hrf of
OLLBXII distribution exhibits decreasing, upside-down, and bathtub hazard rates
as illustrated in Figure 2.2. It is shown in Section 3 that OLLBXII distribution can
be viewed as a mixture of the two-parameter BXII distribution. It can be viewed as
a suitable model for fitting the left-skewed, right-skewed, symmetric and bimodal
data sets as illustrated in Figure 2.1.

Moreover, Figure 2.3 displays the hrf regions of OLLBXII distribution for fixed
α = 4, λ = 0.1 parameters. The developed computational codes are provided in
Appendix. As seen from Figure 2.3, when the parameter θ < 0.255, the hrf of
OLLBXII distribution is decreasing, otherwise, it is upside-down. Similar results
can be obtained for different parameter combinations by using the computational
codes given in Appendix.
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Fig. 2.2: The hrf plots of OLLBXII distribution for several parameter values.

0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

θ

β

A B

A − decreasing

B − upside−down
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3. Mathematical Properties

3.1. Quantile function

Let U have a uniform U(0, 1) distribution, the quantile function (qf) of OLLBXII
distribution is defined by

(3.1) Q (u) = λ





[
(1− u)

1
θ

u
1
θ + (1− u)

1
θ

]− 1
β





1
α

,

follows the density function (1.6). The following algorithm can be used to generate
random variables from density (1.6).

Algorithm 3.1. Algorithm

1. Generate U ∼ U(0, 1)

2. Set X = λ

[{
(1−U)1/θ

U1/θ+(1−U)1/θ

}−1/β
]1/α

The effects of the shape parameters of the new model can be measured by the
skewness and kurtosis using the qf (3.1). These measures, called Bowley’s skewness
and Moors’s kurtosis, are given respectively by

Skewness =
Q(1/4) +Q(3/4)− 2Q(1/2)

Q(3/4)−Q(1/4)

and

Kurtosis =
Q(7/8)−Q(5/8) +Q(3/8)−Q(1/8)

Q(6/8)−Q(2/8)
.

The plots of Bowley’s skewness and Moors’s kurtosis of the BOLL-GHN distri-
bution are displayed in Figure 3.1. Figures 3.1(a) and (b) display the effects of the
parameters β and θ on skewness and kurtosis measures for fixed α = 10, λ = 0.5.
Figures 3.1(c) and (d) display the effects of the parameters α and θ on skewness
and kurtosis measures for fixed β = 10, λ = 0.5. As seen in Figure 3.1; when the
parameters α, β and θ increase, skewness and kurtosis decrease.

3.2. Mixture representation

We provide a very useful linear representation for the OLLBXII cdf. First, we use
a power series for the quantity Ai (θ > 0 real) given by

(3.2) Ai =

∞∑
k=0

ak

{
1−

[
1 +

(x
λ

)α]−β
}k

,
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where ak =
∞∑
j=k

(−1)
k+j (θ

j

)(
j
k

)
. For any real θ > 0, we consider the generalized

binomial expansion

(3.3) Bi =

∞∑
k=0

(−1)
k

(
θ

k

){
1−

[
1 +

(x
λ

)α]−β
}k

.

Inserting (3.2) and (3.3) in equation (1.5), we obtain

F (x) =

∞∑
k=0

ak

{
1−

[
1 +

(
x
λ

)α]−β
}k

∞∑
k=0

bk

{
1−

[
1 +

(
x
λ

)α]−β
}k

,

where bk = ak + (−1)
k (θ

k

)
. The ratio of the two power series can be expressed as

(3.4) F (x) =
∞∑
k=0

ck

{
1−

[
1 +

(x
λ

)α]−β
}k

=

∞∑
k=0

ckΠk (x;α, β, λ) ,

where Πk (x;α, β, λ) = [G(x, α, β, λ)]
k
is the exponentiated BXII cdf with power

parameter k, and the coefficients ck’s (for k ≥ 0) are determined from the recurrence
equation

ck = b−1
0

(
ak + b−1

0

∞∑
w=0

bwck−w

)
.

By differentiating (3.4), the pdf of X can be expressed as

(3.5) f(x) =

∞∑
k=0

c1+kπ1+k (x;α, β, λ) =

∞∑
r=0

vrg(x;α, (1 + r)β, λ),

where π1+k (x;α, β, λ) is the exponentiated BXII density with power parameter
k + 1, g(x;α, (1 + r)β, λ) is the BXII density with parameters α, (1 + r)β and λ
and

vr =

∞∑
k=0

(−1)
r (1 + k)

(1 + r)
ck+1

(
k

r

)

3.3. Moments and cumulants

Let W be a random variable having BXII distribution (1.2) with parameters α and
β and λ. For n < αβ ⇔ n

α < β, the nth ordinary and incomplete moments of W
are given respectively, by

µ′
n = βλn B

(
β − nα−1, 1 + nα−1

)

and
ϕn(z) = β λnB

(
zα;β − nα−1, 1 + nα−1

)
,
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where

B(a, b) =

∫ ∞

0

ta−1 (1 + t)−(a+b)dt

and

B(z; a, b) =

∫ z

0

ta−1 (1 + t)−(a+b)dt

are beta and incomplete beta functions of the second type, respectively. So, several
structural properties of the OLLBXII model can be obtained from (3.4) and those
properties of BXII distribution.
The nth ordinary moment of X is given by

µ′
n = E(Xn) =

∞∑
r=0

vr

∫ ∞

−∞
xn g(x;α, (1 + r)β, λ)dx,

and (for 0 < (1 + r)β − nα−1)

(3.6) µ′
n =

∞∑
r=0

vr (1 + r)βλn B
(
(1 + r)β − nα−1, 1 + nα−1

)
.

By setting n = 1 in (3.6), we have the mean of X. The last integration can be
computed numerically for most parent distributions. The nth central moment of X,
say µn, is given by

µn = E (X − µ′
1)

n
=

n∑
m=0

(
n

m

)
(−µ′

1)
n−m

µ′
n−m.

The cumulants (κs) of X are determined from the ordinary moments as (for s ≥ 2)

κs = µ′
s −

s−1∑
k=1

(
s− 1

k − 1

)
κk µ

′
s−k,

where κ1 = µ′
1. The skewness (γ1 = κ3/κ

3/2
2 ) and kurtosis (γ2 = κ4/κ

2
2) of X are

just the third and fourth standardized cumulants. They are important to derive
Edgeworth expansions for the cdf and pdf of the standardized sum and mean of
independent and identically distributed random variables with OLLBXII distribu-
tion.

3.4. Moment generating function

Let X have OLLBXII(θ, α, β, λ) distribution. The mgf of X, say M (t), using the
Maclaurin series expansion of an exponential function (Abramowitz and Stegun [3]),
can be written as

M (t) = E [exp (tX)] =

∞∑
m=0

(−1)
m
E(Xm)/m!.
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Another representation for M(t) can be obtained from (3.4) as an infinite weighted
sum

M (t) =
∞∑
r=0

vrM1+r (t) ,

where M1+r (t) is the mgf of the BXII density with parameters α, (1 + r)β and
λ. Paranáıba et al. [20] introduced a simple exemplification for the mgf of the
three-parameter BXII distribution. In a similar manner, we provide another exem-
plification for the mgf, say M1+r(t), of the BXII(α, (1 + r)β, λ) model. For 0 > t,
we can write

M (t) = αβ (1 + r)λ−α

∫ ∞

0

exp (yt) yα−1
[
1 +

( y
λ

)α]−β(1+r)−1

dy.

Next, we require the Meijer G-function defined by

Gm,n
p,q

(
x| a1, ..., ap

b1, ..., bq

)
= (2πi)

−1
∫

L

∏m
j=1 Γ (bj + t)

∏n
j=1 Γ (1− aj − t)∏p

j=n+1 Γ (aj + t)
∏p

j=m+1 Γ (1− bj − t)
x−tdt,

where i =
√
−1 is the complex unit and L denotes an integration path (Gradshteyn

and Ryzhik [15], Section 9.3). The Meijer G-function contains, as particular cases,
many integrals with elementary and special functions (see Prudnikov et al. [21]).
We now assume that α = mβ−1, wherem and β are positive integers. This condition
is not restrictive since every positive real number can be approximated by a rational
number. We have the following result, which holds for m and β positive integers,
−1 < µ and 0 > p (Prudnikov et al. [22], p. 21),

I
(
p, µ,mβ−1, v

)
=

∫ ∞

0

exp (−px)xµ
(
1 + xmβ−1

)v

dx,

or

I
(
p, µ,mβ−1, v

)
= V Gβ,β+m

β+m,β

((
mp−1

)m | � (m,−µ) ,� (β, v + 1)
� (β, 0)

)
,

where
V = β−v [Γ (−v)]

−1
mv+ 1

2 p−(µ+1) (2π)
−m−1

2

and
� (β, a) = aβ−1, (a+ 1)β−1, ..., (a+ β)β−1.

The mgf of of the BXII(α, β, λ) can be written as

M (t) = mI
(
−λt,mβ−1 − 1,mβ−1,−β − 1

)
, t < 0.

Hence, the mgf of of the OLLBXII(θ, α, (1 + r)β, λ) can be expressed as

MX (t) = m

∞∑
r=0

vrI
(
−λt,m [β (r + 1)]

−1 − 1,m [β (r + 1)]
−1

,− [β (r + 1) + 1]
)
.
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3.5. Incomplete moment

The sth incomplete moment, say ϕs(t), of OLLBXII distribution is given by ϕs(t) =∫ t

0
xs f(x)dx. From the equation (3.4),

ϕs(t) =

∞∑
r=0

vr

∫ t

0

xs g(x;α, β (r + 1) , λ)dx,

and using the lower incomplete gamma function, we have (for s < αβ)

ϕs(t) =

∞∑
r=0

vr β (r + 1)λs B
(
tα;β (r + 1) − sα−1, 1 + sα−1

)
.

The 1st incomplete moment ofX, denoted by ϕ1 (t) , is simply determined from ϕs(t)
by taking s = 1. The 1st incomplete moment has important applications related to
the residual life, the mean waiting time and Bonferroni and Lorenz curves.

3.6. Moments of reversed residual life and mean waiting time

The sth moment of the reversed residual life, say Rs(t) = E [(t−X)s | X ≤ t] for
t > 0 and s = 1, 2,. . . , uniquely determines F (x). Then, Rs(t) is defined by

Rs(t) =
1

F (t)

∫ t

0

(t− x)sdF (x).

The sth moment of the reversed residual life of X is

Rs(t) =
1

F (t)

n∑
i=0

∞∑
r=0

(−1)is!

i!(s− i)!
vr β (r + 1)λs B

(
tα;β (r + 1) − sα−1, 1 + sα−1

)
.

The mean waiting time (MWT) or the mean inactivity time (MIT), also named the
mean reversed residual life function, R1(t) = E[(t − X) | X ≤ t], represents the
waiting time elapsed since the failure of a component on condition that this failure
has occurred in (0, x). The MIT of X can be obtained by setting s = 1 in the above
equation.
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Fig. 3.1: The skewness and kurtosis plots of OLLBXII distribution for several
parameter values.
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4. Characterizations

In this section we present certain characterizations of OLLBXII distribution. These
characterizations are in terms of: (i) the ratio of two truncated moments; (ii) the
hazard function and (iii) conditional expectations of functions of the random vari-
able. One of the advantages of characterization (i) is that the cdf is not required
to have a closed form. We present our characterizations (i)− (iii) in three sub-
sections.

4.1. Characterizations based on the ratio of two truncated moments

In this subsection we present characterizations of OLLBXII distribution in terms
of a simple relationship between two truncated moments. Our first characteriza-
tion result employs a theorem due to Glänzel [12], see Theorem 1 of Appendix A.
Note that the result also holds when the interval H is not closed. Moreover, as
mentioned above, it could also be applied when the cdf F does not have a closed
form. As shown in Glänzel [13], this characterization is stable in the sense of weak
convergence.

Proposition 4.1. Let X : Ω → (0,∞) be a continuous random variable and

let q1 (x) =

({
1−[1+( x

λ )
α
]
−β

}θ
+[1+( x

λ )
α
]
−βθ

)2

({
1−[1+( x

λ )
α
]
−β

}
[1+( x

λ )
α
]
−β

)θ−1 and q2 (x) = q1 (x)
[
1 +

(
x
λ

)α]−β
for

x > 0. The random variable X has pdf (1.6) if and only if the function η defined
in Theorem 1 has the form

η (x) =
1

2

[
1 +

(x
λ

)α]−β

, x > 0.

Proof. Let X be a random variable with pdf (1.6), then

(1− F (x))E [q1 (X) | X ≥ x] = θ
[
1 +

(x
λ

)α]−β

, x > 0,

and

(1− F (x))E [q2 (X) | X ≥ x] =
θ

2

[
1 +

(x
λ

)α]−2β

, x > 0,

and finally

η (x) q1 (x)− q2 (x) = −1

2
q1 (x)

[
1 +

(x
λ

)α]−β

< 0 for x > 0.

Conversely, if η is given as above, then

s′ (x) =
η′ (x) q1 (x)

η (x) q1 (x)− q2 (x)
=

αβλ−αxα−1

1 +
(
x
λ

)α x > 0,
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and hence

s (x) = log

{[
1 +

(x
λ

)α]β}
, x > 0.

Now, in view of Theorem 1, X has density (1.6) .

Corollary 4.1. Let X : Ω → (0,∞) be a continuous random variable and let
q1 (x) be as in Proposition 4.1. The pdf of X is (6) if and only if there exist functions
q2 and η defined in Theorem 1 satisfying the differential equation

η′ (x) q1 (x)

η (x) q1 (x)− q2 (x)
=

αβλ−αxα−1

1 +
(
x
λ

)α x > 0.

The general solution to the differential equation in Corollary 4.1 is

η (x) =
[
1 +

(x
λ

)α]β [
−
∫

αβλ−αxα−1
[
1 +

(x
λ

)α]−β

(q1 (x))
−1

q2 (x) +D

]
,

where D is a constant. Note that a set of functions satisfying the above differential
equation is given in Proposition 4.1 with D = 0. However, it should be also noted
that there are other triplets (q1, q2, η) satisfying the conditions of Theorem 1.

4.2. Characterization based on hazard function

It is known that the hazard function, hF , of a twice differentiable distribution
function, F , satisfies the first order differential equation

f ′(x)

f (x)
=

h′
F (x)

hF (x)
− hF (x).

For many univariate continuous distributions, this is the only characterization avail-
able in terms of the hazard function. The following characterization establish a
non-trivial characterization of OLLBXII distribution, for θ = 1, which is not of the
above trivial form.

Proposition 4.2. Let X : Ω → (0,∞) be a continuous random variable. The
pdf of X is (1.6), for θ = 1, if and only if its hazard function hF (x) satisfies the
differential equation

h′
F (x)− α− 1

x
hF (x) = −α2βλ−2αx2(α−1)

[
1 +

(
x
λ

)α]2 , x > 0.
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Proof. If X has pdf (1.6), then clearly the above differential equation holds.
Now, if the differential equation holds, then

d

dx

{
x−(α−1)hF (x)

}
= αβλ−α d

dx

{[
1 +

(x
λ

)α]−1
}
, x > 0,

from which, we obtain

hF (x) =
αβλ−αxα−1

1 +
(
x
λ

)α , x > 0,

which is the hazard function of OLLBXII distribution.

4.3. Characterization based on the conditional expectation of certain
functions of the random variable

In this subsection we employ a single function ψ of X and characterize the distri-
bution of X in terms of the truncated moment of ψ (X) . The following proposition
has already appeared in Hamedani’s previous work [17], so we will just state it here
as a proposition, which can be used to characterize OLLBXII distribution.

Proposition 4.3. Let X : Ω → (d, e) be a continuous random variable with
cdf F . Let ψ (x) be a differentiable function on (d, e) with limx→e− ψ (x) = 1.
Then for δ �= 1 ,

E [ψ (X) | X ≥ x] = δψ (x) , x ∈ (d, e)

if and only if

ψ (x) = (1− F (x))
1
δ−1

, x ∈ (d, e) .

Remark 4.3. (A) For (d, e) = (0,∞) , ψ (x) =
[
1 +

(
x
λ

)α]−1
and δ = β

β+1 ,
Proposition 4.3 provides a characterization of OLLBXII distribution.

5. Estimation

If X follows the OLLBXII distribution with vector of parameters Φ = (θ, α, β, λ)
T
,

the log-likelihood for Φ from a single observation x of X is given by

�(Φ) = log θ + logα+ log β − α log λ− (β + 1) log s

+(θ − 1) log
[(
1− s−β

)
s−β

]
− 2 log

[(
1− s−β

)θ
+ s−θβ

]
,
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where s =
[
1 +

(
x
λ

)α]
. The components of the unit score vector U = U(Φ) =(

∂θ
�(Φ) ,

∂α
�(Φ) ,

∂β
�(Φ) ,

∂λ
�(Φ)

)T

= (U (θ) , U (α) , U (β) , U (λ))
T
are given by

U (θ) = θ−1 + log
[(
1− s−β

)
s−β

]
− 2

(
1− s−β

)θ
log

(
1− s−β

)
− βs−θβ log s

(1− s−β)
θ
+ s−θβ

,

U (α) = α−1 − log λ− (β + 1) p

s

+(θ − 1)
βps−2β−1 − βp

(
1− s−β

)
s−β−1

(1− s−β) s−β

−2
θβps−β−1

(
1− s−β

)θ−1 − θβps−θβ−1

(1− s−β)
θ
+ s−θβ

,

U (β) = β−1 − log s+ (θ − 1)
s−2β log s− s−β

(
1− s−β

)
log s

(1− s−β) s−β

−2
θs−β

(
1− s−β

)θ−1
log s− θs−θβ log s

(1− s−β)
θ
+ s−θβ

and

U (λ) = −αλ−1 − (β + 1) q

s
+ (θ − 1)

βqs−2β−1 − βq
(
1− s−β

)
s−β−1

(1− s−β) s−β

−2
θqs−β−1

(
1− s−β

)θ−1 − θβqs−θβ−1

(1− s−β)
θ
+ s−θβ

,

where p =
(
x
λ

)α
log

(
x
λ

)
and q = αxαλ−α−1. For a random sample x = (x1, ..., xn)

T

of size n from X, the total log-likelihood is �n(Φ) =
∑n

i=0 �
(i)(Φ), where �(i)(Φ)

is the log-likelihood for the ith observation. The total score function is Un =∑n
i=0 U

(i), where U (i) has the form given before. Maximization of �(Φ) (or �n(Φ))
can be easely performed using well-established routines such as the nlm or optimize
in the R statistical package. Setting these equations to zero, U(Φ) = 0, and solving

them simultaneously gives the MLE Φ̂ b of Φ. These equations cannot be solved
analytically and statistical software can be used to evaluate them numerically using
iterative techniques such as the Newton-Raphson algorithm.

The parameter estimation procedure of the OLLBXII model can be summarized
as follows:

• The optim function of R software is used to minimize the minus log-likelihood
function of the BXII model by means of the Nelder-Mead (NM) optimization
method. There is no need to provide the derivatives of the objective function
for the NM method.
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• The estimated parameters of BXII distribution is used as the initial values of
the OLLBXII model. The initial value of the additional parameter θ is chosen
as 1. Then, the parameter estimations of the OLLBXII model are obtained
with the optim function as given in first step.

• The inverse of the estimated Hessian matrix is used to obtain the correspond-
ing standard errors.

5.1. Simulation Study

In this section, the parameter estimation efficiency of the MLE method is eval-
uated for the parameters of OLLBXII distribution by means of the Monte Carlo
simulation. The following simulation procedure is implemented:

1. Set the sample size n and the vector of parameters θ = (θ, β, α, λ)

2. Generate random observations of size n from OLLBXII(θ, β, α, λ) distribution

3. Using the generated random observations in Step 2, estimate θ̂ by means of
MLE method

4. Repeat steps 2 and 3, N times

5. Using θ̂ and θ compute the mean relative estimates (MREs) and mean square
errors (MSEs) via the following equations:

MRE =
N∑
j=1

θ̂i,j

/
θi

N
and MSE =

N∑
j=1

(
θ̂i,j − θi

)2

N
, i = 1, 2, 3, 4.

The statistical software R is used to obtain simulation results. The chosen
parameter values for simulation study are θ = (0.5, 5, 5, 0.5), N = 10, 000 and
n = (50, 55, 60, ..., 500). We expect that MREs are closer to one when the MSEs
are near zero. Figures 4 and 5 display the estimated biases, MSEs and MREs. As
seen from these figures, the estimated MSEs for all parameters tend to zero for large
sample sizes and the values of MREs tend to one. The biases for the parameters θ, β
and α are positive whereas the biases for the parameter λ is negative. The biases for
all the parameters tend to zero for large sample sizes. It is clear that the estimates
of parameters are asymptotically unbiased. Therefore, the MLE is an appropriate
method for estimating parameters of the OLLBXII distribution. Similar results can
be obtained for different parameter vectors.
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Fig. 5.1: Estimated biases and MSEs for the chosen parameter values.
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Fig. 5.2: Estimated MREs for the chosen parameter values.
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6. Log-OLLBXII regression model

Let X denotes a random variable with OLLBXII distribution and let Y = log(X).
The density function of Y (for y ∈ Re) for α = 1/σ and λ = exp(µ), can be
expressed as

(6.1)

f(y)=

θβ
σ

(
1+exp

(
y−µ
σ

))−(β+1)
exp

(
y−µ
σ

)[[
1−

(
1 + exp

(
y−µ
σ

))−β
](

1+exp
(

y−µ
σ

))−β
]θ−1

[[
1−

(
1+exp

(
y−µ
σ

))−β
]θ

+
(
1 + exp

(
y−µ
σ

))−βθ
]2

,

where µ ∈ Re is the location parameter, σ > 0 is the scale parameter, θ > 0 and
β > 0 are the shape parameters. We refer to equation (6.1) as the Log-OLLBXII
(LOLLBXII) distribution, say Y ∼ LOLLBXII(θ, β, σ, µ). The plots in Figure 6.1
show shapes of density function (6.1) for selected parameter values. They reveal that
this distribution is a good candidate to model left and right skewed and symmetric
lifetime data sets. The survival function corresponding to (6.1) is given by

(6.2) S (y) = 1−

[
1−

(
1 + exp

(
y−µ
σ

))−β
]θ

[
1−

(
1 + exp

(
y−µ
σ

))−β
]θ

+
(
1 + exp

(
y−µ
σ

))−βθ

and the hrf is simply h(y) = f(y)/S(y). The standardized random variable Z =
(Y − µ)/σ has density function
(6.3)

f (z) =
θβ(1 + exp (z))

−(β+1)
exp (z)

[[
1− (1 + exp (z))

−β
]
(1 + exp (z))

−β
]θ−1

[[
1− (1 + exp (z))

−β
]θ

+ (1 + exp (z))
−βθ

]2 .

6.1. Estimation

6.1.1. Maximum Likelihood Estimation

Based on the LOLLBXII density, we propose a linear location-scale regression
model linking the response variable yi and the explanatory variable vector vᵀ

i =
(vi1, . . . , vip) given by

(6.4) yi = vᵀ
i β + σzi, i = 1, . . . , n,

where the random error zi has density function (6.3), β = (β1, . . . , βp)
ᵀ, and σ > 0,

θ > 0 and β > 0 are unknown parameters. The parameter µi = vᵀ
i β is the location

of yi. The location parameter vector µ = (µ1, . . . , µn)
ᵀ is represented by a linear

model µ = Vβ, where V = (v1, . . . ,vn)
ᵀ is a known model matrix. The LOLLBXII
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Fig. 6.1: Plots of the LOLLBXII density function for some parameter values.

model (6.4) provides new avenues for modeling several types of data sets. Note that
when the parameter θ = 1, the LOLLBXII regression model reduces to the Log-
BXII (LBXII) regression model introduced by Silva et al. [25].

Consider a sample (y1,v1), . . . , (yn,vn) of n independent observations, where
each random response is defined by yi = min{log(xi), log(ci)} where xi and ci are
lifetime and censoring times, respectively. We assume non-informative censoring
such that the observed lifetimes and censoring times are independent. Let F and
C be the sets of individuals for which yi is the log-lifetime or log-censoring, respec-
tively. The log-likelihood function for the vector of parameters τ = (θ, β, σ,βᵀ)ᵀ

from model (6.4) has the form l(τ ) =
∑
i∈F

li(τ )+
∑
i∈C

l
(c)
i (τ ), where li(τ ) = log[f(yi)],

l
(c)
i (τ ) = log[S(yi)], f(yi) is the density (6.1) and S(yi) is the survival function (6.2)
of Yi. The total log-likelihood function for τ is given by

(6.5)

� (τ) = r log
(

θβ
σ

)
− (β + 1)

∑
i∈F

log (1 + exp (zi)) +
∑
i∈F

zi

+(θ − 1)
∑
i∈F

log
[[
1− (1 + exp (zi))

−β
]
(1 + exp (zi))

−β
]

−2
∑
i∈F

log

[[
1− (1 + exp (zi))

−β
]θ

+ (1 + exp (zi))
−βθ

]

+
∑
i∈C

log

[
1− [1−(1+exp(zi))

−β]
θ

[1−(1+exp(zi))
−β]

θ
+(1+exp(zi))

−βθ

]
,
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where zi = (yi − vᵀ
i β)/σ and r is the number of uncensored observations (fai-

lures). The MLE τ̂ of the vector of unknown parameters can be evaluated by
maximizing the log-likelihood function (6.5). The optim function of R software
is used to estimate τ̂ . Under the standard regularity conditions, the asymptotic
distribution of (τ̂ − τ ) is multivariate normal Np+3(0,K(τ )−1), where K(τ ) is the
expected information matrix. The asymptotic covariance matrix K(τ )−1 of τ̂ can
be approximated by the inverse of the (p+3)× (p+3) observed information matrix
−L̈(τ ), whose elements are evaluated numerically. The approximate multivariate
normal distribution Np+3(0,−L̈(τ )−1) for τ̂ can be used, in the classical way, to
construct approximate confidence intervals for the parameters in τ .

The likelihood ratio (LR) statistic can be used for comparing the sub-model
of the LOLLBXII regression model. For example, the LR statistic can be used to
discriminate between the LOLLBXII and LBXII regression models since they are
nested models, or equivalently to test H0 : θ = 1. The LR statistic reduces to
w = 2[�(θ̂, β̂, σ, β̂)− �(1, β̃, σ̃, β̃)], where (θ̂, β̂, σ̂, β̂) are the unrestricted MLEs and
(1, β̃, σ̃, β̃) are the restricted estimates under H0. The statistic w is asymptotically
(as n → ∞) distributed as χ2

k, where k is difference of two parameter vectors of
nested models. For example, k = 1 for the above hypothesis test.

6.1.2. Jackknife Estimation Method

We used the Jackknife estimation method as an alternative method to estimate
the unknown parameters of LOLLBXII regression model. This method is based
on ”leave one out” procedure. Let τ̂ be the parameter estimation of whole sample
and τ̂−i be the parameter estimation when the ith observation is dropped from the
sample. The pseudo-value of ith observation is given by

(6.6) τ̃ i = nτ̂ − (n− 1) τ̂−i.

Then, Jackknife estimation of τ , is given by

(6.7) τ̂ jack =
1

n

n∑
i=1

τ̃ i.

It is clear that Jackknife estimation of τ is the average of pseudo-values. Confidence
intervals of Jackknife estimates are

(6.8) τ̂ jack ± tα/2,(n−1)
s√
n
,

where tα/2,(n−1) is the value that is exceeded with probability α/2 for the t distri-
bution with n− 1 degrees of freedom. The parameter estimation of the LOLLBXII
regression model can be obtained by means of the theory described above.
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6.2. Sensitivity analysis

A first tool to perform the sensitivity analysis, as stated before, is by means of
global influence starting from case deletion. Case deletion is a popular method to
investigate the influence of taking out the ith case from the data on the parameters
estimates. This method compares the τ̂ with τ̂−i where τ̂−i is the estimated
parameters when the ith case is dropped from the data. If there is a big differences
between τ̂−i and τ̂ , the dropped observation could be considered as an influential
observation.

Here, generalized cook distance and likelihood distance measures are used to
detect the possible influential observations. These measures are described below.

6.2.1. Generalized cook distance

Generalized Cook distance (GD) is given by

(6.9) GDi (τ ) = (τ̂−i − τ̂ )
T
[
−L̈ (τ̂ )

]
(τ̂−i − τ̂ ) ,

where −L̈ (τ̂ ) is the observed information matrix.

6.2.2. Likelihood Distance

The Likelihood Distance (LD) is given by

(6.10) LDi (τ̂ ) = 2 {� (τ̂ )− � (τ̂−i)} ,

where � (τ̂ ) is the estimated log likelihood value of whole data set and � (τ̂−i) is the
estimated log likelihood value when the ith observations is dropped.

6.3. Residual analysis

Residual analysis has critical role in checking the adequacy of the fitted model.
In order to analyse departures from error assumption, two types of residuals are
considered: martingale and modified deviance residuals.

6.3.1. Martingale residual

The martingale residuals are defined in the counting process and takes the values be-
tween +1 and−∞ (see, Fleming and Harrington(1994) for details). The martingale
residuals for the LOLLBXII model are,

(6.11) rMi =




1 + log

(
1− [1−(1+exp(zi))

−β]
θ

[1−(1+exp(zi))
−β]

θ
+(1+exp(zi))

−βθ

)
ifi ∈ F,

log

(
1− [1−(1+exp(zi))

−β]
θ

[1−(1+exp(zi))
−β]

θ
+(1+exp(zi))

−βθ

)
ifi ∈ C,

where zi = (yi − µ)/σ.
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6.3.2. Modified deviance residual

The main drawback of the martingale residual is that when the fitted model is
correct, it is not symmetrically distributed about zero. To overcome this problem,
a modified deviance residual was proposed by Therneau et al. (1990). The modified
deviance residual is given by

(6.12) rDi =

{
sign (rMi

) { −2 [rMi
+ log (1− rMi

)]}1/2, ifi ∈ F

sign (rMi
) { −2rMi

}1/2, ifi ∈ C,

where r̂Mi
is the martingale residual.

7. Applications

In this section, we provide two applications to real data sets to illustrate the flexibil-
ity of the OLLBXII distribution and the LOLLBXII regression model. The statisti-
cal software R is used for all numerical computations. The following goodness-of-fit
measures are used to compare the OLLBXII model with the BXII model: Cramer
von Mises (W*), Anderson Darling (A*), estimated −�. In general, the smaller the
values of these statistics, the better the fit to the data. Moreover, LR test is also
used to compare the models.

7.1. Turbocharger data set

We compare the fitting performance of the OLLBXII model with its sub-model.
The first data set comes from Xu et al. [32] and it represents the time to failure
(103 h) of turbocharger of one type of engine. The data are as follows: 1.6 3.5 4.8
5.4 6.0 6.5 7.0 7.3 7.7 8.0 8.4 2.0 3.9 5.0 5.6 6.1 6.5 7.1 7.3 7.8 8.1 8.4 2.6 4.5 5.1 5.8
6.3 6.7 7.3 7.7 7.9 8.3 8.5 3.0 4.6 5.3 6.0 8.7 8.8 9.0.

The total-time-test (TTT) plot, introduced by Aarset [1], is used to obtain the
empirical behavior of the hazard rate of used data set. When the shape of TTT
plot has a straight diagonal line, the hazard rate is constant. When the shapes of
TTT plot have a convex or concave, the hazard rates are monotonically increasing
or decreasing, respectively. Figure 8 displays the TTT plot of the used data set.
Based on Figure 8, it is clear that the empirical hazard rate of the used data set is
monotonically increasing.

Table 7.1 gives W* and A* statistics and log-likelihood values. Based on Tabl
7.1, it is clear that OLLBXII distribution provides superior fit and therefore could
be chosen as a more adequate model than BXII for used data set.

Moreover, the profile log-likelihood functions of OLLBXII distribution are dis-
played in Figure 7.2. Figure 7.2 reveals that the likelihood equations of OLLBXII
distribution have solutions that are maximizers.
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Fig. 7.1: The TTT plot of used data set.

Table 7.1: Fitting summary of the models: MLE estimates and their standard
errors, A�, W � and estimated −�

Models θ α β λ A� W � −�
BXII 118.7304 3.879613 0.042166 0.582 0.0783 82.53635

181.7223 0.5222 0.0181
OLLBXII 0.3051 118.058 10.2619 0.09023 0.1365 0.02005 78.34025

0.1053 368.047 3.04463 0.03201

Table 7.2 shows the LR statistics and the corresponding p-values. From Table
7.2, the computed p-value is smaller than 0.05, so the null hypotheses are rejected.
We conclude that the OLLBXII model fits the first data better than the its sub-
model according to the LR test results.

More information can be provided in Figure 7.3 by a histogram of the data
with fitted lines of the pdfs for all distributions. Figure 7.3(a) suggests that the
OLLBXII fits left-skewed data very well. Then, we present the plots of the fitted
density, cumulative and survival functions with the probability-probability (P-P)
plot for the OLLBXII model in Figure 7.3(b). They reveal a good adjustment for
the data of the estimated density, cumulative and survival functions of OLLBXII
distribution.
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Table 7.2: The LR test results for third data set.

Hypotheses LR p-value
OLLBXII versus BXII H0 : θ = 1 8.392 0.004

7.2. HIV data set

The hypothetical dataset contains 100 observations on HIV+ subjects belonging
to an Health Maintenance Organization (HMO). The HMO wants to evaluate the
survival time of these subjects. In this hypothetical data set, subjects were enrolled
from January 1, 1989 until December 31, 1991. Study follow up then ended on
December 31, 1995. This data set is reported in Hosmer and Lemeshow [19] and can
also be found in R package Bolstad2. We adopt the LOLLBXII regression model
to analyze this dataset. The variables involved in the study are: yi - observed
survival time (in months); censi - censoring indicator (0= alive at study end or lost
to follow-up,1=death due to AIDS or AIDS related factors), xi1(1 = yes, 0 = no)
represents the history of drug use and xi2 represents the ages of patients.

We consider the following regression model

yi = β0 + β1xi1 + β2xi2 + σzi,

where yi has the LOLLBXII density, for i = 1, . . . , 100.

7.2.1. Maximum Likelihood Estimation

The MLE method is used to estimate unknown parameters of the LOLLBXII and
LBXII regression models. Table 7.3 lists the MLEs of the model parameters of the
LBXII and LOLLBXII regression models fitted to the current data and the log-
likelihood and AIC values. These results indicate that the LOLLBXII regression
model has the lowest values of these statistics, and so the LOLLW-Wmodel provides
better fitting than LBXII model for current data. For the fitted regression models,
note that β0, β1 and β2 is marginally significant at the 5% level.

LR test is used to compare the LOLLBXII and LBXII regression models. Table
7.4 shows the LR statistic and the corresponding p-value for the used data set.
Based on the figures in Table 7.4, the computed p-value is smaller than 0.05, so the
null hypotheses are rejected. We conclude that the LOLLBXII regression model
provides better fits than its sub-model according to the LR test results.

7.2.2. Jackknife Estimation Method

Here, the Jackknife estimation method is used to estimate the unknown parameters
of LOLLBXII regression model. In Table 7.5, the jackknife estimates for the param-
eters of the LOLLBXII regression model are reported. From Table 7.5, we conclude
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Table 7.3: MLEs of the parameters, their standard errors and p-values, the esti-
mated −� and AIC statistic.

LOLL-BXII LBXII
Parameters Estimates Std. Errors p-values Estimates Std. Errors p-values

θ 0.977 1.356 - - - -
β 2.940 6.389 - 0.867 0.361 -
σ 0.705 1.112 - 0.566 0.080 -
β0 6.675 3.227 0.039 4.755 0.804 <0.001
β1 -0.090 0.014 <0.001 -0.070 0.017 <0.001
β2 -0.974 0.210 <0.001 -0.902 0.220 <0.001
−� 127.942 130.152
AIC 267.885 270.304

Table 7.4: The LR test results for HIV+ data set.

Hypotheses LR p-value
LOLLBXII versus LBXII H0 : α = 1 4.4198 0.035

that the parameters β0 and β1 are significant when the jackknife estimation method
is used.

7.2.3. Sensitivity Analysis

Here, possible influential observations are analysed with measures described in Sec-
tion 6.2.. Figure 7.4 displays the results of the generalized Cook distance,GDi (τ ).
Based on Figure 7.4, cases 41, 48 and 92 can be considered as possible influential
observations.

Moreover, the effects of ith observation on parameters of LOLLBXII regression
model is analysed and displayed in Figure 7.5. Based on this figure, it is clear that
the most influential observations are 41 and 48.

Table 7.5: Jackknife estimates for the parameters of LOLLBXII regression model
Parameters Estimates Std. Errors 95% confidence intervals
θ 0.933 0.147 [0.641; 1.224]
β 2.862 0.060 [2.743; 2.980]
σ 0.659 0.165 [0.331; 0.987]
β0 6.647 0.203 [ 6.243; 7.050]
β1 -0.092 0.015 [-0.121; -0.063]
β2 -0.926 0.538 [-1.994; 0.142]
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7.2.4. Residual Analysis

Figure ?? displays the index plot of the modified deviance residuals and its Q-Q
plot against to N(0, 1) quantiles for Stanford heart transplant data set. Based on
Figure ??, we conclude that none of observed values appears as possible outliers.
Therefore, the fitted model is appropriate for these data set.
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Fig. 7.2: Profile log-likelihood plots of OLLBXII distribution
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Fig. 7.3: Fitted densities of distributions for the first data set

Fig. 7.4: Index plot of generalized cook distance.
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Fig. 7.5: The effects of observations on parameter values.
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Fig. 7.6: (a) Index plot of the modified deviance residual and (b) Q-Q plot for
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Fig. 7.5: The effects of observations on parameter values.
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8. Concluding remarks

We propose a new lifetime model called Odd Log-logistic Burr XII distribution.
Some of its mathematical properties are derived. Some useful characterization re-
sults based on the ratio of two truncated moments, based on the hazard function,
and based on the conditional expectation of certain functions of the random vari-
able are presented. The maximum likelihood method is used to estimate the model
parameters by means of a graphical Monte Carlo simulation study. Moreover, we
introduce a new log-location regression model based on the proposed distribution.
The Jackknife estimation method is employed as an alternative method to esti-
mate the unknown parameters of the new regression model. The generalized cook
distance and likelihood distance measures are used to detect possible influential
observations. Martingale and modified deviance residuals are defined to detect out-
liers and evaluate the model assumptions. The potentiality of the new regression
model is illustrated by means of real data sets. Additionally, the index plot of the
generalized cook distance and the plots for the effects of observations on the model
parameters are presented.
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Appendix A

Theorem 1. Let (Ω,F ,P) be a given probability space and let H = [a, b]
be an interval for some d < b (a = −∞, b = ∞ might as well be allowed) . Let
X : Ω → H be a continuous random variable with the distribution function F and
let q1 and q2 be two real functions defined on H such that

E [q2 (X) | X ≥ x] = E [q1 (X) | X ≥ x] η (x) , x ∈ H,
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Theorem 1. Let (Ω,F ,P) be a given probability space and let H = [a, b]
be an interval for some d < b (a = −∞, b = ∞ might as well be allowed) . Let
X : Ω → H be a continuous random variable with the distribution function F and
let q1 and q2 be two real functions defined on H such that

E [q2 (X) | X ≥ x] = E [q1 (X) | X ≥ x] η (x) , x ∈ H,
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is defined with some real function η. Assume that q1, q2 ∈ C1 (H), η ∈ C2 (H) and
F is twice continuously differentiable and strictly monotone function on the set H.
Finally, assume that the equation ηq1 = q2 has no real solution in the interior of H.
Then F is uniquely determined by the functions q1, q2 and η , particularly

F (x) =

∫ x

a

C

∣∣∣∣
η′ (u)

η (u) q1 (u)− q2 (u)

∣∣∣∣ exp (−s (u)) du ,

where the function s is a solution of the differential equation s′ = η′ q1
ηq1−q2

and C

is the normalization constant, such that
∫
H
dF = 1.

Appendix B

library(numDeriv)

rm(list=ls(all=TRUE))

f=function(x,theta ,beta ,alpha ,lambda ,a,b)

{

f=G(x,beta ,alpha ,lambda ,a,b)** theta/(G(x,beta ,alpha ,lambda ,a,b)

**theta +(1-G(x,beta ,alpha ,lambda ,a,b))**theta)

ff=theta*g(x,beta ,alpha ,lambda ,a,b)*(G(x,beta ,alpha ,lambda ,a,b)

*(1-G(x,beta ,alpha ,lambda ,a,b)))**(theta -1)/

((G(x,beta ,alpha ,lambda ,a,b)

**theta +(1-G(x,beta ,alpha ,lambda ,a,b))**theta))**2

fff=ff/(1-f)

return(fff)

}

g=function(x,beta ,alpha ,lambda ,a,b){dburr(x,beta ,alpha ,lambda)}

G=function(x,beta ,alpha ,lambda ,a,b){pburr(x,beta ,alpha ,lambda)}

pdf=function(x){f(x[1],theta ,beta ,alpha ,lambda)}

pdf2=function(y,theta ,beta ,alpha ,lambda){f(y,theta ,beta ,alpha ,

lambda)}

troca=function (){

y=seq(0.1,15,0.1); mod=c(); deriv=c()

ate=pdf2(y,theta ,beta ,alpha ,lambda)
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ate=ate[ate!=Inf] ; n=length(ate)

for(i in 1:n){deriv=c(deriv ,grad(func=pdf ,x=c(y[i])))}

sinal=sign(deriv)

change=c()

for(j in 1:n-1){

change1=ifelse(sinal[j]== sinal[j+1],0,1); change=c(change ,

change1)}

position=which(change %in% c(1))

if (sum(change)==0) mod <-ifelse(sinal[1]>0,"+","-")

if (sum(change)>0) mod <-ifelse(sinal[position]>sinal[position

+1],"+-","-+")

if (identical(mod ,c("+"))) mod <<-"crescente"

if (identical(mod ,c("+-"))) mod <<-"modal"

if (identical(mod ,c("+-"," -+"))) mod <<-"n"

if (identical(mod ,c("+-"," -+","+-"))) mod <<-"m"

if (identical(mod ,c("-"))) mod <<-"decrescente"

if (identical(mod ,c(" -+"))) mod <<-"banheira"

if (identical(mod ,c(" -+","+-"))) mod <<-"inv(n)"

if (identical(mod ,c(" -+","+-"," -+"))) mod <<-"w"

return(c(sum(change)))}

#fixing parameters

alpha=4;lambda=0.1; alphax=c(); betax=c(); a2=c(); a3=c()

for(theta in seq(0.1,1,0.005)){

for(beta in seq(0.1,1,0.005)){

alphax=c(alphax ,theta);betax=c(betax ,beta);a=troca ();a2=c(a2,

a); a3=c(a3,mod)}}

ff=factor(a3,labels=1:2)

ff1=as.numeric(ff)

ff1[ff1==1]=’royalblue1’ #decres

ff1[ff1==2]=’slategray1’ # inv (n)

ff1[ff1==3]=’darkslategray3’ #m bimo

ff1[ff1==4]=’slategray1’ #mod

plot(alphax ,betax ,col=ff1,pch=16,cex=1,ylab =expression(beta)

,xlab=expression(theta))

text(0.17,0.6,’A’,col=1,cex=1.5)

text(0.6,0.6,’B’,col=1,cex=1.5)

legend(0.7,0.8,c("A�-�decreasing","B�-�upside -down"

),bty="n",cex=1)
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Abstract. In the present paper, we introduce the concept of soft connectedness in a
soft m-structure and study some of its properties and characterizations.
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1. Introduction

The concept of soft set is fundamentally important in almost every scientific
field. Soft set theory is a new mathematical tool dealing with uncertainty and has
been applied in several directions since its introduction by Molodtsov [19] in 1999.
The operations on soft sets and soft structures have been studied in [1, 16, 23]. Maji
et. al [15] gave the first practical application of soft sets in decision theory. In 2011
Shabir and Naz [22] initiated a study of soft topological spaces. In recent years,
many soft topological concepts such as soft connectedness and their strong forms
[8, 11, 17, 20, 24],soft separation axioms [14, 20, 22], weak and strong forms of soft
open sets and soft continuity [17, 2, 3, 4, 5, 6, 9, 10, 12, 13, 25] have been introduced
and studied. Recently, the authors of this paper [21] initiated a study of soft m-
structures. In the present paper we introduce the concept of soft connectedness in
soft m-structures and we study some of its properties and characterizations.

2. Preliminaries

Let U be an initial universe set, E be a set of parameters, P(U) denote the power
set of U and A ⊆ E.

Definition 2.1. [19] A pair (F, A) is called a soft set over U, where F is a mapping
given by F: A → P(U). In other words, a soft set over U is a parameterized family
of subsets of the universe U. For all e ∈ A, F(e) may be considered a set of e-
approximate elements of the soft set (F, A).
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Definition 2.2. [16] For two soft sets (F, A) and (G, B) over a common universe
U, we say that (F, A) is a soft subset of (G, B), denoted by (F, A) ⊆ (G, B), if

(a) A ⊆ B and

(b) F (e) ⊆ G (e) for all e ∈ E.

Definition 2.3. [16] Two soft sets (F, A) and (G, B) over a common universe U
are said to be soft equal denoted by (F, A) = (G, B) if (F, A) ⊆ (G, B) and (G, B)
⊆ (F, A).

Definition 2.4. [7] The complement of a soft set (F, A), denoted by (F,A)c, is
defined by (F,A)c = (F c, A), where F c : A → P(U) is a mapping given by F c(e)
= U − F(e), for all e ∈ E.

Definition 2.5. [16] Let a soft set (F, A) over U.

(a) A null soft set denoted by φ if for all e ∈ A, F (e) = φ.

(b) An absolute soft set denoted by Ũ , if for each e ∈ A, F(e) = U.

Clearly, Ũ c = φ and φc = Ũ .

Definition 2.6. [7] The union of two sets (F, A) and (G, B) over a common
universe U is a soft set (H, C), where C = A ∪ B and for all e ∈ C,

H(e) =


F (e), ife ∈ A−B
G(e), ife ∈ B −A
F (e) ∪G(e), if e ∈A ∩B

Definition 2.7. [7] The intersection of two soft sets (F, A) and (G, B) over a
common universe U is a soft set (H, C) where C = A ∩ B and H(e) = F(e) ∩ G(e)
for each e ∈ E.

Let X and Y be initial universe sets and E and K be non-empty sets of the
parameters, S(X, E) denotes the family of all soft sets over X, and S(Y, K) denotes
the family of all soft sets over Y.

Definition 2.8. [12] Let S(X,E) and S(Y,K) be families of soft sets. Let u: X →
Y and p: E→ K be mappings. Then a mapping fpu: S(X, E)→ S(Y, K) is defined
as:

(i)Let (F, A) be a soft set in S(X, E). The image of (F, A) under fpu, written
as fpu (F, A) = ( fpu(F), p(A)), is a soft set in S(Y,K) such that

fpu(F )(k) =

{⋃
e∈p−1(k)

⋂
A u(F (e)), p−1(k)

⋂
A 6=φ

φ, p−1(k)
⋂
A =φ
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For all k ∈ K.
(ii) Let (G , B) be a soft set in S(Y , K). The inverse image of (G, B) under fpu,
written as f−1pu (G,B) = (f−1pu (G),p−1(B))), is a soft set in S(X,E) such that

f−1pu (G)(e) =

{
u−1G(p(e)), p(e)∈B
φ, p(e)/∈B

For all e ∈ E.

Definition 2.9. [25]Let fpu : S(X, E) → S(Y, K) be a mapping and u : X → Y
and p : E → K be mappings. Then fpu is soft onto, if u : X → Y and p : E → K
are onto and fpu is soft one-one, if u : X → Y and p : E → K are one-one.

Definition 2.10. [22] A subfamily τ of S(X , E) is called a soft topology over X
if:

1. φ̃ , X̃ belong to τ .

2. The union of any number of soft sets in τ belongs to τ .

3. The intersection of any two soft sets in τ belongs to τ .

The triplet (X, τ , E) is called a soft topological space over X. The members of τ are
called soft open sets in X and their complements are called soft closed sets in X.

Definition 2.11. If (X ,τ , E) is a soft topological space and a soft set (F, E) over
X.

(a) The soft closure of (F, E) is denoted by Cl(F,E), and defined as the inter-
section of all soft closed super sets of (F,E) [22].

(b) The soft interior of (F, E) is denoted by Int(F,E), and defined as the soft
union of all soft open subsets of (F, E) [25].

Definition 2.12. [25] The soft set (F,E) ∈ S(X,E) is called a soft point if there
exist x ∈ X and e ∈ E such that F(e) = {x} and F(e’) = φ for each e’ ∈ E – {e},
and the soft point (F,E) is denoted by xe.

Definition 2.13. A soft set (A, E) of a soft topological space(X,τ ,E) is called :

(a) Soft regular open (A, E) = Int(Cl(A, E)) [6];

(b) Soft α-open if (A, E) ⊂ Int(Cl(Int(A, E))) [3] ;

(c) Soft semi-open if (A, E) ⊂ Cl(Int(A, E)) [17] ;

(d) Soft preopen if (A, E) ⊂ Int(Cl(A, E)) [2] ;

(e) Soft b-open if (A, E) ⊂ Int(Cl(A, E)) ∪ Cl(Int (A, E)) [5].
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(f) Soft β-open if (A, E) ⊂ Cl(Int(Cl(A, E))) [4]

The family of all soft regular open (resp. soft α-open, soft semi-open, soft
preopen, soft β-open, soft b-open) sets of X will be denoted by SRO(X,E) (resp.
SαO(X,E), SSO(X,E), SPO(X,E), SβO(X, E), SbO(X, E)).

Definition 2.14. Let (A,E ) be a soft subset of a soft topological space (X,τ ,E).
Then:

(a) The intersection of all soft semi-open sets containing (A, E) is called semi-
closure of (A,E ). It is denoted by sCl(A,E) [17].

(b) The intersection of all soft preopen sets containing (A, E) is called preclosure
of (A,E). It is denoted by pCl(A,E)[2].

(c) The intersection of all soft α open sets containing (A,E) is called α-closure of
(A,E). It is denoted by αCl(A,E )[3].

(d) The intersection of all soft b-open sets containing (A,E) is called b-closure of
(A,E). It is denoted by bCl(A,E)[5].

(e) The intersection of all soft β-open sets containing (A,E) is called β-closure of
(A,E). It is denoted by βCl(A,E)[4].

Definition 2.15. A soft mapping fpu : (X,τ ,E)→ (X,σ,K) is said to be :

(a) Soft continuous if f−1pu (U, K) ∈ τ for every soft set (U, K) ∈ σ [25] .

(b) Soft α-continuous if f−1pu (U, K) ∈ SαO(X, E) for every soft set (U, K) ∈ σ [3].

(c) Soft semi-continuous if f−1pu (U, K) ∈ SSO(X, E) for every soft set (U, K) ∈ σ
[17].

(d) Soft precontinuous if f−1pu (U, K) ∈ SPO(X, E) for every soft set (U, K) ∈ σ
[2].

(e) Soft b-continuous if f−1pu (U, K) ∈ SbO(X, E) for every soft set (U, K) ∈ σ [5].

(f) Soft β-continuous if f−1pu (U, K) ∈ SβO(X, E) for every soft set (U, K) ∈ σ [4].

Definition 2.16. A soft mapping fpu : (X,τ ,E)→ (X,σ,K) is said to be :

(a) Soft open if fpu(U, E) ∈ σ for every soft set (U, E) ∈ τ [26].

(b) Soft α-open if fpu (U, E) ∈ SαO(Y, K) for every soft set (U, E) ∈ τ [3].

(c) Soft semi-open if fpu(U, E) ∈ SSO(Y, K) for every soft set (U, E) ∈ τ [17].

(d) Soft preopen if fpu(U, E) ∈ SPO(Y, K) for every soft set (U, E) ∈ τ [2].
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(e) Soft b-open if fpu(U, E) ∈ SbO(Y, K) for every soft set (U, E) ∈ τ [5].

(f) Soft β-open if fpu(U, E) ∈ SβO(Y, K) for every soft set (U, E) ∈ τ [4].

Definition 2.17. [14] Let (X,τ ,E) be a soft topological space, and (A,E),(B,E) be
two soft sets over X. The soft sets (A,E) and (B,E) are said to be soft-separated, if
(A,E) ∩ Cl(B,E) = φ and Cl(A,E) ∩ (B,E) = φ.

Definition 2.18. [14] Let (X,τ ,E) be a soft topological space and if there exist
two non-empty soft separated sets (A,E),(B,E) such that (A,E) ∪ (B,E) = X̃, then
(A,E) and (B,E) are said to be a soft disconnection for a soft topological space
(X,τ ,E).(X,τ ,E) is said to be soft-disconnected if (X,τ ,E) has a soft disconnection.
Otherwise, (X,τ ,E) is said to be soft-connected.

Definition 2.19. [17] Let (X,τ ,E) be a soft topological space. The nonempty soft
sets (F,A) and (F,B) in S(X,E) are called soft semi-separated iff sCl(F,A) ∩ (F,B)
= (F,A) ∩ sCl(F,B) = φ.

Definition 2.20. [17] Let (X,τ ,E)be a soft topological space. If there does not
exist a soft semi-separation of X, then it is said to be soft s-connected.

Definition 2.21. [24] Let (X,τ ,E) be a soft topological space. The nonempty soft
sets (F,A) and (F,B) in S(X,E) are called soft preseparated iff pCl(F,A) ∩ (F,B) =
(F,A) ∩ pCl(F,B) = φ.

Definition 2.22. [24] Let (X,τ ,E)be a soft topological space. If there does not
exist a soft preseparation of X, then it is said to be soft P-connected.

Definition 2.23. [21] A subfamily m(X,E) of S(X,E) is called a soft minimal struc-

ture (briefly soft m-structure) over X if φ ∈ m(X,E) and X̃ ∈ m(X,E).

(X,m(X,E)) is called a soft space with a soft minimal structure m(X,E) or sim-
ply a soft m-space. Each member of m(X,E) is called a soft m-open set and the
complement of a soft m-open set is called a soft m-closed set.

Remark 2.1. [21] Let (X,τ ,E) be a soft topological space. Then the families τ , SSO(X,E),
SPO(X,E), SαO(X,E), SβO(X,E), SbO(X,E), SRO(X,E) are all soft m-structures over X.

Definition 2.24. [21] Let X be a nonempty set, E be a set of parameters and
m(X,E) be a soft m-structure over X. The soft m(X,E)-closure and the soft m(X,E)-
interior of the soft set (A,E) over X are defined as follows:

(1) m(X,E)-Cl(A,E) = ∩ {(F,E) : (A,E) ⊂ (F,E) ,(F,E)c ∈ m(X,E) }.
(2) m(X,E)-Int(A,E) = ∪ {(F,E) : (F,E) ⊂ (A,E) ,(F,E) ∈ m(X,E) }.
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Remark 2.2. [21] Let (X,τ ,E) be a soft topological space and (A,E) be a soft set over X.
If m(X,E) = τ (respectively SO(X,E), SPO(X,E), SαO(X,E), SβO(X,E), SbO(X,E)), then
we have:

(1)m(X,E)-Cl(A,E) = Cl(A,E) (resp. sCl(A,E) ,pCl(A,E),αCl(A,E),β Cl(A,E), bCl(A,E)).

(2)m(X,E)-Int(A,E)= Int(A,E) (resp. sInt(A,E) ,pInt(A,E),αInt(A,E),βInt(A,E), bInt(A,E)).

Theorem 2.1. [21] Let S(X,E) be a family of soft sets and m(X,E) a soft minimal
structure over X.

For soft sets (A,E) and (B,E) of X, the following holds:

(a) (i): m(X,E)-Int(A,E)c = (m(X,E) − Cl(A,E))c and (ii) : m(X,E)-Cl(A,E)c =
(m(X,E) − Int(A,E))c.

(b) If (A,E)c ∈ m(X,E), then m(X,E)-Cl(A,E) = (A,E) and if (A,E) ∈ m(X,E)

,then m(X,E)-Int(A,E) = (A,E).

(c) m(X,E)-Cl(φ) = φ ,m(X,E)-Cl(X̃) = X̃ , m(X,E)-Int(φ) = φ ,m(X,E)-Int(X̃) =

X̃.

(d) If (A,E) ⊂ (B,E), then m(X,E)-Cl(A,E) ⊂ m(X,E)-Cl(B,E), m(X,E)-Int(A,E)
⊂ m(X,E)-Int(B,E).

(e) (A,E) ⊂ m(X,E)-Cl(A,E) and m(X,E)-Int(A,E) ⊂ (A,E).

(f) m(X,E)-Cl(m(X,E)-Cl(A,E)) =m(X,E)-Cl(A,E) andm(X,E)-Int(m(X,E)-Int(A,E))
= m(X,E)-Int(A,E).

Definition 2.25. [21] A soft mapping fpu : (X,m(X,E)) → (Y,m(Y,K)), where the
minimal soft structure m(X,E) and m(Y,K) over X and Y, respectively, is said to be
soft M-continuous if for each xe ∈ S(X,E) and each (V,K) ∈ m(Y,K) containing fpu
(xe), there exists (U,E) ∈ m(X,E) containing xe such that fpu(U,E) ⊂ (V,K).

Throughout this paper soft clopen means soft closed and open.

3. Connectedness in soft m-structure

Definition 3.1. [21] A soft minimal structure m(X,E) over X is said to have the
property B if the union of any family of subsets belongs to m(X,E) belongs to
m(X,E).

Definition 3.2. Let X be a nonempty set, E be a set of parameters and m(X,E)

be a soft m-structure over X with property B. In (X,m(X,E)) two nonempty soft
sets (A,E) and (B,E) over X are called soft m-separated iff m(X,E)-Cl(A,E) ∩ (B,E)
= (A,E) ∩ m(X,E)-Cl(B,E) = φ.
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Remark 3.1. Let (X,τ ,E) be a soft topological space over X. If m(X,E) = τ (resp.
SSO(X,E),SPO(X,E),SbO(X,E)) and m(X,E)-Cl(A,E) = Cl(A,E) (resp. sCl(A,E),
pCl(A,E), bCl(A,E)) we get definitions of soft separated( resp. soft semi-separated, soft
preseparated, soft b-separated) sets.

Definition 3.3. Let m(X,E) be a soft m-structure over X with the property B.
Then (X,m(X,E)) is said to be soft m-connected if there does not exist two nonempty

soft m-separated sets (A,E) and (B,E) over X, such that (A,E) ∪ (B,E) = X̃.
Otherwise it is soft m-disconnected. In this case, the pair (A,E) and (B,E) is called
soft m-disconnection over X.

Remark 3.2. Let (X,τ ,E) be a soft topological space over X. If we replace soft m-
separated by soft separated (resp. soft semi-separated, soft preseparated, soft b-separated)
sets we get a definition for soft connectedness (resp. soft semi-connectedness, soft precon-
nectedness, soft b-connectedness).

Theorem 3.1. Let (X,m(X,E)) be a soft m-space with the property B. Then the
following conditions are equivalent:

(1) (X,m(X,E)) has a soft m-disconnection.

(2) There exist two disjoint soft m-closed sets (A,E) ,(B,E) ∈ m(X,E) such that

(A,E) ∪ (B,E) = X̃.

(3) There exist two disjoint soft m-open sets (A,E) ,(B,E) ∈ m(X,E) such that

(A,E) ∪ (B,E) = X̃.

(4) (X,m(X,E)) has a proper soft m-open and soft m-closed set over X.

Proof: (1)→ (2) : Let (X,m(X,E)) have a soft m-disconnection (A,E) and (B,E).
Then (A,E) ∩ (B,E) = φ and

m(X,E)-Cl(A,E) = m(X,E)-Cl(A,E) ∩ ((A,E) ∪ (B,E)) = (m(X,E)-Cl(A,E) ∩
(A,E)) ∪ (m(X,E)-Cl(A,E) ∩ (B,E)) = (A,E).

Therefore, (A,E) is a soft m-closed set over X. Similarly, we can see that (B,E)
is also a soft m-closed set over X.

(2) → (3) : Let (X,m(X,E)) has a soft m-disconnection (A,E) and (B,E) such
that (A,E) and (B,E) are soft m-closed. Then (A,E)c and (B,E)c are soft m-open
sets in m(X,E). Then it is easy to see (A,E)c ∩ (B,E)c = φ and (A,E)c ∪ (B,E)c

= X̃.

(3) → (4) : Let (X,m(X,E)) have a soft m-disconnection (A,E) and (B,E) such
that (A,E) and (B,E) are soft m-open over X. Then (A,E) and (B,E are also soft
closed in (X,m(X,E)).

(4)→ (1) : Let (X,m(X,E)) has a proper soft m-open and soft m-closed set (F,E)
over X. Put (H,E) = (F,E)c. Then (H,E) and (F,E) are non-empty soft m-closed
sets in (X,m(X,E)). (H,E) ∩ (F,E) = φ and (H,E) ∪ (F,E) = X̃. Therefore, (H,E)
and (F,E) is a soft m-disconnection of (X,m(X,E)).



458 S.S. Thakur and A.S. Rajput

Remark 3.3. Let (X,τ ,E) be a soft topological space over X ,if m(X,E) = τ (resp.
SSO(X,E),SPO(X,E),SbO(X,E)) Then the following conditions are equivalent:

(1) (X,τ ,E) has a soft disconnection (resp. soft semi-disconnection, soft pre disconnec-
tion, soft b-disconnection).

(2) There exist two disjoint soft closed (resp. soft semi-closed, soft pre-closed, soft
b-closed) sets (A,E) ,(B,E) such that (A,E) ∪ (B,E) = X̃.

(3) There exist two disjoint soft open (resp. soft semi-open, soft pre-open, soft b-open)
sets (A,E) ,(B,E) such that (A,E) ∪ (B,E) = X̃.

(4) (X,τ ,E) has a proper soft open(resp. soft semi-open, soft pre-open, soft b-open)
and soft closed (resp. soft semi-closed, soft pre-closed, soft b-closed) set over X.

Corollary 3.1. Let (X,m(X,E)) be a soft m-space with the property B. Then the
following conditions are equivalent: (1) (X,m(X,E)) is a soft m-connected.

(2) There does not exist two disjoint soft m-closed sets (A,E), (B,E) ∈ m(X,E)

such that (A,E) ∪ (B,E) = X̃.

(3) There does not exist two disjoint soft m-open sets (A,E), (B,E) ∈ m(X,E)

such that (A,E) ∪ (B,E) = X̃.

(4) (X,m(X,E)) at most has two soft m-closed and soft m-open sets over X, that

is, φ and X̃.

Remark 3.4. Let (X,τ ,E) be a soft topological space over X ,if m(X,E) = τ (resp.
SSO(X,E),SPO(X,E),SbO(X,E)). Then the following conditions are equivalent:

(1) (X,τ ,E) is a soft connected (resp. soft semi-connected, soft preconnected ,soft
b-connected).

(2) There does not exist two disjoint soft closed (resp. soft semi-closed, soft preclosed,
soft b-closed) sets (A,E) ,(B,E) such that (A,E) ∪ (B,E) = X̃.

(3) There does not exist two disjoint soft open (resp. soft semi-open, soft pre-open,
soft b-open) sets (A,E), (B,E) such that (A,E) ∪ (B,E) = X̃.

(4) (X,τ ,E) has a proper soft open(resp. soft semi-open, soft pre-open, soft b-open)
and soft closed (resp. soft semi-closed, soft pre-closed, soft b-closed)set over X.

Definition 3.4. Let (X,m(X,E)) be a soft m-space with the property B, Y ⊂ X in
(X,m(X,E)). The soft space (Y,m(Y,E)) is called a soft m-subspace of (X,m(X,E)) if

m(Y,E) = {(A,E) ∩ Ỹ : (A,E) ∈ m(X,E)}.

Lemma 3.1. Let (X,m(X,E)) be a soft m-space with the property B, (Y,m(Y,E))

be a soft m-subspace of (X,m(X,E)). If (A,E) ⊂ Ỹ ⊂ X̃. Then m(Y,E)-Cl(A,E) =

m(X,E)-Cl(A,E) ∩ Ỹ .

Proof: We havem(Y,E)-Cl(A,E) = ∩ {(F,E): (A,E)⊂ (F,E), Ỹ -(F,E) ∈m(Y,E))}=
∩ {(F,E) ∩ Ỹ : (A,E) ⊂ (F,E)∩ Ỹ , X̃ - (F,E) ∈ m(X,E))}= ∩ {(F,E) ∩ Ỹ : (A,E) ⊂
(F,E), X̃ - (F,E) ∈ m(X,E))} = ∩ { (F,E) : (A,E) ⊂ (F,E) ,X̃ - (F,E) ∈ m(X,E)} ∩
Ỹ = m(X,E)-Cl(A,E) ∩ Ỹ .

Therefore, the lemma holds.
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Lemma 3.2. Let (X,m(X,E)) be a soft m-space with the property B, (Y,m(Y,E))
be a soft m-subspace of (X,m(X,E)). If (A,E) and (B,E) are soft sets in (Y,m(Y,E)),
then (A,E) and (B,E) are soft m-separated in (Y,m(Y,E)) if and only if (A,E) and
(B,E) are soft m-separated in (X,m(X,E)).

Proof: We have m(Y,E)-Cl(A,E) ∩ (B,E) = (m(X,E)-Cl(A,E) ∩ Ỹ ) ∩ (B,E) =
m(X,E)-Cl(A,E) ∩ (B,E) by lemma 3.1.

Similarly, we have

m(Y,E)-Cl(B,E) ∩ (A,E) = m(X,E)-Cl(B,E) ∩ (A,E).

Therefore, the lemma holds.

Lemma 3.3. Let (X,m(X,E)) be a soft m-space with the property B, Ỹ ⊂ X̃.
(Y,m(Y,E)) be a soft m-subspace of (X,m(X,E)). (Y,m(Y,E)) is soft m-connected. If

(A,E) and (B,E) are soft m-separated in (X,m(X,E)), such that Ỹ ⊂ (A,E) ∪ (B,E),

then Ỹ ⊂ (A,E) or Ỹ ⊂ (B,E).

Proof: We have Ỹ ⊂ (A,E) ∪ (B,E),we have Ỹ =( Ỹ ∩ (A,E) )∪ (Ỹ ∩ (B,E)).
By lemma 3.2 ,Ỹ ∩ (A,E) and Ỹ ∩ (B,E) are soft m-separated in (Y,m(Y,E)).

Since (Y,m(Y,E)) is soft m-connected, we have Ỹ ∩ (A,E) = φ or Ỹ ∩ (B,E) = φ.

Therefore, Ỹ ⊂ (A,E) or Ỹ ⊂ (B,E).

Lemma 3.4. Let {(Xα,m(Xα,E): α ∈ J } be a soft family non-empty soft m-
connected subspaces of (X,m(X,E)). If

⋂
α∈J Xα 6= φ, then (∪α∈JXα,∪α∈Jm(Xα,E)

is a soft m-connected subspace of (X,m(X,E)).

Proof: Let Y = (
⋃
α∈J Xα). Choose a soft point xe ∈ Ỹ . Let (C,E) and (D,E)

be a soft m-disconnection of (∪α∈JXα,∪α∈Jm(Xα,E). Then, xe ∈ (C,E) and xe ∈
(D,E), we assume that xe ∈ (C,E).For each α ∈ J. Since {(Xα,m(Xα,E) is soft

m-connected, it follows from lemma 3.3 that (̃Xα) ⊂ (C,E) or (̃Xα) ⊂ (D,E).
Therefore, we have Ỹ ⊂ (C,E) since xe ∈ (C,E) and then (D,E) = φ, which is
a contradiction. Thus (∪α∈JXα,∪α∈Jm(Xα,E) is a soft m-connected subspace of
(X,m(X,E)).

Theorem 3.2. Let {(Xα,m(Xα,E)): α ∈ J } be a soft family non-empty soft m-
connected subspaces of (X,m(X,E)).If Xα ∩Xβ 6= φ for α, β ∈ J ,then
(∪α∈JXα,m(∪α∈JXα,E)) is a soft m-connected subspace of (X,m(X,E)).

Proof : Let αo ∈ J. For β ∈ J,Put Aβ = Xαo ∪ Xβ By lemma 3.4 , {(Aβ ,m(Xβ ,E)

is soft m-connected. Then, {{(Aβ ,m(Xβ ,E) : β ∈ J} is a family soft m-connected
subspace of (X,m(X,E)) and

⋂
β∈J Aβ =Xαo 6= φ. Obviously, (

⋃
α∈J Xα = (

⋃
β∈J Aβ .

It follows from lemma 3.4 that (∪α∈JXα,∪α∈Jm(Xα,E) is a soft m-connected sub-
space of (X,m(X,E)).

Theorem 3.3. Let (X,m(X,E)) be a soft m-space with the property B, Ỹ ⊂ X̃.

(Y,m(Y,E)) be a soft m-subspace of (X,m(X,E)). If Ỹ ⊂ Ã ⊂ m(X,E)-Cl(F,E), then



460 S.S. Thakur and A.S. Rajput

(A,m(A,E)) is a soft connected m-subspace of (X,m(X,E)). In particular, m(X,E)-
Cl(F,E) is a soft connected m-subspace of (X,m(X,E)).

Proof: Let (C,E) and (D,E) be a soft m-disconnection of (A,m(A,E)). By lemma

3.3, we have Ã ⊂ (C,E) or Ã ⊂ (D,E). We assume that Ã ⊂ (C,E). By lemma
3.2, we have m(X,E)-Cl(C,E) ∩ (D,E) = φ and, hence, Ã ∩ (D,E) = φ, which is a
contradiction.

Theorem 3.4. Let fpu : (X,m(X,E)) → (Y,m(Y,K)) be a soft M-continuous map-
ping, where m(X,E) and m(Y,K) are soft minimal structures over X and Y, respec-
tively. If (X,m(X,E)) is soft m-connected, then the soft image of (X,m(X,E)) is also
soft m-connected.

Proof: Let fpu : (X,m(X,E)) → (Y,m(Y,K)) be a soft continuous mapping. Con-
versely, suppose that (Y,m(Y,K)) is soft m-disconnected and the pair (A,K) and
(B,K) is a soft m-disconnection of (Y,m(Y,K)). Since fpu : (X,m(X,E))→ (Y,m(Y,K))
is soft continuous, then f−1pu (A,K) ∈ m(X,E), f

−1
pu (B,K) ∈ m(X,E). Clearly, the pair

f−1pu (A,K) and f−1pu (B,K) is a soft m-disconnection of (X,m(X,E)), which is a con-
tradiction. Hence, (Y,m(Y,K)) is soft m-connected. This completes the proof.

Remark 3.5. Let (X,τ ,E) and (Y,ϑ,K) be two soft topological spaces over X and Y,
respectively. If m(X,E) = τ ,m(Y,K) = ϑ. fpu : (X ,τ ,E) → (Y,ϑ,K) is a soft continuous
mapping. If (X ,τ ,E) is soft connected (resp. soft semi-connected, soft pre connected,
soft b-connected) then the soft image of (X ,τ ,E) is also soft connected (resp. soft semi-
connected, soft preconnected, soft b-connected).

Definition 3.5. Let m(X,E) be a soft m-structure over X. A soft set (F,E) in
(X,m(X,E) ) is soft m-connected if it is soft m-connected as a soft m-subspace.

Remark 3.6. Let (X,τ ,E) be a soft topological space over X. A soft set (F,E) in (X,τ ,E)
is soft connected (resp. soft semi-connected, soft preconnected and soft b-connected) if it
is soft connected (resp. soft semi-connected, soft preconnected and soft b-connected) as a
soft subspace.

Theorem 3.5. Let m(X,E) be a soft m-structure over X ,(G,E) be a soft m-
connected set in (X,m(X,E)) and (F,E) be a soft set over X such that (G,E) ⊂
(F,E) ⊂ m(X,E)-Cl(G,E). Then(F,E) is soft m-connected.

Proof: It is sufficient that m(X,E)-Cl(G,E) is soft m-connected. On the con-
trary, suppose that m(X,E)-Cl(G,E) is soft m-disconnected. Then there exists a
soft m-disconnection ((H,E),(K,E) ) of m(X,E)-Cl(G,E). That is, there are ((H,E)∩
(G,E)),((K,E)∩ (G,E)) soft sets in (G,E) such that ((H,E)∩ (G,E))∩ ((K,E)∩ (G,E))
= ((H,E) ∩ (K,E))∩ (G,E) = φ, and ((H,E)∩ (G,E))∪ ((K,E)∩(G,E)) = ((H,E)∪
(K,E))∩ (G,E) = (G,E). This yields that the pair ((H,E) ∩ (G,E)) and ((K,E)∩
(G,E)) is a soft m-disconnection of (G,E), which is a contradiction. This proves
that m(X,E)-Cl(G,E) is soft m-connected. Hence, the proof is complete.
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Lemma 3.5. Let m(X,E) be a soft m-structure over X with the property B, and
let (A,E) and (B,E) be two soft sets over X. In (X,m(X,E)) the following statements
are equivalent:

(1) φ, X̃ are only soft m-open and soft m-closed set in m(X,E).

(2) (X,m(X,E)) is not a soft union of two disjoint soft sets (A,E) and (B,E) ∈
m(X,E).

(3)(X,m(X,E)) is not a soft union of two disjoint soft sets (A,E)c and (B,E)c

∈ m(X,E).

(4)(X,m(X,E)) is not a soft union of two nonempty soft m-separated sets.

Remark 3.7. Let (X, τ ,E) be a soft topological space over X, so we put m(X,E) = τ
(resp. SSO(X,E),SPO(X,E),SbO(X,E)). Also, let (A,E) and (B,E) be two soft sets over X.
In (X, τ ,E) the following statements are equivalent:

(1) φ and X̃ are only soft clopen (resp. soft semi-clopen, soft preclopen, soft b-clopen)
sets in (X, τ ,E).

(2) (X, τ ,E) is not a soft union of two soft disjoint soft open(resp. soft semi-open ,soft
pre open, soft b-open) sets .

(3) (X, τ ,E) is not a soft union of two soft disjoint soft closed (resp. soft semi-closed,
soft preclosed, soft b-closed) sets.

(4) (X, τ ,E) is not a soft union of two nonempty soft separated(soft semi separated,
soft preseparated, soft b-separated) sets.

Theorem 3.6. Let m(X,E) be a soft m-structure over X with the property B. In
(X,m(X,E)) the following statements are equivalent:

(1) (X, m(X,E)) is a soft m-connected space.

(2)(X, m(X,E)) is not a soft union of any two soft m-separated sets.

Proof : (1) → (2) : Assume (1). Suppose (2) is false, then let (A,E) and (B,E)
be two soft m-separated sets such that X̃ = (A,E) ∪ (B,E). Since (X, m(X,E)) is soft
m-connected m(X,E)-Cl(A,E) ∩ (B,E)=(A,E) ∩ m(X,E)-Cl(B,E) = φ. Since (A,E)
⊂ m(X,E)-Cl(A,E) and (B,E) ⊂ m(X,E)-Cl(B,E),then (A,E) ∪ (B,E) = φ. Now
m(X,E)-Cl(A,E) ⊂ (B,E)c =(A,E). Hence, m(X,E)-Cl(A,E) = (A,E). Therefore,
(A,E)c ∈ m(X,E).By the same way we show that (B,E)c ∈ m(X,E) which is a
contradiction with remark 3.5. This shows that (2) is true. Therefore (1) → (2).

(2) → (1) : Assume that (2) is not true. Let (A,E)c and (B,E)c be two soft
m-disjoint nonempty and (A,E)c and (B,E)c ∈ m(X,E) such that X̃ = (A,E)c ∪
(B,E)c. Then, m(X,E)-Cl(A,E)c ∩ (B,E)=(A,E) ∩ m(X,E)-Cl(B,E)c = (A,E)c ∩
(B,E)c = φ. This contradicts the hypothesis in (2). This show that (1) is true.
Therefore, (2) → (1).

Remark 3.8. Let (X, τ ,E) be a soft topological space over X, so we put m(X,E) = τ .
Then, the following statements are equivalent:

(1) (X, τ ,E) is a soft connected (soft semi-connected, soft preconnected, soft b-
connected) space.
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(2) (X, τ ,E) is not the soft union of any two soft separated (soft semi separated, soft
preseparated, soft b-separated) sets.

Remark 3.9. (1) Let m(X,E) be a soft m-structure over X with the property B, and let
(A,E) be a soft set over X. If φ 6= (A,E) ⊂ (X,m(X,E)) then (A,E) is a soft m-connected
set in m(X,E) whenever (X,m(X,E)) is a soft m-connected space.

(2) Let (X, τ ,E) be a soft topological space over X, so we put m(X,E) = τ . If φ 6=
(A,E) ⊂ (X, τ ,E) then (A,E) is a soft connected (soft semi-connected, soft preconnected,
soft b-connected) set over X whenever (X, τ ,E) is a soft connected (soft semi-connected,
soft preconnected, soft b-connected) space.

Theorem 3.7. Let m(X,E) be a soft m-structure over X with the property B. In
(X,m(X,E)), let the soft set (A,E) be a soft m-connected set. Let (B,E) and (C,E)
be soft m-separated sets. If (A,E) ⊂ (B,E) ∪ (C,E). Then, either (A,E) ⊂ (B,E)
or (A,E) ⊂ (C,E).

Proof: Suppose (A,E) is a soft m-connected set and (B,E),(C,E) are soft m-
separated sets such that (A,E) ⊂ (B,E) ∪ (C,E). Let (A,E) notsubset (B,E) and
(A,E) is not a subset of (C,E). Suppose (A1,E) = (B,E) ∩ (A,E) 6= φ and (A2,E)
= (C,E) ∩ (A,E) 6= φ. Then, (A,E) = (A1,E) ∪ (A2,E). Since (A1,E) ⊂ (B,E).
Hence, m(X,E)-Cl(A1,E) ⊂m(X,E)-Cl(B,E). Since m(X,E)-Cl(B,E)∩ (C,E) = φ then
m(X,E)-Cl (A1,E) ∩ (A2,E) = φ. Since (A2,E) ⊂ (C,E). Hence, m(X,E)-Cl(A2,E)
⊂ m(X,E)-Cl(C,E). Since m(X,E)-Cl(C,E)∩ (B,E) = φ. Then m(X,E)-Cl (A2,E)
∩ (A1,E) = φ. But (A,E) = (A1,E)∪ (A2,E). Therefore, (A,E) is not a soft m-
connected space. This is a contradiction. Then either (A,E) ⊂ (B,E) or (A,E) ⊂
(C,E).

Remark 3.10. Let (X, τ ,E) be a soft topological space over X, so we put m(X,E) =
τ . Also, let (A,E) be a soft connected (resp. soft semi-connected, soft preconnected, soft
b-connected) set. Let (B,E) and (C,E) be soft separated (resp. soft semi-separated, soft
preseparated, soft b-separated) sets. If (A,E) ⊂ (B,E) ∪ (C,E) then either (A,E) ⊂ (B,E)
or (A,E) ⊂ (C,E).

Let m(X,E) be a soft m-structure over X with the property B. In (X,m(X,E)),
let the soft set (A,E) be a soft m-connected set, then m(X,E)-Cl(A,E) is soft m-
connected.

Proof: Suppose the soft set (A,E) is a soft m-connected set and m(X,E)-Cl(A,E)
is not. Then there exist two soft m-separated sets (B,E) and (C,E) such thatm(X,E)-
Cl(A,E) = (B,E) ∪ (C,E). But (A,E) ⊂m(X,E)-Cl(A,E),then (A,E) = (B,E) ∪ (C,E)
and since (A,E) is a soft m-connected set, then by Theorem 3.7 either (A,E) ⊂ (B,E)
or (A,E) ⊂ (C,E).

(i) If (A,E) ⊂ (B,E) then m(X,E)-Cl(A,E) ⊂ m(X,E)-Cl(B,E). But m(X,E)-
Cl(B,E) ∩ (C,E) = φ. Hence, m(X,E)-Cl(A,E)∩ (C,E) = φ. Since (C,E) ⊂ m(X,E)-
Cl(A,E), then (C,E) = φ this is a contradiction.

(ii) If (A,E) ⊂ (C,E) then in the same way we can prove that (B,E) = φ, which
is a contradiction. Therefore, m(X,E)-Cl(A,E) is soft m-connected.
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Remark 3.11. Let (X, τ , E) be soft topological space over X, we put m(X,E) = τ let
soft set (A,E) be a soft connected (resp. soft semi connected,soft pre connected, soft b-
connected)set then m(X,E)-Cl(A,E) is soft connected(resp. soft semi connected,soft pre
connected, soft b-connected).

Theorem 3.8. Let m(X,E) be a soft m-structure over X with the property B. In
(X,m(X,E)), let the soft set (A,E) be a soft m-connected set and (A,E) ⊂ (B,E) ⊂
m(X,E)-Cl(A,E) then (B,E) is soft m-connected.

Proof: If (B,E) is not soft m-connected, then there exist two soft sets (C,E)
and (D,E) such that m(X,E)-Cl(C,E) ∩ (D,E) = (C,E) ∩ m(X,E)-Cl(D,E)= φ and
(B,E) = (C,E) ∪ (D,E). Since (A,E) ⊂ (B,E), thus either (A,E) ⊂ (C,E) or (A,E)
⊂ (D,E). Suppose (A,E) ⊂ (C,E) then m(X,E)-Cl(A,E) ⊂ m(X,E)-Cl(C,E), thus
m(X,E)-Cl(A,E) ⊂ (D,E) = m(X,E)-Cl(C,E) ⊂ (D,E) = φ. But (D,E) ⊂ (B,E) ⊂
m(X,E)-Cl(A,E), thus m(X,E)-Cl(A,E) ∩ (D,E) =(D,E). Therefore, (D,E) =φ which
is a contradiction. Thus, (B,E) is a soft m-connected set.

If (A,E) ⊂ (B,E), then we can prove that (C,E) = φ. This is a contradiction.
Then (B,E) is soft m-connected.

Remark 3.12. Let (X, τ ,E) be a soft topological space over X, so we put m(X,E)

= τ . Also, let the soft set (A,E) be a soft connected (resp. soft semi-connected, soft
preconnected, soft b-connected) set and (A,E) ⊂ (B,E) ⊂ m(X,E)-Cl(A,E), then (B,E) is
soft connected (resp. soft semi-connected, soft preconnected, soft b-connected).

Remark 3.13. Let (X,τ ,E) be a soft topological space over X, and (F,E) be a soft set
over X. (X,τ ,E) is soft connected (soft semi-connected, soft preconnected, soft b-connected)
if and only if there does not exist nonempty soft set (F,E) over X which is both soft open
(resp. soft semi-open, soft preopen, soft b-open) and soft closed (resp. soft semi-closed,
soft pre-closed, soft b-closed) set over X.
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ON SOME NEW GENERALIZATIONS OF CERTAIN GAMIDOV
INTEGRAL INEQUALITIES IN TWO INDEPENDENT VARIABLES

AND THEIR APPLICATIONS

Khaled Boukerrioua, Dallel Diabi and Brahim Kilani

Abstract. The aim of this paper is to establish some new nonlinear Gamidov integral
inequalities in two independent variables which can give the explicit bounds on un-
known functions. To show the feasibility of the obtained inequalities, some illustrative
examples are also introduced.

Keywords: Integral equation, mean value Theorem, Gamidov integral inequality.

1. Introduction

The integral inequalities which provide explicit bounds on unknown functions play
an important role in the development of the theory of differential and integral
equations. For instance, see [1− 19] and the references given therein. During the
past few years, an enormous amount of effort has been devoted to the discovery of
new types of inequalities and their applications in various branches of ordinary and
partial differential and integral equations.

In [8] , Sh.G.Gamidov, while studying the boundary value problem for higher
order differential equations, initiated the study of obtaining explicit upper bounds
on the integral inequalities of the forms

(1.1) u(t) ≤ c +

∫ t

a

f(s)u(s)ds +

∫ b

a

g(s)u(s)ds,

for t ∈ [a, b], under some suitable conditions on the functions involved in (1.1).

Pachpatte obtained the following interesting explicit bounds on certain integral
inequalities which appear in [14] :
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(1.2) u(t) ≤ a(t) +

∫ t

a

f(t, s)u(s)ds +

∫ b

a

g(s)u(s)ds.

Very recently, K. Cheng, C. Guo in [5] discussed the following general version
in two independent variables:
(1.3)

u(x, y) ≤ a(x, y)+b(x, y)

∫ x

0

∫ y

0

f(s, t)u(s, t)dsdt+c(x, y)

∫ M

0

∫ N

0

g(s, t)u(s, t)dsdt,

for (x, y) ∈ [0,M ] × [0, N ] .

Motivated by the results above and the inequalities obtained in [5,8,10,14], we
give a generalization of nonlinear Gamidov integral inequalities in two independent
variables which can be used as a tool to study the boundedness of solutions of
integral equations. Some applications are also given to illustrate the usefulness of
some of our results.

Before establishing our main results, we need the following lemmas.

Lemma 1.1. [5] Assume u(x, y), a(x, y), c(x, y), g(x, y) ∈ C([0,M ]×[0, N ] , [0,∞))
and

u(x, y) ≤ a(x, y) + c(x, y)

∫ M

0

∫ N

0

u(s, t)g(s, t)dsdt,

for (x, y) ∈ [0,M ] × [0, N ] . If
∫M

0

∫ N

0
c(s, t)g(s, t)dsdt < 1, then the following

explicit estimate

u(x, y) ≤ a(x, y) +
c(x, y)

∫M

0

∫ N

0
a(s, t)g(s, t)dsdt

1−
∫M

0

∫ N

0
c(s, t)g(s, t)dsdt

,

holds for (x, y) ∈ [0,M ]× [0, N ] .

Lemma 1.2. [9] Assume that a ≥ 0, p ≥ q ≥ 0 and p 6= 0, then

(1.4) a
q
p ≤ q

p
K

q−p
p a +

p− q

p
K

q
p ,

for any K > 0.

2. Main Result

In what follows, R denotes the set of real numbers R+ = [0,∞) , I1 = [0,M ] , and
I2 = [0, N ] are given subsets of R. Let ∆ = I1× I2, C(U, V ) denotes the collection
of continuous functions from U to V . Now let us give the main results of this paper.
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Lemma 2.1. Asssume that u(x, y), a(x, y), c(x, y), g(x, y) ∈ C(∆,R+) and n :
R+ → R+ a differentiable increasing function on ]0,+∞[ with the continuous non-
increasing first derivative n

′
on ]0,+∞[. If

(2.1) u(x, y) ≤ a(x, y) + c(x, y)

∫ M

0

∫ N

0

g(s, t)n(u(s, t))dsdt,

then the following explicit estimate

(2.2) u(x, y) ≤ a(x, y) +
c(x, y)

∫M

0

∫ N

0
g(s, t)n(a(s, t))dsdt

1−
∫M

0

∫ N

0
c(s, t)g(s, t)ń(a(s, t))dsdt

,

holds for (x, y) ∈ ∆, provided that

(2.3)

∫ M

0

∫ N

0

c(s, t)g(s, t)n′(a(s, t))dsdt < 1.

Proof. Obviously,
∫M

0

∫ N

0
g(s, t)n(u(s, t))dsdt is a constant.

Letting

(2.4) Ω =

∫ M

0

∫ N

0

g(s, t)n(u(s, t))dsdt,

from (2.1), we have

(2.5) u(x, y) ≤ a(x, y) + c(x, y)Ω.

Since n is increasing on ]0,+∞[, then

(2.6) n(u(x, y)) ≤ n(a(x, y) + c(x, y)Ω).

Applying the mean value Theorem for the function n, then for every x1 ≥ y1 > 0
there exists c ∈]y1, x1[ such that

(2.7) n(x1)− n(y1) = ń(c)(x1 − y1) ≤ n′(y1)(x1 − y1).

Which gives

(2.8) n(u(x, y)) ≤ n′(a(x, y))c(x, y)Ω + n(a(x, y)),

taking into account that g(x, y) is positive, then
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(2.9) g(x, y)n(u(x, y)) ≤ g(x, y)n′(a(x, y))c(x, y)Ω + g(x, y)n(a(x, y)).

Integrating both sides of (2.9) on ∆, we obtain

Ω =

∫ M

0

∫ N

0

g(s, t)n(u(s, t))dsdt(2.10)

≤ Ω

∫ M

0

∫ N

0

c(s, t)g(s, t)n′(a(s, t))dsdt

+

∫ M

0

∫ N

0

g(s, t)n(a(s, t))dsdt.

It follows from (2.10) that

Ω ≤
∫M

0

∫ N

0
g(s, t)n(a(s, t))dsdt

1−
∫M

0

∫ N

0
c(s, t)g(s, t)n′(a(s, t))dsdt

.

Substituting the inequality above into (2.5), we get the explicit estimate (2.2)
for u(x, y).

Remark 2.1. By taking n(x) = x, the inequality given in Lemma 2.1 reduces to the
inequality given in Lemma 1.1.

Corollary 2.1. Suppose that the conditions of Lemma 2.1 hold. Then

u(x, y) ≤ a(x, y) + c(x, y)

∫ M

0

∫ N

0

g(s, t) arctan(u(s, t))dsdt.

Implies

(2.11) u(x, y) ≤ a(x, y) +
c(x, y)

∫M

0

∫ N

0
g(s, t) arctan(a(s, t))dsdt

1−
∫M

0

∫ N

0

c(s, t)g(s, t)

1 + a2(s, t)
dsdt

, .

for (x, y) ∈ ∆, provided that∫ M

0

∫ N

0

c(s, t)g(s, t)

1 + a2(s, t)
dsdt < 1,

and if

u(x, y) ≤ a(x, y) + c(x, y)

∫ M

0

∫ N

0

g(s, t) ln(u(s, t) + 1)dsdt,
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then

u(x, y) ≤ a(x, y) +
c(x, y)

∫M

0

∫ N

0
g(s, t) ln(a(s, t) + 1)dsdt

1−
∫M

0

∫ N

0

c(s, t)g(s, t)

1 + a(s, t)
dsdt

,

for (x, y) ∈ ∆, provided that∫ M

0

∫ N

0

c(s, t)g(s, t)

1 + a(s, t)
dsdt < 1.

Theorem 2.1. Assume that a(x, y), b(x, y), c(x, y), f(x, y), g(x, y) ∈ C(∆,R+)
and a(x, y), b(x, y), c(x, y) are nondecreasing in x and y. Let n : R+ → R+is a
differentiable increasing function on ]0,+∞[ with continuous non-increasing first
derivative n′ on ]0,+∞[. If u(x, y) ∈ C(∆,R+) satisfies
(2.12)

u(x, y)≤a(x, y)+b(x, y)

∫ x

0

∫ y

0

f(s, t)u(s, t)dsdt+c(x, y)

∫ M

0

∫ N

0

g(s, t)n(u(s, t))dsdt,

then, we have

u(x, y) ≤ A∗(x, y) + C∗(x, y)×(2.13) ∫M

0

∫ N

0
g(s, t)n(A∗(s, t))dsdt

1−
∫M

0

∫ N

0
C∗(s, t)g(s, t)n′(A∗(s, t))dsdt

,

for (x, y) ∈ ∆, provided that∫ M

0

∫ N

0

C∗(s, t)g(s, t)n′(A∗(s, t))dsdt < 1,

where

A∗(x, y) = a(x, y) exp

{
b(x, y)

∫ x

0

∫ y

0

f(s, t)dsdt

}
,(2.14)

C∗(x, y) = c(x, y) exp

{
b(x, y)

∫ x

0

∫ y

0

f(s, t)dsdt

}
.

Proof. Fixing any arbitrary (X,Y ) ∈ ∆ , then for (x, y) ∈ ∆1 = [0, X]× [0, Y ],
from (2.12), we have

(2.15)

u(x, y)≤a(X,Y )+b(X,Y )

∫ x

0

∫ y

0

f(s, t)u(s, t)dsdt+c(X,Y )

∫ M

0

∫ N

0

g(s, t)n(u(s, t))dsdt,

where we apply that a(x, y), b(x, y), and c(x, y) are nondecreasing in x and y.
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Define a function v(x, y), (x, y) ∈ ∆1 by the right side of (2.15). Then, v(x, y)
is positive and nondecreasing in x and y and

(2.16) u(x, y) ≤ v(x, y).

Furthermore, we have

(2.17) v(0, y) = a(X,Y ) + c(X,Y )

∫ M

0

∫ N

0

g(s, t)n(u(s, t))dsdt,

∂

∂x
v(x, y) = b(X,Y )

∫ y

0

f(x, t)u(x, t)dt(2.18)

≤ b(X,Y )

∫ y

0

f(x, t)v(x, t)dt

≤ (b(X,Y )

∫ y

0

f(x, t)dt)v(x, y).

Since v(x, y) is nondecreasing in y, from (2.18), one gets

(2.19)
(∂/∂x) v(x, y)

v(x, y)
≤ b(X,Y )

∫ y

0

f(x, t)dt.

Now, keeping y fixed in (2.19), setting x = s, and integrating the last inequality
with respect to s from 0 to x, we get

(2.20) v(x, y) ≤ v(0, y) exp

{
b(X,Y )

∫ x

0

∫ y

0

f(s, t)dsdt

}
.

It follows from (2.16) and (2.17) that

u(x, y) ≤

[
a(X,Y ) + c(X,Y )

∫ M

0

∫ N

0

g(s, t)n(u(s, t))dsdt

]

× exp

{
b(X,Y )

∫ x

0

∫ y

0

f(s, t)dsdt

}
= a(X,Y ) exp

{
b(X,Y )

∫ x

0

∫ y

0

f(s, t)dsdt

}
+c(X,Y ) exp

{
b(X,Y )

∫ x

0

∫ y

0

f(s, t)dsdt

}
×
∫ M

0

∫ N

0

g(s, t)n(u(s, t))dsdt(2.21)

= A1(x, y,X, Y ) + C1(x, y,X, Y )

∫ M

0

∫ N

0

g(s, t)n(u(s, t))dsdt,
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where

A1(x, y,X, Y ) = a(X,Y ) exp

{
b(X,Y )

∫ x

0

∫ y

0

f(s, t)dsdt

}
,(2.22)

C1(x, y,X, Y ) = c(X,Y ) exp

{
b(X,Y )

∫ x

0

∫ y

0

f(s, t)dsdt

}
.

Using Lemma 2.1, from (2.21), we easily obtain

u(x, y) ≤ A1(x, y,X, Y ) + C1(x, y,X, Y )(2.23)

×
∫M

0

∫ N

0
g(s, t)n(A1(s, t,X, Y ))dsdt

1−
∫M

0

∫ N

0
C1(s, t,X, Y )g(s, t)n′(A1(s, t,X, Y ))dsdt

,

since the inequality (2.23) holds for all (x, y) ∈ ∆1 , taking x = X and y = Y , we
have

u(X,Y ) ≤ A1(X,Y,X, Y ) + C1(X,Y,X, Y )×(2.24) ∫M

0

∫ N

0
g(s, t)n(A1(s, t,X, Y ))dsdt

1−
∫M

0

∫ N

0
C1(s, t,X, Y )g(s, t)n′(A1(s, t,X, Y ))dsdt

= A∗(X,Y ) + C∗(X,Y )×∫M

0

∫ N

0
g(s, t)n(A∗(s, t))dsdt

1−
∫M

0

∫ N

0
C∗(s, t)g(s, t)n′(A∗(s, t))dsdt

,

for (X,Y ) ∈ ∆, where A∗(X,Y ) and C∗(X,Y ) are defined as in (2.14).

Taking into account that X and Y are arbitrary, we replace X and Y by x
and y, respectively, and we get the required inequality in (2.13).

Remark 2.2. If we take n(x) = x, then Theorem 2.1 reduces to Theorem 2 in [5].

Theorem 2.2. Let a(x, y), b(x, y), c(x, y), f(x, y) and g(x, y) be as in Theorem
2.1. If u(x, y) ∈ C(∆,R+) satisfies

(2.25)

up(x, y) ≤ a(x, y)+b(x, y)

∫ x

0

∫ y

0

f(s, t)uq(s, t)dsdt+c(x, y)

∫ M

0

∫ N

0

g(s, t)n(u(s, t))dsdt,

where p ≥ q ≥ 0, p ≥ 1 are constants, then

u(x, y) ≤ A∗(x, y) + C∗(x, y)×(2.26) ∫M

0

∫ N

0
G∗(s, t)n(A∗(s, t))dsdt

1−
∫M

0

∫ N

0
C∗(s, t)G∗(s, t)n′(A∗(s, t))dsdt

,
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for (x, y) ∈ ∆, provided that∫ M

0

∫ N

0

C∗(s, t)G∗(s, t)n′(A∗(s, t))dsdt < 1,

where

A∗(x, y) = A1(x, y) exp

{
B1(x, y)

∫ x

0

∫ y

0

F ∗(s, t)dsdt

}
,(2.27)

C∗(x, y) = C1(x, y) exp

{
B1(x, y)

∫ x

0

∫ y

0

F ∗(s, t)dsdt

}
,

and

A1(x, y) =
1

p
K

1−p
p b(x, y)

∫ x

0

∫ y

0

f(s, t)

[
q

p
K(q−p)/pa(s, t) +

p− q

p
Kq/p

]
dsdt

+
1

p
K

1−p
p a(x, y) +

p− 1

p
K

1
p ,

B1(x, y) =
q

p
K(q−p)/pb(x, y), C1(x, y) =

1

p
K

1−p
p c(x, y),

(2.28) F ∗(x, y) = f(x, y),

G∗(x, y) = g(x, y),

Proof. Define a function w(x, y) by

w(x, y) = b(x, y)

∫ x

0

∫ y

0

f(s, t)uq(s, t)dsdt(2.29)

+c(x, y)

∫ M

0

∫ N

0

g(s, t)n(u(s, t))dsdt,

for (x, y) ∈ ∆. Then, from (2.29) , we have

(2.30) up(x, y) ≤ a(x, y) + w(x, y).

Applying Lemma 1.2, we get

(2.31)

u(x, y) ≤ (a(x, y) + w(x, y))1/p ≤ 1

p
K

1−p
p (a(x, y) + w(x, y)) +

p−1

p
K

1
p = v(x, y).

uq(x, y) ≤ (a(x, y) + w(x, y))
q/p ≤ q

p
K(q−p)/p (a(x, y) + w(x, y)) +

p− q

p
Kq/p.
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It follows from (2.29),(2.30) and (2.31) that

w(x, y) ≤ b(x, y)

∫ x

0

∫ y

0

f(s, t)(2.32)

×
[
q

p
K(q−p)/p (a(s, t) + w(s, t)) +

p− q

p
Kq/p

]
dsdt

+c(x, y)

∫ M

0

∫ N

0

g(s, t)n(v(s, t))dsdt,

taking into-account that 1
pK

1−p
p w(x, y) ≤ v(x, y), we have

w(x, y) ≤ b(x, y)

∫ x

0

∫ y

0

f(s, t)

[
q

p
K(q−p)/pa(s, t) +

p− q

p
K

q/p

]
dsdt

+qK(q−1)/pb(x, y)

∫ x

0

∫ y

0

f(s, t)v(s, t)dsdt

+c(x, y)

∫ M

0

∫ N

0

g(s, t) n(v(s, t))dsdt.(2.33)

Multiplying both sides of (2.33) by 1
pK

1−p
p and adding 1

pK
1−p
p a(x, y) + p−1

p K
1
p

to both sides of the resultant inequality, we obtain

v(x, y) ≤ A1(x, y) + B1(x, y)

∫ x

0

∫ y

0

F ∗(s, t)v(s, t)dsdt(2.34)

+C1(x, y)

∫ M

0

∫ N

0

G∗(s, t)n(v(s, t))dsdt,

where A1(x, y), B1(x, y), C1(x, y), F ∗(x, y) and G∗(x, y) are defined as in (2.28).

Note that A1(x, y), B1(x, y) and C1(x, y) are nonnegative, continuous, and non-
decreasing for (x, y) ∈ ∆.A suitable application of Theorem 2.1 to (2.34) gives

u(x, y) ≤ v(x, y) ≤ A∗(x, y) + C∗(x, y)×(2.35) ∫M

0

∫ N

0
G∗(s, t)n(A∗(s, t))dsdt

1−
∫M

0

∫ N

0
C∗(s, t)G∗(s, t)n′(A∗(s, t))dsdt

,

where A∗(x, y) and C∗(x, y) are defined as in (2.27).

Remark 2.3. If we take n(x) = x, then Theorem 2.2 reduces to Theorem 6 in [5] .

3. Applications

In this section, we shall illustrate how our main results can be applied to study the
boundedness and uniqueness of the solution to certain integral equations in two
independent variables.
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Example 3.1. Consider the following integral equation:

(3.1) z(x, y) = a(x, y) + b(x, y)

∫ x

0

∫ y

0

F (s, t, z)dsdt + c(x, y)

∫ M

0

∫ N

0

G(s, t, z)dsdt,

for (x, y) ∈ ∆, where z(x, y) ∈ C(∆,R), a(x, y), b(x, y), c(x, y) ∈ C(∆,R+) are nondecreas-
ing in x and y, F (x, y, z), G(x, y, z) ∈ C(∆× R,R).

Theorem 3.1. Assume that the functions F and G in (3.1) satisfy the conditions

|F (s, t, z)| ≤ f(s, t) |z| ,(3.2)

|G(s, t, z)| ≤ g(s, t)n(|z|),

where f(s, t), g(s, t) and n are defined as in Theorem 2.1.

If z(x, y) is the unique solution of (3.1), then

|z(x, y)| ≤ A∗(x, y) + C∗(x, y)×(3.3) ∫M

0

∫ N

0
g(s, t)n(A∗(s, t))dsdt

1−
∫M

0

∫ N

0
C∗(s, t)g(s, t)n′(A∗(s, t))dsdt

,

for (x, y) ∈ ∆, provided that

(3.4)

∫ M

0

∫ N

0

C∗(s, t)g(s, t)n′(A∗(s, t))dsdt < 1,

where A∗(x, y), C∗(x, y) are defined in (2.14).

Proof. Assume that z(x, y) is the unique solution of (3.1) , from (3.2) we have

|z(x, y)| ≤ a(x, y) + b(x, y)

∫ x

0

∫ y

0

f(s, t) |z(s, t)| dsdt(3.5)

+c(x, y)

∫ M

0

∫ N

0

g(s, t)n(|z(s, t)|)dsdt.

Now an application of Theorem 2.1 to (3.5), yields the required inequality in
(3.3).

Corollary 3.1. If we take in (3.2), n(z) = arctan(z), then the unique solution of
(3.1) can be expressed as

|z(x, y)| ≤ A∗(x, y) + C∗(x, y)×∫M

0

∫ N

0
g(s, t) arctan(A∗(s, t))dsdt

1−
∫M

0

∫ N

0
C∗(s,t)g(s,t)dsdt

1+A∗2(s,t)

,
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provided that ∫ M

0

∫ N

0

C∗(s, t)g(s, t)dsdt

1 + A∗2(s, t)
< 1.

If we take n(z) = ln(z + 1), then the unique solution of (3.1) can be expressed as

|z(x, y)| ≤ A∗(x, y) + C∗(x, y)×∫M

0

∫ N

0
g(s, t) ln(A∗(s, t) + 1)dsdt

1−
∫M

0

∫ N

0
C∗(s,t)g(s,t)dsdt

1+A∗(s,t)

,

provided that ∫ M

0

∫ N

0

C∗(s, t)g(s, t)dsdt

1 + A∗(s, t)
< 1.

Proposition 3.1. Assume that the functions F and G in (3.1) satisfy the condi-
tions

|F (s, t, z)| − F (s, t, z) ≤ f(s, t) |z − z| ,(3.6)

|G(s, t, z)| −G(s, t, z) ≤ g(s, t)n(|z − z|),

where f(s, t), g(s, t) and n are defined as in Theorem 2.1 with n(0) = 0. If

∫ M

0

∫ N

0

C∗(s, t)g(s, t)n′(A∗(s, t))dsdt < 1,

where A∗and C∗are defined as in Theorem 2.1, and z(x, y) is a solution of (3.1),
then (3.1) has at most one solution.

Proof. Let z(x, y) and z(x, y) be two solutions of (3.1), then

z(x, y) = a(x, y) + b(x, y)

∫ x

0

∫ y

0

F (s, t, z)dsdt

+c(x, y)

∫ M

0

∫ N

0

G(s, t, z)dsdt,

z(x, y) = a(x, y) + b(x, y)

∫ x

0

∫ y

0

F (s, t, z)dsdt

+c(x, y)

∫ M

0

∫ N

0

G(s, t, z)dsdt.(3.7)
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From (3.7), we have

|z(x, y)− z(x, y)| ≤ b(x, y)

∫ x

0

∫ y

0

|F (s, t, z)− F (s, t, z)| dsdt(3.8)

+c(x, y)

∫ M

0

∫ N

0

|G(s, t, z)−G(s, t, z)| dsdt

≤ b(x, y)

∫ x

0

∫ y

0

f(s, t) |z − z| dsdt

+ c(x, y)

∫ M

0

∫ N

0

g(s, t)n(|z − z|)dsdt.

According to Theorem 2.1, we obtain that |z(x, y)− z(x, y)| ≤ 0, which implies
z(x, y) = z(x, y) for (x, y) ∈ ∆.
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ON APPROXIMATION OF FIXED POINTS OF MEAN
NONEXPANSIVE MAPPINGS IN CAT(0) SPACES

Ali Abkar and Mojtaba Rastgoo

Abstract. A new iterative algorithm for approximating fixed points of mean nonexpan-
sive mappings in CAT(0) spaces is introduced. As a result, a �-convergence theorem
is established. The result we obtain improves and extends several recent results in the
literature. Finally, some numerical examples are presented to illustrate the main result
and to compare the new algorithm with some existing ones.
Keywords: Iterative algorithm; CAT(0) space; weak convergence; �-convergence;
mean nonexpansive mapping

1. Introduction

Fixed point theory of metric spaces was initiated by the celebrated Banach
contraction principle which states that every contraction on a complete metric space
has a unique fixed point; moreover, the fixed point can be approximated by Picard’s
iterates. Perhaps the most influential fixed point theorem in metric fixed point
theory is the theorem due to F. E. Browder and D. Gohde; in 1965, F. E. Browder
[10] and D. Gohde [9] independently proved that every nonexpansive self-mapping
of a closed, convex, and bounded subset of a uniformly convex Banach space has a
fixed point. Fixed point theory in Cartan-Alexandrov-Toponogov spaces, or briefly
in CAT(0) spaces, was first studied by W. A. Kirk (see [30, 29]. Among other things,
he proved that every nonexpansive mapping defined on a bounded closed convex
subset of a complete CAT(0) space has a fixed point. Since then the fixed point
theorems for various mappings in a CAT(0) space have been developed rapidly and
numerous papers have appeared (see for example [1, 2, 31, 15, 6, 17, 18] and the
references therein).

As a generalization of nonexpansive mappings, in 1975, Zhang [26] introduced
the concept of a mean nonexpansive mapping in Banach spaces and proved the exis-
tence and uniqueness of fixed points for this type of mappings in Banach spaces with
the normal structure. The mean nonexpansive mappings were extensively studied

Received October 03, 2017; accepted March 12, 2018
2010 Mathematics Subject Classification. Primary 47H09; Secondary 47H10, 47J25
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by Wu and Zhang [7], and by Yang and Cui [32]. In 2010, Nakprasit [13] provided
an example of a mapping that is mean nonexpansive but not Suzuki-generalized
nonexpansive and showed that increasing mean nonexpansiveness implies Suzuki-
generalized nonexpansiveness. In 2012, Ouahab [3] proved a fixed point theorem
for strong semigroups of mean nonexpansive mappings in uniformly convex Banach
spaces. In this paper, we shall study mean nonexpansive mappings in the context
of CAT(0) spaces.

Let (X, d) be a metric space and x, y be two fixed elements in X such that
d(x, y) = l. A geodesic path from x to y is an isometry c : [0, l] → c([0, 1]) ⊂ X such
that c(0) = x, c(l) = y. The image of a geodesic path between two points is called a
geodesic segment. A metric space (X, d) is called a geodesic space if every two points
of X are joined by a geodesic segment. A geodesic triangle represented by �(x, y, z)
in a geodesic space consists of three points x, y, z and the three segments joining
each pair of the points. A comparison triangle of a geodesic triangle �(x, y, z),
denoted by �(x, y, z) or �(x, y, z), is a triangle in the Euclidean space R2 such that
d(x, y) = dR2(x, y), d(x, z) = dR2(x, z), and d(y, z) = dR2(y, z). This is obtainable
by using the triangle inequality, and it is unique up to isometry on R2. Bridson and
Haefliger [16] have shown that such a triangle always exists. A geodesic segment
joining two points x, y in a geodesic space X is represented by [x, y]. Every point z
in the segment is represented by αx ⊕ (1 − α)y, where α ∈ [0, 1], that is, [x, y] :=
{αx ⊕ (1 − α)y : α ∈ [0, 1]}. A subset C of a metric space X is called convex if
for all x, y ∈ C, [x, y] ⊂ C. A geodesic space is called a CAT(0) space if for every
geodesic triangle � and its comparison �, the following inequality is satisfied:
d(x, y) ≤ dR2(x, y) for all x, y ∈ � and x, y ∈ �. Complete CAT(0) spaces are often
called Hadamard spaces (see [28, 24, 25]. Examples of CAT(0) spaces include the
R-tree, Hadamard manifolds, and the Hilbert ball equipped with the hyperbolic
metric. For more details on these spaces, see for example [19, 14, 8]. A geodesic
space (X, d) is called hyperbolic (see [12, 23]) if, for any x, y, z ∈ X,

d(
1

2
z ⊕ 1

2
x,

1

2
z ⊕ 1

2
y) ≤ 1

2
d(x, y).

The class of hyperbolic spaces include the normed spaces, CAT(0) spaces, and some
others. Bashir Ali in [4] presented an example of a hyperbolic space that is not a
normed space. Therefore, the class of hyperbolic spaces is more general than the
class of normed spaces.

Let C be a nonempty subset of a CAT(0) spaces (X, d). A self-mapping T : C → C
is called nonexpansive if d(Tx, Ty) ≤ d(x, y) for all x, y ∈ C. The mapping T is
called quasi-nonexpansive if Fix(T ) = {x ∈ C : Tx = x} �= Ø and d(Tx, p) ≤ d(x, p)
for all x ∈ C and p ∈ Fix(T ).

In 2015, Zhou and Cui in [11] introduced an iterative algorithm to approximate
fixed points of mean nonexpansive mappings in CAT(0) spaces; this algorithm is
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defined in the following way:




x1 ∈ C,
xn+1 = (1− tn)xn ⊕ tnT (yn),

yn = (1− sn)xn ⊕ snT (xn), n ≥ 1,

where {sn}∞n=1 and {tn}∞n=1 are some sequences in (0, 1).

In this paper, we introduce a new iterative algorithm for approximating fixed
points of mean nonexpansive mappings in CAT(0) spaces. Under suitable con-
ditions, we prove the �-convergence theorem for our algorithm. The results we
obtain improve and extend several recent results in the literature; they also com-
plement many known existing results. We then provide some numerical examples
to illustrate our main result. In this way, we display the efficiency of our proposed
algorithm.

2. Preliminaries

Throughout this article, (X, d) will stand for a metric space. We denote by N the
set of positive integers and by R the set of real numbers. We write xn ⇀ x to
indicate that the sequence {xn}∞n=1 converges weakly to x, and xn → x to indicate
that the sequence {xn}∞n=1 converges strongly to x.
We start by recalling some basic definitions.

Definition 2.1. Let C be a nonempty subset of (X, d). A mapping T : C → C is
said to be nonexpansive if

d(Tx, Ty) ≤ d(x, y), ∀x, y ∈ C.

Definition 2.2. Let C be a nonempty subset of (X, d). A mapping T : C → C is
said to be mean nonexpansive if

d(Tx, Ty) ≤ a d(x, y) + b d(x, Ty), ∀x, y ∈ C,

where a and b are two nonnegative real numbers such that a+ b ≤ 1.

Obviously, every nonexpansive mapping is a mean nonexpansive mapping (with
a = 1 and b = 0). Note that a mean nonexpansive mapping is not necessarily
continuous as the following example shows, so that mean nonexpansive mappings
are not necessarily nonexpansive.

Example 2.1. Suppose that T : [0, 1] → [0, 1] is a mapping defined by

Tx =




x

5
+

5

12
x ∈ [0, 1

2
);

x
6
+ 5

12
x ∈ [1

2
, 1].
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Then T is mean nonexpansive with a = 1
3
, b = 2

3
, but not continuous at x = 1

2
. Thus, T

is not a nonexpansive mapping.

Example 2.2. Suppose that T : [0, 1] → [0, 1] is a mapping defined by

Tx =




1− x

3
x ∈ [0, 1] is rational;

1+x
5

x ∈ [0, 1] is irrational.

Then T is mean nonexpansive with a = 1
3
, b = 2

3
, but not continuous at any point in [0, 1]

except x = 1
4
, the fixed point of T .

In 2008, Suzuki [27] introduced Suzuki-generalized nonexpansive mappings in Ba-
nach spaces.

Definition 2.3. Let C be a nonempty subset of (X, d). A mapping T : C → C is
said to be Suzuki-generalized nonexpansive if

1

2
d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ d(x, y)

for all x, y ∈ C.

In [13], Nakprasit provided an example of a mapping that is mean nonexpansive
but not Suzuki-generalized nonexpansive and showed that increasing mean nonex-
pansive mappings are Suzuki-generalized nonexpansive.
We now turn to some known facts regarding CAT(0) spaces.

Lemma 2.1. ([20], Lemma 2.5) Let (X, d) be a CAT(0) space. Then

d((1− α)x⊕ αy, z)
2 ≤ (1− α)d(x, z)

2
+ αd(y, z)

2 − α(1− α)d(x, y)
2

for all α ∈ [0, 1] and x, y, z ∈ X.

Lemma 2.2. ([5], Lemma 4.5) Let x be a given point in a CAT(0) space (X, d) and

{tn} be a sequence in a closed interval [a, b] with 0 < a ≤ b < 1 and 0 < a(1−b) ≤ 1

2
.

Suppose that {xn} and {yn} are two sequences in X such that

1. lim supn→∞ d(xn, x) ≤ r,

2. lim supn→∞ d(yn, x) ≤ r,

3. lim supn→∞ d((1− tn)xn ⊕ tnyn, x) = r

for some r ≥ 0. Then limn→∞ d(xn, yn) = 0.
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Theorem 2.1. ([11], Theorem 3.1) Let C be a nonempty bounded closed convex
subset of a complete CAT(0) space (X, d) and T : C → C be a mean nonexpansive
mapping with b < 1. Then T has a fixed point.

Theorem 2.2. ([11], Theorem 3.2) Let (X, d) be a complete CAT(0) space and
C be a nonempty bounded closed convex subset of X. Let T : C → C be a mean
nonexpansive mapping with b < 1, and let {xn} ⊂ C be an approximate fixed point
sequence (i.e., limn→∞ d(xn, Txn) = 0) and {xn} ⇀ ω. Then T (ω) = ω.

Definition 2.4. Let {xn} be a bounded sequence in a CAT(0) space (X, d).

1. The asymptotic radius r({xn}) of {xn} is given by

r({xn}) := inf
x∈X

{r(x, {xn})},

where r(x, {xn}) := lim supn→∞ d(xn, x).

2. The asymptotic center A({xn}) of {xn} is the set

A({xn}) := {x ∈ X : r(x, {xn}) = r({xn})}.

In 2006, Dhompongsa et al proved that A({xn}) consists of exactly one point for
each bounded sequence {xn} in a CAT(0) space (see Proposition 7 in [22]). We
recall that a bounded sequence {xn} in X is said to be regular if r({xn}) = r({un})
for every subsequence {un} of {xn}. It is known that every bounded sequence in
a Banach space has a regular subsequence. It is now time to give the concept of
�-convergence in a CAT(0) space.

Definition 2.5. [31] Let (X, d) be a CAT(0) space. A sequence {xn} in X is said
to �-converge to x ∈ X if and only if x is the unique asymptotic center of all
subsequences of {xn}. In this case, we write � − limn→∞ xn = x and x is called
the �-limit of {xn}.

Proposition 2.1. ([5], Proposition 3.12). Let {xn} be a bounded sequence in a
CAT(0) space (X, d) and let C ⊂ X be a closed convex subset which contains {xn}.
Then,

• � − limn→∞ xn = x implies {xn} ⇀ x;

• if {xn} is regular, then {xn} ⇀ x implies �− limn→∞ xn = x.

Lemma 2.3. The following assertions in a CAT(0) space hold:

• [20] Every bounded sequence in a complete CAT (0) space has a �-convergent
subsequence.
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• [21] If {xn} is a bounded sequence in a closed convex subset C of a complete
CAT(0) space (X, d), then the asymptotic center of {xn} is in C.

• [20] If {xn} is a bounded sequence in a complete CAT(0) space (X, d) with
A({xn}) = {p}, {νn} is a subsequence of {xn} with A({νn}) = {ν}, and the
sequence {d(xn, ν)} converges, then p = ν.

Lemma 2.4. ([11], Lemma 4.4) Let C be a nonempty closed convex subset of a
complete CAT(0) space (X, d) and T : C → C be a mean nonexpansive mapping. If
{xn} is a sequence in C such that limn→∞ d(xn, T (xn)) = 0 and �−limn→∞ xn = p,
then T (p) = p.

Remark 2.1. By Lemma 2.4 and Proposition 2.1 (ii), if {xn} in Theorem 2.2 is regular,
then the condition b < 1 in Theorem 2.2 can be removed.

3. Weak Convergence Theorem

We begin this section by proving a �-convergence theorem for mean nonexpansive
mappings in CAT(0) spaces. Here we introduce a new iterative algorithm to ap-
proximate the fixed point of our mapping. We shall then compare our algorithm
with that of Zhou and Cui [11].

Theorem 3.1. Let (X, d) be a complete CAT(0) space, C be a nonempty, bounded
closed convex subset of (X, d) and T : C → C be a mean nonexpansive mapping with
b < 1. Let {αn}∞n=1, {βn}∞n=1 and {γn}∞n=1 be sequences in (0, 1), also {αn} be a

sequence in a closed interval [r, s] with 0 < r ≤ s < 1 and 0 < r(1 − s) ≤ 1

2
. Then

{xn}∞n=1 which is defined by

(3.1)




x1 ∈ C,
zn = T ((1− αn)xn ⊕ αnT (xn)),

yn = T ((1− βn)zn ⊕ βnT (zn)),

xn+1 = T ((1− γn)T (zn)⊕ γnT (yn)),

is �-convergent to some point p ∈ Fix(T ).

Proof. By using Theorem 2.1, we get Fix(T ) �= Ø. Next, we will divide the proof
into three steps.

Step 1. First, we will prove that limn→∞ d(xn, p) exists for each p ∈ Fix(T ),
where {xn} is defined by (3.3). For this purpose, let p ∈ Fix(T ), using the fact
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that {αn}∞n=1 ⊂ (0, 1) we obtain

d(zn, p) = d(T ((1− αn)xn ⊕ αnT (xn)), p)

≤ a

[
d((1− αn)xn ⊕ αnT (xn), p)

]

+b

[
d((1− αn)xn ⊕ αnT (xn), p)

]

≤ d((1− αn)xn ⊕ αnT (xn), p)

≤ (1− αn)d(xn, p) + αnd(T (xn), p)

≤ (1− αn)d(xn, p) + αnad(xn, p) + αnbd(xn, p)

≤ (1− αn)d(xn, p) + αnd(xn, p)

≤ d(xn, p)(3.2)

for all n ∈ N. Also, we have

d(yn, p) = d(T ((1− βn)zn ⊕ βnT (zn)), p)

≤ a

[
d((1− βn)zn ⊕ βnT (zn), p)

]

+b

[
d((1− βn)zn ⊕ βnT (zn), p)

]

≤ d((1− βn)zn ⊕ βnT (zn), p)

≤ (1− βn)d(zn, p) + βnd(T (zn), p)

≤ (1− βn)d(zn, p) + βnad(zn, p) + βnbd(zn, p)

≤ (1− βn)d(zn, p) + βnd(zn, p)

≤ d(zn, p)

≤ d(xn, p)(3.3)

for all n ∈ N. From (3.3), (3.4) and (3.5) and using the fact that {γn}∞n=1 ⊂ (0, 1),
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we conclude that

d(xn+1, p) = d(T ((1− γn)T (zn)⊕ γnT (yn)), p)

≤ a

[
d((1− γn)T (zn)⊕ γnT (yn)), p)

]

+b

[
d((1− γn)T (zn)⊕ γnT (yn)), p)

]

≤ d((1− γn)T (zn)⊕ γnT (yn), p)

≤ (1− γn)d(T (zn), p) + γnd(T (yn), p)

≤ (1− γn)ad(zn, p) + (1− γn)bd(zn, p) + γnad(yn, p) + γnbd(yn, p)

≤ (1− γn)d(zn, p) + γnd(yn, p)

≤ d(xn, p)(3.4)

Consequently, we have d(xn+1, p) ≤ d(xn, p) for all n ≥ 1. This implies that {xn}
is bounded and decreasing. Hence, limn→∞ d(xn, p) exists. Thus, {xn} is bounded.

Step 2. In this step, we will prove that limn→∞ d(xn, T (xn)) = 0. Without loss
of generality, we may assume that

(3.5) r := lim
n→∞

d(xn, p).

Therefore,

lim sup
n→∞

d(T (xn), p) ≤ lim sup
n→∞

[
ad(xn, p) + bd(xn, p)

]

≤ lim sup
n→∞

d(xn, p)

≤ r(3.6)

from (3.2), we conclude that

(3.7) lim sup
n→∞

d(zn, p) ≤ r
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now, we can write

r = lim sup
n→∞

d(xn+1, p) = lim sup
n→∞

d(T ((1− γn)T (zn)⊕ γnT (yn)), p)

≤ a

[
d((1− γn)T (zn)⊕ γnT (yn)), p)

]

+b

[
d((1− γn)T (zn)⊕ γnT (yn)), p)

]

≤ d((1− γn)T (zn)⊕ γnT (yn), p)

≤ (1− γn)d(T (zn), p) + γnd(T (yn), p)

≤ (1− γn)ad(zn, p)

+(1− γn)bd(zn, p) + γnad(yn, p) + γnbd(yn, p)

≤ (1− γn)d(zn, p) + γnd(yn, p)

≤ (1− γn)d(zn, p) + γnd(zn, p)

≤ d(zn, p),

which implies that

(3.8) r ≤ lim sup
n→∞

d(zn, p).

From (3.7) and (3.8), we have

r = lim sup
n→∞

d(zn, p)

= lim sup
n→∞

d(T ((1− αn)xn ⊕ αnT (xn)), p).

≤ a lim sup
n→∞

[
d((1− αn)xn ⊕ αnT (xn), p)

]

+b lim sup
n→∞

[
d((1− αn)xn ⊕ αnT (xn), p)

]

≤ lim sup
n→∞

d((1− αn)xn ⊕ αnT (xn), p)(3.9)
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Also

lim sup
n→∞

d((1− αn)xn ⊕ αnT (xn), p) ≤ lim sup
n→∞

[
(1− αn)d(xn, p) + αnd(T (xn), p)

]

≤ lim sup
n→∞

[
(1− αn)d(xn, p)(3.10)

+αnad((xn), p) + αnbd((xn), p)

]

≤ lim sup
n→∞

[
(1− αn)d(xn, p) + αnd((xn), p)

]

≤ lim sup
n→∞

d(xn, p) = r(3.11)

From (3.9) and (3.11), we have

(3.12) lim sup
n→∞

d((1− αn)xn ⊕ αnT (xn), p) = r

By using Lemma 2.2 with (3.5), (3.6) and (3.12), we have

(3.13) lim
n→∞

d(xn, T (xn)) = 0.

Therefore, Step 2 is proved.

Step 3. Define

Ω�(xn) :=
⋃

{νn}⊆{xn}

A({νn}) ⊆ Fix(T ).

We claim that the sequence {xn} �-converges to a fixed point of T and Ω�(xn)
consists of exactly one point. Assume that ν ∈ Ω�(xn). From the definition of
Ω�(xn), there is a subsequence {νn} of {xn} such that A({νn}) = {ν}. From
assertion (A1) in Lemma 2.3, there exists a subsequence {ρn} of {νn} such that
� − limn→∞ ρn = ρ ∈ C. Using Lemma 2.4, we conclude that ρ ∈ Fix(T ). Since
{d(νn, ρ)} converges, by assertion (A2) in Lemma 2.3, we obtain ν = ρ. Therefore,
Ω�(xn) ⊆ Fix(T ). Finally, we show that Ω�(xn) consists of exactly one point. Let
{νn} be a subsequence of {xn} such that A({νn}) = {ν} and let A({xn}) = {x}.
We have already seen that ν = ρ ∈ Fix(T ). Since {d(xn, ρ)} converges, by assertion
(A3) in Lemma 2.3, we have x = ρ ∈ Fix(T ), that is, Ω�(xn) = x. This completes
the proof.

4. Numerical Experiments and Comparison

In this section, we supply a numerical example of a mean nonexpansive mapping
satisfying the conditions of Theorem 3.1, and some numerical experiment results to
explain the conclusion of our algorithm.
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Example 4.1. Consider X = R with its usual metric, so X is also a complete CAT(0)
space. Let C = [−1, 1] which clearly is a bounded closed convex subset of X. Define the
mapping T : C −→ C by

Tx =




x

5
+

5

12
x ∈ [−1, 1

2
);

x
6
+ 5

12
x ∈ [1

2
, 1].

T is discontinuous at x = 0.5; consequently, T is neither nonexpansive nor contractive.
Now, we prove that T is mean nonexpansive.

Case 1: x, y ∈ [−1, 1
2
). By the definition of T,

d(T (x), T (y)) =
1

4
d(

4

5
x,

4

5
y)

=
1

4
d(x− y

5
+

y

5
− x

5
, y − x+ x− y

5
)

≤ d(x, y) +
1

4
d(−y

5
,−x) +

1

4
d(

y

5
, x) +

1

4
d(−x

5
,−y

5
)

≤ 1

4
d(x, y) +

1

2
d(x, T (y)) +

1

4
d(T (x), T (y)).

This implies that d(T (x), T (y)) ≤ 1
3
d(x, y) + 2

3
d(x, T (y)).

Case 2: x ∈ [−1, 1
2
), y ∈ [ 1

2
, 1]. In this case, we have

d(T (x), T (y)) = d(
x

5
,
y

5
)

= d(
x

5
+

T (y)

5
− T (y)

5
,
y

5
+

T (x)

5
− T (x)

5
)

≤ 1

5
d(x, T (x)) +

1

5
d(T (x), T (y)) +

1

5
d(y, T (y))

≤ 1

5
d(x, T (y)) +

1

5
d(T (x), T (y)) +

1

5
d(T (x), T (y))

+
1

5
d(x, y) +

1

5
d(x, T (y))

=
2

5
d(x, T (y)) +

2

5
d(T (x), T (y)) +

1

5
d(x, y).

This implies that d(T (x), T (y)) ≤ 1
3
d(x, y) + 2

3
d(x, T (y)).

Case 3: y ∈ [−1, 1
2
), x ∈ [ 1

2
, 1]. The argument is similar to the one in Case 2.

Case 4: x, y ∈ [ 1
2
, 1]. The proof is the same as in Case 1.

Hence, T is mean nonexpansive by taking a = 1
3
, b = 2

3
.

Clearly, 0.5 is the only fixed point of the mapping T . Put αn = βn = γn =
1

n+ 100
. By

using MATHEMATICA, we computed the iterates of the algorithm for two different initial
points x1 = −0.9 ∈ [−1, 1] and x1 = 0.9 ∈ [−1, 1]. Finally, using numerical experiments we
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compared the Zhou and Cui iteration process with our algorithm (see Table 4.1). More-
over, the convergence behavior of these algorithms is shown in Figure 4.1. We conclude
that xn converges to 0.5.

Figure 1: Convergence behaviors corresponding to x1 = −0.9 and x1 = 0.9 for 30 steps.

10

Approximation of Fixed Points of Mean Nonexpansive Mappings 493

figure1a-eps-converted-to.pdf

Figure 4.1: Convergence behaviors corresponding to x1 = −0.9 and x1 = 0.9 for 30
steps.

Example 4.2. Consider X = R2 equipped with the Euclidean norm. Let x = (x1, x2) ∈
R2, then the squared distance of x from the origin, O, is

‖x‖2 = x2
1 + x2

2.

Consider C = [−1, 1] × [−1, 1] which is a bounded, closed, and convex subset of X. We
define the mapping K : C −→ C by

K(x1, x2) := (
1

3
x1,

1

3
x2)

K is a nonexpansive mapping. This means that K is a mean nonexpansive mapping with
a = 1 and b = 0. Clearly, zero is the only fixed point of the mapping K. In this case, our
algorithm is the following:

(4.1)




x(1) = (x(1)1 , x(1)2) ∈ C,
(z(n)1 , z(n)2) = K((1− αn)(x(n)1 , x(n)2) + αnK(x(n)1 , x(n)2)),

(y(n)1 , y(n)2) = K((1− βn)(z(n)1 , z(n)2) + βnK(z(n)1 , z(n)2)),

(x(n+1)1 , x(n+1)2) = K((1− γn)K(z(n)1 , z(n)2) + γnK(y(n)2)).

Put αn = βn = γn =
1

n+ 100
. By using MATHEMATICA, we computed the iterates

of the algorithm (4.1) for x(1) = (
1

2
,
1

2
) ∈ C for 500 steps. Finally, using numerical

experiments we compared the Zhou and Cui iteration process with our algorithm (4.1).
The convergence behavior of these algorithms is shown in Figure 4.2. The conclusion is
that xn converges to (0, 0).
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Table 4.1: Numerical results corresponding to x1 = −0.9 and x1 = 0.9 for 30 steps.

Step Our Algorithm
for x1 = −0.9

Zhou and Cui Algo-
rithm for x1 = −0.9

Our Algorithm
for x1 = 0.9

Zhou and Cui Algo-
rithm for x1 = 0.9

1 −0.9 −0.9 0.9 0.9
2 0.509646 −0.888724 0.501821 0.896694
3 0.500044 −0.877647 0.500008 0.893448
4 0.5 −0.866763 0.5 0.89026
5 0.5 −0.856069 0.5 0.887127
6 0.5 −0.845558 0.5 0.88405
7 0.5 −0.835227 0.5 0.881026
8 0.5 −0.483408 0.5 0.878054
9 0.5 −0.815081 0.5 0.875132
10 0.5 −0.805258 0.5 0.87226
11 0.5 −0.795596 0.5 0.869436
12 0.5 −0.786091 0.5 0.866658
13 0.5 −0.776739 0.5 0.863926
14 0.5 −0.767537 0.5 0.861238
15 0.5 −0.75848 0.5 0.858594
16 0.5 −0.749565 0.5 0.855991
17 0.5 −0.740788 0.5 0.85343
18 0.5 −0.732147 0.5 0.850909
19 0.5 −0.723638 0.5 0.848428
20 0.5 −0.715258 0.5 0.845984
21 0.5 −0.707003 0.5 0.843578
22 0.5 −0.698872 0.5 0.841209
23 0.5 −0.690861 0.5 0.838875
24 0.5 −0.682967 0.5 0.836576
25 0.5 −0.675188 0.5 0.834311
26 0.5 −0.667521 0.5 0.832079
27 0.5 −0.659964 0.5 0.82988
28 0.5 −0.652514 0.5 0.827713
29 0.5 −0.645169 0.5 0.825576
30 0.5 −0.637927 0.5 0.82347
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experiments we compared the Zhou and Cui iteration process with our algorithm (4.1).
The convergence behavior of these algorithms is shown in Figure 4.2. The conclusion is
that xn converges to (0, 0).
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Example 4.2 Consider X = R2 equipped with the Euclidean norm. Let x = (x1, x2) ∈ R2, then the
squared distance of x from the origin, O, is

∥x∥2 = x2
1 + x2

2.

Consider C = [−1, 1]× [−1, 1] which is a bounded, closed, and convex subset of X. We define the mapping
K : C −→ C by

K(x1, x2) := (
1

3
x1,

1

3
x2)

K is a nonexpansive mapping. This means that K is a mean nonexpansive mapping whit a = 1 and b = 0.
Clearly, zero is the only fixed point of the mapping K. In this case, our algorithm is the following:




x(1) = (x(1)1 , x(1)2) ∈ C,
(z(n)1 , z(n)2) = K((1− αn)(x(n)1 , x(n)2) + αnK(x(n)1 , x(n)2)),

(y(n)1 , y(n)2) = K((1− βn)(z(n)1 , z(n)2) + βnK(z(n)1 , z(n)2)),

(x(n+1)1 , x(n+1)2) = K((1− γn)K(z(n)1 , z(n)2) + γnK(y(n)2)).

(13)

Put αn = βn = γn =
1

n+ 100
. By using MATHEMATICA, we computed the iterates of algorithm (13)

for x(1) = (
1

2
,
1

2
) ∈ C for 500 steps. Finally, by the numerical experiments we compared Zhou and Cui

iteration process with our algorithm (13). The convergence behaviors of these algorithms are shown in
Figure 2. The conclusion is that xn converges to (0, 0).

Figure 2: Convergence behaviors corresponding to x1 = (
1

2
,
1

2
) for 500 steps.
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