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ON THE MAPPINGS PRESERVING THE HYPERBOLIC

POLYGONS OF TYPE B TOGETHER WITH THEIR HYPERBOLIC

AREAS

Oğuzhan Demirel

Abstract. In this paper, we present new characterizations of Möbius transformations
and conjugate Möbius transformations by using the mappings preserving the hyperbolic
polygons of type B together with their hyperbolic areas.
Keywords. Hyperbolic polygons; Möbius transformations; hyperbolic areas.

1. Introduction

A Möbius transformation f : C → C is a mapping of the form w = az+b
cz+d

satisfying ad − bc 6= 0, where a, b, c, d ∈ C and C = C ∪ {∞}. The set of all
Möbius transformations is a group under composition. Möbius transformations are
conformal mappings having many useful properties. For example, a map is Möbius
if and only if it preserves cross ratios. As for geometric aspect, circle-preserving
is another important characterization of Möbius transformations. There are well-
known elementary proofs that if f is a continuous injective map of the extended
complex plane C that maps circles into circles, then f is Möbius.

The Möbius invariant property is naturally related to hyperbolic geometry. For
instance, see the preservation of triangular domains [6], Lambert and Saccheri
quadrilaterals [10], [11], hyperbolic regular polygons [3], hyperbolic regular star
polygons [4], polygons of type A [7] and others. The Möbius transformations pre-
serving the open unit disc B2 = {z ∈ C : |z| < 1} are precisely those of the form
w = eiθ a+z

1+az
, where a, z ∈ B2 and θ ∈ R. The Poincaré disc model of hyperbolic

geometry is built on B2, more precisely the points of this model are points of B2

and the hyperbolic lines of this model are Euclidean semicircular arcs that intersect
the boundary of B2 orthogonally including diameters of B2. Given two distinct
hyperbolic lines which intersect at a point, the measure of the angle between these
hyperbolic lines is defined by the Euclidean tangents at the common point.

Received March 12, 2018; accepted April 20, 2018
2010 Mathematics Subject Classification. Primary 51M10; Secondary 30F45, 51B10, 51M09,
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498 O. Demirel

Definition 1.1. [1] A Lambert quadrilateral is a hyperbolic quadrilateral with
ordered interior angles π

2 ,
π
2 ,

π
2 and θ, where 0 < θ < π

2 .

Definition 1.2. [1] A Saccheri quadrilateral is a hyperbolic quadrilateral with
ordered interior angles π

2 ,
π
2 , θ, θ, where 0 < θ < π

2 .

Definition 1.3. [7] A hyperbolic polygon with n−sides is called as of type A if it
has exactly two interior angles not equal to π

2 .

Definition 1.4. [7] A hyperbolic polygon with n−sides is called as of type B if it
has exactly a unique interior angle not equal to π

2 .

Saccheri quadrilaterals and Lambert quadrilaterals are convex hyperbolic poly-
gons with 4 sides having type A and type B, respectively.

The transformations defined by f(z) = az+b
cz+d

from C to C satisfying ad − bc 6=
0 are known as conjugate Möbius transformations. Clearly a conjugate Möbius
transformation is a composition of the complex conjugate function with a Möbius
transformation. These transformations, like Möbius transformations, have many
beautiful properties. For instance they preserve angle magnitudes of angles, but
notice that Möbius transformations preserve the orientation while conjugate Möbius
transformations reverse it.

C. Carathéodory [2] proved that every arbitrary one to one correspondence be-
tween the points of a circular disc C and a bounded point set C′ by which circles
lying completely in C are transformed into circles lying in C′ must always be ei-
ther a Möbius transformation or a conjugate Möbius transformation. The following
results are well known and they play major roles in our proofs.

Lemma 1.1. [1] Let θ1, θ2, . . . , θn be any ordered n−tuple with 0 ≤ θj < (n −
2)π, j = 1, . . . , n. Then there exists a hyperbolic polygon P with interior angles
θ1, θ2, . . . , θn, occurring in this order around ∂P , if and only if θ1 + θ2 + . . .+ θn <

(n− 2)π.

Theorem 1.1. (Gauss-Bonnet theorem for a hyperbolic polygon with n sides) Let
P be a hyperbolic convex polygon with n− sides and with interior angles θ1, θ2, . . . , θn.
Then the hyperbolic area ∆(P ) of the polygon P is

∆(P ) = (n− 2)π − (θ1 + θ2 + . . .+ θn)(1.1)

Throughout the paper we denote by X ′ the image of X under f , by [Aj , Ak]
the geodesic segment between the points Aj and Ak, by AjAk the hyperbolic line
passing through the points Aj and Ak, by AjAkAs the hyperbolic triangle with
three ordered vertices Aj , Ak and As, by A1A2 · · ·An the hyperbolic polygon with
n− ordered vertices A1, A2, · · ·An, and by ∠AjAkAs the angle between [Aj , Ak]
and [As, Ak]. We consider the hyperbolic plane B2 = {z ∈ C : |z| < 1} with length

differential ds2 = 4|dz|2

(1−|z|2)2 .
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2. The Mappings Preserving the Hyperbolic Polygons of Type B

Together With Their Hyperbolic Areas

A map f : B2 → B2 has the property B, if it preserves n−sided hyperbolic
polygons having type B, that is if P is a n−sided hyperbolic polygon of type B,
then f(P ) is a n−sided hyperbolic polygon of type B, see [7]. J. Liu proved the
following result in [7]:

Lemma 2.1. [7] Let f : B2 → B2 be a continuous bijection. If f has Property B

for each n > 3, then f preserves the vertex where the interior angle is not right.

Instead of using the continuity condition of functions, we try to obtain a new
characterization of Möbius transformations with the condition “n−sided hyperbolic
polygons preserving property of type B together with their hyperbolic areas ” for a
fixed n > 3. More precisely, when we say f preserves n−sided hyperbolic polygons
of type B together with their hyperbolic areas, this means that if P is a n−sided
hyperbolic polygon of type B with hyperbolic area ∆(P ) = σ, then f(P ) is a
n−sided hyperbolic polygon of type B with hyperbolic area ∆(f(P )) = σ. Area
preserving mappings are studied by V. Pambuccian in [8] and by O. Demirel in [5].

Lemma 2.2. Let f : B2 → B2 be a mapping which preserves n−sided hyperbolic
polygons of type B for a fixed n > 3. Then f is injective.

Proof. Let P and Q be two distinct points in B2. By Lemma 2.1, there exists a
hyperbolic polygon, say A1A2 · · ·An, satisfying ∠AnA1A2 = α < π

2 , ∠A1A2An =
· · · = ∠An−2An−1An = ∠An−1AnA1 = π

2 . There are three cases:

Case 1 : Assume dH(P,Q) < dH(A1, A2), where dH is hyperbolic distance.
A1A2 · · ·An can be carried to the point Q with the help of a hyperbolic isometry g1
such that g1(A2) = Q and P ∈ [g1(A1), g1(A2)]. Let l be the hyperbolic line passing
through P and intersects g1(An−1)g1(An) perpendicularly. Denote the common
point of the hyperbolic lines l and g1(An−1)g1(An) by S. The existence of the
point S is clear since ∠Pg1(An)g1(An−1) < π

2 , ∠Pg1(An−1)g1(An) < π
2 . Hence

we construct a hyperbolic polygon PQg1(A3) · · · g1(An−1)S which is an n−sided
hyperbolic polygon of type B.

Case 2 : Assume dH(P,Q) > dH(A1, A2). A1A2 · · ·An can be carried to the
point Q with the help of a hyperbolic isometry g2 such that g2(A2) = Q and
g2(A1) ∈ [P,Q] = [P, g2(A2)]. Let k be the hyperbolic line passing through P

which intersects the hyperbolic line g2(An−1)g2(An) perpendicularly. Denote the
common point of the hyperbolic lines k and g2(An−1)g2(An) by R. The existence of
the point R is clear since ∠Pg2(An)g2(An−1) >

π
2 . Hence we construct an n−sided

hyperbolic polygon RPQg2(A3) · · · g1(An−2)g1(An−1) of type B.

Case 3 : If dH(P,Q) = dH(A1, A2), then A1A2 · · ·An can be carried to the point
Q with the help of a hyperbolic isometry g3 such that g3(A1) = P and g3(A2) = Q.
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Hence we construct an n−sided hyperbolic polygon PQg3(A3) · · · g3(An−1)g3(An)
of type B.

As in the cases above, for two arbitrary points P and Q, it is possible to construct
an n−sided hyperbolic polygon of type B by using these points. Therefore, if
PQB1B2 · · ·Bn is an n−sided hyperbolic polygon of type B, then P ′Q′B′

1B
′
2 · · ·B

′
n

is also an n−sided hyperbolic polygon of type B. This ends the proof.

Lemma 2.3. Let f : B2 → B2 be a mapping which preserves n−sided hyper-
bolic polygons of type B for a fixed n > 3. Then f preserves the collinearity and
betweenness properties of the points.

Proof. Let P and Q be two distinct points in B2 and assume that S be an interior
point of [P,Q]. By Lemma 2.2, one can easily construct an n−sided hyperbolic
polygon of type B, say PQA1 · · ·An−2. Moreover, there are many more n−sided
hyperbolic polygons of type B with common side [P,Q] and all of them contain S.
Hence the images of all n−sided hyperbolic polygons of type B with common side
[P,Q] under f are n−sided hyperbolic polygons of type B with common side [P ′, Q′]
containing S′. Therefore, f preserves the collinearity and betweenness properties
of the points.

Lemma 2.4. Let f : B2 → B2 be a mapping which preserves n−sided hyperbolic
polygons of type B together with their hyperbolic areas for a fixed n > 3. Then f

preserves the vertices together with their interior angles.

Proof. Let A1A2 · · ·An be an n−sided hyperbolic polygon of type B (directed coun-
terclockwise) such that ∠AnA1A2 := θ 6= π

2 . Assume ∠A′
nA

′
1A

′
2 = π

2 . Clearly,
∠A′

n−1A
′
nA

′
1 = π

2 or ∠A′
1A

′
2A

′
3 = π

2 . Without loss of generality, we may assume
∠A′

n−1A
′
nA

′
1 = π

2 . Now draw a geodesic segment [An,K] to the hyperbolic line
A1A2 where the point K lies on A1A2 satisfying ∠AnKA1 = π

2 . Notice that if
θ < π

2 , then K lies on [A1, A2] and if θ > π
2 , then A1 lies on [K,A2]. Since K lies

on A1A2, by Lemma 2.3, the point K ′ must be lie on A′
1A

′
2. Hence we construct

a new n−sided hyperbolic polygon KA2 · · ·An of type B. Therefore, K ′A′
2 · · ·A

′
n

is also an n−sided hyperbolic polygon of type B. Since ∠A′
n−1A

′
nA

′
1 = π

2 , we get
∠A′

n−1A
′
nK

′ 6= π
2 which yields ∠A′

nK
′A′

2 = ∠A′
nK

′A′
1 = π

2 . Obviously, this is a
contradiction since the sum of the interior angles of the hyperbolic triangle A′

nK
′A′

1

is greater then π. Thus we have ∠A′
nA

′
1A

′
2 6= π

2 . Because of the fact that f pre-
serves the n−sided hyperbolic polygons of type B together with their hyperbolic
areas, by Gauss-Bonnet theorem, we get ∠A′

nA
′
1A

′
2 = θ, ∠A′

i−1A
′
iA

′
i+1 = π

2 for all
2 ≤ i ≤ n− 1 and ∠A′

n−1A
′
nA

′
1 = π

2 .

Lemma 2.5. Let f : B2 → B2 be a mapping which preserves n−sided hyperbolic
polygons of type B together with their hyperbolic areas for a fixed n > 3. Then f

preserves hyperbolic distance.

Proof. Let X,Y and Z be three distinct points in B2 such that XYZ is a hy-
perbolic triangle (directed counterclockwise) with ∠ZXY := α1,∠XY Z := α2
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and ∠Y ZX := α3. Now, by Lemma 2.1, there exists a hyperbolic polygon of
type B, say A1A2 . . . An (directed counterclockwise), such that ∠AnA1A2 = α1.
The angle ∠AnA1A2 of the hyperbolic polygon A1A2 . . . An can be moved to the
vertex X of the hyperbolic triangle XY Z by an appropriate Möbius transfor-
mation g such that the points g(A2) and g(An) lie on the hyperbolic lines XY

and XZ, respectively. By the properties of f and g, we immediately get that
g(A1)

′g(A2)
′ . . . g(An)

′, that is X ′g(A2)
′ . . . g(An)

′, is an n−sided hyperbolic poly-
gon of type B. By Lemma 2.4, we have ∠ZXY = ∠AnA1A2 = ∠g(An)Xg(A2) =
∠g(An)

′X ′g(A2)
′ = ∠A′

nA
′
1A

′
2 = ∠Z ′X ′Y ′ = α1. Hence f preserves the interior

angle ∠ZXY of the hyperbolic triangle XY Z. Following the same way, one can
easily prove that ∠XYZ = ∠X ′Y ′Z ′ and ∠Y ZX = ∠Y ′Z ′X ′ hold true. It is well
known that, in hyperbolic plane, the lengths of a hyperbolic triangle are deter-
mined by its interior angles, see [9]. Therefore, we get that dH(X,Y ) = dH(X ′, Y ′),
dH(X,Z) = dH(X ′, Z ′) and dH(Y, Z) = dH(Y ′, Z ′).

Lemma 2.6. Let f : B2 → B2 be a mapping which preserves n−sided hyperbolic
polygons of type B together with their hyperbolic areas for a fixed n > 3. Then f is
surjective.

Proof. To prove that f is surjective, we will show that for any point Y in B2, there
exists a point X in B2 such that f(X) = Y . Let A,B,C be three three distinct
points in B2, each of which is different from Y . Now construct three hyperbolic
circles with radius r1 = dH(A′, Y ), r2 = dH(B′, Y ) and r3 = dH(C′, Y ) centered at
A′, B′, C′, respectively. These circles meet together only at Y . Because of the fact
that f is a distance preserving mapping by Lemma 2.5, the pre-images of circles
meet together only at a point, say X . Hence, X ′ = Y .

Theorem 2.1. The mapping f : B2 → B2 is Möbius or conjugate Möbius if,
and only if, f preserves n−sided hyperbolic polygons of type B together with their
hyperbolic areas for a fixed n > 3.

Proof. Because of the fact that f is an isometry, the “only if” part is clear. Con-
versely, we may assume that f preserves n−sided hyperbolic polygons of type B

together with their hyperbolic areas for a fixed n > 3. Without loss of generality
we may assume f(O) = O by composing an isometry if necessary. Let x and y be
two different points in B2. Since f preserves the hyperbolic distance by Lemma 2.5,
one can easily get dH(0, x) = dH(0, x′) and dH(0, y) = dH(0, y′), namely |x| = |x′|
and |y| = |y′|, where | · | is the Euclidean norm. Hence we have |x− y| = |x′ − y′|,
since f preserves the angles by Lemma 2.4. Finally, we get

2〈x, y〉 = |x|2 + |y|2 − |x− y|2 = |x′|2 + |y′|2 − |x′ − y′|2 = 2〈x′, y′〉.(2.1)

Therefore, f preserves the inner product and then is the restriction on B2 of an
orthogonal transformation, that is, f is Möbius transformation or conjugate Möbius
transformation by Carathédory’s theorem. If the orientation of the angles preserved
under f , then f is a Möbius transformation, otherwise; f is a conjugate Möbius
transformation.



502 O. Demirel

Corollary 2.1. The mapping f : B2 → B2 is Möbius or conjugate Möbius if, and
only if, f preserves the Lambert quadrilaterals together with their hyperbolic areas.

Naturally, one may wonder whether Corollary 2.1 is valid for Saccheri quadri-
laterals. Now we give the affirmative answer as follows:

Corollary 2.2. The mapping f : B2 → B2 is Möbius or conjugate Möbius if, and
only if, f preserves all Saccheri quadrilaterals together with their hyperbolic areas.

Proof. Because of the fact that f is an isometry, the “only if” part is clear. Con-
versely, we may assume that f preserves all Saccheri quadrilaterals together with
their hyperbolic areas. The injectivity, collinearity and the betweenness properties
of f can be easily proved following the ways in the proofs of Lemma 2.2, Lemma
2.3.

Step 1 : We claim that f preserves the right angles of Saccheri quadrilater-
als. Let ABCD be a Saccheri quadrilateral with ∠DAB = ∠ABC = π

2 and
∠BCD = ∠CDA := θ < π

2 . For each point Xi ∈ [A,D], there exists a point
Yi ∈ [C,B] such that XiABYi is a Saccheri quadrilateral. Notice that dH(A,Xi) =
dH(B, Yi). Assume ∠YiXiA = ∠BYiXi := θi for all i ∈ I ⊂ R. Since f preserves
the Saccheri quadrilaterals together with their hyperbolic areas, we immediately get
that X ′

iA
′B′Y ′

i are Saccheri quadrilaterals with ∆(X ′
iA

′B′Y ′
i ) = ∆(XiABYi) for all

i ∈ I. Notice that, by injectivity property of f , the sets {X ′
i : i ∈ I} and {Y ′

i : i ∈ I}
are consist of collinear points, that is X ′

i ∈ [A′, D′] and Y ′
i ∈ [B′, C′] hold true for

all i ∈ I. Because of the fact that all the Saccheri quadrilaterals X ′
iA

′B′Y ′
i have

common two interior angles π
2 ,

π
2 and have common two vertices A′ and B′, this

implies that ∠X ′
iA

′B′ = ∠A′B′Y ′
i = π

2 . Thus f preserves right angles of Saccheri
quadrilaterals.

Step 2 : By Step 1, f preserves the other interior angles of Saccheri quadrilaterals
which are not right angles.

Step 3 : Let ABCD be a Lambert quadrilateral with ∠CDA := θ < π
2 and

∠DAB = ∠ABC = ∠BCD = π
2 . By reflecting ABCD with respect to geodesic

BC, we get a Saccheri quadrilateral AEFD, where the points E and F are the
reflections of the points A and D, respectively. Thus, the quadrilateral A′E′F ′D′

must be a Saccheri quadrilateral with ∆(A′E′F ′D′) = ∆(AEFD). Since B ∈ [A,E]
and C ∈ [D,F ], we have B′ ∈ [A′, E′] and C′ ∈ [D′, F ′]. Therefore, A′E′F ′D′

contains two quadrilaterals A′B′C′D′ and B′E′F ′C′. By Step 1 and Step 2, we get
∠D′A′B′ = ∠B′E′F ′ = π

2 and ∠C′D′A′ = ∠E′F ′C′ = θ. By reflecting ABCD in
the geodesic AB, one can easily see that ∠D′C′B′ = π

2 holds true. This implies
that C′ is the midpoint of D′ and F ′ which implies that ∠A′B′C′ = π

2 . Hence
the quadrilateral A′B′C′D′ must be a Lambert quadrilateral with ∆(A′B′C′D′) =
∆(ABCD) and this implies that f is a Möbius transformation or a conjugate Möbius
transformation.

Acknowledgement: The author would like to thank the reviewer for the help-
ful comments to improve the paper.
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ITERATIONS FOR APPROXIMATING LIMIT

REPRESENTATIONS OF GENERALIZED INVERSES

Bilall I. Shaini and Predrag S. Stanimirović

Abstract. Our underlying motivation is the iterative method for the implementation
of the limit representation of the Moore-Penrose inverse lim

α→0
(αI + A

∗
A)−1

A
∗ from

[Žukovski, Lipcer, On recurent computation of normal solutions of linear algebraic
equations, Ž. Vicisl. Mat. i Mat. Fiz. 12 (1972), 843–857] and [Žukovski, Lipcer,
On computation pseudoinverse matrices, Ž. Vicisl. Mat. i Mat. Fiz. 15 (1975),
489–492]. The iterative process for the implementation of the general limit formula
lim
α→0

(αI + R
∗
S)−1

R
∗ was defined in [P.S. Stanimirović, Limit representations of gen-

eralized inverses and related methods, Appl. Math. Comput. 103 (1999), 51–68]. In
this paper we develop an improvement of this iterative process. The iterative method
defined in such a way is able to produce the result in a predefined number of iterative
steps. Convergence properties of defined iterations are further investigated.

Keywords. Generalized inverses; Moore-Penrose inverse; Drazin inverse; limit repre-
sentation; Leverrier-Faddeev algorithm.

1. Introduction

We use the following notation. Cm×n: the set of m × n complex matrices; Cm×n
r

is the set of rank r: Cm×n
r = {X ∈ Cm×n : rank(X) = r}; O (resp. ~0): the zero

matrix of an appropriate order (resp. the zero vector); Im: identity matrix of the
order m; R(A) and N (A): the range and the null space of A; Tr (A): the trace of
A.

For any matrix A ∈ Cm×n consider the following equations in X :

(1) AXA=A, (2) XAX=X, (3) (AX)∗=AX, (4) (XA)∗=XA

and if m = n, also

(5) AX = XA (1k) Ak+1X = Ak.
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For a sequence S of {1, 2, 3, 4, 5, 1k} the set of matrices obeying the equations rep-
resented in S is denoted by A{S}. A matrix from A{S} is called an S-inverse of A
and denoted by A(S). If X satisfies (1) and (2), it is said to be a reflexive g-inverse
of A, whereas X = A† is said to be the Moore-Penrose inverse of A if it satisfies
(1)-(4). Also, A−1

L (resp. A−1
R ) denote an arbitrary left (resp. right) inverse of A.

The group inverse A# is the unique {1, 2, 5} inverse of A, and exists if and only if
ind(A) = min{k : rank(Ak+1)=rank(Ak)}=1. A matrix G = AD is said to be the
Drazin inverse of A if (1k) (for some positive integer k), (2) and (5) are satisfied.

Let there be given invertible matrices M and N of the order m and n, re-
spectively. For any m × n matrix A, the weighted Moore-Penrose inverse of A is
the unique solution X = A

†
M,N of the matrix equations (1), (2) and the following

equations in X :

(3M) (MAX)∗ = MAX (4N) (XA)∗N = NXA.

the next is valid for a rectangular matrix A [14]:

(1.1) A† = A
(2)
R(A∗),N (A∗), A

†
M,N = A

(2)

R(A♯),N (A♯)
, A♯ = N−1A∗M,

where M , N are positive definite matrices. For a given square matrix A the next
identities are satisfied:

(1.2) AD = A
(2)

R(Ak),N (Ak)
, k ≥ ind(A), A# = A

(2)
R(A),N (A).

The core inverse of a complex matrix was originated by Baksalary and Trenkler
in [1]. A matrix A#© ∈ Cn×n satisfying

AA#© = PR(A) and R(A#©) ⊆ R(A)

is called the core inverse of A.

Manjunatha Prasad and Mohana in [10] discovered the core-EP inverse. A
matrix X , denoted by A †©, is called the core-EP inverse of A ∈ Cn×n if it satisfies

XAX = X, R(X) = R(X∗) = R(Ak).

The following results can be derived using results from [9]:

A †© = A
(2)

R(Ak),N ((Ak)∗)
, A#© = A

(2)
R(A),N (A∗).

The remainder of the manuscript is organized as follows. In order to complete the
presentation and describe our motivation, limit representations of main generalized
inverses are surveyed in Section 2.. Some additional results about the convergence
of the iterations proposed in [11] are presented in Section 3.. An efficient method
for the improved implementation of defined iterations is considered in Section 4..
An illustrative numerical example is presented in Section 5..
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2. Survey of limit representations

Limit representations of main generalized inverses is restated in Proposition 2.1.
The inverse of a nonsingular matrix A can be characterized in terms of the limiting
process

(2.1) A−1 = lim
α→0

(αI +A)−1,

wherein it is assumed that −α /∈ σ(A) and σ(A) stands for the set of all eigenvalues
of A.

Proposition 2.1. (a) [3] Limit representation of the Moore-Penrose inverse of a

matrix A ∈ Cm×n is equal to

(2.2) A† = lim
α→0

(αIn +A∗A)
−1

A∗.

(b) [7] Limit representation of the Drazin inverse of a matrix A ∈ Cn×n whose

index is k can be expressed as the limit

(2.3) AD = lim
α→0

(

αIn +Al+1
)−1

Al, l > k.

(c) [13] Let A ∈ Cm×n be of rank r, let T be a subspace of Cn of dimension s ≤ r,

and let S be a subspace of C
m of dimension m − s. In addition, suppose that

G ∈ Cn×m satisfies R(G) = T and N (G) = S. In the case of the existence, A
(2)
T,S

is defined by the limit representation

(2.4) A
(2)
T,S = lim

α→0
(GA+ αI)−1

G.

(d)[16] Let A ∈ Cn×n with ind(A) = 1. Then

(2.5) A#© = lim
α→0

AA∗(A2A∗ + αI)−1 = lim
α→0

(AA∗A+ αI)−1AA∗.

(2.6) A#© = lim
α→0

A(A2)∗(A2(A2)∗ + αI)−1 = lim
α→0

(A(A2)∗A+ αI)−1A(A2)∗.

(e) [16] Let A ∈ Cn×n and ind(A) = k. Then

(2.7) A †© = lim
α→0

Ak(Ak)∗(Ak+1(Ak)∗ + αI)−1 = lim
α→0

(Ak(Ak)∗A+ αI)−1Ak(Ak)∗.

The limit representations of the outer inverse in Banach space were investigated
in [6].

The following additional notation will be used in this section.

at, t = 1, . . . ,m: tth row of A ∈ Cm×n; A
t
=





a1
. . .

at



 , t = 1, . . . ,m: the t × n

submatrix which contains the first t rows of A ∈ Cm×n; y
t
= A

t
x, and specially

yt = atx, t = 1, . . . ,m;
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Our idea in the present paper can be described in three steps. First step is an
iterative method for the implementation of the limit representation of the Moore-
Penrose inverse lim

α→0
(αI +A∗A)

−1
A∗ from [17, 18]. Another step is the iterative

process for the implementation of the general limit formula lim
α→0

(αI + R∗S)−1R∗,

originated in [11]. In this paper we develop an improvement of this iterative process.
Detailed description is given in the rest of this section.

In Proposition 2.2 and Proposition 2.3 we restate known iterative methods from
[17, 18].

Proposition 2.2. (Žukovski, Lipcer 1972) [17] For a given m×n complex matrix

A and given m× 1 complex vector y, the solution of the iterative process

(2.8)

γα
t+1 = γα

t −
γα
t a

∗
t+1at+1γ

α
t

α+ at+1γ
α
t a

∗
t+1

, γα
0 = In, α > 0,

xα
t+1 = xα

t +
γα
t a

∗
t+1

α+ at+1γ
α
t a

∗
t+1

(yt+1 − at+1x
α
t ) , xα

0 = 0,

t = 0, . . . ,m− 1

is given by

xα
t =

(

αIn +A
t

∗A
t

)−1
A

t

∗y
t

γα
t =

(

αIn +A
t

∗A
t

)−1
α, t = 1, . . . ,m.

Proposition 2.3. (Žukovski, Lipcer 1975) [18] Let A ∈ C
m×n. If the rows of the

unit matrix Im are denoted by it, t = 1, . . . ,m, then the following iterative method

(2.9)

γα
t+1 = γα

t −
γα
t a

∗
t+1at+1γ

α
t

α+ at+1γ
α
t a

∗
t+1

, γα
0 = In, α > 0,

Xα
t+1 = Xα

t +
γα
t a

∗
t+1

α+ at+1γ
α
t a

∗
t+1

(it+1 − at+1X
α
t ) , Xα

0 = O ∈ C
n×m

t = 0, . . . ,m− 1

produces the resulting matrices

Xα
m = (αIn +A∗A)

−1
A∗, γα

m = (αIn +A∗A)
−1

α.

Of special interest are the limits lim
α→0

Xα
m = A† [2] and lim

α→0
γα
m = In −A†A [17].

An interesting computational scheme was proposed in [17]. This scheme ensures
indirect decreasing of the values for α: after computation of the values γα

i and Xα
i ,

i = 1, . . . ,m by means of (2.9), compute γα
i and Xα

i , i > t, by means of the rows
am+1 = a1, . . . , a2m = am, . . . and the numbers ym+1 = y1, . . . , y2m = ym, . . . In
this case is

(2.10) Xα
mN =Xα/N

m , γα
mN =γα/N

m , N=1, 2, . . .
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where Xα
mN and γα

mN are defined by

Xα
mN = (αIn +A∗

mNAmN )
−1

A∗
mN , γα

mN = (αIn +A∗
mNAmN )

−1
α

and AmN is the block matrix which consists of N blocks of Am = A:

AmN =





Am

. . .

Am



 =





A

. . .

A



 .

The main result in [11] was an approximate method for computing generalized
inverses and different matrix expressions involving generalized inverses which are
determined by the limit expressions

lim
α→0

(αIq + R∗S)
−1

R∗,(2.11)

lim
α→0

(αIq + R∗S)
−1

α,(2.12)

where R and S are two arbitrary p× q complex matrices.

For a given matrix A ∈ C
m×n
r , in the case R = S = A we obtain the iterative

method (2.9) for computing the Moore-Penrose inverse. In the casem = n, R∗ = Al,
l > ind(A), S = A, we construct an iterative process for implementation of the limit
representation (2.3) for computing the Drazin inverse.

The following result from [11] generalizes the iterative process (2.8).

Proposition 2.4. (Stanimirović 1999) [11] Let given two arbitrary p× q complex

matrices R and S and p× 1 complex vector y. If the rows of the matrices R and S

are denoted by ru and su, respectively, u = 1, . . . , p, and r∗u denotes conjugate and

transpose of the vector ru, then the following iterative sequences

(2.13)

γα
t+1 = γα

t −
γα
t r

∗
t+1st+1γ

α
t

α+ st+1γ
α
t r

∗
t+1

, γα
0 = Iq, α > 0,

xα
t+1 = xα

t +
γα
t r

∗
t+1

α+ st+1γ
α
t r

∗
t+1

(yt+1 − st+1x
α
t ) , xα

0 = ~0,

t = 0, . . . , p− 1

exist if and only if

(2.14) α+ st+1γ
α
t r

∗
t+1 6= ~0, t = 0, . . . , p− 1.

In this case, (2.13) produces the following values:

(2.15)
γα
t =

(

αIq +R∗
t
S

t

)−1

α

xα
t =

(

αIq +R∗
t
S

t

)−1

R∗
t
y
t
, t = 1, . . . , p,

where R∗
t
is q × t matrix, equal to the conjugate and transpose of the submatrix R

t

of R.
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An approximate method for the implementation of the limit formula (2.11) and
its convergence properties were investigated in [11].

Proposition 2.5. (Stanimirović 1999) [11] Consider m × n complex matrix A

and two p × q complex matrices R and S, whose rows are denoted by rt and st,

t = 1, . . . , p, respectively. If the rows of the unit matrix Ip are denoted by it,

t = 1, . . . , p, then the iterations

(2.16)

γα
t+1 = γα

t −
γα
t r

∗
t+1st+1γ

α
t

α+ st+1γ
α
t r

∗
t+1

, γα
0 = Iq, α > 0,

Xα
t+1 = Xα

t +
γα
t r

∗
t+1

α+ st+1γ
α
t r

∗
t+1

(it+1 − st+1X
α
t ) , Xα

0 = O ∈ C
q×p,

t = 0, . . . , p− 1

converge if and only if

α+ st+1γ
α
t r

∗
t+1 6= 0, t = 0, . . . , p− 1

and the limits lim
α→0

Xα
p , lim

α→0
γα
p produce the following results:

(2.17) lim
α→0

Xα
p = lim

α→0
(αIq +R∗S)−1R∗, lim

α→0
γα
p = Iq − lim

α→0
(αIq +R∗S)−1R∗S.

(i) In the case p=m, q=n, R=S=A we get

lim
α→0

Xα
m = A†, lim

α→0
γα
m = In −A†A.

(ii) If A is n× n matrix, selecting the values p = q = n, R∗ = Al, l > ind(A),
S = A, we obtain

lim
α→0

Xα
n = AD, lim

α→0
γα
n = In −ADA.

(iii) In the case p > q = rank(S), for arbitrary R ∈ Cp×q
q such that R∗S is

invertible, we get lim
α→0

Xα
p = S−1

L .

(iv) Consider the case q > p = rank(S) and an arbitrary matrix R ∈ Cp×q such

that SR∗ is invertible. Then lim
α→0

Xα
p = S−1

R .

(v) Selection S = R ∈ Cp×q in (2.16) implies

lim
α→0

Xα
p = R†, lim

α→0
γα
p = Iq − R†R.

(vi) For A ∈ Cn×n, in the case n= p= q, R∗ = Ak, S = In, the limit value

lim
α→0

Xα
n exists if ind(A)=k, in which case lim

α→0
Xα

n = AAD.

(vii) If A∈Cm×n
r , p=q=m=n, R∗=αkIn, S=α−kIn, k=ind(A)>0, then

lim
α→0

Xα
n = (−1)k−1(I −AAD)Ak−1.
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3. Further results on the convergence

Some further results about the convergence with respect to Proposition 3.1.

Theorem 3.1. Let us observe m × n complex matrix A and two p × q complex

matrices R and S with rows rt and st, t = 1, . . . , p, respectively. If the rows of the

unit matrix Ip are denoted by it, t = 1, . . . , p, then the iterations (2.16) converge if

and only if

α+ st+1γ
α
t r

∗
t+1 6= 0, t = 0, . . . , p− 1.

In this case, the limits lim
α→0

Xα
p , lim

α→0
γα
p produce the following results:

lim
α→0

Xα
p = lim

α→0
(αIq +R∗S)−1R∗, lim

α→0
γα
p = Iq − lim

α→0
(αIq +R∗S)−1R∗S.

(viii) If A is of rank r, T is a subspace of Cn of dimension s ≤ r, and S

be a subspace of Cm of dimension m − s. If G ∈ Cn×m satisfies R(G) = T and

N (G) = S and rank(GA) = rank(G), then A
(2)
R(G),N (G) then in the case p = m,

q = n, R = G∗, S = A we get

lim
α→0

Xα
m = A

(2)
R(G),N (G), lim

α→0
γα
m = In −A

(2)
R(G),N (G)A.

(ix) If A ∈ Cn×n of index ind(A) = 1, the selected values p = q = n, R = A∗A,

S = A initiate

lim
α→0

Xα
n = A#©, lim

α→0
γα
n = In −A#©A.

(x) If A ∈ Cn×n of index ind(A) = k, the selected values p = q = n, R =
(Ak)∗Ak, S = A initiate

lim
α→0

Xα
n = A †©, lim

α→0
γα
n = In −A †©A.

Proof. The proof can be verified using (2.17) in conjunction with (2.4), (2.5) and
(2.6).

4. An improved implementation

In this paper we propose an improvement of the iterative processes (2.13), (2.15) and
(2.16). According to the improvement, these iterations can converge in an arbitrary
prescribed number of iterations. If b is the required number of iterations , and
integers c, d are defined as c = Quotient[b, p], d = Mod[b, p], then the iterations
(2.13), (2.15) and (2.16) terminate in p − 1 + d steps, where c = Quotient[b, p],
d = Mod[b, p].

Also, an implementation of the introduced approximate methods in the pro-
gramming package Mathematica is developed.
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Theorem 4.1. Let given two arbitrary p× q complex matrices R and S and p× 1
complex vector y. Let the rows of the matrices R and S be denoted by ru and su,

respectively, for each u = 1, . . . , p. Also, assume that the rows of the unit matrix Ip
are denoted by it, t = 1, . . . , p. If b is an arbitrary prescribed number of iterations,

and integers c, d are defined as c = Quotient[b, p], d = Mod[b, p], then the following

iterative sequences:

(4.1)

γ
α/c
t+1 = γ

α/c
t −

γ
α/c
t r∗t+1st+1γ

α/c
t

α/c+ st+1γ
α/c
t r∗t+1

, γ
α/c
0 = Iq, α > 0,

x
α/c
t+1 = x

α/c
t +

γ
α/c
t r∗t+1

α/c+ st+1γ
α/c
t r∗t+1

(

yt+1 − st+1x
α/c
t

)

, x
α/c
0 = ~0,

X
α/c
t+1 =X

α/c
t +

γ
α/c
t r∗t+1

α/c+st+1γ
α/c
t r∗t+1

(

it+1−st+1X
α/c
t

)

, X
α/c
0 = O ∈ C

q×p

t = 0, . . . , p− 1 + d

exist if and only if

(4.2) α/c+ st+1γ
α/c
t r∗t+1 6= 0, t = 0, . . . , p− 1.

In the case when (4.2) holds, the iterations (4.1) produce the following values:

(4.3)

γ
α/c

p+d−1 = γα
b =

(α

c
Iq +R

d

∗S
d

)−1 α

c

x
α/c

p+d−1 = xα
b =

(α

c
Iq +R

d

∗S
d

)−1

R∗
d
y
d
,

X
α/c

p+d−1 = Xα
b =

(α

c
Iq +R

d

∗S
d

)−1

R∗
d
,

where R
d

∗ is q × t matrix, equal to the conjugate and transpose of the submatrix

R
d
of R.

Proof. Utilizing a result from [11], for an arbitrary integer N > 1, we get the
following statements for the iterative process:

(4.4) γα
pN = γα/N

p , Xα
pN = Xα/N

p , xα
pN = xα/N

p , N = 1, 2, . . . .

Consequently, after the first p− 1 iterations we obtain

γα/c
p = γα

pc, Xα/c
p = Xα

pc, xα/c
p = xα

pc.

Finally, applying another d iterations we obtain

γ
α/c

p+d = γα
pc+d = γα

b ,

X
α/c

p+d = Xα
pc+d = Xα

b ,

x
α/c

p+d = xα
pc+d = xα

b .

This completes the proof.
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Now we describe implementation of the iterative methods presented in (4.1).

Input parameters in the algorithm are:

r , s : input matrices R and S;

it : a prescribed number of iterations;

alpha : a small real number representing the initial value of the parameter α.

STEP 1. Initial values of used local variables:

{m,n}=Dimensions[a];

in=IdentityMatrix[n]; im=IdentityMatrix[m];

g0=in; x0=ConstantArray[0, {n, m};

STEP 2. Implementation of the iterative step. A major problem arising in the
implementation of the limit lim

α→0
Xα

p by means of (4.1) is the increase of dimen-

sions. Namely, according to the property (4.4), decrease of the value α to α/N ,
N ≥ 1 requires usage of block matrices γα

pN , Xα
pN , xα

pN . This fact initiates a signif-
icant increase of number of arithmetic operations during the iterations. In order to
avoid this problem, we use the standard function Mod of the programming language
Mathematica. Further improvement is achieved using the iterations (4.1). Detailed
implementation of the iterative rule (4.1) is presented as follows.

c=Quotient[it,m]; d=Mod[it,m];

alpha=alpha/c;

i=1;

While[i<=p-1+d,

j=i;

If[i>m,j=Mod[i,m];If[j==0,j=m];

g1=g0-(g0.Transpose[{r[[j]]}].{s[[j]]}.g0)/

(alpha+({s[[j]]}.g0.Transpose[{r[[j]]}])[[1,1]]);

x1=x0+g0.Transpose[{r[[j]]}].({in[[j]]}-{s[[j]]}.x0)/

(alpha+({s[[j]]}.g0.Transpose[{r[[j]]}])[[1,1]]);

g0=g1; x0=x1; i=i+1

];

STEP 3. Generate the output: Return[{x1,g1}];

5. Numerical example

In this section we present a few numerical comparisons between the implementation
given in [11] and the implementation introduced in this paper. Assume that R, S are
p× q matrices. Let us denote by b an arbitrary prescribed number of iterations, c =
Quotient[b, p] and d = Mod[b, p]. Implementation presented in [11] terminates after
b = pc + d iterations. On the other hand, modification defined in (4.1) terminates
after p+ d− 1 iterations. It is clear that the improved method requires (p− 1)c− 1
iterations less than the original one.
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Let us choose the matrices r=s={{1,2,3},{3,2,1}}. Using the modified imple-
mentation with α = 0.01, and the maximal number of steps equal to 20, we perform
301 usual iterations from [11] in only two steps

c = 150 d = 1

alpha= 0.0000666667

it=1

x1={{0.07142823129413669,0}, {0.1428564625882733, 0},{0.21428469388241,0}}

it=2

x1={{-0.166663, 0.3333289352552714}, {0.0833331, 0.0833331018524948},

{0.333329, -0.1666627315502817}}

it=3

x1={{-0.1666627315502817, 0.3333289352552714},

{0.0833331018524949, 0.0833331018524948},

{0.3333289352552714, -0.1666627315502817}}

Implementation described in [11] gives the following result after 301 iterations:

x1={{-0.1666627422808011, 0.3333289429198914},

{0.0833331072178662,0.083333098020105},

{0.333328956716534, -0.166662746879682}}

6. Conclusion and possible further research

Starting point in our research was the iterative method for the implementation of
the limit representation of the Moore-Penrose inverse A† = lim

α→0
(αI +A∗A)

−1
A∗

and the matrix expression I−A†A from [17] and [18]. Further, we used the iterative
process for the implementation of the general limit formula lim

α→0
(αI+R∗S)−1R∗ from

[11]. In this paper we further investigate convergence of these iterations. Moreover,
an improvement of the iterations from from [11] is proposed and investigated. The
efficacy of the proposed method is confirmed by its ability to produce the result in
a predefined number of iterative steps. Convergence properties of defined iterations
and iterations from [11] are further investigated.

An efficient algorithm for the implementation of the iterative processes (2.13),
(2.15) and (2.16) from [11] is proposed and described. Firstly, an useful rule for
avoiding usage of increasing block matrices during the iterations is proposed. In-
stead of growing block matrices we propose usage of the function Mod on the indices
of the input matrices. In addition, according to certain rules, the introduced algo-
rithm can converge in an arbitrary prescribed number of iterations.

Also, an implementation of the introduced approximate methods in the pro-
gramming package Mathematica is developed.

An alternative limit expression of the Drazin inverse of the form

AD = lim
α→0

(αIn +A)−(l+1)
Al, l > k
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was presented in [5]. One possibility for further research could be development of
iterations for the implementation of this alternative limiting formula.
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i Mat. Fiz. 15 (1975), 489–492, In Russian.



516 B. I. Shaini and P. S. Stanimirović
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MULTIDISKCYCLIC OPERATORS ON BANACH SPACES

Nareen Bamerni

Abstract. In this paper, we define and study multidiskcyclic operators and find some
of their properties. Peris (2001) proved that every multihypercyclic operator is hyper-
cyclic. We show the corresponding result for multidiskcyclic operators. In particular,
we show that every multidiskcyclic operator is diskcyclic too.
Keywords. Multidiskcyclic operators; Banach space; hypercyclic operator.

1. Introduction

An operator T is called hypercyclic if there is a vector x ∈ H such thatOrb(T, x) =
{T nx : n ∈ N} is dense in H, such a vector x is called hypercyclic for T . The first
example of hypercyclic operators in a Banach space was constructed by Rolewicz in
1969 [13]. He proved that if B is a backward shift on the Banach space ℓp(N) then
λB is hypercyclic for any complex number λ; |λ| > 1. Motivated by Rolewicz’s
example, supercyclic operators and diskcyclic operators were defined. An opera-
tor T is supercyclic if there is a vector x ∈ H such that COrb(T, x) = {λT nx :
λ ∈ C, n ∈ N} is dense in H, where x is called supercyclic vector [9]. An op-
erator T is called diskcyclic if there is a vector x ∈ H such that the disk orbit
DOrb(T, x) = {αT nx : n ≥ 0, α ∈ C, |α| ≤ 1} is dense in H, such a vector x is
called diskcyclic for T [15]. For more information on these concepts, one may refer
to [5, 4, 2].

Recently, these operators were extended to subspaces of Banach spaces, which
are called subspace-hypercyclic, subspace-supercyclic and subspace-diskcyclic. For
more details on these operators, we refer the reader to [10, 1, 14, 3].

In 1992, Herrero [8] generalized the concepts of hypercyclicity and supercyclicity
to multihypercyclicity and multisupercyclicity, respectively as follows:
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Definition 1.1. An operator T ∈ B(X ) is called multihypercyclic (or multisuper-
cyclic), if there exists a finite subset {x1, x2, · · · , xn} of X such that

⋃n

k=1 Orb(T, xk)
(or C

⋃n

k=1 Orb(T, xk), respectively) is dense in X .

Herrero [8] posed the following conjecture:

if T is multihypercyclic (or multisupercyclic), then T is hypercyclic (or
supercyclic, respectively)

Costakis [7] and Peris [12] independently proved Herrero’s conjecture positively.
For more information on these concepts, the reader may be refered to [8, 6, 7, 12, 11].

Now, since both multihypercyclic operators and multisupercyclic operators have
been defined and studied, then it is natural to define and study multidiskcyclic op-
erators as well. Therefore, the purpose of this section is to define multidiskcyclic
operators and find some of their properties which are similar to those of multihyper-
cyclicity and multisupercyclicity. We show that if T is multidiskcyclic, then every
positive integer power of T is multidiskcyclic and T ∗ has at most one eigenvalue;
and that one has to have a modulus greater than one. Finally, we show that every
multidiskcyclic operator is diskcyclic.

2. Main results

Definition 2.1. Let L = {x1, · · · , xm} ⊂ X , T ∈ B(X ) and DOrb(T, L) =
⋃m

i=1 DOrb(T, xi). If L is minimal such that DOrb(T, L) is dense, then T is called
a multidiskcyclic operator and L is called a diskcyclic set for T .

It is clear form the above definition, that every diskcyclic operator is multidiskcyclic.

The following two results give the common properties between multidiskcyclic
operators and diskcyclic operators.

Theorem 2.1. If T is multidiskcyclic, then T n is multidiskcyclic for all n > 2.

Proof. Let L be a diskcyclic set for T , then it is clear that

m
⋃

i=1

n−1
⋃

j=0

DOrb(T n, T jxi) =

m
⋃

i=1

DOrb(T, xi).

It follows that T n is multidiskcyclic with a multidiskcyclic set {T jxi : 1 6 i 6

m, 0 6 j 6 n− 1}.

Proposition 2.1. If T is a multidiskcyclic operator on a Hilbert space H, then T ∗

has at most one eigenvalue. If σp(T
∗) = {λ}, then λ has a modulus greater than

one.
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Proof. Since each multidiskcyclic operator is multisupercyclic, then the adjoint of a
multidiskcyclic operator has at most one eigenvalue [11, Theorem 5]. Now, suppose
that σp(T

∗) = {λ}. Towards a contradiction assume that |λ| 6 1.
Let L = {x1, · · · , xm} be diskcyclic set for T . Then there exists a unit vector z in
which T ∗z = λz and

{

m
⋃

i=1

|〈µT nxi, z〉| : n > 0, µ ∈ D, xi ∈ L

}

is dense in R
+ ∪ {0} .(2.1)

Since |〈µT nxi, z〉| 6 |µ| |λ|n ‖xi‖‖z‖ for all 1 6 i 6 m, and since |λ| 6 1, then

|〈µT nxi, z〉| 6 ‖xi‖‖z‖,

that is, {
⋃m

i=1 |〈µT
nxi, z〉| : n > 0, µ ∈ D, xi ∈ L} is bounded above, a contradiction

to the equation (2.1).

Miller [11] proved that if T is multihypercyclic (or multisupercyclic) then there
exists a vector x such that Orb(T, x) (or COrb(T, x), respectively) is somewhere
dense. Later on, Bourdon and Feldman [6] showed that the somewhere density
of orbit and dense orbit imply to everywhere density of them. It follows that ev-
ery multihypercyclic (or multisupercyclic) operator is hypercyclic (or supercyclic,
respectively). The next theorem shows the analogue of Miller’s result for multi-
diskcyclicity.

Proposition 2.2. If T is multidiskcyclic, then there exists a vector x ∈ X such
that the disk orbit of x under T is somewhere dense.

Proof. Let L be a diskcyclic set for T . Towards a contradiction, suppose that
DOrb(T, x) is nowhere dense for all x ∈ X . Then, there is xk ∈ L such that
DOrb(T, xk) is nowhere dense. It follows that,

⋃m
i=1

i6=k
DOrb(T, xi) is dense in X ,

which is contradiction to the minimality of L. Thus, there exists a vector x ∈ X
such that DOrb(T, x) is somewhere dense.

Since the somewhere density of disk orbit does not imply to everywhere density of
it [4, Example 3.14], then we can not apply Bourdon’s and Feldman’s result [6] to
show that every multidiskcyclic is diskcyclic. However, we follow Peris’ approach
[12] to show that every multidiskcyclic operator is diskcyclic. First, we need the
following lemmas.

Lemma 2.1. [12] If p is a polynomial and α is an eigenvalue of T ∗, then p(T )
has a dense range if and only if p(α) 6= 0.

The following lemma can be proved by the same way of proving [12, Lemma 3].

Lemma 2.2. If the interior closure of two disk orbits intersect each other, then
they coincide.
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Theorem 2.2. Let T be a multidiskcyclic operator, then T is diskcyclic.

Proof. Let n be a positive integer and L = {x1, · · · , xn} be a diskcyclic set for T ,
then

X =

n
⋃

i=1

DOrb(T, xi).

Let n > 1 (otherwise T is diskcyclic) and x ∈ X with int(DOrb(T, x)) 6= φ, then
there exists xh ∈ L such that int(DOrb(T, x)) ∩ int(DOrb(T, xh)) 6= φ. It follows
by Lemma (2.2) that

int(DOrb(T, x)) = int(DOrb(T, xh)).

Claim. Orb(T, x) ⊂ int(DOrb(T, x)).
Proof of Claim:

Towards a contradiction, suppose that there exists Tmx ∈ Orb(T, x) such that
Tmx /∈ int(DOrb(T, x)). It follows that Tmx /∈ int(DOrb(T, xh)), thus there exists
1 6 k 6 n; k 6= h such that Tmx ∈ DOrb(T, xk). Since DOrb(T, xk) is T -invariant,
then

int(D {Tm+qx : q > 0}) ⊂ int(DOrb(T, xk)).(2.2)

Now, we get

int(DOrb(T, xh)) = int(DOrb(T, x)) = int(D {Tm+qx : q > 0}) ⊂ int(DOrb(T, xk)).

By Lemma 2.2, it follows that

int(DOrb(T, xh)) = int(DOrb(T, xk)).

which is a contradiction. Thus the claim is proved.

To prove the theorem, by applying Proposition 2.1 and Lemma 2.1, we have

X = P (T )(X ) =

n
⋃

i=1

P (T )(DOrb(T, xi)).

for every polynomial P with P (α) 6= 0 (if σp(T
∗) = α). Now, since

P (T )(DOrb(T, xi)) = DOrb(T, P (T )xi),

and since L is minimal, then

int
(

DOrb(T, P (T )xi)
)

6= φ, for all xi ∈ L.

Thus, for each i ∈ {1, · · · , n} there exists j ∈ {1, · · · , n} such that

Orb(T, P (T )xi) ⊂ int
(

DOrb(T, P (T )xi)
)

= int
(

DOrb(T, xj)
)
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Let

B =
⋃

P (λ) 6=0

Orb(T, P (T )x1) ⊂

n
⋃

i=1

int
(

DOrb(T, xi)
)

Moreover, B = span (Orb(T, x1)) \(T − λI) (X ). It follows that B is connected and

hence B ⊂ int
(

DOrb(T, x1)
)

. By [12, Lemma 2], we have B is dense, thus

X = DOrb(T, x1),

which means that, T is diskcyclic.

Corollary 2.1. An operator is diskcyclic if and only if it is multidiskcyclic.
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SOME GEOMETRIC PROPERTIES OF WEIGHTED LEBESGUE

SPACES Lp
w(G)

Oğuz Oğur

Abstract. In this paper, we deal with some geometric properties of weighted Lebesgue
spaces Lp

w(G), where G is locally compact Abelian group and w is a Beurling weight.
Also, we study the uniformly convexity of the space Lp(G)∩Lr(G) with 1 < p, r < ∞.
Keywords: weighted Lebesgue space, geometric properties

1. Introduction

Throughout this paper, G is a locally compact Abelian group and dx is a Haar
measure on G. If 1 ≤ p < ∞, then Lp(G) will denote the space of functions f such
that |f |p is integrable [2]. A Beurling weight on G is a measurable, locally bounded
function w satisfying for each x, y ∈ G the following two properties: w(x) ≥ 1 and
w(x + y) ≤ w(x).w(y). By the definition of wit is deduced easily that wdx is a
positive measure on G. We denote by Lp

w(G), 1 ≤ p < ∞, the Banach spaces of
equivalence classes of real valued measurable functions on G with the system of
following norm

‖f‖p,w =





∫

G

|f(x)|
p
w(x)dx





1

p

< ∞.

The conjugate space of Lp
w(G) is the L

p
′

w
′ (G), where w

′

= w1−p
′

and 1
p
+ 1

p
′ = 1. It

can be easily seen that Lp
w(G) is a reflexive Banach space [3], [4], [8], [9].

A Banach space X is said to be strictly convex if x, y ∈ X with ‖x‖ = ‖y‖ = 1
and x 6= y, then |(1− λ)x + λy| < 1 for all λ ∈ (0, 1).

A Banach space X is said to be uniformly convex if for all ε > 0, there exists a
positive number δ > 0 such that the conditions

‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x− y‖ ≥ ε imply

∥

∥

∥

∥

x+ y

2

∥

∥

∥

∥

≤ 1− δ.
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for all x, y ∈ X .

The number

δ(ε) = inf

{

1−

∥

∥

∥

∥

x+ y

2

∥

∥

∥

∥

: ‖x‖ = ‖y‖ = 1, ‖x− y‖ ≥ ε

}

is called the modulus of convexity. Note that if ε1 < ε2, then δ(ε1) < δ(ε2) and
δ(0) = 0 since x = y if ε = 0 [1],[7].

We will need some auxiliary lemmas to prove that the spaces Lp
w(G) are uni-

formly convex whenever 1 < p < ∞.

Let us first remind that the Minkowski inequality for the space Lp
w(G), p ≥ 1;

If f, g ∈ Lp
w(G), then





∫

G

|f(x) + g(x)|
p
w(x)dx





1

p

≤





∫

G

|f(x)|
p
w(x)dx





1

p

+





∫

G

|g(x)|
p
w(x)dx





1

p

.

Lemma 1.1. Let 0 < p < 1, we have (a+ b)
p
≤ ap + bp for all a ≥ 0 and b ≥ 0.

Lemma 1.2. If p ≥ 1, then (a+ b)
p
≤ 2p−1 (ap + bp) for all positive numbers a

and b.

2. Main Results

Theorem 2.1. The space Lp
w(G) is convex whenever 0 < p < ∞.

Proof. Let f, g ∈ Lp
w(G). We need to show that tf +(1− t)g ∈ Lp

w(G) for 0 ≤ t ≤ 1.
Let us consider this in two cases; p ≥ 1 and 0 < p < 1.
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Case p ≥ 1. By lemma 2 and the Minkowski inequality, we have
∫

G

|tf(x) + (1− t)g(x)|
p
w(x)dx =

∫

G

∣

∣

∣
(tf(x) + (1− t)g(x)) (w(x))

1

p

∣

∣

∣

p

dx

=











∫

G

∣

∣

∣
(tf(x) + (1− t)g(x)) (w(x))

1

p

∣

∣

∣

p

dx





1

p







p

≤











∫

G

∣

∣

∣
(tf(x)) (w(x))

1

p

∣

∣

∣

p

dx





1

p

+





∫

G

∣

∣

∣
((1− t)g(x)) (w(x))

1

p

∣

∣

∣

p

dx





1

p







p

≤ 2p−1





∫

G

∣

∣

∣
(tf(x)) (w(x))

1

p

∣

∣

∣

p

dx

+

∫

G

∣

∣

∣
((1− t)g(x)) (w(x))

1

p

∣

∣

∣

p

dx





= 2p−1



|t|
p

∫

G

|f(x)|
p
w(x)dx

+ |1− t|
p

∫

G

|g(x)|
p
w(x)dx





= 2p−1
(

|t|
p
‖f‖

p

p,w + |1− t|
p
‖g‖

p

p,w

)

< ∞

which shows that tf + (1− t)g ∈ Lp
w(G) for p ≥ 1.

Case 0 < p < 1. Let f, g ∈ Lp
w(G) and t ∈ [0, 1]. By lemma 1, we get

∫

G

|tf(x) + (1− t)g(x)|
p
w(x)dx =

∫

G

∣

∣

∣
(tf(x) + (1− t)g(x)) (w(x))

1

p

∣

∣

∣

p

dx

≤

∫

G

∣

∣

∣
(tf(x)) (w(x))

1

p

∣

∣

∣

p

dx+

∫

G

∣

∣

∣
((1− t)g(x)) (w(x))

1

p

∣

∣

∣

p

dx

= |t|p ‖f‖pp,w + |1− t|p ‖g‖pp,w
< ∞.

This completes the proof.
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Theorem 2.2. The space Lp
w(G), 1 < p < ∞, is strictly convex.

Proof. Let f, g ∈ Lp
w(G) with f 6= g, ‖f‖p,w = 1, ‖g‖p,w = 1 and 0 < t < 1. Then,

by strictly convexity of Lp(G) we have

‖(1 − t)f + tg‖p,w =





∫

G

∣

∣

∣
((1− t)f(x) + tg(x)) (w(x))

1

p

∣

∣

∣

p

dx





1

p

=
∥

∥

∥
((1− t)f + tg)w

1

p

∥

∥

∥

p

< 1.

Lemma 2.1. Let 2 ≤ p < ∞ and a, b ∈ R, then we have

|a+ b|
p
+ |a− b|

p
≤ 2p−1 (|a|

p
+ |b|

p
) .

[5].

Lemma 2.2. Let 2 ≤ p < ∞. For any f, g ∈ Lp, we have

‖f + g‖pp + ‖f − g‖pp ≤ 2p−1
(

‖f‖pp + ‖g‖pp

)

[6].

We will also need the following inequality.

Lemma 2.3. For 2 ≤ p < ∞ and any f, g ∈ Lp
w(G), we have

‖f + g‖
p

p,w + ‖f − g‖
p

p,w ≤ 2p−1
(

‖f‖
p

p,w + ‖g‖
p

p,w

)

.

Proof. Let f, g ∈ Lp
w(G). Then fw

1

p , gw
1

p ∈ Lp. By lemma 4, we get

‖f + g‖
p

p,w + ‖f − g‖
p

p,w =
∥

∥

∥
fw

1

p + gw
1

p

∥

∥

∥

p

p
+
∥

∥

∥
fw

1

p − gw
1

p

∥

∥

∥

p

p

≤ 2p−1

(

∥

∥

∥
fw

1

p

∥

∥

∥

p

p
+
∥

∥

∥
gw

1

p

∥

∥

∥

p

p

)

= 2p−1
(

‖f‖
p

p,w + ‖g‖
p

p,w

)

.

Theorem 2.3. Lp
w(G) is uniformly convex for 2 ≤ p < ∞.
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Proof. Let f, g ∈ Lp
w(G) with ‖f‖p,w ≤ 1, ‖g‖p,w ≤ 1 and ‖f − g‖p,w ≥ ε. Then,

we have
‖f + g‖

p

p,w ≤ 2p−1
(

‖f‖
p

p,w + ‖g‖
p

p,w

)

− ‖f − g‖
p

p,w

which implies that

‖f + g‖
p

p,w ≤ 2p−1.2− εp

= 2p
(

1−
(ε

2

)p)

.

Therefore, we get
∥

∥

∥

∥

f + g

2

∥

∥

∥

∥

p

p,w

≤ 1−
(ε

2

)p

.

That is, δ(ε) = 1−
(

1−
(

ε
2

)p)
1

p and this is known to be exact.

Lemma 2.4. (The Minkowski inequality for p ∈ (0, 1)) Let 0 < p < 1 and let f
and g be positive functions in Lp(G), then f + g ∈ Lp(G) and

‖f + g‖p ≥ ‖f‖p + ‖g‖p .

Lemma 2.5. If 1 < p < 2 and q = p

p−1 , then

|a+ b|
q
+ |a− b|

q
≤ 2 (|a|

p
+ |b|

p
)
q−1

for all real numbers a and b [6].

Lemma 2.6. Let 1 < p ≤ 2 and q = p
p−1 . For any f , g ∈ Lp(G), we have

‖f + g‖
q

p + ‖f − g‖
q

p ≤ 2
(

‖f‖
p

p + ‖g‖
p

p

)q−1

.

Theorem 2.4. Let 1 < p ≤ 2 and let q = p

p−1 . For any f , g ∈ Lp
w(G), we have

‖f + g‖
q

p,w + ‖f − g‖
q

p,w ≤ 2
(

‖f‖
p

p,w + ‖g‖
p

p,w

)q−1

.

Proof. First notice that

‖f‖qp,w =











∫

G

|f(x)|p w(x)dx





1

p







q

=





∫

G

|f(x)|
p
w(x)dx





1

p−1

=





∫

G

|f(x)|q(p−1)
w(x)dx





1

p−1

= ‖|f |
q
‖p−1,w .
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Let f, g ∈ Lp
w(G). By the Minkowski inequality for 0 < r < 1, we have

(1)





∫

G

|F (x) +G(x)|
r
dx





1

r

≥





∫

G

|F (x)|
r
dx





1

r

+





∫

G

|G(x)|
r
dx





1

r

.

Since 1 < p < 2, we have 0 < p

q
< 1. Let us define F (x) =

∣

∣

∣
(f(x) + g(x))w(x)

1

p

∣

∣

∣

q

and G(x) =
∣

∣

∣
(f(x)− g(x))w(x)

1

p

∣

∣

∣

q

. By lemma 7, we get





∫

G

∣

∣

∣
(f(x) + g(x))w(x)

1

p

∣

∣

∣

p

dx





q

p

+





∫

G

∣

∣

∣
(f(x)− g(x))w(x)

1

p

∣

∣

∣

p

dx





q

p

≤





∫

G

∣

∣

∣

∣

∣

∣
(f(x) + g(x))w(x)

1

p

∣

∣

∣

q

+
∣

∣

∣
(f(x)− g(x))w(x)

1

p

∣

∣

∣

q∣
∣

∣

p

q

dx





q

p

=





∫

G

∣

∣

∣

∣

∣

∣
f(x)w(x)

1

p + g(x)w(x)
1

p

∣

∣

∣

q

+
∣

∣

∣
f(x)w(x)

1

p − g(x)w(x)
1

p

∣

∣

∣

q∣
∣

∣

p

q

dx





q

p

≤





∫

G

(

2
(
∣

∣

∣
f(x)w(x)

1

p

∣

∣

∣

p

+
∣

∣

∣
g(x)w(x)

1

p

∣

∣

∣

p)q−1
)

p

q

dx





q

p

= 2





∫

G

(∣

∣

∣
f(x)w(x)

1

p

∣

∣

∣

p

+
∣

∣

∣
g(x)w(x)

1

p

∣

∣

∣

p)

dx





q

p

= 2





∫

G

(|f(x)|
p
w(x) + |g(x)|

p
w(x)) dx





q

p

Thus, we obtain

‖f + g‖qp,w + ‖f − g‖qp,w ≤ 2
(

‖f‖pp,w + ‖g‖pp,w

)q−1

.

Theorem 2.5. The space Lp
w(G) is uniformly convex for 1 < p < 2.

Proof. Let f, g ∈ Lp
w(G), 1 < p < 2, with ‖f‖p,w ≤ 1, ‖g‖p,w ≤ 1 and ‖f − g‖p,w ≥

ε. Then, by the theorem 4, we have

‖f + g‖
q

p,w ≤ 2
(

‖f‖
p

p,w + ‖g‖
p

p,w

)q−1

− ‖f − g‖
q

p,w

≤ 2.2q−1 − εq

= 2q
(

1−
(ε

2

)q)

.
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Hence, we get
∥

∥

∥

∥

f + g

2

∥

∥

∥

∥

p,w

≤
(

1−
(ε

2

)q)
1

q

≤ 1− δ

where δ(ε) = 1−
(

1−
(

ε
2

)q)
1

q .

Let us define Bp,r = Lp(G) ∩Lr(G) with 1 < p, r < ∞. It is known that Bp,r is
a normed space with the norm

‖f‖p,r = max
{

‖f‖p , ‖f‖r

}

[7].

Theorem 2.6. The space Bp,r is uniformly convex space for 1 < p, r < ∞.

Proof. Let f, g ∈ Bp,r with ‖f‖p,r ≤ 1, ‖g‖p,r ≤ 1 and ‖f − g‖p,r ≥ ε. By definition
of the space Bp,r, we have f, g ∈ Lp(G) and f, g ∈ Lr(G). Assume that

‖f + g‖p,r = max
{

‖f + g‖p , ‖f + g‖r

}

= ‖f + g‖p .

By assumption, we have ‖f + g‖r ≤ ‖f + g‖p.

Let 1 < p, r < 2. By lemma 8, we have

‖f + g‖
q

p ≤ 2
(

‖f‖
p

p + ‖g‖
p

p

)q−1

− ‖f − g‖
q

p

where q = p

p−1 . Then, we get

‖f + g‖qp,r = ‖f + g‖qp ≤ 2
(

‖f‖pp + ‖g‖pp

)q−1

− ‖f − g‖qp

≤ 2.2q−1 − εq

= 2q
(

1−
(ε

2

)q)

which gives
∥

∥

∥

f+g

2

∥

∥

∥

p,r
≤

(

1−
(

ε
2

)q)
1

q . By choosing

δ(ε) = 1−
(

1−
(

ε
2

)q)
1

q , the proof is completed for 1 < p, r < 2.

If 2 ≤ p, r < ∞, then we have, by lemma 4,

‖f + g‖
p

p,r = ‖f + g‖
p

p ≤ 2p−1
(

‖f‖
p

p + ‖g‖
p

p

)

− ‖f − g‖
p

p

≤ 2p
(

1−
(ε

2

)p)

and we get
∥

∥

∥

f+g

2

∥

∥

∥

p,r
≤

(

1−
(

ε
2

)p)
1

p . If we choose δ(ε) = 1−
(

1−
(

ε
2

)p)
1

p , the proof

is completed.
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SOME CLASSES OF ANALYTIC FUNCTIONS ASSOCIATED WITH

q-RUSCHEWEYH DIFFERENTIAL OPERATOR

Khalida Inayat Noor

Abstract. It is known that the q-analysis (q-calculus) has many applications in math-
ematics and physics. The notion of the q-derivative Dq of a function f , analytic in the
open unit disc, is defined as Dqf(z) =

f(qz)−f(z)
(q−1)z

, q ∈ (0, 1), (z 6= 0) andDqf(0) = f
′(0).

Using a q-analogue of the well-known Ruscheweyh differential operator D
n
q of order n,

we introduce certain classes STq(n) for n = 0, 1, 2, ..., and investigate a number of in-
teresting properties such as inclusion and coefficient results. The ideas and techniques
in this paper may stimulate further research in this field.

Keywords: Analytic, Starlike functions, q-derivative, Ruscheweyh operator, Subordi-
nation

1. Introduction

Let A denote the class of functions f which are analytic in the open unit disc
E = {z : |z| < 1} and are of the form

(1.1) f(z) = z +

∞
∑

m=2

amzm.

The class S ⊂ A consists of univalent functions. A function f ∈ A is said to be
starlike of order α(0 ≤ α < 1) in E if it satisfies the condition

Re

{

zf ′(z)

f(z)

}

> α, (z ∈ E).

We denote this class by S∗(α). For α = 0, we have S∗(0) = S∗, is the well-known
class of starlike functions. The class C(α), (0 ≤ α < 1) consists of convex functions

Received March 21, 2018; accepted: July 07, 2018
2010 Mathematics Subject Classification. Primary: 30C45, 30C10; Secondary: 47B38
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of order α and can be defined by the relation f ∈ C(α), if and only if, zf ′ ∈ S∗(α).

Let f1, f2 ∈ A. If there exists a Schwartz function φ(z) which is analytic in E

with φ(0) = 0 and |φ(z)| < 1 such that f1(z) = f2(φ(z)), then we say that f1(z) is
subordinate to f2(z) and write f1(z) ≺ f2(z), where≺ denote subordination symbol.

For f ∈ A and given by (1.1), g : g(z) = z +
∑∞

m=2 bmzm, convolution ∗
(Hadamard product) of f and g is defined by

(f ∗ g)(z) =

∞
∑

m=2

ambmzm.

Recently, the use of q-calculus has attracted the attention of many researchers in
the field of geometric function theory. Ismail et al. [5] generalized the class S∗

with the concept of q-derivative and called this class S∗
q of q-starlike functions. For

recent developments, see [10, 11, 12, 13, 14, 17] and the references therein.

We first give some basic definitions and the concept of q-calculus, which we shall
use in this paper. For more details, see [3, 8].

A set B ⊂ C is called q-geometric if, for q ∈ (0, 1), qz ∈ B, it contains all the
sequences {zqm}∞0 . Jackson [6, 7] defined q-derivative and q-integral of f on the set
B as follows:

∂qf(z) =
f(z)− f(zq)

z(1− q)
, (z 6= 0, z ∈ (0, 1)),(1.2)

and

∫ z

0

f(t)∂qt = z(1− q)

∞
∑

m=0

qmf(zqm), q ∈ (0, 1),

provided that the series converges.

It can easily be seen that, for m = 1, 2, 3, ..., and z ∈ E,

∂q

{ ∞
∑

m=1

amzm
}

=

∞
∑

m=1

[m, q]amzm−1,(1.3)

where

[m, q] = 1 +

m−1
∑

i=1

qi =
1− qm

1− q
, [0, q] = 0.(1.4)

For any non-negative integer m, the q-number shift factorial is defined by
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[m, q]! =

{

1, m = 0
[1,q][2,q][3,q]...[m,q], m = 1, 2, 3, ...

Also, the q-generalized Pochhamer symbol for x > 0 is given as

[m, q]m =

{

1, m = 0
[x,q][x+1,q]...[x+m-1,q], m = 1, 2, 3, ...

Throughout this paper, we shall assume z ∈ E, and q ∈ (0, 1), unless stated
otherwise.

Using the q-derivative, we define certain new classes of analytic functions given
as below.

Definition 1.1. Let f ∈ A. Then f is said to belong to the class STq, if
∣

∣

∣

∣

z

f(z)
(∂qf)(z)−

q

1− q2

∣

∣

∣

∣

≤
q

1− q2
,

where ∂qf(z) is defined by (1.2) on q-geometric set B.

Remark 1.1. We note that, as q → 1−, the disc |w(z)− q

1−q2
| ≤

q

1−q2
becomes the right

half plane Re{w(z)} > α, α ∈ ( 1
2
, 1) and the class STq reduces to S

∗( 1
2
).

Following the argument similar to the one used in [20], it is easily seen that f ∈ STq,

if and only if,

z∂qf(z)

f(z)
≺

1

1− qz
.(1.5)

From (1.5) it can be seen that the linear transformation 1
1−qz

maps |z| = r onto the

circle with center C(r) = qr2

1−q2r2
and the radius σ(r) = qr

1−q2r2
, and we can write

1− qr + qr2

(1− qr)(1 + qr)
≤

{

Re
z∂qf(z)

f(z)

}

≤
1 + qr + qr2

(1− qr)(1 + qr)
.(1.6)

Now, with ∂q(log f(z)) =
∂qf(z)
f(z) , Re

∂qf(z)
f(z) = r

∂q log |f(z)|
dr

and some computation,

we have from (1.6)

1

r
+

q

1 + qr
≤

∂q

dr
log |f(z)| ≤

1

r
+

q

1− qr
.(1.7)

Taking the q-integral on both sides of (1.7) and simplifying, we get

1

(1 + qr)qq1
≤

∣

∣

∣

∣

f(z)

z

∣

∣

∣

∣

≤
1

(1 − qr)qq1
, q1 =

1− q

log q−1
.(1.8)
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Since limq→1−
1−q

log q−1 = 1, (1.8) gives us a distortion result for f ∈ S∗(12 ) as

r

(1 + r)
≤ |f(z)| ≤

r

(1− r)
, see [4]

For n ∈ N◦ = {0, 1, 2, 3, ...}, the Ruscheweyh derivative Dn of order n, is defined as

Dnf(z) =
z

(1− z)n+1
∗ f(z) =

z(zn−1f(z))(n)

n!
, f ∈ A.

We now proceed to discuss the q-analogue of the Ruscheweyh derivative.

Let the function Fq,n+1 be defined as

Fq,n+1(z) = z +

∞
∑

m=2

[m+ n− 1, q]!

[n, q]![m− 1, q]!
zm,(1.9)

where the series converges absolutely in E.

Using (1.9), the q-Ruscheweyh differential operator of order n, Dn
q : A → A is

defined for f(z) given by (1.1) as

Dn
q f(z) = Fq,n+1(z) ∗ f(z)

= z +

∞
∑

m=2

[m+ n− 1, q]!

[n, q]![m− 1, q]!
amzm, see [9].(1.10)

We note that

D0
qf(z) = f(z) and D′

qf(z) = z∂qf(z).

Also (1.10) can be written as

Dn
q f(z) =

z∂n
q (z

n−1f(z))

[n, q]!
, n ∈ N.

As q → 1−1, limq→1− Fq,n+1(z) = z
(1−z)n+1 , and limq→1− Dn

q f(z) = Dnf(z), that

is, the q-Ruscheweyh derivative reduces to the Ruscheweyh derivative as q → 1−.
See [18].
The following identity can easily be derived from (1.10).

z∂q(D
n
q f(z)) =

(

1 +
[n, q]

qn

)

Dn+1
q f(z)−

[n, q]

qn
Dn

q f(z).(1.11)

When q → 1−, (1.11) reduces to the well-known identity for the Ruscheweyh deriva-
tive as

z(Dnf(z))′ = (n+ 1)Dn+1f(z)− nDnf(z).

Using the q-operator Dn
q , we define the following.
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Definition 1.2. Let f ∈ A and let the operator Dn
q : A → A be defined by (1.10).

Then f ∈ STq(n), if and only if, Dn
q f ∈ STq in E.

In other words
z∂q(D

n

q
f(z))

Dn
q
f(z) ≺ 1

1−qz
implies f ∈ STq(n). We note that, if

p(z) ≺
1

1− qz
, then Re p(z) >

1

1 + q
, z ∈ E.

2. Main Results

Theorem 2.1. For n ∈ N◦, STq(n+ 1) ⊂ STq(n).

Proof. Let f ∈ STq(n+ 1). Set

z∂q(D
n
q f(z))

Dn
q f(z)

= p(z).(2.1)

We note that p(z) is analytic in E and p(0) = 1. We shall show that p(z) ≺ 1
1−qz

.

The q-logarithmic differentiation of (2.1) and the use of identity (1.11) yields

z∂q(D
n+1
q f(z))

Dn+1
q f(z)

= p(z) +
z∂qp(z)

p(z) +Nq

, Nq =
[n, q]

qn
.(2.2)

Let

p(z) =
1

1− qφ(z)
.(2.3)

φ(z) is analytic in E and φ(0) = 0. We shall show that |φ(z)| < 1, for all z ∈ E.

Suppose, on the contrary, that there exists a z0 ∈ E such that |φ(z0)| = 1.
Since f ∈ STq(n+ 1), it follows from (2.2) that

Re

{

p(z) +
z∂qp(z)

p(z) +Nq

}

>
1

1 + q
, Nq =

[n, q]

qn
.

Using (2.3), we have

Re

[

p(z)+
z∂qp(z)

p(z) +Nq

]

=Re

[

1

1−qφ(z0)
+

qz0∂qφ(z0)

(1−qφ(z0))[(1+Nq)−qNqφ(z0)]

]

.(2.4)

Let φ(z0) = e
iθ
. Then

Re
1

1− qφ(z0)
=

1− q cos θ

1− 2q cos θ + q2
.(2.5)
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Also

z0∂qφ(z0) = kφ(z0), k ≥ 1,(2.6)

by using q-Jacks’s Lemma given in [1].
Using (2.5), (2.6), φ(z0) = e

iθ in (2.4), we have

Re

{

z∂q(D
n+1
q f(z0))

D
n+1
q f(z0)

}

= Re

{

1

1− qeiθ
+

qke
iθ

(1− qeiθ)(Nq + 1− qNqe
iθ)

}

.(2.7)

In (2.7), we take θ = π, and this gives us

Re

{

z∂q(D
n+1
q f(z))

D
n+1
q f(z)

−
1

1 + q

}

< 0, z ∈ E,

which is a contradiction. Thus, |φ(z)| < 1 for all z ∈ E and this proves p(z) ≺
1

1−qz
.

Consequently, f ∈ STq(n) in E.

Using the identity (1.11) and the definition, the proof of the following result is
straightforward.

Theorem 2.2. Let f ∈ STq(n) and let Inf : A → A be defined as

Inf(z) =
[n+ 1, q]

qnzn

∫ z

0

tn−1f(t)dqt, n ∈ N◦.

Then Inf(z) ∈ STq(n+ 1).

This operator was introduced by Bernardi [2] for q → 1−. For n = 1, I1f(z) is the
q-analogue of the Libera integral operator, see [15, 16].

In [19], it has been proved that ∩0<q<1S
∗
q (α) = S∗(α), 0 ≤ α < 1. From this we

can easily deduce that
(i). ∩0<q<1STq = S∗(12 ).
(ii). f ∈ [∩0<q<1STq(n)] implies Dnf ∈ S∗(12 ).

We have the following.

Theorem 2.3. ∩∞
n=0STq(n) = {id} where id is the identity function.

Proof. Let f(z) = z. Then it follows trivially that z ∈ STq(n), for n ∈ N◦.

On the contrary, assume f ∈ ∩∞
n=0STq(n) with f(z) given by (1.1).

From (1.5) and (1.10), we deduce that f(z) = z.

Theorem 2.4. Let f ∈ STq(n) and be given by (1.1). Then

am = O(1)
([n, q]!)([m − 1, q]!)

[m, q]([m + n− 1, q]!)
m(qq1+

1

2
), q1 =

1− q

log q−1
,

where O(1) is a constant depending on q.
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Proof. Let

Dn
q f(z) = z +

∞
∑

m=2

Am(n)zm.

Then, from (1.10), we have

Am(n) =
[m+ n− 1, q]!

[n, q]![m− 1, q]!
am.

Since f ∈ STq(n), Dn
q f ∈ STq, and we can write

z∂q(D
n
q f(z)) = (Dn

q f(z))(p(z)), p(z) ≺
1

1− qz
.

The Cauchy Theorem, (1.8) and the Schwartz inequality gives us

[m, q]|Am(n)| ≤ c1(q)
1

(1 − r)qq1+
1

2

, q1 =
1− q

log q−1
,

where c1(q) is a constant. Taking r = 1 − 1
m
, (m → ∞), we obtain the desired

result.

As a special case for n = 0, D0
qf ∈ STq and am = O(1) ·m(qq1−

1

2
), m → ∞.

We observe here that, limq→1− STq = S∗(12 ) and f(z) ≺ z
1−z

. Using the Schwartz
inequality and subordination, we get

am = O(1) ·
n!(m− 1)!

(m+ n− 1)!
.
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ON A KÄHLER MANIFOLD EQUIPPED WITH LIFT OF

QUARTER SYMMETRIC NON-METRIC CONNECTION

Pankaj Pandey and Braj Bhushan Chaturvedi

Abstract. The aim of the present paper is to study Kähler manifolds equipped with
the lift of a quarter-symmetric non-metric connection. In this paper, a condition on the
manifold for being a Kähler manifold with respect to the lift of the quarter-symmetric
non-metric connection is obtained. It is further shown that the Nijenhuis tensor with
respect to the lift of the quarter-symmetric non-metric connection vanishes. Also, a
necessary and sufficient condition for a contravariant almost analytic vector field in a
Kähler manifold equipped with the lift of a quarter-symmetric non-metric connection
has been found.
Keywords Kähler manifold; non-metric connection; differentiable manifolds.

1. Introduction

In 1975, a linear connection was introduced by S. Golab [5] called quarter-symmetric
connection.

A linear connection ∇ is said to be a quarter-symmetric connection if the torsion
tensor T of ∇ has the form

T (X,Y ) = ω(Y )φX − ω(X)φY,

where φ is the tensor field of type (1,1) and X,Y are arbitrary vector fields. A
linear connection ∇ is said to be a non-metric connection if the covariant derivative
of the metric tensor g with respect to ∇ does not vanish i.e. ∇g 6= 0.

The lift function plays an important role in the study of differentiable manifolds.
In the last few decades, the theory of lift has been studied by several authors. Fur-
thermore, the study of tangent bundles has been continued by L. S. Das and M. N.
I. Khan [3] (2005). They [3] considered a manifold with an almost r-contact struc-
ture and obtained an almost complex structure on the tangent bundle. Recently,
M. Tekkoyun and S. Civelek [8] (2008) studied and extended the concept of lifts by
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considering the structures on complex manifolds. In 2014, the lift was studied with
a quarter-symmetric semi-metric connection on tangent bundles by M. N. I. Khan
[6]. The same author [7] (2015) also studied the lift equipped with a semi-symmetric
non-metric connection on a Kähler manifold. The semi-symmetric non-metric con-
nection has also been considered by B. B. Chaturvedi and P. N. Pandey [2] (2008)
in a Kähler manifold. In [2] they showed that the Nijenhuis tensor vanishes in a
Kähler manifold equipped with a semi-symmetric non-metric connection. In the
same paper, they [2] also proved that if V is a contra-variant almost analytic vector
field in a Kähler manifold then V is also a contra-variant almost analytic vector
field in a Kähler manifold equipped with a semi-symmetric non-metric connection.
Recently, B. B. Chaturvedi and P. Pandey [1] (2015) studied a new type of the met-
ric connection in an almost Hermitian manifold. In that paper, they [1] obtained a
condition for a vector field V to be a contravariant almost analytic vector field in
an almost Hermitian manifold equipped with a new type of the metric connection.

1.1. Kähler manifold

Let M be an n-(even) dimensional differentiable manifold. If for a tensor field F of
type (1,1) and a Riemannian metric g the conditions

F 2(X) +X = 0, g(FX,FY ) = g(X,Y ), (∇XF )Y = 0,

hold then M is called Kähler manifold, X,Y are arbitrary vector fields.

1.2. Quarter-symmetric non-metric connection

Let F be a tensor field of type (1,1) then a linear connection ∇ defined by

∇XY = ∇XY + ω(Y )FX,(1.1)

is called quarter-symmetric non-metric connection, ∇ is the Riemannian connection,
ω is 1-form defined by g(X, ρ) = ω(X) for the associated vector field ρ.
The torsion tensor T and the metric tensor g of ∇ are given respectively by

T (X,Y ) = ω(Y )FX−ω(X)FY and (∇Xg)(Y, Z) = ω(Y )g(X,FZ)+ω(Z)g(X,FY ),

for arbitrary vector fields X and Y .

1.3. Tangent Bundle

let M be a differentiable manifold and TpM denotes the tangent space of M at
any point p ∈ M then the collection of all tangent spaces at p ∈ M is called the
tangent bundle of M and denoted by T (M) = ∪p∈MTpM . Let p̃ ∈ T (M) then the
projection π : T (M) → M defined by π(p̃) = p is called the bundle projection of
T (M) over M and the set π−1(p) is called the fiber over p ∈ M and M the base
space.
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Vertical lift: The composition of two maps π : T (M) → M and f : M → R defined
by fV = foπ is called the vertical lift of f , where f is a smooth function in M . For
p̃ ∈ π−1(U) with induced coordinates (xh, yh), the value of fV (p̃) is constant along
each fiber Tp(M) and equal to f(p) i.e. fV (p̃) = fV (x, y) = foπ(p̃) = f(p) = f(x).
Complete lift: For a smooth function f in M , a function fC defined by fC = i(df)
on T (M) is called the complete lift of f . If ∂f is denoted locally by yi∂if then the
complete lift of f is locally denoted by fC = yi∂if = ∂f .
Let X be a vector field, then for a smooth function f on M , a vector field XC ∈
T (M) defined by XCfC = (Xf)

C
is called the complete lift of X in T (M). If X

has the component xh in M then the component of the complete lift XC in T (M)
is given by XC : (xh, ∂xh) with respect to the induced coordinates in T (M).
For a 1-form ω in M and an arbitrary vector field X , the complete lift of ω is
denoted by ωC and defined by ωC(XC) = (ω(X))C [7].

1.4. Induced metric and connection

Let τ : S → M be the immersion of an (n− 1)-dimensional manifold S in M . If we
denote the differentiable map dτ : T (S) → T (M) of τ by B called the tangent map
of τ , T (S) and T (M) being the tangent bundles of S and M , respectively, then the
tangent map of B is denoted by B̃ : T (T (S)) → T (T (M)) [7].
Let g be a Riemannian metric in M and the complete lift of g is gC in T (M). If g̃
denotes the induced metric of gC on T (S) then we have g̃(X,Y ) = gC(B̃XC , B̃Y C),
where X,Y are vector fields in S. If ∇ denotes a Riemannian connection on M then
∇C , the complete lift of ∇, is also a Riemannian connection satisfying ∇C

XCY
C =

(∇XY )
C

and ∇C
XCY

V = (∇XY )
V
, for the vector fields X,Y in M .

From [7], we know that the lift function has the following properties,

ωV (B̃XC) = ωV (B̃X)C = #(ωV (XC)) = #((ω(X))V )

= (ω(BX))V , ωC(B̃XC) = ωC(B̃X)C

= #(ωC(XC)) = #((ω(X))C) = (ω(BX))C , [XC , Y C ]

= [X,Y ]C , FC(XC) = (F (X))C , ωV (XC) = (ω(X))V , ωC(XC)

= (ω(X))C , gC(XV , Y C) = gC(XC , Y V ) = (g(X,Y ))V ,(1.2)

where XC , ωC , FC , gC and XV , ωV , FV , gV are the complete and vertical lifts of
X,ω, F, g. #, V and C denote the operation of restriction, vertical lift and complete
lift on π−1

M (τ(S)) respectively, X,Y are vector fields in S.

2. Lift of quarter-symmetric non-metric connection on a Kähler

manifold

Taking the complete lift of the equation (1.1), we get

(∇BXBY )C = (∇BXBY )C + (ω(BY )B(FX))C .(2.1)
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Simplifying (2.1), we have

∇
C

B̃XC B̃Y C = ∇C

B̃XC
B̃Y C + ωC(B̃Y C)B̃(FX)V + ωV (B̃Y C)B̃(FX)C .(2.2)

A connection ∇
C

defined by (2.2) is called the lift of a quarter-symmetric non-
metric connection ∇.
Replacing Y by FY , the equation (2.2) gives

∇
C

B̃XC B̃(FY )C = ∇C

B̃XC
B̃(FY )C + ωC(B̃(FY )C)B̃(FX)V

+ωV (B̃(FY )C)(B̃(FX))C .(2.3)

Also, operating FC on the equation (2.2), we get

FC(∇
C

B̃XC B̃Y C) = FC(∇C

B̃XC
B̃Y C)− ωC(B̃Y C)B̃XV − ωV (B̃Y C)B̃XC .(2.4)

Subtracting (2.4) from (2.3), we have

(∇
C

B̃XC B̃FC)(B̃Y C) = ωC(B̃(FY )C)B̃(FX)V + ωV (B̃(FY )C)B̃(FX)C

+ ωC(B̃Y C)B̃XV + ωV (B̃Y C)B̃XC .(2.5)

Thus, we can state

Theorem 2.1. Let M be a Kähler manifold equipped with the lift of a quarter-

symmetric non-metric connection ∇
C

then M is a Kähler manifold with respect to

∇
C

if and only if

ωC(B̃(FY )C)B̃(FX)V + ωV (B̃(FY )C)B̃(FX)C

+ωC(B̃Y C)B̃XV + ωV (B̃Y C)B̃XC = 0.(2.6)

Now, if we denote

H
C
(B̃XC , B̃Y C) = ωC(B̃Y C)B̃(FX)V + ωV (B̃Y C)B̃(FX)C .(2.7)

and define a tensor ′H
C

of type (0,3) by

′H
C
(B̃XC , B̃Y C , B̃ZC) = gC(H

C
(B̃XC , B̃Y C), B̃ZC),(2.8)

then, the equations (2.7) and (2.8) together give

′H
C
(B̃XC , B̃Y C , B̃ZC) = ωC(B̃Y C)gC(B̃(FX)V , B̃ZC)

+ωV (B̃Y C)gC(B̃(FX)C , B̃ZC)(2.9)

Replacing Y and Z by FY and FZ in (2.9), respectively, we get

′H
C
(B̃XC , B̃(FY )C , B̃(FZ)C) = ωC(B̃(FY )C)gC(B̃(FX)V , B̃(FZ)C)

+ ωV (B̃(FY )C)gC(B̃(FX)C , B̃(FZ)C)(2.10)
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Subtracting (2.9) from (2.10), we find

′H
C
(B̃XC , B̃(FY )C , B̃(FZ)C)−′ H

C
(B̃XC , B̃Y C , B̃ZC)

= ωC(B̃(FY )C)gC(B̃(FX)V , B̃(FZ)C)

+ωV (B̃(FY )C)gC(B̃(FX)C , B̃(FZ)C)

−ωC(B̃Y C)gC(B̃(FX)V , B̃ZC)− ωV (B̃Y C)gC(B̃(FX)C , B̃ZC),(2.11)

which shows that ′H
C
is a hybrid in the last two slots if and only if the right hand

side of (2.11) vanishes.
We also know that a necessary and sufficient condition to be a Kähler manifold
with respect to the connection D defined by DXY = ∇XY +H(X,Y ) is that ′H

defined by ′H(X,Y, Z) = g(H(X,Y ), Z) is a hybrid in the last two slots [4].
Hence from the above discussions, we conclude the following

Theorem 2.2. Let M be a Kähler manifold equipped with the lift of a quarter-

symmetric non-metric connection ∇
C

then a necessary and sufficient condition for

M to be a Kähler manifold with respect to the connection ∇
C

is that

ωC(B̃(FY )C)gC(B̃(FX)V , B̃(FZ)C) + ωV (B̃(FY )C)gC(B̃(FX)C , B̃(FZ)C)

−ωC(B̃Y C)gC(B̃(FX)V , B̃ZC)− ωV (B̃Y C)gC(B̃(FX)C , B̃ZC) = 0.(2.12)

Corollary 2.1. Also, replacing X by FX in (2.12), we have

ωC(B̃(FY )C)B̃(FX)V + ωV (B̃(FY )C)B̃(FX)C

+ωC(B̃Y C)B̃XV + ωV (B̃Y C)B̃XC = 0,(2.13)

which verifies the condition of the Kähler manifold obtained in (2.6). ✷

Let ′F denotes the 2-form of the Riemannian metric g defined by ′F (Y, Z) =
g(FY,Z) then the complete lift of ′F is denoted and defined by

′FC(B̃Y C , B̃ZC) = gC(B̃(FY )C , B̃ZC).(2.14)

Taking the covariant differentiation of (2.14), we get

Corollary 2.2.

(∇
C

B̃XC
′FC)(B̃Y C , B̃ZC) = (∇C

B̃XC

′FC)(B̃Y C , B̃ZC)

+ωC(B̃Y C)gC(B̃XV , B̃ZC) + ωV (B̃Y C)gC(B̃XC , B̃ZC)

−ωC(B̃ZC)gC(B̃Y C , B̃XV )− ωV (B̃ZC)gC(B̃Y C , B̃XC).

By taking the cyclic sum over X,Y, Z of the equation (2.15), we obtain

(∇
C

B̃XC
′FC)(B̃Y C , B̃ZC) + (∇

C

B̃Y C
′FC)(B̃ZC , B̃XC)
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+(∇
C

B̃ZC
′FC)(B̃XC , B̃Y C)

= ωC(B̃Y C)gC(B̃XV , B̃ZC) + ωV (B̃Y C)gC(B̃XC , B̃ZC)

+ωC(B̃ZC)gC(B̃Y V , B̃XC) + ωV (B̃ZC)gC(B̃Y C , B̃XC)

+ωC(B̃XC)gC(B̃ZV , B̃Y C) + ωV (B̃XC)gC(B̃ZC , B̃Y C)

−ωC(B̃ZC)gC(B̃Y C , B̃XV )− ωV (B̃ZC)gC(B̃Y C , B̃XC)

−ωC(B̃XC)gC(B̃ZC , B̃Y V )− ωV (B̃XC)gC(B̃ZC , B̃Y C)

−ωC(B̃Y C)gC(B̃XC , B̃ZV )− ωV (B̃Y C)gC(B̃XC , B̃ZC).(2.15)

Thus, we can state the following

Theorem 2.3. Let M be a Kähler manifold equipped with the lift of a quarter-

symmetric non-metric connection ∇
C

then the relation (2.16) holds.

Also, it is well known that the Nijenhuis tensor N with respect to the Riemannian
connection ∇ is given by

N(X,Y ) = [FX,FY ]− [X,Y ]− F [FX, Y ]− F [X,FY ](2.16)

= ∇FXFY −∇FY FX −∇XY +∇Y X(2.17)

−F∇FXY + F∇Y FX − F∇XFY + F∇FY X.(2.18)

If NC denotes the complete lift of the Nijenhuis tensor N then the equation (2.17)

gives the Nijenhuis tensor N
C

with respect to the connection ∇
C
as follows

N
C
(B̃XC , B̃Y C) = ∇

C

B̃(FX)C B̃(FY )C −∇
C

B̃(FY )C B̃(FX)C

−∇
C

B̃XC B̃Y C +∇
C

B̃Y C B̃XC − FC(∇
C

B̃(FX)C B̃Y C)

+FC(∇
C

B̃Y C B̃(FX)C)− FC(∇
C

B̃XC B̃(FY )C)(2.19)

+FC(∇
C

B̃(FY )C B̃XC).(2.20)

By help of (2.2), the equation (2.18) reduces to

N
C
(B̃XC , B̃Y C) = 0.(2.21)

Hence, we have

Theorem 2.4. Let M be a Kähler manifold equipped with the lift of a quarter-

symmetric non-metric connection ∇
C
then the Nijenhuis tensor N

C
with respect to

the connection ∇
C

vanishes.

3. Contravariant almost analytic vector field on a Kähler manifold

We know that in an almost Hermitian manifold, a necessary and sufficient condition
for a vector field W to be a contravariant almost analytic vector field is that

∇FXW = (∇WF )X + F (∇XW ).(3.1)
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For a Kähler manifold the equation (3.1) reduces to

∇FXW − F (∇XW ) = 0.(3.2)

Now, replacing X by FX and Y by W in (2.2) we have

∇
C

B̃(FX)C B̃WC = ∇C

B̃(FX)C
B̃WC − ωC(B̃WC)B̃XV − ωV (B̃WC)B̃XC .(3.3)

Again, replacing Y by W and then taking FC in (2.2), we get

FC(∇
C

B̃XC B̃WC) = FC(∇C

B̃XC
B̃WC)− ωC(B̃WC)B̃XV − ωV (B̃WC)B̃XC .(3.4)

Subtracting (3.4) from (3.3), we obtain

∇
C

B̃(FX)C B̃WC − FC(∇
C

B̃XC B̃WC) = ∇C

B̃(FX)C
B̃WC − FC(∇C

B̃XC
B̃WC).(3.5)

Thus, we have the following theorem

Theorem 3.1. Let M be a Kähler manifold equipped with the lift of a quarter-

symmetric non-metric connection ∇
C

then a necessary and sufficient condition for

a vector field W to be a contravariant almost analytic vector field with respect to the

connection ∇
C

is that it is a contravariant almost analytic vector field with respect

to the connection ∇C . ✷
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Abstract. The main aim of the present paper is to study Tachibana and Vishnevskii
operators for the Lorentzian almost r-para-contact structure in the tangent bundle.
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1. Introduction

The study of differential geometry of the tangent bundle is a very fruitful do-
main of differential geometry because the theory provides many new problems in
modern differential geometry. The study of differential geometry of the tangent
bundle started promptly in 1960s by Davis, Sasaki, Yano and Davis, Tachibana and
many others. Yano and Ishihara have studied vertical, complete and horizontal lifts
of tensors and connection. The first author studied lifts of a hypersurface with con-
nections to tangent bundles and a Kähler manifold in 2014 [7] and 2016 [8]. Also,
different structures on tanent bundles have been studied by several authors such as
Das and the first author (2005) [4], Tekkoyun(2006) [6], the first author(2017) [15]
and many others.

I. Sato [17] introduced the notion of almost contact structure on differential
geometry. An almost paracontact Riemannian manifold and an almost product
Riemannian manifold were studied by Adati [19] while the almost r-contact struc-
ture was introduced by Vanzura [10]. In [13], Motsumoto initiated the study of
Lorentzian paracontact manifolds. The Lorentzian almost r-paracontact structure
in the tangent bundle was studied by Khan and Jun [14].

The paper is organized as follows: In Section 2, we recall some basic definitions
of vertical, complete and horizontal lifts and the Lie derivative. Section 3 deals
with Tachibana and Vishnevskii operators associated with the Lorentzian almost
r-para-contact structure in the tangent bundle.
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2. Preliminaries

LetM be an n-dimensional differentiable manifold and let T (M) =
⋃

p∈M Tp(M)
be its tangent bundle. Then T (M) is also a differentiable manifold [1]. Let
X =

∑n

i=1 x
i( ∂

∂xi ) and η =
∑n

i=1 η
idxi be the expressions in local coordinates

for the vector field X and the 1-form η in M . Let (xi, yi) be local coordinates of
point in T (M) induced naturally from the coordinate chart U(xi) in M .

2.1. Vertical lifts

If f is a function in M , we write fV for the function in T (M) obtained by
forming the composition of π : T (M) −→ M and f : M −→ R, so that

fV = foπ(2.1)

Thus, if a point p̃ǫπ−1(U) has induced the coordinates (xh, yh) then

fV (p̃) = fV (x, y) = foπ(p̃) = f(p) = f(x)(2.2)

Thus the value of fV (p̃) is constant along each fibre Tp(M) and equal to the
value f(p). We call fV the vertical lift of the function f . Vertical lifts to a unique
algebraic isomorphism of the tensor algebra τ(M) into the tensor algebra τ(T (M))
with respect to constant coefficients by the conditions

(P ⊗Q)V = PV ⊗QV , (P +R)V = PV +RV(2.3)

P,Q and R being arbitrary elements of τ(M) [3].

Furthermore, the vertical lifts of tensor fields obey the general properties [1, 2]:

(a) (f.g)V = fV gV , (f + g)V = fV + gV

(b) (X + Y )V = XV + Y V , (f.X)V = fV XV , XV fV = 0, [XV , Y V ] = 0

(c) (f.η)V = fV ηV , ηV (XV ) = 0, XV (Y V ) = 0,

∀f, g ∈ τ00 (M), X, Y ∈ τ10 (M), φ ∈ τ11 (M).

2.2. Complete lifts

If f is a function in M , we write fC for the function in T (M) defined by

fC = i(df)
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and call fC the complete lift of the function f . The complete lift fC of a function
f has the local expression

fC = yi∂if = ∂f

with respect to the induced coordinates in T (M), where ∂f denotes yi∂if .

Suppose that X ∈ τ10 (M). We define a vector field XC in T (M) by

XCfC = (Xf)C

f being an arbitrary function in M and call XC the complete lift of X in T (M).

The complete lift XC of X with components xh in M has components

XC :

[

xh

∂xh

]

with respect to the induced coordinates in T (M).

Suppose that η ∈ τ10 (M) Then a 1-form ηC in T (M) defined by

ηC(XC) = (η(X))C

X being an arbitrary vector field in M . We call ηC the complete lift of η.

The complete lifts to a unique algebra isomorphism of the tensor algebra τ(M)
into the tensor algebra τ(T (M)) with respect to constant coefficients, is given by
the conditions

(P ⊗Q)C = PC ⊗QV + PV ⊗QC , (P +R)C = PC +RC

P,Q and R being arbitrary elements of τ(M).

Moreover, the complete lifts of tensor fields obey the general properties [1, 2]:

(a) (fX)C = fCXV + fV XC = (Xf)C , XCfV = (Xf)V , XV fC = (Xf)V ,

(b) φV XC = (φX)V , φCXV = (φX)V , (φX)C = φCXC ;

(c) ηV XC = (η(X))C , ηCXV = (η(X))V

(d) [XV , Y C ] = [X,Y ]C , IC = I, IV IC = XV , [XC , Y C ] = [X,Y ]C

∀f, g ∈ τ00 (M), X, Y ∈ τ10 (M), φ ∈ τ11 (M).

2.3. Horizontal lifts

Let (xh, yh) be a local coordinate system in an open set π−1(U) ⊂ T (M) where
U is an arbitrary coordinate neighborhood in M . Suppose that a tensor field S in
M by

S = S
i,....,h
l,k,....j

∂

∂xi
⊗ ......⊗

∂

∂xh
⊗ dxl ⊗ dxk ⊗ ......⊗ dxj
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and a tensor field γxS in π−1(U) by

γxS =
(

X lS
i,....,h
l,k,....j

) ∂

∂yi
⊗ ......⊗

∂

∂yh
⊗ dxk ⊗ ......⊗ dxj

and a tensor field γS in π−1(U) by

γS =
(

ylS
i,....,h
l,k,....j

) ∂

∂yi
⊗ ......⊗

∂

∂yh
⊗ dxk ⊗ ......⊗ dxj .

The tensor fields γxS and γS defined in each π−1(U) determine respectively
global tensor fields in T (M).

Let ∇ be an affine connection in M . If f is a function in M then the gradient
of f dented by ∇f in M .

Apply the operation γ to γf and get γ(∇f).

Put
∇γf = γ(∇f).

The horizontal lift fH of f ∈ τ00 (M) to the tangent bundle T (M) by

(f)H = fC −∇γf(2.4)

Let X ∈ τ10 (M). Then the horizontal lift XH of X defined by

XH = XC −∇γX(2.5)

in T (M), where
∇γX = γ(∇X)

The horizontal lift XH of X has the components
[

xh

−Γh
i x

i

]

(2.6)

with respect to the induced coordinates in T (M), where Γh
i = yjΓh

ji.

Suppose that η ∈ τ01 (M). Then the 1-form ηC in T (M) defined by the horizontal
lift SH of the tensor field S of an arbitrary type in M to T (M) is defined by

SH = SC −∇γS(2.7)

for all P,Q ∈ τ(M). We have

∇γ(P ⊗Q) = (∇γP )⊗QV + PV ⊗ (∇γQ)

or
(P ⊗Q)H = PH ⊗QV + PV ⊗QH .(2.8)
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In addition, the horizontal lifts of tensor fields obey the general properties [1, 2]:

(a) XHfV = (Xf)V , FV XH = (FX)V , FCXH = (FX)H + (∇γF )XH

(b) ηV (XH) = (η(X))H , ηC(XH) = (η(X))C − γ(η ◦ (∇X), ;

(c) ηH(XC) = ηH(∇γX), ηH(XH) = 0

∀f, g ∈ τ00 (M), X, Y ∈ τ10 (M), η ∈ τ01 (M), F ∈ τ11 (M).

LetX be a vector field in an n-dimensional differentiable manifold M . The dif-
ferential transformation LX is called the Lie derivative with respect to X if

(a) LXf = Xf, ∀f ∈ τ00 (M)

(b) LXY = [X,Y ].

The Lie derivative LXF of a tensor field F of type (1, 1) with respect to a vector
field X is defined by [1]

(LXF ) = [X,FY ]− F [X,Y ](2.9)

where [, ] is the Lie bracket.

Let M be an n-dimensional differentiable manifold. Differential transformation
of algebra T (M) defined by

D = ∇X : T (M) → T (M), X ∈ τ10 (M),(2.10)

is called covariant derivation with respect to a vector field X if

(a) ∇fX+gY t = f∇Xt+ g∇Y t,

(b) ∇Xf = Xf, ∀f, g ∈ τ00 (M), ∀X,Y ∈ τ10 (M), ∀t ∈ τ(M).

and a transformation defined by

∇ : τ10 (M)× τ10 (M) → τ10 (M)(2.11)

is called affine connection [1].

Proposition 2.1. For any X,Y ∈ τ10 (M)[1]

(a) [XV , Y H ] = [X,Y ]V − (∇XY )V = −(∇̂XY )V

(b) [XC , Y H ] = [X,Y ]H − γ(LXY ),

(c) [XH , Y V ] = [X,Y ]V + (∇Y X)V ,

(d) [XC , Y H ] = [X,Y ]H − γR̂(X,Y )
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where ∇̂ is an affine connection in M defined by

∇̂XY = ∇Y X + [X,Y ]

and R̂ denotes the curvature tensor of the affine connection ∇̂.

Proposition 2.2. For any X,Y ∈ τ10 (M), f ∈ τ00 (M) and ∇H is the horizontal

lift of the affine connection ∇ to T (M) [1]

(a) ∇H
XV Y

V = 0,

(b) ∇H
XV Y

H = 0,

(c) ∇H
XHY V = (∇XY )V ,

(d) ∇H
XHY

H = (∇XY )H .

3. Tachibana and Vishnevskii operators associated with the

Lorentzian almost r-para-contact structure in the tangent bundle

Let M be a differentiable manifold of C∞ class and T (M) denotes the tangent
bundle of M . Suppose that there are a tensor field φ of type (1, 1), a vector field
ξp and a 1-form ηp, p = 1, 2, ......r satisfying [5, 6, 11]

(a) φ2 = I −
∑r

p=1 ξp ⊗ ηp

(b) φξp = 0

(c) ηp ◦ φ = 0

(d) ηp(ξq) = δpq(3.1)

where p = 1, 2, ......r and δpq denote the Kronecker delta. Thus the manifold M

satisfying conditions (3.1) will be said to possess a Lorentzian almost r-para-contact
structure [13, 14].

Let us suppose that the base space M admits the Lorentzian almost r-para-
contact structure. Then there exists a tensor field φ of type (1, 1), r(C∞) vector
fields ξ1, ξ2, . . . ξp, and r(C∞) 1-forms η1, η2, . . . ηp, such that equation (3.1) are sat-
isfied. Taking the complete lifts of the equation (3.1) we obtain the following:

(a) (φH)2 = I +
∑r

p=1

{

ξVp ⊗ ηHp − ξHp ⊗ ηVp
}

(b) φHξVp = 0, φHξCp = 0

(c) ηVp ◦ φH = 0, ηHp ◦ φV = 0, ηHp ◦ φH = 0, ηVp ◦ φV = 0

(d) ηHp (ξHp ) = ηVp (ξVp ) = 0, ηHp (ξVp ) = ηVp (ξHp ) = 1(3.2)



Some Notes Concerning Tachibana and Vishnevskii Operators 553

Let us define the element J̃ of J1
0T (M) by

J̃ = φH +
r
∑

p=1

(

ξVp ⊗ ηVp − ξHp ⊗ ηHp
)

(3.3)

then in the view of the equation (3.2), it is easily shown that

J̃2XV = XV , J̃2XH = XH

which means that J̃ is an almost product structure in T (M) [3, 14]. Now in view
of the equation (3.3), we have

(a) J̃XH = (φX)H +
∑r

p=1

{

(ηp(X))V ξVp
}

(b) J̃XV = (φX)V −
∑r

p=1

{

(ηp(X))V ξHp
}

(3.4)

for all X ∈ τ10 (M).

3.1. Tachibana Operator

Let φ ∈ τ11 (M) and τ(M) =
∑∞

r,s=0 τ
s
r (M) be a tensor algebra over R. A map

Φφ|r+s>0 is called the Tachibana operator or Φφ operator on M if [9]

(a) Φφ is linear with respect to constant coefficient ,

(b) Φφ : τ∗(M) → τrs+1(M) for all r and s

(c) Φφ(K ⊗C L) = (ΦφK)⊗ L+K ⊗ ΦφL for all K, L ∈ τ∗(M),

(d) ΦφXY = −(LY φ)XforallX, Y ∈ τ10 (M)

where LY is Lie derivation with respect to Y,

(e) (Φφη)Y = (d(τY η(ΦX)− (d(τY (η ◦ Φ)X + η((LY φ)X)

= (ΦX(τY η))(ΦX)−X(τφXη) + η((LY φ)X)(3.5)

for all η ∈ τ01 (M) and X,Y ∈ τ10 , where τY η = η(X) = η ⊗C Y, τ∗sr (M) the module
of the pure tensor field of type (r, s) on M with respect to the affinor field ϕ.

Theorem 3.1. For the Tachibana operator on M,LX the operator Lie derivation

with respect to X, J̃ ∈ τ11 (T (M)) defined by J̃ = φH +
∑r

p=1

(

ξVp ⊗ ηVp − ξHp ⊗ ηHp
)

and η(Y ) = 0, we have
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(a) ΦJ̃Y V XH = −((∇̂Xφ)Y )V +
∑r

p=1((∇̂Xηp)Y )V ξHp

(b) ΦJ̃Y HXH = −((LXφ)Y )H + γR̂(X,φY )−
∑r

p=1((LXηp)Y )V ξVp − J̃γR̂(X,Y )

(c) ΦJ̃Y V X
V = 0

(d) ΦJ̃Y HXV = −((LXφ)Y )V + ((∇Xφ)Y )V +
∑r

p=1((LXηp)Y )V ξHp

−
∑r

p=1((∇Xηp)Y )V ξHp(3.6)

where X,Y ∈ τ10 (M), a tensor field φ ∈ τ11 (M), a vector field ξ and a 1-form

η ∈ τ01 (M).

Proof.

(a)ΦJ̃Y V X
H = −(LXH J̃)Y V = −(LXH J̃Y V − J̃LXHY V ), since LXY = [X,Y ]

= −[XH , J̃Y V ] +

(

φH +

r
∑

p=1

(

ξVp ⊗ ηVp − ξHp ⊗ ηHp
)

)

[XH , Y V ]

= −[XH .(φY )V ] + φH([X,Y ]V + (∇XY )V ) +

r
∑

p=1

ηVp ([X,Y ]V + (∇Y X)V )ξVp

−

r
∑

p=1

ηHp ([X,Y ]V + (∇Y X)V )ξHp

= −[XH , (φY )V ](∇φY X)V + φH([X,Y ]V + (∇Y X)V ) +

r
∑

p=1

ηVp ([X,Y ]V

+(∇Y X)V )ξVp −
r
∑

p=1

ηHp ([X,Y ]V + (∇Y X)V )ξHp

= −((∇̂Xφ)Y )V − (φ∇̂XY )V −

r
∑

p=1

((LXηp)Y )V ξHp +

r
∑

p=1

((∇̂Xηp)Y )V ξHp

−

r
∑

p=1

(ηp(LXY ))V ξHp

as η(LXY ) = −(LXηp)Y

= −((∇̂Xφ)Y )V +

r
∑

p=1

((∇̂Xηp)Y )V ξHp .

(3.7)

(b)ΦJ̃Y HXH = −(LXH J̃)Y H = −(LXH J̃Y H − J̃LXHY H) since LXY = [X,Y ]
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= −[XH , J̃Y H ] +

(

φH +

r
∑

p=1

(

ξVp ⊗ ηVp − ξHp ⊗ ηHp
)

)

[XH , Y H ]

= −[XH , (φY )H ] + φH [XH , Y H ] +

r
∑

p=1

ηVp [XH , Y H ]ξVp −

r
∑

p=1

ηHp [XH , Y H ]ξHp

since[XH, Y H ] = [X,Y ]H − γR̂(X,Y ),

= −((LXφ)Y )H + γR̂(X,φY )− φHγR̂(X,Y ))−

r
∑

p=1

((LXηp)Y )V ξVp

−

r
∑

p=1

((ηVp γR̂(X,Y )ξVp +

r
∑

p=1

((ηHp γR̂(X,Y )ξHp

= −((LXφ)Y )H + γR̂(X,φY )−

r
∑

p=1

((LXηp)Y )V ξVp − J̃γR̂(X,Y ).(3.8)

(c)ΦJ̃Y V X
V = −(LXV J̃)Y V = −(LXV J̃Y V − J̃LXV Y V ) since LXY = [X,Y ]

= −[XV , J̃Y V ] + J̃ [XV , Y V ], [XV , Y V ] = 0

= −[XV , φH +
r
∑

p=1

(

ξVp ⊗ ηVp − ξHp ⊗ ηHp
)

Y V ]

as (ηp(Y )ξp)
H = 0

= −[XV , (φY )V ] +

r
∑

p=1

[XV , (ηp(Y )ξp)
H ] = 0(3.9)

(d)ΦJ̃Y HXV = −(LXV J̃)Y H = −LXV J̃Y H + J̃LXV Y H), since LXY = [X,Y ]

= −[XV , J̃Y H ] +

(

φH +
r
∑

p=1

(

ξVp ⊗ ηVp − ξHp ⊗ ηHp
)

)

[XV , Y H ]

= −[X,φY ]V + (∇XφY )V + φH([X,Y ]V − (∇XY )V ) +
r
∑

p=1

ηVp ([X,Y ]V − (∇XY )V )ξVp

−

r
∑

p=1

ηHp ([X,Y ]V − (∇XY )V )ξHp

since ηpLXY = LXηp(Y )− (LXηp)Y, ηp∇XY = ∇Xηp(Y )− (∇Xηp)Y

= −((LXφ)Y )V + ((∇Xφ)Y )V +

r
∑

p=1

((LXηp)Y )V ξHp −

r
∑

p=1

((∇Xηp)Y )V ξHp .

(3.10)
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Corollary 3.1. If we put Y = ξp i.e. ηHp (ξHp ) = ηVp (ξVp ) = 0, ηHp (ξVp ) = ηVp (ξHp ) =
1, then we have

(a) ΦJ̃ξV
p

XH =
∑r

p=1(LξpX)H − γR̂(X, ξP )− (∇̂Xφ)V − (∇̂Xηp)ξ
V
p ξHp

(b) ΦJ̃ξH
p

XH = (∇̂Xξp)
V − ((LXφ)ξp)

H + φHγR̂(X, ξp)−
∑r

p=1((LXηp)ξp)
V ξVp

−
∑r

p=1 η
V
p γR̂(X, ξp)ξ

V
p +

∑r

p=1 η
H
p γR̂(X, ξp)ξ

H
p

(c) ΦJ̃ξV
p

XV = (∇̂ξ)pX
V

(d) ΦJ̃ξH
p

XV = −((LXφ)ξp)
V +

∑r

p=1((LXηp)ξp)
V ξHp −

∑r

p=1((∇Xηp)ξp)
V ξHp .

3.2. Vishnevskii Operator

Let ∇ be a linear connection and φ be a tensor field of type (1,1) on M . If the
condition (d) of the Tachibana operator is replaced by

(D) ΨφXY = ∇φXY − φ∇XY(3.11)

for any X,Y ∈ τ10 (M). A map Ψφ : τ∗(M) → τ(M), which satisfies conditions
(a), (b), (c), (e) of the Tachibana operator and the condition (D), is called the
Vishnevskii operator on M [9, 11].

Theorem 3.2. For Ψφ the Vishnevskii operator on M and ∇H the horizontal lift

of an affine connection ∇ in M to T (M), J̃ ∈ τ11 (T (M)) defined by (3.3), we have

(a) ΨJ̃XV Y
H = −

∑r

p=1((ηp(X)∇ξ)pY
H

(b) ΨJ̃XHY V = ((∇̂Y φ)X)V − ((LXφ)X)V +
∑r

p=1(ηp∇̂Y X)V ξHp

−
∑r

p=1(ηpLY X)V ξHp

(c) ΨJ̃XV Y V = −
∑r

p=1(ηp(X))V )∇H
ξH
p

Y V

(d) ΨJ̃XHY
H = ((∇̂Y φ)X)H − ((LXφ)X)H −

∑r

p=1(ηp∇̂Y X)V ξVp

+
∑r

p=1(ηpLY X)V ξVp(3.12)

where X,Y ∈ τ10 (M), a tensor field φ ∈ τ11 (T (M)), vector fields ξp and a 1-form

ηp ∈ τ01 , p = 1 . . . r.

Proof.

(a)ΨJ̃XV Y
H = ∇H

J̃XV
Y H − J̃∇H

XV Y
H

= ∇H

(φH+
∑

r

p=1(ξVp ⊗ηV
p
−ξH

p
⊗ηH

p ))XV
Y H −

(

φH +

r
∑

p=1

(

ξVp ⊗ ηVp − ξHp ⊗ ηHp
)

)

∇H
XV Y

H
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= ∇(φX)V −
∑

r

p=1
(ηpX)V σH

p
Y H as∇H

XV Y
H = 0

= −

r
∑

p=1

(ηpX)V (∇ξpY )H as∇H
(φX)V Y

H = 0

= −

r
∑

p=1

(ηp(X)∇ξpY )H .(3.13)

(b)ΨJ̃XHY
V = ∇H

J̃XH
Y H − J̃∇H

XHY V

= ∇H

(φH+
∑

r

p=1(ξVp ⊗ηV
p
−ξH

p
⊗ηH

p ))XH
Y V −

(

φH +

r
∑

p=1

(

ξVp ⊗ ηVp − ξHp ⊗ ηHp
)

)

∇H
XHY V

= ∇H
(φX)HY

V − φH(∇XY )V +
∑

p = 1rηHp (∇XY )V ξHp

= (∇̂Y φX)V + [φX, Y ]V − φH((∇̂Y X)V + [X,Y ]V ) +
r
∑

p=1

ηHp ((∇̂Y X)V + [X,Y ]V )ξHp

= ((∇̂Y φ)X)V − ((LY φ)X)V +
r
∑

p=1

(ηp∇̂Y X)V ξHp −
r
∑

p=1

(ηpL̂Y X)V ξHp(3.14)

(c)ΨJ̃XV Y
V = ∇H

J̃XV
Y V − J̃∇H

XV Y
V

= ∇H

(φH+
∑

r

p=1(ξVp ⊗ηV
p
−ξH

p
⊗ηH

p ))XV
Y V −

(

φH +
r
∑

p=1

(

ξVp ⊗ ηVp − ξHp ⊗ ηHp
)

)

∇H
XV Y

V

= ∇H
(φX)V Y

V −

r
∑

p=1

ηp(X))V )∇H
ξH
p

Y V

= −
∑

p = 1rηp(X))V )∇H
ξH
p

Y V as∇H
(φX)V Y

V = 0.(3.15)

(d)ΨJ̃XHY
H = ∇H

J̃XH
Y H − J̃∇H

XHY H

= ∇H

(φH+
∑

r

p=1(ξVp ⊗ηV
p
−ξH

p
⊗ηH

p ))XH
Y H −

(

φH +

r
∑

p=1

(

ξVp ⊗ ηVp − ξHp ⊗ ηHp
)

)

∇H
XHY H

= ∇H
(φX)HY

H − φH(∇XY )H −

r
∑

p=1

ηVp (∇XY )HξVp

= (∇̂Y φX)H + [φX, Y ]H − φH((∇̂Y X)H + [X,Y ]H)−

r
∑

p=1

ηVp ((∇̂Y X)H + [X,Y ]H)ξHp

= ((∇̂Y φ)X)H − ((LY φ)X)H −

r
∑

p=1

(ηp∇̂Y X)V ξVp −

r
∑

p=1

(ηpLY X)V ξVp(3.16)
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Corollary 3.2. If we put Y = ξp i.e. ηHp (ξHp ) = ηVp (ξVp ) = 0, ηHp (ξVp ) = ηVp (ξHp ) = 1, then we

have

(a) Ψ
J̃ξV

p

Y H = −(∇ξ)pY
H

(b) Ψ
J̃ξH

p

Y V = −φH(∇̂Y ξp)V + (φLY ξp)V +
∑r

p=1
(ηp(∇̂Y ξp)V ξHp −

∑r
p=1

(ηp(LY ξp)V )ξHp

(c) Ψ
J̃ξV

p

Y V = −(∇ξpY )V

(d) Ψ
J̃ξH

p

Y H = ((∇̂Y φ)ξp)H + (φ[Y, ξp])H +
∑r

p=1
((∇̂Y ηp)ξp)V ξVp −

∑r
p=1

((LY ηp)ξp)V ξVp .
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CONHARMONIC CURVATURE TENSOR OF A

QUARTER-SYMMETRIC METRIC CONNECTION IN A

KENMOTSU MANIFOLD

Ajit Barman

Abstract. The aim of the present paper is to study Kenmotsu manifolds admitting
a quarter-symmetric metric connection whose conharmonic curvature tensor satisfies
certain curvature conditions.
Keywords. Kenmotsu manifolds; curvature; conharmonic curvature tensor.

1. Introduction

Manifolds known as Kenmotsu manifolds were studied by K. Kenmotsu in 1972
[17]. They set up one of the three classes of almost contact Riemannian manifolds
whose automorphism group attains the maximum dimension [26]. Consider an al-
most contact metric manifoldM2n+1, with the structure (φ, ξ, η, g) given by a tensor
field φ of type (1, 1), a vector field ξ, a 1-form η satisfying φ2 = −I+η⊗ξ, η(ξ) = 1,
and a Riemannian metric g such that g(φX, φY ) = g(X,Y )−η(X)η(Y ) for any vec-
tor field X and Y . The fundamental 2-form Φ is defined by Φ(X,Y ) = g(X,φY ) for
any vector fields X and Y . The normality of an almost contact metric manifold is
expressed by the vanishing of the tensor field N = [φ, φ]+2dη⊗ξ, where [φ, φ] is the
Nijenhuis tensor of φ [6]. For more details we refer to Blair’s books ([6],[7]). A Ken-
motsu manifold can be defined as a normal almost contact metric manifold such that
dη = 0 and dΦ = 2η∧Φ. It is well known that Kenmotsu manifolds can be character-
ized through their Levi-Civita connection, by (∇Xφ)(Y ) = g(φX, Y )ξ − η(Y )φX ,
for any vector fields X,Y, Z. Moreover, Kenmotsu proved that such a manifold
M2n+1 is locally a warped product ] − ε, ε[×fN

2n, N2n being a Kähler manifold
and f2 = ce2t, c is a positive constant.

More recently in ([18],[21]) and [12], almost contact metric manifolds such that
η is closed and dΦ = 2η ∧ Φ are studied and they are called almost Kenmotsu.

Received December 23, 2017; accepted July 14, 2018
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Obviously, a normal almost Kenmotsu manifold is a Kenmotsu manifold. Kenmotsu
manifolds have been studied by Barman and De ([4], [5]) Barman [2], Kim and Pak
[18] and many others.

In 1924, Friedmann and Schouten [13] introduced the idea of a semi-symmetric
connection on a differentiable manifold. A linear connection ∇̃ on a differentiable
manifold M is said to be a semi-symmetric connection if the torsion tensor T̃ of the
connection ∇̃ satisfies

T̃ (X,Y ) = u(Y )X − u(X)Y,(1.1)

where u is a 1-form and ρ is a vector field defined by

u(X) = g(X, ρ),(1.2)

for all vector fields X ∈ χ(M), χ(M) is the set of all differentiable vector fields on
M .

In 1932, Hayden [14] introduced the idea of semi-symmetric metric connections
on a Riemannian manifold (M, g). A semi-symmetric connection ∇̃ is said to be a
semi-symmetric metric connection if ∇̃g = 0.

A relation between the semi-symmetric metric connection ∇̃ and the Levi-Civita
connection ∇ of (M, g) was given by Yano [27]: ∇̃XY = ∇XY +u(Y )X−g(X,Y )ρ,
where u(X) = g(X, ρ).

In 1975, Golab [15] defined and studied the quarter-symmetric connection in
differentiable manifolds with affine connections. A linear connection ∇̄ on an n-
dimensional Riemannian manifold (M, g) is called a quarter-symmetric connection
[15] if its torsion tensor T̄ satisfies

T̄ (X,Y ) = η(Y )φX − η(X)φY,(1.3)

where η is a 1-form and φ is a (1,1) tensor field.

In particular, if φX = X , then the quarter-symmetric connection reduces to
the semi-symmetric connection [13]. Thus the notion of the quarter-symmetric
connection generalizes the notion of the semi-symmetric connection.

If, moreover, a quarter-symmetric connection ∇̄ satisfies the condition

(∇̄Xg)(Y, Z) = 0,(1.4)

for all X,Y, Z ∈ χ(M), then the quarter-symmetric connection ∇̄ is said to be
a quarter-symmetric metric connection.

After Golab [15] and Rastogi ([23], [24]) the systematic study of quarter-symmetric
metric connection have been continued by Mishra and Pandey [19], Yano and
Imai [28], Mukhopadhyay, Roy and Barua [20], De and Biswas [10], Taleshian and
Parakasha [25], Barman [3] and many others.
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Let M be a Riemannian manifold of dimension n equipped with two metric
tensors g and g̀. If a transformation of M does not change the angle between two
tangent vectors at a point with respect to g and g̀, then such a transformation is
said to be a conformal transformation of the metrics on the Riemannian manifold.
Under conformal transformation, the length of the curves are changed but the an-
gles made by the curves remain the same.

Let us consider a Riemannian manifold M with two metric tensors g and g̀ such
that they are related by

g̀(X,Y ) = e2σg(X,Y ),(1.5)

where σ is a real function on M.

It is known that a harmonic function is defined as a function whose Laplacian
vanishes. In general, a harmonic function is not transformed into a harmonic func-
tion. The condition under which a harmonic function remains invariant has been
studied by Ishii [16] who introduced the conharmonic transformation as a subgroup
of the conformal transformation (1.5) satisfying the condition

σ,ii +σ,i σ,
i = 0,(1.6)

where the comma denotes the covariant differentiation with respect to the metric
g.

Let C denote the conharmonic curvature tensor of type (1, 3) with respect to
the Levi-Civita connection which is defined by

C(X,Y )Z = R(X,Y )Z −
1

n− 2
[g(Y, Z)QX − g(X,Z)QY

+S(Y, Z)X − S(X,Z)Y ],(1.7)

where S(Y, Z) = g(QY,Z).

Taking the inner product of (1.7) with W , we have

′C(X,Y, Z,W ) =′ R(X,Y, Z,W )−
1

2n− 1
[g(Y, Z)S(X,W )− g(X,Z)S(Y,W )

+S(Y, Z)g(X,W )− S(X,Z)g(Y,W )],(1.8)

where ′C(X,Y, Z,W ) = g(C(X,Y )Z,W ), ′R(X,Y, Z,W ) = g(R(X,Y )Z,W ),
R and S are the curvature tensor and the Ricci tensor with respect to the Levi-
Civita connection, respectively.

A manifold is said to be an Einstein manifold if its Ricci tensor S of the Levi-
Civita connection is of the form S(X,Y ) = a′g(X,Y ), where a′ is a constant on the
manifold.
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A manifold is said to be an η-Einstein manifold if its Ricci tensor S of the Levi-
Civita connection is of the form S(X,Y ) = ag(X,Y ) + bη(X)η(Y ), where a and b

are smooth functions on the manifold.

In this paper we study the conharmonic curvature tensor on Kenmotsu man-
ifolds with respect to the quarter-symmetric metric connection. The paper is or-
ganized as follows. After the introduction in Section 2, we give a brief account of
the Kenmotsu manifolds. In section 3, we express the quarter-symmetric metric
connection on Kenmotsu manifolds. Section 4 is devoted to the study of the semi
φ-conharmonically flat on Kenmotsu manifolds admitting the quarter-symmetric
metric connection and we prove that the manifold is an Einstein manifold with re-
spect to the Levi-Civita connection. Section 5 deals with the ξ-conharmonically flat
on Kenmotsu manifolds with respect to the quarter-symmetric metric connection.
Section 6 contains the φ-conharmonically flat on Kenmotsu manifolds admitting
the quarter-symmetric metric connection. We get the manifold to be an η- Ein-
stein manifold with respect to the Levi-Civita connection. Finally, we construct an
example of a 3-dimensional Kenmotsu manifold admitting the quarter-symmetric
metric connection to support the results obtained in Section 5.

2. Kenmotsu Manifolds

Let M be an (2n+1)-dimensional almost contact metric manifold with an almost
contact metric structure (φ, ξ, η, g) consisting of a (1, 1) tensor field φ, a vector field
ξ, a 1-form η and the Riemannian metric g on M satisfying [6]

η(ξ) = 1, φ(ξ) = 0, η(φ(X)) = 0, g(X, ξ) = η(X),(2.1)

φ2(X) = −X + η(X)ξ,(2.2)

g(φX, φY ) = g(X,Y )− η(X)η(Y ),(2.3)

for all vector fields X ,Y on χ(M). A manifold with an almost contact metric struc-
ture (φ, ξ, η, g) is an almost Kenmotsu manifold if the following conditions are sat-
isfied

dη = 0; dΩ = 2η ∧ Ω,

where Ω being the 2-form defined by Ω(X,Y ) = g(X,φY ). Any normal almost
Kenmotsu manifold is a Kenmotsu manifold. An almost contact metric structure
(φ, ξ, η, g) is a Kenmotsu manifold [17] if and only if

(∇Xφ)(Y ) = g(φX, Y )ξ − η(Y )φX.(2.4)

Here we denote the Kenmotsu manifold of dimension (2n + 1) by M . From the
above relations, it follows that

g(X,φY ) = −g(φX, Y ),(2.5)



Conharmonic Curvature Tensor 565

∇Xξ = X − η(X)ξ,(2.6)

(∇Xη)(Y ) = g(X,Y )− η(X)η(Y ),(2.7)

R(X,Y )ξ = η(X)Y − η(Y )X,(2.8)

R(ξ,X)Y = η(Y )X − g(X,Y )ξ,(2.9)

η(R(X,Y )Z) = g(X,Z)η(Y )− g(Y, Z)η(X),(2.10)

S(X, ξ) = −2nη(X),(2.11)

where R and S denote the curvature tensor and the Ricci tensor of M,, respectively,
with respect to the Levi-Civita connection.

Let M be a Kenmotsu manifold. M is said to be a η-Einstein manifold if there
exist real valued functions λ1, λ2 such that

S(X,Y ) = λ1g(X,Y ) + λ2η(X)η(Y ).

For λ2 = 0, the manifold M is an Einstein manifold.

Now we state the following:

Lemma 2.1. [17] Let M be an η-Einstein Kenmotsu manifold of the form S(X,Y ) =
λ1g(X,Y ) + λ2η(X)η(Y ). If λ2 = constant (or, λ1 = constant), then M is an Ein-
stein one.

3. Quarter-symmetric metric connection on Kenmotsu manifolds

A relation between the quarter-symmetric metric connection ∇̄ and the Levi-
Civita connection ∇ on (M, g) has been obtained by Sular, Özgür and De [11]
which is given by

∇̄XY = ∇XY − η(X)φY.(3.1)

Analogous to the definitions of the curvature tensor R of M with respect to
the Levi-Civita connection ∇ and the curvature tensor R̄ of M with respect to the
quarter-symmetric metric connection ∇̄ [11] given by

R̄(X,Y )Z = R(X,Y )Z + η(X)g(φY, Z)ξ − η(Y )g(φX,Z)ξ −

η(X)η(Z)φY + η(Y )η(Z)φX(3.2)

and

R̄(X,Y )ξ = η(X)Y − η(Y )X − η(X)φY + η(Y )φX,(3.3)

where X,Y, Z ∈ χ(M), the set of all differentiable vector fields on M .
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The above equation (3.2) yields

R̄(X,Y )Z = −R̄(Y,X)Z.

Taking the inner product of (3.2) with W [11], we have

′R̄(X,Y, Z,W ) =′ R(X,Y, Z,W ) + η(X)η(W )g(φY, Z)

−η(Y )η(W )g(φX,Z)− η(X)η(Z)g(φY,W )

+η(Y )η(Z)g(φX,W ),(3.4)

where ′R̄(X,Y, Z,W ) = g(R̄(X,Y )Z,W ), ′R(X,Y, Z,W ) = g(R(X,Y )Z,W ).

A relation between the Ricci tensor S̄ of ∇̄ and the Ricci tensors S of ∇ on
(M, g) has been obtained by S [11] which is obtained by

S̄(Y, Z) = S(Y, Z) + g(φY, Z)(3.5)

and also

S̄(Y, ξ) = −2nη(Y ).(3.6)

In view of (3.5) yields

Q̄Y = QY + φY,(3.7)

where S̄(Y, Z) = g(Q̄Y, Z).

Again the scalar curvature tensor r̄ of the quarter-symmetric metric connection
∇̄ and the scalar curvature tensor r of the Levi-Civita connection ∇ on (M, g) is
defined by [11], so we get

r̄ = r,(3.8)

From (2.9), it is implied that

r = −2n(2n+ 1).

4. Semi φ-conharmonically flat Kenmotsu manifolds with respect to

the quarter-symmetric metric connection

Let ′C̄ denote the conharmonic curvature tensor of type (0, 4) with respect to
the quarter-symmetric metric connection which is defined by

′C̄(X,Y, Z,W ) =′ R̄(X,Y, Z,W )−
1

2n− 1
[g(Y, Z)S̄(X,W )− g(X,Z)S̄(Y,W )

+S̄(Y, Z)g(X,W )− S̄(X,Z)g(Y,W )],(4.1)
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where′C̄(X,Y, Z,W ) = g(C̄(X,Y )Z,W ), ′R̄(X,Y, Z,W ) = g(R̄(X,Y )Z,W ) and
X,Y, Z ∈ χ(M), the set of all differentiable vector fields on M .

Let C be the Weyl conformal curvature tensor of a (2n+ 1)-dimensional man-
ifold M . Since at each point p ∈ M the tangent space χp(M) can be decomposed
into a direct sum χp(M) = φ(χp(M))⊕L(ξp), where L(ξp) is a 1-dimensional linear
subspace of χp(M) generated by ξp. Then we have a map:

C : χp(M)× χp(M)× χp(M) −→ φ(χp(M))⊕ L(ξp).

It may be natural to consider the following particular cases:

(1)C : χp(M) × χp(M) × χp(M) −→ L(ξp), i.e, the projection of the image of
C in φ(χp(M)) is zero.

(2)C : χp(M)× χp(M)× χp(M) −→ φ(χp(M)), i.e, the projection of the image
of C in L(ξp) is zero.

C(X,Y )ξ = 0.

(3)C : φ(χp(M))×φ(χp(M))×φ(χp(M)) −→ L(ξp), i.e, when C is restricted to
φ(χp(M))× φ(χp(M)) × φ(χp(M)), the projection of the image of C in φ(χp(M))
is zero. This condition is equivalent to

φ2C(φX, φY )φZ = 0.

Here the cases 1, 2 and 3 are conformally symmetric, ξ-conformally flat and
φ-conformally flat, respectively. The cases (1) and (2) were considered in [9] and
[29], respectively. The case (3) was considered in [8] for the case M is a K-contact
manifold. Furthermore, in [1], the authors studied contact metric manifolds satis-
fying (3). Analogous to the definition of ξ-conformally flat and φ-conformally flat,
we give the following definitions:

Definition 4.1. A Kenmotsu manifold is said to be semi-φ-conharmonically flat
with respect to the quarter-symmetric metric connection if

g(C̄(φX, Y )Z, φW ) = 0.(4.2)

Definition 4.2. A Kenmotsu manifold is said to be an Einstein manifold if its
Ricci tensor S of the Levi-Civita connection is of the form

S(X,Y ) = a′g(X,Y ),

where a′ is a constant on the manifold.
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Putting X = φX and W = φW in (4.1), we get

′C̄(φX, Y, Z, φW ) =′ R̄(φX, Y, Z, φW )−
1

2n− 1
[g(Y, Z)S̄(φX, φW ) −

g(φX,Z)S̄(Y, φW ) + S̄(Y, Z)g(φX, φW )−

S̄(φX,Z)g(Y, φW )].(4.3)

In view of (2.1), (2.2), (3.4) and (4.3) yields

′C̄(φX, Y, Z, φW ) =′ R(φX, Y, Z, φW )− η(Y )η(Z)g(X,φW )

−
1

2n− 1
[g(Y, Z)S̄(φX, φW ) − g(φX,Z)S̄(Y, φW )

+S̄(Y, Z)g(φX, φW )− S̄(φX,Z)g(Y, φW )].(4.4)

Applying (2.1), (2.2), (2.3), (2.5) and (3.5) in (4.4), it follows that

′C̄(φX, Y, Z, φW ) =′ R(φX, Y, Z, φW )− η(Y )η(Z)g(X,φW )

−
1

2n− 1
[g(Y, Z)S(X,W ) + 2nη(X)η(W )g(Y, Z)− g(Y, Z)g(X,φW )

−g(φX,Z)S(Y, φW ) + g(Y,W )g(X,φZ)− η(Y )η(W )g(X,φZ)

+g(X,W )S(Y, Z)− η(X)η(W )S(Y, Z) + g(X,W )g(φY, Z)

−η(X)η(W )g(φY, Z)− g(Y, φW )S(φX,Z)− g(X,Z)g(φY,W )

+η(X)η(Z)g(φY,W )].(4.5)

Let {e1, ..., e2n, ξ} be a local orthonormal basis of vector fields in M , then
{φe1, ..., φe2n, ξ} is also a local orthonormal basis. Putting X = W = ei in (4.5)
and summing over i = 1 to 2n, we obtain

2n
∑

i=1

g(C̄(φei, Y )Z, φei) =

2n
∑

i=1

g(R(φei, Y )Z, φei)−

2n
∑

i=1

η(Y )η(Z)g(ei, φei)

−
1

2n− 1

2n
∑

i=1

[g(Y, Z)S(ei, ei) + 2nη(ei)η(ei)g(Y, Z)− g(Y, Z)g(ei, φei)

−g(φei, Z)S(Y, φei) + g(Y, ei)g(ei, φZ)− η(Y )η(ei)g(ei, φZ)

+g(ei, ei)S(Y, Z)− η(ei)η(ei)S(Y, Z) + g(ei, ei)g(φY, Z)

−η(ei)η(ei)g(φY, Z)− g(Y, φei)S(φei, Z)− g(ei, Z)g(φY, ei)

+η(ei)η(Z)g(φY, ei)].(4.6)

Again using (2.1), (2.2), (2.5) and (4.2) in (4.6), we see that
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S(Y, Z) = −2n2g(Y, Z)− (n−
3

2
)g(Y, φZ).(4.7)

Interchanging Y with Z in (4.7), implies that

S(Y, Z) = −2n2g(Y, Z)− (n−
3

2
)g(Z, φY ).(4.8)

By adding (4.7) and (4.8) and using (2.5), we have

S(Y, Z) = −2n2g(Y, Z).

Therefore, S(Y, Z) = a′g(Y, Z),

where a′ = −2n2.

This means that the manifold is an Einstein manifold with respect to the Levi-
Civita connection.

Summing up we can state the following:

Theorem 4.1. If a Kenmotsu manifold is semi-φ-conharmonically flat with re-
spect to the quarter-symmetric metric connection, then the manifold is an Einstein
manifold.

5. ξ -conharmonically flat Kenmotsu manifolds with respect to the

quarter-symmetric metric connection

Let C̄ denote the conharmonic curvature tensor of type (1, 3) with respect to
the quarter-symmetric metric connection which is defined by

C̄(X,Y )Z = R̄(X,Y )Z −
1

n− 2
[g(Y, Z)Q̄X − g(X,Z)Q̄Y

+S̄(Y, Z)X − S̄(X,Z)Y ],(5.1)

where S̄(Y, Z) = g(Q̄Y, Z) and X,Y, Z ∈ χ(M), the set of all differentiable vector
fields on M .

Definition 5.1. A Kenmotsu manifold with respect to the quarter-symmetric
metric connection is said to be ξ-conharmonically flat if C̄(X,Y )ξ = 0.

Putting Z = ξ in (5.1), it follows that

C̄(X,Y )ξ = R̄(X,Y )ξ −
1

2n− 1
[g(Y, ξ)Q̄X − g(X, ξ)Q̄Y

+S̄(Y, ξ)X − S̄(X, ξ)Y ].(5.2)
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Using (2.1), (2.2), (3.3), (3.6) and (3.7) in (5.2), we get

C̄(X,Y )ξ = C(X,Y )ξ +
2(n− 1)

2n− 1
[η(Y )φX − η(X)φY ].(5.3)

If n = 1, then the above equation (5.3) implies that

C̄(X,Y )ξ = C(X,Y )ξ.

Now, we are in a position to state the following:

Theorem 5.1. A three-dimensional Kenmotsu manifold is ξ -conharmonically flat
with respect to the quarter-symmetric metric connection if the manifold is also ξ -
conharmonically flat with respect to the Levi-Civita connection.

6. φ -conharmonically flat Kenmotsu manifolds with respect to the

quarter-symmetric metric connection

Definition 6.1. A Kenmotsu manifold is said to be φ-conharmonically flat with
respect to the quarter-symmetric metric connection if

g(C̄(φX, φY )φZ, φW ) = 0,(6.1)

where X,Y, Z,W ∈ χ(M), the set of all differentiable vector fields on M .

Definition 6.2. A Kenmotsu manifold is said to be an η-Einstein manifold if its
Ricci tensor S of the Levi-Civita connection is of the form

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ),

where a and b are smooth functions on the manifold .

Putting Y = φY and Z = φZ in (4.3), we get

′C̄(φX, φY, φZ, φW ) =′ R̄(φX, φY, φZ, φW )

−
1

2n− 1
[g(φY, φZ)S̄(φX, φW ) − g(φX, φZ)S̄(φY, φW )

+S̄(φY, φZ)g(φX, φW )− S̄(φX, φZ)g(φY, φW )].(6.2)

Using (2.1), (2.2) and (3.4) in (6.2), we have

′C̄(φX, φY, φZ, φW ) =′ R(φX, φY, φZ, φW )

−
1

2n− 1
[g(φY, φZ)S̄(φX, φW ) − g(φX, φZ)S̄(φY, φW )

+S̄(φY, φZ)g(φX, φW )− S̄(φX, φZ)g(φY, φW )].(6.3)
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Let {e1, ..., e2n, ξ} be a local orthonormal basis of vector fields in M , then
{φe1, ..., φe2n, ξ} is also a local orthonormal basis. Putting X = W = ei in (6.3)
and summing over i = 1 to 2n, we obtain

2n
∑

i=1

g(C̄(φei, φY )φZ, φei) =

2n
∑

i=1

g(R(φei, φY, )φZ, φei)

−
1

2n− 1

2n
∑

i=1

[g(φY, φZ)S̄(φei, φei)− g(φei, φZ)S̄(φY, φei)

+S̄(φY, φZ)g(φei, φei)− S̄(φei, φZ)g(φY, φei)].(6.4)

In view of (3.8), (3.), (6.1) and (6.4), we take the form

S(φY, φZ)−
1

2n− 1
[−2n(2n+ 1)g(φY, φZ)

+2(n− 1)S̄(φY, φZ)] = 0.(6.5)

Applying (2.1), (2.2) and (3.5) in (6.5), it is implied that

S(φY, φZ) = −2n(2n+ 1)g(φY, φZ)− 2(n− 1)g(Y, φZ).(6.6)

Interchanging Y with Z in (6.6), we get

S(φY, φZ) = −2n(2n+ 1)g(φY, φZ)− 2(n− 1)g(Z, φY ).(6.7)

By adding (6.6) and (6.7) and using (2.5), we have

S(φY, φZ) = −2n(2n+ 1)g(φY, φZ).(6.8)

By virtue of (2.3) and (6.8) we yield

S(Y, Z) = −2n(2n+ 1)g(Y, Z) + 4n2η(Y )η(Z).

Therefore, S(Y, Z) = ag(Y, Z) + bη(Y )η(Z),

where a = −2n(2n+ 1) and b = 4n2.

From which it follows that the manifold is an η-Einstein manifold.

This leads us to state the following:

Theorem 6.1. If a Kenmotsu manifold is φ -conharmonically flat with respect
to the quarter-symmetric metric connection, then the manifold is an η-Einstein
manifold with respect to the Levi-Civita connection.
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Since a and b are both constant, in view of Lemma 2.1, we conclude the following:

Corollary 6.1. If a Kenmotsu manifold is φ -conharmonically flat with respect to
the quarter-symmetric metric connection, then the manifold is an Einstein manifold
one.

7. Example

In this section we construct an example on a Kenmotsu manifold with respect to
the quarter-symmetric metric connection ∇̄ which verify the result in Section 3 and
Section 5 of ∇̄.

We consider a 3-dimensional manifold M = {(x, y, z) ∈ R3}, where (x, y, z) are
the standard coordinates in R3. We choose the vector fields

e1 = z
∂

∂x
, e2 = z

∂

∂y
, e3 = −z

∂

∂z

are linearly independent at each point of M .

Let g be the Riemannian metric defined by

g(e1, e3) = g(e2, e3) = g(e1, e2) = 0

and
g(e1, e1) = g(e2, e2) = g(e3, e3) = 1.

Let η be a 1-form defined by

η(Z) = g(Z, e3)

for any Z ∈ χ(M).

Let φ be a (1, 1)-tensor field defined by

φe1 = −e2, φe2 = e1, φe3 = 0.

Using the linearity of φ and g, we have

η(e3) = 1

φ2(Z) = −Z + η(Z)e3

and
g(φZ, φW ) = g(Z,W )− η(Z)η(W )

for any U,W ∈ χ(M). Thus for e3 = ξ, (φ, ξ, η, g) defines an almost contact metric
structure on M. The 1-form η is closed. Therefore, M(φ, ξ, η, g) is an almost Ken-
motsu manifold and is also normal. So, it is a Kenmotsu manifold.
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Then we have
[e1, e2] = 0, [e1, e3] = e1, [e2, e3] = e2.

The Riemannian connection∇ of the metric tensor g is given by Koszul’s formula
which is given by [22]

2g(∇XY,W ) = Xg(Y,W ) + Y g(X,W )−Wg(X,Y )− g(X, [Y,W ])

−g(Y, [X,W ]) + g(W, [X,Y ]).(7.1)

Using Koszul’s formula we get the following

∇e1e1 = −e3, ∇e1e2 = 0, ∇e1e3 = e1,

∇e2e1 = 0, ∇e2e2 = −e3, ∇e2e3 = e2,

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0.

Using (3.1) in the above equation, we obtain

∇̄e1e1 = −e3, ∇̄e1e2 = 0, ∇̄e1e3 = e1,

∇̄e2e1 = 0, ∇̄e2e2 = −e3, ∇̄e2e3 = e2,

∇̄e3e1 = e2, ∇̄e3e2 = −e1, ∇̄e3e3 = 0.

By using the above results, we can easily obtain the components of the curvature
tensor as follows:

R(e1, e2)e2 = −e1, R(e1, e3)e3 = −e1, R(e2, e1)e1 = −e2,

R(e2, e3)e3 = −e2, R(e3, e1)e1 = −e3, R(e3, e2)e2 = −e3,

and
R̄(e1, e2)e2 = −e1, R̄(e1, e3)e3 = −e2 − e1, R̄(e2, e1)e1 = −e2,

R̄(e2, e3)e3 = e1 − e2, R̄(e3, e1)e1 = −e3, R̄(e3, e2)e2 = −e3.

With the help of the above results we can express the Ricci tensor as follows:

S(e1, e1) = S(e2, e2) = S(e3, e3) = −2

and
S̄(e1, e1) = S̄(e2, e2) = S̄(e3, e3) = −2.

From the above expressions we can easily verify the equation (3.5). Also, it
follows that the scalar curvature with respect to the Levi-Civita connection and
quarter-symmetric metric connection is equal to -6.

Let X and Y be any two vector fields given by
X = a1e1 + a2e2 + a3e3 and Y = b1e1 + b2e2 + b3e3 where ai, bi, for all i = 1, 2, 3
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are all non-zero real numbers.

Using the above curvature tensors and the Ricci tensors of the Levi-Civita con-
nection and quarter-symmetric metric connection, respectively, we obtain

C̄(X,Y )ξ = 3(a1b3 − a3b1)e1 + 3(a2b3 − a3b2)e2 = C(X,Y )ξ.

Hence, the manifold under consideration satisfies the Theorem 5.1 of Section 5.

Acknowledgements. The author wishes to express his sincere thanks and
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paper.
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Übertragung, Math., Zeitschr., 21(1924) , 211-223.



Conharmonic Curvature Tensor 575

14. H. A. Hayden: Subspaces of space with torsion, Proc. London Math. Soc., 34(1932),
27-50.

15. S. Golab: On semi-symmetric and quarter-symmetric liner connections, Tensor N.
S., 29(1975), 249-254.

16. Y. Ishii: Conharmonic transformations, Tensor (N. S.), 7(1957), 73-80.

17. K. Kenmotsu: A class of almost contact Riemannian manifolds, Tohoku Math. J.,
24(1972), 93-103.

18. T. W. Kim and H. K. Pak: Canonical foliations of certain classes of almost contact

metric structures, Acta Math. Sin. (Engl. Ser.), 21(2005), 841-846.

19. R. S. Mishra and S. N. Pandey: On quarter-symmetric metric F -connections, Ten-
sor, (N.S.), 34(1980), 1-7.

20. S. Mukhopadhyay, A. K. Roy and B. Barua: Some properties of a quarter-

symmetric metric connection on a Riemannian manifold, Soochow J. of Math.,
17(1991), 205-211.

21. Z. Olszak: Locally conformal almost cosymplectic manifolds, Colloq. Math.,
57(1989), 73-87.

22. R. Prasad and S. Pandey: An indefinie Kenmotsu manifold endowed with quarter-

symmetric metric connection, Global J. of Pure and Applied mathematics, 13(2017),
3477-3495.

23. S. C. Rastogi: On quarter-symmetric metric connection, C.R.Acad Sci., Bulgar,
31(1978), 811-814.

24. S. C. Rastogi: On quarter-symmetric metric connection, Tensor (N. S.), 44(1987),
133-141.

25. A. Taleshian and D. G. Parakasha: The structure of some classes of Sasakian

manifolds with respect to the quarter-symmetric metric connection, Int. J. Open Prob-
lems Compt. Math., 3(2010), 1-16.

26. S. Tanno: The automorphism groups of almost contact Riemannian manifolds, To-
hoku Math. j., 21(1969), 21-38.

27. K. Yano: On semi-symmetric connection, Revue Roumaine de Math. Pures et Ap-
pliques, 15(1970), 1570-1586.

28. K. Yano and T. Imai: Quarter-symmetric metric connections and their curvature

tensors, Tensor (N. S.), 38(1982), 13-18.

29. G. Zhen: On conformal symmetric K-contact manifolds, Chinese Quart. J. Math.,
7(1992), 5-10.

Ajit Barman

Ramthakur College

Department of Mathematics,

P. O. A D Nagar-799003, Agartala,

Dist- West Tripura, Tripura, India.

ajitbarmanaw@yahoo.in



 

 



FACTA UNIVERSITATIS (NIŠ)

Ser. Math. Inform. Vol. 33, No 4 (2018), 577–586

https://doi.org/10.22190/FUMI1804577M

SUBMANIFOLDS OF A RIEMANNIAN MANIFOLD ADMITTING

A TYPE OF RICCI QUARTER-SYMMETRIC METRIC

CONNECTION ∗

Abul Kalam Mondal

Abstract. The aim of the present paper is to study submanifolds of a Riemannian man-
ifold admitting a type of Ricci quater-symmetric metric connection. We have proved
that the induced connection is also a Ricci quarter-symmetric metric connection. We
have also considered the mean curvature and the shape operator of the submanifold
with respect to the Ricci quarter-symmetric metric connection. We have obtained the
Gauss, Codazzi and Ricci equations with respect to the Ricci quarter-symmetric metric
connection. Finally, we have considered the totally geodesicness and obtained the rela-
tion between the sectional curvatures of the manifold and its submanifold with respect
to the Ricci quarter-symmetric metric connection.
Keywords. Riemannian manifold; submanifolds; metric connection; curvature.

1. Introduction

Let ∇ be a linear connection in an n−dimensional differentiable manifold M.

The torsion tensor T and the curvature tensor R of ∇ are given respectively by

T (X,Y ) = ∇XY −∇Y X − [X,Y ]

and

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z.

The connection ∇ is symmetric if its torsion tensor T vanishes, otherwise it is called
non-symmetric. The connection ∇ is a metric connection if there is a Riemannian
metric g in M such that ∇g = 0, otherwise it is called non-metric. It is well known
that a linear connection is symmetric and metric if and only if it is the Levi-Civita
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connection. In 1975, S. Golab[8] introduced the notion of a quarter-symmetric lin-
ear connection in a differentiable manifold. In 1980, R. S. Mishra and S. N. Pandey
[11] deduced some properties of the Riemannian, Kaehlerian and Sasakian manifolds
that admits quarter-symmetric metric connection. In 1972, T. Imai[10] found some
properties of a Riemannian manifold and hypersurfaces of a Riemannian manifold
with a semisymmetric metric connection. In 1976, Z. Nakao[13] studied subman-
ifolds of a Riemannian manifold with semisymmetric metric connection. Also in
1994, Agashe and Chafle[1] studied submanifolds of a Riemannian manifold with a
semi-symmetric non-metric connection. In 2010, C. Ozgur[14], studied on submani-
folds of a Riemannian manifold with a semi-symmetric non-metric connection. Also
Zhao etal([9],[16],[17])studied on Riemannian manifolds with Quarter-symmetric
metric connection. De etal ([7],[5],[6],[3],[12], [15]) studied Quarter-symmetric and
Ricci Quarter-symmetric metric connections in Riemannian and Contact manifolds.
Later in 2000, S. Ali and R. Nivas[2] studied on submanifolds immersed in a mani-
fold with quarter-symmetric metric connection.

A linear connection is said to be a Ricci quarter-symmetric connection if its
torsion tensor T is of the form

T (X,Y ) = π(Y )QX − π(X)QY,

where π is a 1−form and Q is the Ricci tensor operator defined by

g(QX, Y ) = S(X,Y ),

where S is the Ricci tensor of type (0, 2).

Motivated by these studies, in this paper we study submanifolds of a Riemannian
manifold admitting a type of Ricci quarter-symmetric metric connection.

The present paper is organized as follows: After the preliminaries, in Section 3,
we consider submanifold of a Riemannian manifold endowed with a Ricci quater-
symmetric metric connection and show that the induced connection on a subman-
ifold of a Riemannian manifold with a Ricci quarter-symmetric metric connection
is also a Ricci quarter-symmetric metric connection. We also show that the mean
curvature vector of the Riemannian manifold with respect to the Levi-Civita connec-
tion and Ricci quarter-symmetric metric connection coincide if and only if the scalar
curvature vanishes. In the last part of this section we prove that the shape opera-
tors with respect to the Levi-Civita connection are simultaneously diagonalizable if
and only if the shape operators with respect to the Ricci quarter-symmetric metric
connection are simultaneously diagonalizable. Finally, we study the Gauss and Co-
dazzi equation with respect to the Ricci quarter-symmetric metric connection and
prove that the normal connection ∇⊥ is flat if and only if all second fundamental
tensors with respect to the Ricci quarter-symmetric and the Levi-Civita connection
are simultaneously diagonalizable and also if the submanifold is totally geodesic
with respect to the Ricci quarter-symmetric metric connection, then the sectional
curvature of the manifold and its submanifold are identical.
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2. Preliminaries

Let M̄ be an m−dimensional manifold with a Riemannian metric g and ∇̄ is
the Levi-Civita connection on M̄ [18]. We define a linear connection ∇∗ on M̄ by

∇∗
XY = ∇̄XY + π(Y )QX − S(X,Y )ρ(2.1)

for arbitrary vector fields X,Y of M̄, where ρ is the vector field defined by g(X, ρ) =
π(X) and Q is the Ricci operator defined by S(X,Y ) = g(QX, Y ) ,S is the Ricci
tensor of (0, 2)−type.

Using (2.1), the torsion tensor T ∗ with respect to the connection ∇∗ is given by

T ∗(X,Y ) = π(Y )QX − π(X)QY.(2.2)

A linear connection ∇∗ satisfying the condition (2.2) is called a Ricci quarter-
symmertic connection. Also using (2.1), we have

(∇∗
Zg)(X,Y ) = (∇̄Zg)(X,Y ) = 0.

Hence the connection is a metric connection.

We denote by R∗ the curvature tensor of M̄ with respect to the Ricci quarter-
symmetric metric connection ∇∗. So we have

R∗(X,Y )Z = ∇∗
X∇∗

Y Z −∇∗
Y ∇

∗
XZ −∇∗

[X,Y ]Z

= R̄(X,Y )Z + (∇̄Xπ)(Z)QY − (∇̄Y π)(Z)QX

+π(Z){(∇̄XQ)Y − (∇̄Y Q)X}+ {(∇̄Y S)(X,Z)

−(∇̄XS)(Y, Z)}ρ+ S(X,Z)∇̄Y ρ− S(Y, Z)∇̄Xρ

+π(Z){π(QY )QX − π(QX)QY + S(Y,QX)X

−S(X,QY )Y }+ π(ρ){S(X,Z)QY − S(Y, Z)QX}

+{S(Y, Z)S(X, ρ)− S(X,Z)S(Y, ρ)}ρ,(2.3)

where R̄(X,Y )Z = ∇̄X∇̄Y Z−∇̄Y ∇̄XZ−∇̄[X,Y ]Z is the curvature tensor of the
manifold with respect to the Levi-Civita connection ∇̄. The Riemannian curvature
tensors of the connections ∇∗ and ∇̄ are defined by

R∗(X,Y, Z,W ) = g(R∗(X,Y, Z),W )

and

R̄(X,Y, Z,W ) = g(R̄(X,Y, Z),W )

respectively.
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3. submanifolds of a Riemannian manifold with a Ricci

quarter-symmetric metric connection

Let M be an n−dimensional submanifold of a Riemannian manifold M̄ with a
Ricci quarter-symmetric metric connection. Decomposing the vector field ρ on M

uniquely into their tangent and normal components ρT and ρ⊥ respectively we have

ρ = ρT + ρ⊥.

The Gauss formula for a submanifold M of a Riemannian manifold M̄ with
respect to the Riemannian connection ∇̄ is given by

∇̄XY = ∇XY +m(X,Y ),(3.1)

where X and Y are vector fields tangent to M and m is the second fundamental
form of M in M̄. If m = 0, then M is called totally geodesic with respect to the
Riemannian connection. H = 1

n
tracem is called the mean curvature vector of the

submanifold. If H = 0, then M is called minimal. For the second fundamental form
m, the covariant derivative of m is defined by

(∇̄Xm)(Y, Z) = ∇⊥
Xm(Y, Z)−m(∇XY, Z)−m(Y,∇XZ).

for any vector field X tangent to M. ∇̄ is called the Van der Waerden-Bortolotti
connection of M, that is, ∇̄ is the connection in TM ⊕ T⊥M built with ∇ and
∇⊥[4].

Let ∇̇ be the induced connection from the Ricci quarter-symmetric metric con-
nection. We define

∇∗
XY = ∇̇XY + ṁ(X,Y ),(3.2)

where ṁ is the induced second fundamental form.

The equation (3.2) is the Gauss equation with respect to the Ricci quarter-
symmetric metric connection ∇∗

Using (2.1), from (3.1) and (3.2) we have

∇̇XY + ṁ(X,Y ) = ∇XY +m(X,Y ) + π(Y )QX

−S(X,Y )ρT − S(X,Y )ρ⊥.(3.3)

Now taking the tangential and normal parts we have

∇̇XY = ∇XY + π(Y )QX − S(X,Y )ρT(3.4)

and
ṁ(X,Y ) = m(X,Y )− S(X,Y )ρ⊥.(3.5)

If ṁ = 0, then M is called totally geodesic with respect to the Ricci quarter-
symmetric connection.
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From (3.4), we have

Ṫ (X,Y ) = ∇̇XY − ∇̇Y X − [X,Y ] = π(Y )QX − π(X)QY,(3.6)

where Ṫ is the torsion tensor of M with respect to ∇̇ and X,Y are vector fields
tangent to M.

Moreover using (3.4) we have

(∇̇Xg)(Y, Z) = (∇Xg)(Y, Z).(3.7)

In view of (2.1), (3.4), (3.6) and (3.7) we can state the following:

Theorem 3.1. The induced connection on a submanifold of a Riemannian man-
ifold with a Ricci quarter-symmetric metric connection is also a Ricci quarter-
symmetric metric connection.

Let {e1, e2, ......., en} be an orthonormal basis of the tangent space of M. We de-
fine the mean curvature vector Ḣ of M with respect to the Ricci quarter-symmetric
metric connection ∇̇ by

Ḣ =
1

n

n
∑

i=1

ṁ(ei, ei).

So from (3.5), we find

Ḣ = H −
r

n
ρ⊥.

If H = 0, then M is called minimal with respect to the Ricci quarter-symmetric
metric connection.

So we have the following result:

Theorem 3.2. If M be an n−dimensional submanifold of an m−dimensional Rie-
mannian manifold M̄ , then the mean curvature vector of M with respect to the
Levi-Civita connection and the Ricci quarter-symmetric metric connection coincide
if and only if the scalar curvature vanishes.

Let N be a normal vector field on M. From (2.1), we have

∇∗
XN = ∇̄XN + π(N)QX.(3.8)

The usual Weingarten formula is given by

∇̄XN = −ANX +∇⊥
XN, N ∈ T⊥(M)(3.9)

where −ANX and ∇⊥
XN are the tangential and normal parts of ∇̄XN. From (3.8)

and (3.9) we get

∇∗
XN = −ȦNX +∇⊥

XN, where ȦN = (AN − π(N)Q)I,(3.10)
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which is the Weingarten formulae for a submanifold of a Riemannian manifold with
respect to the Ricci quarter-symmetric metric connection.

Since AN is symmetric, it is easy to see that

g(ȦNX,Y ) = g(X, ȦNY )

and

g([ȦN , ȦL]X,Y ) = g(X, [AN , AL]Y ),(3.11)

where [ȦN , ȦL] = ȦN ȦL − ȦLȦN , [AN , AL] = ANAL − ALAN , N and L are unit
normal vector fields on M.

Theorem 3.3. If M be an n−dimensional submanifold of an m−dimensional Rie-
mannian manifold M̄ admitting the Ricci quarter-symmetric metric connection,
then the shape operators with respect to Levi-Civita connection are simultaneously
diagonalizable if and only if the shape operators with respect to then Ricci quarter-
symmetric metric connection are simultaneously diagonalizable.

4. Gauss and codazzi equation with respect to the Ricci

quarter-symmetric metric connection

We denote the curvature tensor of M̄ with respect to the Ricci quarter-symmetric
metric connection ∇∗ by

R∗(X,Y )Z = ∇∗
X∇∗

Y Z −∇∗
Y ∇

∗
XZ −∇∗

[X,Y ]Z

and that of M with respect to the induced Ricci quarter-symmetric metric connec-
tion ∇̇ by

Ṙ(X,Y )Z = ∇̇X∇̇Y Z − ∇̇Y ∇̇XZ − ∇̇[X,Y ]Z.

We shall now find the equation of Gauss-Codazzi with respect to the Ricci quarter-
symmetric metric connection.

R∗(X,Y )Z = ∇∗
X∇∗

Y Z −∇∗
Y ∇

∗
XZ −∇∗

[X,Y ]Z

= ∇̇X∇̇Y Z + ṁ(X, ∇̇Y Z))− Ȧṁ(Y,Z)X +∇⊥
Xṁ(Y, Z)

−∇̇Y ∇̇XZ − ṁ(Y, ∇̇XZ)) + Ȧṁ(X,Z)Y −∇⊥
Y ṁ(X,Z)

−∇̇[X,Y ]Z − ṁ([X,Y ], Z)

= Ṙ(X,Y )Z − Ȧṁ(Y,Z)X + Ȧṁ(X,Z)Y

+ṁ(X, ∇̇Y Z)− ṁ(Y, ∇̇XZ)− ṁ([X,Y ], Z)

+∇⊥
Xṁ(Y, Z)−∇⊥

Y ṁ(X,Z).(4.1)
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Taking account of (3.10), we have

R∗(X,Y )Z = Ṙ(X,Y )Z − Aṁ(Y,Z)X − π(ṁ(Y, Z))X +Aṁ(X,Z)Y

+π(ṁ(X,Z))Y + ṁ(X, ∇̇Y Z)− ṁ(Y, ∇̇XZ)

−ṁ([X,Y ], Z) +∇⊥
Xṁ(Y, Z)−∇⊥

Y ṁ(X,Z).(4.2)

Since g(ANX,Y ) = g(h(X,Y ), N), using (3.5) we obtain

R∗(X,Y, Z,W ) = Ṙ(X,Y, Z,W )− g(Aṁ(Y,Z)X,W ) + g(Aṁ(X,Z)Y,W )

+π(ṁ(Y, Z))g(QX,W )− π(ṁ(X,Z))g(QY,W )

= Ṙ(X,Y, Z,W )− g(m(Y, Z),m(X,W ))

+g(m(X,Z),m(Y,W )) + S(Y, Z)π(m(X,W ))

−S(X,Z)π(m(Y,W )) + S(X,W )π(m(Y, Z))

−S(Y,W )π(m(X,Z)) + π(ρ⊥)[S(X,Z)S(Y,W )

−S(Y, Z)S(X,W )],(4.3)

where W is a tangent vector field on M.

From (4.2), the normal component of R∗(X,Y )Z is given by

(R∗(X,Y )Z)⊥ = ṁ(X, ∇̇Y Z)− ṁ(Y, ∇̇XZ)− ṁ([X,Y ], Z)

+∇⊥
Xṁ(Y, Z)−∇⊥

Y ṁ(X,Z)

= (∇⊥
Xṁ)(Y, Z)− (∇⊥

Y ṁ)(X,Z)

+π(Y )ṁ(QX,Z)− π(X)ṁ(QY,Z),(4.4)

where (∇⊥
Xṁ)(Y, Z) = ∇⊥

Xṁ(Y, Z)− ṁ(∇̇XY, Z)− ṁ(∇̇Y X,Z).

It is called the van der Waerden-Bortolotti connection with respect to the Ricci
quarter-symmetric metric connection.

Also the equation (4.4) is the equation of Codazzi with respect to the Ricci
quarter-symmetric metric connection.

From (3.2) and (3.10), we get

∇∗
X∇∗

Y N1 = −Ȧ∇⊥
Y
N1

X − ṁ(ȦN1
Y,X)

+∇⊥
X∇⊥

Y N1 − ∇̇XȦN1
Y,(4.5)

∇∗
Y ∇

∗
XN1 = −Ȧ∇⊥

X
N1

Y − ṁ(ȦN1
X,Y )

+∇⊥
Y ∇

⊥
XN1 − ∇̇Y ȦN1

X(4.6)

and
∇∗

[X,Y ]N1 = −ȦN1
[X,Y ] +∇⊥

[X,Y ]N1.(4.7)
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So using (4.5)-(4.7), we have

R∗(X,Y,N1, N2) = R⊥(X,Y,N1, N2)− g(ṁ(ȦN1
Y,X), N2)

+g(ṁ(ȦN1
X,Y ), N2),(4.8)

where N1 and N2 are normal vector fields on M . Hence in view of (3.5) and
(3.10) the equation (4.8) turns into

R∗(X,Y,N1, N2) = R⊥(X,Y,N1, N2)− g(m(AN1
Y,X), N2)

+S(AN1
Y,X)g(ρ⊥, N2) + g(m(AN1

X,Y ), N2)

−S(AN1
X,Y )g(ρ⊥, N2)

= R⊥(X,Y,N1, N2) + g([N1, N2]X,Y ).(4.9)

The equation (4.9) is the equation of Ricci with respect to the Ricci quarter-
symmetric metric connection.

If M̄ is a space of constant curvature c with respect to the connection ∇̄, then
the equation (2.2) reduce to

R∗(X,Y )Z = c{g(y, Z)X − g(X,Z)Y }+ (∇̄Xπ)(Z)QY − (∇̄Y π)(Z)QX

+π(Z){(∇̄XQ)Y − (∇̄Y Q)X}+ {(∇̄Y S)(X,Z)

−(∇̄XS)(Y, Z)}ρ+ S(X,Z)∇̄Y ρ− S(Y, Z)∇̄Xρ

+π(Z){π(QY )QX − π(QX)QY + S(Y,QX)X

−S(X,QY )}+ π{(S(X,Z)QY − S(Y, Z)QX}

+{S(Y, Z)S(X, ρ)− S(X,Z)S(Y, ρ)}ρ.(4.10)

From (4.10)we have R∗(X,Y,N1, N2) = 0. Therefore using (3.11) and (4.9) we
obtain

R⊥(X,Y,N1, N2) = g([N2, N1]X,Y ) = g([N∗
2 , N

∗
1 ]X,Y ).

Hence we can state the following theorem:

Theorem 4.1. If M be an n−dimensional submanifold of an m−dimensional
space of constant curvature M̄(c) admitting Ricci quarter-symmetric metric connec-
tion, then the normal connection ∇⊥ is flat if and only if all second fundamental
tensors with respect to the Ricci quarter-symmetric and the Levi-Civita connection
are simultaneously diagonalizable.

From the equation (4.3) we have

R∗(X,Y, Y,X) = Ṙ(X,Y, Y,X)− g(m(X,X),m(Y, Y ))
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+g(m(X,Y ),m(Y,X)) + S(Y, Y )π(m(X,X))

−S(X,X)π(m(Y, Y ))− S(X,Y )π(m(X,Y ))

−S(Y,X)π(m(X,Y )) + π(ρ⊥)[S(X,Y )S(Y,X)

−S(Y, Y )S(X,X)].(4.11)

Now if the sectional curvature of M̄ and M at a point p ∈ M̄ with respect to
the Ricci quarter-symmetric metric connection is denoted by κ∗ and κ̇ respectively,
then the equation (4.11) reduce to

κ∗ = κ̇− g(m(X,X),m(Y, Y )) + g(m(X,Y ),m(Y,X))

+S(Y, Y )π(m(X,X))− S(X,X)π(m(Y, Y ))

−S(X,Y )π(m(X,Y ))− S(Y,X)π(m(X,Y ))

+π(ρ⊥)[S(X,Y )S(Y,X)− S(Y, Y )S(X,X)].(4.12)

If we consider M is totally geodesic with respect to the Ricci quarter-symmetric
metric connection, then from (3.5) we get m(X,Y ) = S(X,Y )ρ⊥ and using this
result, the equation (4.12) becomes

κ∗ = κ̇.

Hence we have the following theorem:

Theorem 4.2. Let M be an n−dimensional submanifold of an m−dimensional
Riemannian manifold M̄ admitting a Ricci quarter-symmetric metric connection. If
M is totally geodesic with respect to the Ricci quarter-symmetric metric connection,
then the sectional curvatures κ∗ and κ̇ of M̄ and M (resp.) are identical.
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SOME RESULTS ON (k, µ)′-ALMOST KENMOTSU MANIFOLDS ∗

Wenfeng Ning, Ximin Liu and Jin Li

Abstract. In this paper, we study the quasi-conformal curvature tensor C̃ and pro-
jective curvature tensor P on a (k, µ)′-almost Kenmotsu manifold M

2n+1 of dimension
greater than 3. We obtain that if M2n+1 is non-Kenmotsu and satisfies R · C̃ = 0 or
P · P = 0, then it is locally isometric to the Riemannian product Hn+1(−4)× R

n.

Keywords: Almost Kenmotsu manifold, (k, µ)′-nullity condition, quasi-conformal cur-
vature tensor, projective curvature tensor.

1. Introduction

In 1972, K. Kenmotsu introduced a new class of almost contact metric manifolds,
nowadays known as Kenmotsu manifolds [8]. The concept of almost Kenmotsu
manifolds, regarded as a generalization of Kenmotsu manifolds, was studied by
Janssens and Vanhecke (see [4]). In 2007, Pitiş [7] published a book containing many
systematic studies related to Kenmotsu manifolds. Some geometric properties and
fundamental formulas of almost Kenmotsu manifolds were obtained by Kim and Pak
[11] and Pastore et al. [5, 6]. Several authors studied almost Kenmotsu manifolds
considering some curvature conditions (see [12, 13, 14]). Recently, some curvature
properties of some types of almost Kenmotsu manifolds were obtained by Wang and
Liu in [15, 16, 17, 18].

The projective curvature tensor is an important tensor from the differential
geometric point of view. Let M be a (2n + 1)-dimensional Riemannian manifold.
If there exists a one-to-one correspondence between each coordinate neighbourhood
of M and a domain in Euclidian space such that any geodesic of the Riemannian
manifold corresponds to a straight line in the Euclidean space, then M is said to
be locally projectively flat (see [2]). For n ≥ 1, M is locally projectively flat if and
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only if the projective curvature tensor P vanishes. Here P is defined by

(1.1) P (X,Y )U = R(X,Y )U −
1

2n
[S(Y, U)X − S(X,U)Y ]

for any vector fields X,Y, U ∈ X(M), where S is the Ricci tensor of M .

The Weyl conformal curvature tensor C on a (2n+ 1)-dimensional manifold M

is defined by [20]

C(X,Y )Z =R(X,Y )Z +
r

2n(2n− 1)
[g(Y, Z)X − g(X,Z)Y ]

−
1

2n− 1
[S(Y, Z)X − S(X,Z)Y + g(Y, Z)QX − g(X,Z)QY ]

(1.2)

for any vector fields X,Y, Z on M , where S, Q and r denote the Ricci curvature
tensor, the Ricci operator with respect to the metric g and the scalar curvature,
respectively. Note that the Weyl conformal curvature tensor on any three dimension
Riemannian manifold vanishes.

For a (2n+1)-dimensional manifold M , the quasi-conformal curvature tensor C̃
is defined by [21]

C̃(X,Y )Z =aR(X,Y )Z −
r

2n+ 1
[
a

2n
+ 2b][g(Y, Z)X − g(X,Z)Y ]

+ b[S(Y, Z)X − S(X,Z)Y + g(Y, Z)QX − g(X,Z)QY ],
(1.3)

where a and b are two constants. If a = 1 and b = − 1
2n−1 , then the quasi-conformal

curvature tensor reduces to the Weyl conformal curvature tensor.

In this paper, we aim to extend some known results regarding the projective
and quasi-conformal curvature tensor on Kenmotsu manifolds (see [1, 2, 9, 10]) to a
class of almost Kenmotsu manifolds. In Section 2, we recall some basic formulas and
properties of almost Kenmotsu manifolds and the notion of (k, µ)′-almost Kenmotsu
manifolds. In Section 3, we introduce some properties of such manifolds used to
prove our main results. In Section 4 and 5, we classify almost Kenmotsu manifolds
satisfying R · C̃ = 0 and P · P = 0, respectively.

2. Almost Kenmotsu manifolds

Let M2n+1 be an almost contact metric manifold of dimension 2n+1, equipped
with an almost contact metric structure (φ, ξ, η, g) (see [3]) satisfying

(2.1) φ2 = −id + η ⊗ ξ, η(ξ) = 1, η ◦ ξ = 0, φξ = 0,

(2.2) g(φX, φY ) = g(X,Y )− η(X)η(Y ), η(X) = g(X, ξ)

for anyX,Y ∈ X(M), where φ, ξ, η, g and X(M) denote a (1, 1)-tensor field, a vector
field, a 1-form, the Riemannian metric and the Lie algebra of all differentiable vector
fields on M2n+1, respectively.
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The fundamental 2-form Φ of an almost contact metric manifold M2n+1 is de-
fined by Φ(X,Y ) = g(X,φY ) for any fieldsX,Y ∈ X(M). M2n+1 is called an almost
Kenmotsu manifold if dη = 0 and dΦ = 2η ∧ Φ. The almost contact metric mani-
fold is said to be normal if the Nijenhuis tensor of φ is given by [φ, φ] = −2dη ⊗ ξ,
where [φ, φ](X,Y ) = φ2[X,Y ] + [φX, φY ]− φ[φX, Y ]− φ[X,φY ]. A normal almost
Kenmotsu manifold is said to be a Kenmotsu manifold [4].

On an almost Kenmotsu manifold M2n+1, the two (1, 1)-type tensor fields l =
R(·, ξ)ξ and h = 1

2Lξφ are symmetric, where R is the Riemannian curvature tensor
of g and L is the Lie differentiation. Then we get

(2.3) hξ = 0, lξ = 0, tr(h) = 0, tr(hφ) = 0, hφ+ φh = 0.

We also have the following formulas presented in [5, 6]:

(2.4) ∇Xξ = −φ2X − φhX(⇒ ∇ξξ = 0),

(2.5) φlφ− l = 2(h2 − φ2),

(2.6) trl = S(ξ, ξ) = g(Qξ, ξ) = −2n− trh2,

(2.7) R(X,Y )ξ = η(X)(Y + h′Y )− η(Y )(X + h′X) + (∇Xh′)Y − (∇Y h
′)X

for any X,Y ∈ X(M), where h′ = h◦φ and S, Q, ∇, X(M) denote the Ricci tensor,
the Ricci operator with respect to g, the Levi-Civita connection of g and the Lie
algebra of all vector fields on M2n+1, respectively.

3. Some properties of (k, µ)′-almost Kenmotsu manifolds

If the characteristic vector field ξ of an almost Kenmotsu manifold (M2n+1,

φ, ξ, η, g) satisfies the (k, µ)′-nullity condition (see [6]), then it is called a (k, µ)′-
almost Kenmotsu manifold. The (k, µ)′-nullity condition is defined as follows:

(3.1) R(X,Y )ξ = k[η(Y )X − η(X)Y ] + µ[η(Y )h′X − η(X)h′Y ]

for any vector fields X,Y , where both k and µ are constant on M2n+1. M2n+1 is
said to be a (k, µ)-almost manifold Kenmotsu manifold if there holds R(X,Y )ξ =
k[η(Y )X − η(X)Y ] +µ[η(Y )hX − η(X)hY ] for any vector fields X,Y and k, µ ∈ R.
A (k, µ)-almost Kenmotsu manifold satisfies k = −1 and h = 0 (see [6]). A (k, µ)-
almost Kenmotsu manifold is a special case of (k, µ)′-almost Kenmotsu manifolds.
Following [6], on any (k, µ)′-almost Kenmotsu manifold M2n+1, we have

(3.2) h′2X = −(k + 1)X + (k + 1)η(X)ξ

for any vector field X ∈ X(M) and µ = −2. From (3.2), we know that h′ = 0 is
equivalent to k = −1 and h′ 6= 0 everywhere if and only if k < −1. Furthermore,
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by (3.1) and the symmetry of the Riemannian curvature tensor R, it is easy to see
that

(3.3) R(ξ,X)Y = k[g(X,Y )ξ − η(Y )X ]− 2[g(h′X,Y )ξ − η(Y )h′X ]

for anyX,Y ∈ X(M). In case of k < −1, we denote by [λ]′ and [−λ]′ the eigenspaces
of h′ corresponding two eigenvalues λ > 0 and −λ, respectively. Obviously, by (3.2),
we have

(3.4) λ =
√
−k − 1 > 0.

Before presenting one of our main results, we give the following two lemmas.

Lemma 3.1. [6, Proposition 4.2] Let M2n+1 be a (k, µ)′-almost Kenmotsu mani-
fold such that h′ = 0. Then, for any Xλ, Yλ, Zλ ∈ [λ]′ and X−λ, Y−λ, Z−λ ∈ [−λ]′,
the Riemannian curvature tensor satisfies

R(Xλ, Yλ)Z−λ = 0,(3.5)

R(X−λ, Y−λ)Zλ = 0,(3.6)

R(Xλ, Y−λ)Zλ = (k + 2)g(Xλ, Zλ)Y−λ,(3.7)

R(Xλ, Y−λ)Z−λ = −(k + 2)g(Y−λ, Z−λ)Xλ,(3.8)

R(Xλ, Yλ)Zλ = (k − 2λ)[g(Yλ, Zλ)Xλ − g(Xλ, Zλ)Yλ],(3.9)

R(X−λ, Y−λ)Z−λ = (k + 2λ)[g(Y−λ, Z−λ)X−λ − g(X−λ, Z−λ)Y−λ].(3.10)

Lemma 3.2. [18, Lemma 3.2] Let M2n+1 be a (k, µ)′-almost Kenmotsu manifold
such that h′ 6= 0. Then the Ricci operator of M2n+1 is given by

(3.11) Q = −2nid+ 2n(k + 1)η ⊗ ξ − 2nh′.

Moreover, the scalar curvature of M2n+1 is 2n(k − 2n).

Proof. See the proof of [19, Lemma 3.2].

4. (k, µ)′-almost Kenmotsu manifolds satisfying R(X,Y ) · C̃ = 0

In this section, we consider a non-Kenmotsu (k, µ)′-almost Kenmotsu manifold
M2n+1 satisfying the condition

(4.1) R(X,Y ) · C̃ = 0,

or equivalently

(R(X,Y ) · C̃)(U, V )W = R(X,Y )C̃(U, V )W − C̃(R(X,Y )U, V )W

− C̃(U,R(X,Y )V )W − C̃(U, V )R(X,Y )W

= 0

(4.2)
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for any X,Y, U, V,W ∈ X(M).

From the definition of C̃ (see (1.3)), we have

C̃(ξ, Y )Z = [ak −
r

2n+ 1
(
a

2n
+ 2b) + 2nkb− 2nb]g(Y, Z)ξ

− [ak −
r

2n+ 1
(
a

2n
+ 2b) + 2nkb− 2nb]η(Z)Y

− (−aµ+ 2nb)g(h′Y, Z)ξ + (−aµ+ 2nb)η(Z)h′Y,

(4.3)

C̃(ξ, Y )ξ = [ak −
r

2n+ 1
(
a

2n
+ 2b) + 2nkb− 2nb]η(Y )ξ

− [ak −
r

2n+ 1
(
a

2n
+ 2b) + 2nkb− 2nb]Y

+ (−aµ+ 2nb)h′Y,

(4.4)

where r, a and b denote the scalar curvature and two constants, respectively. Let
us denote by A = [ak − r

2n+1 (
a
2n + 2b) + 2nkb − 2nb], B = −A, D = (−aµ+ 2nb)

and E = −D.

Substituting X = U = ξ in (4.2) we have

(R(ξ, Y ) · C̃)(ξ, V )W = R(ξ, Y )C̃(ξ, V )W − C̃(R(ξ, Y )ξ, V )W

− C̃(ξ, R(ξ, Y )V )W − C̃(ξ, V )R(ξ, Y )W

= 0

(4.5)

for any Y, V,W ∈ X(M).

Making use of (3.3), (4.3) and (4.4) we calculate every term in equation (4.5)
straightly. Then we have

(4.6)

R(ξ, Y )C̃(ξ, V )W

=k[g(Y, C̃(ξ, V )W )ξ − η(C̃(ξ, V )W ))Y ]

+ µ[g(h′Y, C̃(ξ, V )W )ξ − η(C̃(ξ, V )W ))h′Y ]

=k{A[η(Y )g(V,W )ξ − η(W )g(Y, V )ξ]

+ E[η(Y )g(h′V,W )ξ − η(W )g(Y, h′V )ξ]}

− k{A[g(V,W )Y − η(W )η(V )Y ] + Eg(h′V,W )Y }

+ µ{−Aη(W )g(h′Y, V )ξ − Eη(W )g(h′Y, h′V )ξ}

− µ{A[g(V,W )h′Y − η(W )η(V )h′Y ] + Eg(h′V,W )h′Y }.

(4.7)

C̃(R(ξ, Y )ξ, V )W

=kη(Y )C̃(ξ, V )W − kC̃(Y, V )W − µC̃(h′Y, V )W

=k{A[η(Y )g(V,W )ξ − η(W )η(Y )V ] + E[η(Y )g(h′V,W )ξ

− η(W )η(Y )h′V ]} − kC̃(Y, V )W − µC̃(h′Y, V )W.
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(4.8)

C̃(ξ, R(ξ, Y )V )W

=kg(Y, V )C̃(ξ, ξ)W − kη(V )C̃(ξ, Y )W

+ µg(h′Y, V )C̃(ξ, ξ)W − µη(V )C̃(ξ, h′Y )W

=− k{A[η(V )g(Y,W )ξ − η(W )η(V )Y ]

+ E[η(V )g(h′Y,W )ξ − η(W )η(V )h′Y ]}

− µ{A[η(V )g(h′Y,W )ξ − η(W )η(V )h′Y ]}

+ E[η(V )g(h′2Y,W )ξ − η(W )η(V )h′2Y ]}.

(4.9)

C̃(ξ, V )R(ξ, Y )W

=kg(Y,W )C̃(ξ, V )ξ − kη(W )C̃(ξ, V )Y

+ µg(h′Y,W )C̃(ξ, V )ξ − µη(W )C̃(ξ, V )h′Y

=k{A[g(Y,W )η(V )ξ − g(Y,W )V ] +Dg(Y,W )h′V }

− k{A[η(W )g(V, Y )ξ − η(Y )η(W )V ]

+ E[η(W )g(h′V, Y )ξ − η(Y )η(W )h′V ]}

+ µ{A[g(h′Y,W )η(V )ξ − g(h′Y,W )V ] +Dg(h′Y,W )h′V }

− µ{Aη(W )g(V, h′Y )ξ + Eη(W )g(h′V, h′Y )ξ}

for any Y, V,W ∈ X(M).

Substituting (4.6)-(4.9) into (4.5) and using (3.2) gives

kC̃(Y, V )W + µC̃(h′Y, V )W − kAg(V,W )Y

−kEg(h′V,W )Y − µAg(V,W )h′Y − µEg(h′V,W )h′Y

+kEη(V )g(h′Y,W )ξ − kEη(W )η(V )h′Y − µE(k + 1)η(V )g(Y,W )ξ

+µE(k + 1)η(V )η(W )Y + kAg(Y,W )V + kEg(Y,W )h′V

+µAg(h′Y,W )V + µEg(h′Y,W )h′V = 0

(4.10)

for any Y, V,W ∈ X(M).

Substituting Y = h′Y in (4.10) and using (3.2) we obtain

kC̃(h′Y, V )W − µ(k + 1)C̃(Y, V )W − kAg(V,W )h′Y

−kEg(h′V,W )h′Y + µA(k + 1)g(V,W )Y + µE(k + 1)g(h′V,W )Y

−kE(k + 1)η(V )g(Y,W )ξ + kE(k + 1)η(V )η(W )Y

−µE(k + 1)η(V )g(h′Y,W )ξ + µE(k + 1)η(V )η(W )h′Y + kAg(h′Y,W )V

+kEg(h′Y,W )h′V − µA(k + 1)g(Y,W )V − µE(k + 1)g(Y,W )h′V = 0

(4.11)

for any Y, V,W ∈ X(M). Subtracting µ multiple of (4.11) from k multiple of (4.10)
and using µ = −2 implies

(k + 2)2C̃(Y, V )W − (k + 2)2{Ag(V,W )Y + Eg(h′V,W )Y

−Eη(V )g(h′Y,W )ξ + Eη(V )η(W )h′Y −Ag(Y,W )V − Eg(Y,W )h′V } = 0
(4.12)
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for any Y, V,W ∈ X(M). Next, we assume that Y = V = W ∈ [−λ]′ in (1.3), where
[−λ]′ is eigenspace of h′ corresponding eigenvalue −λ. Thus, by applying Lemma
3.1 and Lemma 3.2, we get

C̃(Y, V )W

=[a(k + 2λ)−
r

2n+ 1
(
a

2n
+ 2b) + 4nb(λ− 1)][g(V,W )Y − g(Y,W )V ]

(4.13)

for any Y, V,W ∈ X(M).

With the help of (4.13) and assuming Y = V = W ∈ [−λ]′, from (4.12) we get

(4.14) 2nb(k + 2)2(λ− 1− k)[g(V,W )Y − g(Y,W )V ] = 0.

Putting (3.4) into (4.14) we have

(4.15) λ(λ− 1)2(λ+ 1)3 = 0.

In view of the fact λ > 0, we obtain λ = 1 and hence k = −2. From [6, Corollary
4.2] and [5, Theorem 6], we know that M2n+1 is locally isometric to the Riemannian
product Hn+1(−4)× Rn.

Therefore we have the following:

Theorem 4.1. If a non-Kenmotsu (k, µ)′-almost Kenmotsu manifold M2n+1 of
dimension greater than 3 satisfies R · C̃ = 0, then it is locally isometric to the
Riemannian product Hn+1(−4)× Rn.

Since quasi-conformally symmetric manifold (∇C̃ = 0) implies R · C̃ = 0, there-
fore from Theorem 4.1 we state the following:

Corollary 4.1. A quasi-conformally symmetric non-Kenmotsu (k, µ)′-almost Ken-
motsu manifold M2n+1(n > 1) is locally isometric to the Riemannian product
Hn+1(−4)× Rn.

Since R · R implies R · C̃ = 0, we get the following:

Corollary 4.2. A semisymmetric non-Kenmotsu (k, µ)′-almost Kenmotsu mani-
fold M2n+1(n > 1) is locally isometric to the Riemannian product Hn+1(−4)×Rn.

The above corollary has been proved by Wang and Liu [15].

5. (k, µ)′-almost Kenmotsu manifolds satisfying P (X,Y ) · P = 0

In this section, we consider a non-Kenmotsu (k, µ)′-almost Kenmotsu manifolds
M2n+1 satisfying the condition

(5.1) P (X,Y ) · P = 0,
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which implies

(P (X,Y ) · P )(U, V )W

=P (X,Y )P (U, V )W − P (P (X,Y )U, V )W

− P (U, P (X,Y )V )W − P (U, V )P (X,Y )W

=0

(5.2)

for any X,Y, U, V,W ∈ X(M).

Making use of (1.1), we get

P (X,Y )P (U, V )W

= R(X,Y )R(U, V )W −
1

2n
S(V,W )R(X,Y )U +

1

2n
S(U,W )R(X,Y )V

−
1

2n
{S(Y,R(U, V )W )X −

1

2n
S(V,W )S(Y, U)X +

1

2n
S(U,W )S(Y, V )X}

+
1

2n
{S(X,R(U, V )W )Y −

1

2n
S(V,W )S(X,U)Y +

1

2n
S(U,W )S(X,V )Y },

(5.3)

P (P (X,Y )U, V )W

= R(R(X,Y )U, V )W −
1

2n
S(Y, U)R(X,V )W +

1

2n
S(X,U)R(Y, V )W

−
1

2n
{S(V,W )R(X,Y )U −

1

2n
S(V,W )S(Y, U)X +

1

2n
S(V,W )S(X,U)Y }

+
1

2n
{S(R(X,Y )U,W )V −

1

2n
S(Y, U)S(X,W )V +

1

2n
S(X,U)S(Y,W )V },

(5.4)

P (U, P (X,Y )V )W

= R(U,R(X,Y )V )W −
1

2n
S(Y, V )R(U,X)W +

1

2n
S(X,V )R(U, Y )W

−
1

2n
{S(R(X,Y )V,W )U −

1

2n
S(Y, V )S(X,W )U +

1

2n
S(X,V )S(Y,W )U}

+
1

2n
{S(U,W )R(X,Y )V −

1

2n
S(U,W )S(Y, V )X +

1

2n
S(U,W )S(X,V )Y },

(5.5)

P (U, V )P (X,Y )W

= R(U, V )R(X,Y )W −
1

2n
S(Y,W )R(U, V )X +

1

2n
S(X,W )R(U, V )Y

−
1

2n
{S(V,R(X,Y )W )U −

1

2n
S(Y,W )S(V,X)U +

1

2n
S(X,W )S(V, Y )U}

+
1

2n
{S(U,R(X,Y )W )V −

1

2n
S(Y,W )S(U,X)V +

1

2n
S(X,W )S(U, Y )V }.

(5.6)
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Substituting (5.3)-(5.6) into (5.2), we have

(R(X,Y ) ·R)(U, V )W −
1

2n
{S(Y,R(U, V )W )X − S(X,R(U, V )W )Y }

+
1

2n
{S(Y, U)R(X,V )W − S(X,U)R(Y, V )W − S(R(X,Y )U,W )V }

+
1

2n
{S(Y, V )R(U,X)W − S(X,V )R(U, Y )W + S(R(X,Y )V,W )U}

+
1

2n
{S(Y,W )R(U, V )X − S(X,W )R(U, V )Y + S(V,R(X,Y )W )U

− S(U,R(X,Y )W )V } = 0

(5.7)

for any vector fields X,Y, U, V,W ∈ X(M). If (5.1) holds, putting Y = U = ξ into
(5.7), we obtain

(R(X, ξ) ·R)(ξ, V )W −
1

2n
{S(ξ, R(ξ, V )W )X − S(X,R(ξ, V )W )ξ}

+
1

2n
{S(ξ, ξ)R(X,V )W − S(X, ξ)R(ξ, V )W − S(R(X, ξ)ξ,W )V }

+
1

2n
{S(ξ, V )R(ξ,X)W − S(X,V )R(ξ, ξ)W + S(R(X, ξ)V,W )ξ}

+
1

2n
{S(ξ,W )R(ξ, V )X − S(X,W )R(ξ, V )ξ + S(V,R(X, ξ)W )ξ

− S(ξ, R(X, ξ)W )V } = 0

(5.8)

for any vector fields X,V,W ∈ X(M). In Section 4, we know that S(ξ, V ) =
2nkη(V ), using the equation and (3.1), we have

S(R(ξ,X)Y, Z)

=2n{η(Z)[k2g(X,Y )− 2kg(h′X,Y )]

+ η(Y )[kg(X,Z)− k(k + 1)η(Z)η(X)

+ kg(X,h′Z)− 2g(h′X,Z)− 2g(h′X,h′Z)]}

(5.9)

for any vector fields X,Y, Z ∈ X(M). Combining (5.9) with (5.8) and assuming
that X ∈ [λ] and V = W ∈ [−λ] in (5.8) are eigenvector fields of h′ corresponding
two eigenvalues λ and −λ, respectively. Thus, by applying Lemma 3.1, we obtian

(5.10) (R(X, ξ) ·R)(ξ, V )W = [k2 + 2kλ+ k(k + 2)]g(V,W )X.

On the other hand, by a straightforward computation and applying Lemma 3.1,
Wang and Liu [15, Theorem 1.1] obtained the following relation (one can check it
by a direct calculation).

(5.11)

(R(X, ξ) · R)(ξ, V )W

=R(X, ξ)R(ξ, V )W −R(R(X, ξ)ξ, V )W

−R(ξ, R(X, ξ)V )W −R(ξ, V )R(X, ξ)W

=[(k − 2λ)(k + 2)− k2 + 4λ2]g(V,W )X.
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From (5.10) and (5.11), we get λ2(λ − 1) = 0. In view of the fact λ > 0, we
obtain λ = 1 and hence k = −2. From [6, Corollary 4.2] and [5, Theorem 6] we can
know that M2n+1 is locally isometric to the Riemannian product Hn+1(−4)× Rn.

Consequently, we have the following theorem:

Theorem 5.1. If a non-Kenmotsu (k, µ)′-almost Kenmotsu manifold M2n+1 sat-
isfies P ·P = 0, then it is locally isometric to the Riemannian product Hn+1(−4)×
Rn.
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7. G. Pitiş: Geometry of Kenmotsu manifolds, Publishing House of Transilvania
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ON A SUBSPACE OF A SPECIAL FINSLER SPACE

Vivek Kumar Pandey and P. N. Pandey

Abstract. The present paper deals with the properties of a Finsler space F ∗

n whose met-
ric is obtained from the metric of another Finsler space Fn defined over the same man-
ifold, with the help of a contravariant vector vi(xj) satisfying the condition LCjkrv

r =
ρhjk, where L, hjk and Cjkr are metric function, angular metric tensor and Cartan
tensor of Fn, respectively, and ρ is a scalar function of positional coordinates xi. Apart
from obtaining expressions for different geometric objects of F ∗

n , a subspace of F ∗

n is
studied. Apart from other results for the subspace of F

∗

n , certain conditions for a
subspace of F ∗

n to be totally geodesic and projectively flat have been obtained.

Keywords: Finsler space; subspace; projective change; totally geodesic subspace; pro-
jectively flat space.

1. Introduction

In 1952, S. Kikuchi [11] studied the theory of a subspace of a Finsler space.
H. Rund [3] in 1959, H. Yasuda [4] in 1987, T. Sakaguchi [12] in 1988 and many
others mathematicians contributed significantly to the theory of Finsler subspaces
and obtained many important and interesting results. In 1980 during the study
of conformally flat Finsler spaces, H. Izumi [2] introduced a vector bi which is v−
covariant constant (bi|j = 0) and satisfies the condition LCr

jkbr = ρhjk, where

ρ is a scalar independent of directional arguments yi. He called such vector bi
as h− vector. In 1990, B. N. Prasad [1] studied a Finsler space with a special
metric ds = (gij(dx)dx

idxj)1/2+ bi(x, y)dx
i, where bi is an h−vector, and obtained

the Cartan connections. In 2008, M. K. Gupta and P. N. Pandey [6] worked on
subspaces of a Finsler space with a special metric by taking this h− vector.

Let Fn = (Mn, L) be a Finsler space and F ∗
n = (Mn, L

∗) be another Finsler
space over the same manifold Mn, whose metric L∗ is obtained from the metric L

of Fn by

(1.1) L∗(x, y) = L(x, y) + vi(x, y)y
i,

Received March 27, 2018; accepted April 10, 2018
2010 Mathematics Subject Classification. 53B40
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where vi = gijv
j , gij is the metric tensor of Fn and vi(xj) is a contravariant vector

satisfying

(1.2) LCjkrv
r = ρhjk,

where ρ is a scalar function of positional coordinates xi.
We call such a Finsler space F ∗

n = (Mn, L
∗) as a special Finsler space. This special

Finsler space F ∗
n is a generalization of the Finsler spaces considered by the authors

([1], [6]). The aim of the present paper is to obtain the Cartan connections and to
study a subspace of the Finsler space F ∗

n = (Mn, L
∗).

2. Preliminaries

Let the Cartan connection of an n−dimensional Finsler space Fn = (Mn, L) is
given by the triad CΓ = (F i

jk, G
i
j , C

i
jk), where G

i
j = F i

jky
k and Ci

jk is the associated
Cartan tensor. If Xi(x, y) be a covariant vector field then its h− and v− covariant
derivatives with respect to the Cartan connection CΓ are given by

(2.1) Xi|k = ∂kXi − (∂̇rXi)G
i
k −XrF

r
ik

and

(2.2) Xi|k = ∂̇kXi −XrC
r
ik

respectively. Here ∂k and ∂̇k denote the partial derivatives with respect to xk and
yk respectively, and ∂k and ∂̇k stand for ∂/∂xk and ∂/∂yk respectively.

The components of the metric tensor gij and the angular metric tensor hij of
the Finsler space Fn = (Mn, L) are defined respectively by

(2.3) gij =
1

2
∂̇i∂̇jL

2

and

(2.4) hij = L∂̇i∂̇jL.

Differentiating (2.3) partially with respect to yk, we obtain a tensor Cijk of type
(0, 3) defined by

(2.5) Cijk =
1

2
∂̇kgij .

This tensor is called the Cartan tensor and its degree of homogeneity in yi is −1.
The normalized supporting element li = yi/L satisfies li = ∂̇iL. From the equations
(2.3) and (2.4), we obtain the relation

(2.6) gij = hij + lilj
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among the metric tensor gij , the angular metric tensor hij and the normalized
supporting element li. The h−covariant derivatives and v− covariant derivatives of
gij , hij and li satisfy [9]

(2.7)
(a) gij|k = 0 (b) hij|k = 0 (c) L|i = 0
(d) li|j = 0 (e) li|j =

1
L
hij (f) L|i = li.

Let Mm(1 < m < n) be an m−dimensional subspace of the n− dimensional
manifold Mn represented parametrically by the equations

(2.8) xi = xi(uα) i = 1, 2, ...n; α = 1, 2, ...m,

where uα denote the Gaussian cordinates on the subspace Mm.

Let Bi
α = ∂xi

∂uα be the projection factors [3] and the matrix ||Bi
α|| of this projec-

tion factors be supposed to be of rank m. If yi, the supporting element, is assumed
to be tangential to the subspaceMm then it can be written in terms of the projection
factors as

(2.9) yi = Bi
α(u)w

α, α = 1, 2, ...m.

Here w = (wα) is assumed to be the supporting element at the point (uα) of the
subspace Mm. The metric L(x, y) of the Finsler space Fn = (Mn, L) induces the
metric

(2.10) L̄(u,w) = L(x(u), y(u,w))

on the subspace Mm. Thus, we obtain an m−dimensional Finsler subspace Fm =
(Mm, L̄(u,w)) of the space Fn = (Mn, L).
Let gαβ(u,w) defined by

(2.11) gαβ(u,w) =
1

2

∂2L̄2

∂wα∂wβ
,

be the metric tensor of the subspace Fm. Successive partial differentiations of (2.10)
with respect to wα and wβ give

(2.12) gαβ(u,w) = gij(x, y)B
i
αB

j
β .

A covariant vector Yi which satisfies the condition

(2.13) YiB
i
α(u) = 0

is called normal to the subspace Fm. Clearly, these are m equations for determina-
tions of n functions Yi. So, there exist (n−m) linearly independent and mutually
orthogonal unit vectors Y i

(a), (say), satisfying the following conditions

(2.14) gijB
i
αY

j

(a) = 0
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and

(2.15) Y
(a)
i = gijY

j

(a),

where (a) = m+ 1,m+ 2, ...n. Further, (2.14) and (2.15) imply that

(2.16) gijY
i
(a)Y

j

(b) = δ(a)(b), {(a), (b) = m+ 1,m+ 2, ......n}.

If Bα
i (u,w) is the reciprocal of the projection factors Bi

α defined by

(2.17) Bα
i (u,w) = gαβB

j
β gij ,

then, in view of (2.12), we have

(2.18) Bi
αB

β
i = δβα.

From (2.14), (2.15), (2.16), (2.17) and (2.18), we have

(2.19)
(a) Bi

αY
(a)
i = 0 (b) Y i

(a)B
α
i = 0

(c) Y i
(a)Y

(b)
i = δ

(a)
(b) (d) Bi

αB
α
j + Y i

(a)Y
(a)
j = δij .

If the triad ICΓ = (Fα
βγ , G

α
β , C

α
βγ), where Gα

β = Fα
βγy

γ , is the induced Cartan

connection of the Finsler subspace Fm then the second fundamental tensor H
(a)
αβ

and the normal curvature vector H
(a)
α with respect to induced Cartan connection

ICΓ can be expressed in the direction of the normal vector Y i
(a) by

(2.20) H
(a)
αβ = Y

(a)
i (Bi

αβ + F i
jkB

j
αB

k
β) +M

(a)
(b)αH

(b)
β

and

(2.21) H(a)
α = Y

(a)
i (Bi

0α + F i
0jB

j
α)

respectively, where

(2.22) M
(a)
(b)α = Ci

jkY
(a)
i Y

j

(b)B
k
α,

(2.23) Bi
αβ =

∂2xi

∂uα∂uβ
, Bi

0α = vβBi
βα.

The contraction of (2.20) by vα gives us

(2.24) H
(a)
0β = vαH

(a)
αβ = H

(a)
β .
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3. The Finsler space F ∗
n = (Mn, L

∗)

Let vi = vi(xj) be a contravariant vector field in a Finsler space Fn = (Mn, L)
satisfying the condition (1.2).
Differentiating vi = gir(x, y)v

r partially with respect to yj and using the condition
(1.2), we obtain

(3.1) L(∂̇jvi) = 2ρhij .

Consider an n− dimensional Finsler space F ∗
n = (Mn, L

∗) whose metric function
L∗(x, y) is obtained from the metric of the space Fn by the transformation (1.1).
Throughout the paper, the geometric objects related to F ∗

n will be asterisked ∗.

Differentiating (1.1) partially with respect to yk and using (3.1), we get

(3.2) L∗
k = Lk + vk,

where L∗
k = ∂̇kL

∗.
The normalized supporting element l∗i of F ∗

n can be written as

(3.3) l∗k = lk + vk.

Differentiating (3.2) partially with respect to yj and using (3.1), we obtain

(3.4) L∗
jk = Ljk + 2ρhjk/L,

where Ljk = ∂̇j ∂̇kL and L∗
jk = ∂̇j ∂̇kL

∗.
Using (2.4) in (3.4), we get

(3.5) L∗
jk = (1 + 2ρ)Ljk.

Partial Differentiation of (3.5) with respect to yi gives

(3.6) L∗
ijk = (1 + 2ρ)Lijk,

where Lijk = ∂̇kLij and L∗
ijk = ∂̇kL

∗
ij .

In view of (2.4), the angular metric tensor h∗
ij of the Finsler space F ∗

n is given as

(3.7) h∗
ij = τ(1 + 2ρ)hij ,

where τ = L∗

L
.

From (3.3), (3.7) and (2.6), the fundamental metric tensor g∗ij of the Finsler space
F ∗
n is given by

(3.8) g∗ij = τ(1 + 2ρ)gij + vivj + livj + vilj + (1− τ(1 + 2ρ))lilj .

Keeping g∗ijg∗jk = δik in view, the inverse metric tensor g∗ij is given by

(3.9) g∗ij =
1

τ(1 + 2ρ)
gij −

1

τ2(1 + 2ρ)
(livj + vilj) +

τ(1 + 2ρ) + v2 − 1

τ3(1 + 2ρ)
lilj
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in the Finsler space F ∗
n .

Differentiating (3.8) partially with respect to yk, we obtain the Cartan tensor C∗
ijk

of F ∗
n as

(3.10) C∗
ijk = τ(1 + 2ρ)Cijk +

(1 + 2ρ)

2L
(hjkci + hkicj + hijck).

Here ci = vi − (τ − 1)li. Thus, we have

Theorem 3.1. The components of the metric tensor g∗ij, the inverse metric tensor

g∗ij, the angular metric tensor h∗
ij and the Cartan tensor C∗

ijk of the Finsler space
F ∗
n whose metric L∗ is obtained from the metric L of the Finsler space Fn by (1.1),

are given by (3.8), (3.9), (3.7) and (3.10) respectively.

4. The Cartan connection of the Finsler space F ∗
n = (Mn, L

∗)

In this section, we find the Cartan connection of the Finsler space F ∗
n = (Mn, L

∗).
Since Lij is h−covariant constant with respect to the Cartan connection CΓ =
(F i

jk, G
i
j , C

i
jk), i.e. Lij|k = 0, (2.1) gives

(4.1) ∂kLij = LijrF
r
0k + LrjF

r
ik + LirF

r
jk,

where Lijk = ∂̇kLij and F r
0k = F r

iky
i = Gr

k.
Differentiating (3.5) covariantly with respect to xi, we get

(4.2) ∂iL
∗
jk = (1 + 2ρ)∂iLjk + 2ρiLjk,

where ∂iρ = ρi.
In view of (4.1), (3.5) and (3.6), (4.2) can be written as

(4.3) (1 + 2ρ){Ljkr(F
∗r
0i − F r

0i) + Lkr(F
∗r
ji − F r

ji) + Ljr(F
∗r
ki − F r

ki)} = 2ρiLjk.

Let Di
jk be the difference of the connections F ∗i

jk and F i
jk, i.e.

(4.4) Di
jk = F ∗i

jk − F i
jk .

In view of (4.4), (4.3) reduces to

(4.5) (1 + 2ρ)(LjkrD
r
0i + LrkD

r
ji + LjrD

r
ki) = 2ρiLjk.

Cyclic rotation of the indices i, j and k gives

(4.6) (1 + 2ρ)(LkirD
r
0j + LriD

r
jk + LkrD

r
ij) = 2ρjLki,

and

(4.7) (1 + 2ρ)(LijrD
r
0k + LrjD

r
ki + LirD

r
jk) = 2ρkLij .
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Using Lk|j = 0 in (2.1), we have

(4.8) ∂jLk = LkrF
r
0j + LrF

r
jk.

Differentiating (3.2) partially with respect to xj and then using (4.8) and (2.1), we
obtain

(4.9) L∗
krF

∗
0j + L∗F ∗

kj = (1 + 2ρ)LkrF
r
0j + (Lr + vr)F

r
kj + vk|j .

In view of (3.2), (3.3), (3.5), and (4.4), (4.9) reduces to

(4.10) (1 + 2ρ)LkrD
r
0j + (lr + vr)D

r
kj = vk|j .

Here subscript ‘0’denotes the contraction by the supporting element yk.
Now, we propose

Theorem 4.1. If Fn = (Mn, L) and F ∗
n = (Mn, L

∗) are two Finsler spaces over
the same manifold Mn and L∗(x, y) is given by (1.1), then the Cartan connection
of F ∗

n is completely determined by (4.5) and (4.10).

To prove Theorem 4.1, first we have to prove the following lemma

Lemma 4.1. The system of equations

(4.11)
(a) (1 + 2ρ)LjkA

k = Bj

(b) (lk + vk)A
k = B

has a unique solution

(4.12) Ak = (1 + 2ρ)−1LBk + τ−1(B − (1 + 2ρ)LBv)l
k,

where τ = (L∗/L), Bv = Biv
i and Bi = gijBj for given Bj and B such that

Bj l
j = 0.

Proof. From hjk = LLjk and (2.6), (4.11(a)) can be written as

(4.13) gjkA
k = (1 + 2ρ)−1LBj + lj(lkA

k).

Transvecting (4.13) with vj , we get

(4.14) vkA
k = (1 + 2ρ)−1LBv + (τ − 1)lkA

k,

where Bv = Biv
i.

In view of (4.11(b)), (4.14) implies

(4.15) lkA
k = τ−1(B − (1 + 2ρ)−1LBv).

Thus, from (4.13) and (4.15), we have

(4.16) gjkA
k = (1 + 2ρ)−1LBj + τ−1(B − (1 + 2ρ)−1LBv)lj .

Contraction of (4.16) by gij gives the solution

(4.17) Ai = (1 + 2ρ)−1LBi + τ−1(B − (1 + 2ρ)−1LBv)l
i

of the given system, where Bi = gijBj and τ = L∗

L
.



606 V. K. Pandey and P. N. Pandey

Thus, we are in a position to prove Theorem 4.1. We complete the proof of Theorem
4.1 if we find the value of Di

jk.

We will find the value of Di
jk in three steps. In the first step, we will find the value

of Di
00, in the second step we will find Di

j0 and in the last step we will find Di
jk.

In view of (4.10), we have

(4.18) (1 + 2ρ)LjrD
r
0k + (lr + vr)D

r
jk = vj|k.

Simultaneously adding and subtracting (4.18) and (4.10), we get

(4.19) (1 + 2ρ)(LjrD
r
0k + LkrD

r
0j) + 2(lr + vr)D

r
jk = vj|k + vk|j

and

(4.20) (1 + 2ρ)(LjrD
r
0k − LkrD

r
0j) = vj|k − vk|j .

If we take

(a) vj|k + vk|j = 2sjk (b) vj|k − vk|j = 2tjk,(4.21)

then (4.19) and (4.20) become

(4.22) (1 + 2ρ)(LjrD
r
0k + LkrD

r
0j) + 2(lr + vr)D

r
jk = 2sjk.

(4.23) (1 + 2ρ)(LjrD
r
0k − LkrD

r
0j) = 2tjk.

Subtracting (4.7) from the addition of (4.5) and (4.6), we have

(4.24) 2LkrD
r
ij+(1+2ρ)(LjkrD

r
0i+LkirD

r
0j−LijrD

r
0k) = 2(ρiLjk+ρjLki−ρkLij).

Transvection of (4.22), (4.23) and (4.24) with yk and utilization of Lijy
j = 0 give

us

(4.25) (1 + 2ρ)LjrD
r
00 + 2(lr + vr)D

r
0j = 2sj0,

(4.26) (1 + 2ρ)LjrD
r
00 = 2tj0,

(4.27) (1 + 2ρ)(LjrD
r
0i + LirD

r
0j + LijrD

r
00) = 2ρ0Lij .

Transvecting (4.25) with yj, we find

(4.28) (lr + vr)D
r
00 = s00.

Applying Lemma 4.1 in (4.26) and (4.28), we get

(4.29) Dr
00 =

L

L∗(1 + 2ρ)
{2L∗tr0 + lr((1 + 2ρ)s00 − 2Ltv0)}.
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Here tr0 = girti0 and tv0 = ti0v
i.

Putting k in palace of i in (4.27) and then adding with (4.23), we find

(4.30) LjrD
r
0k =

1

2(1 + 2ρ)
(2tjk + 2ρ0Ljk −

1

2
(1 + 2ρ)LjkrD

r
00).

If we take

(4.31)
1

2(1 + 2ρ)
(2tjk + 2ρ0Ljk −

1

2
(1 + 2ρ)LjkrD

r
00) = Ajk,

then (4.30) reduces to

(4.32) LjrD
r
0k = Ajk.

From (4.29) and (4.31), we have

(4.33) Ajk =
1

2L∗(1 + 2ρ)
{2L∗(tjk−LLjkrt

r
0)+Ljk((1+2ρ)s00−2Ltv0+2L∗ρ0)}.

This shows that Ajk is known.
If we write

(4.34) sk0 −
1

2
(1 + 2ρ)LkrD

r
00 = Ak,

the equation (4.25) assumes the form

(4.35) (lr + vr)D
r
0k = Ak.

Putting the value of Dr
00 from (4.29) in (4.34), we get

(4.36) Ak = sk0 − LLkrt
r
o.

In view of Lemma 4.1, the system of equations (4.32) and (4.35) give

(4.37) Dr
0k =

L

L∗
(L∗Ar

k + lr(Ak − LAvk)),

where Avk = Ajkv
j and Ar

k = griAik.
Now we can express (4.22) in the form

(4.38) (lr + vr)D
r
jk = Bjk,

where

(4.39) Bjk = sjk −
1

2
(1 + 2ρ)(LjrD

r
0k + LkrD

r
0j).

The equation (4.24) may be written as

(4.40) LirD
r
jk = Bijk,
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where

(4.41) Bijk = (ρjLki + ρkLij − ρiLjk)−
1

2
(1+ 2ρ)(LkirD

r
0j +LijrD

r
0k −LjkrD

r
0i).

Putting the value of Dr
0i from (4.37), we see that Bjk and Bijk are known quantities.

Applying the Lemma 4.1, for the system of equations (4.38) and (4.40), we obtain

(4.42) Dr
jk =

L

L∗
{L∗Br

jk + lr(Bjk − LBvjk)},

where Br
jk = girBijk and Bvjk = Bijkv

i. The quantities Bjk and Bijk are given by
respectively (4.39) and (4.41) together with (4.37).
Thus, the proof is completed.

5. Subspace of the Finsler space F ∗
n = (Mn, L

∗)

Suppose Fm and F ∗
m are the subspaces of the Finsler spaces Fn and F ∗

n respec-
tively.
Contracting (2.14) by wα and using (2.9) and yigij = yj , we obtain

(5.1) yjY
j

(a) = 0.

Again contracting (3.8) with Y i
(a)Y

j

(b) and using (2.16), (5.1) and τ = (L∗/L), we

have

(5.2) g∗ijY
i
(a)Y

j

(b) =
L∗

L
(1 + 2ρ)δ(a)(b) + viY

i
(a)vkY

k
(b).

Fixing the index (a) and taking (a) = (b) in (5.2), we get

(5.3) g∗ijY
i
(a)Y

j

(a) =
L∗

L
(1 + 2ρ) + (vrY

r
(a))

2.

Hence

(5.4) g∗ij

(

Y i
(a)

√

L∗

L
(1 + 2ρ) + (vrY r

(a))
2

)(

Y
j

(a)
√

L∗

L
(1 + 2ρ) + (vrY r

(a))
2

)

= 1.

From (5.4), it is clear that

(

Y i
(a)√

L∗

L
(1+2ρ)+(vrY r

(a)
)2

)

is a unit vector.

Contracting (3.8) by Bi
αY

j

(a) and using (2.14) & (5.1), we obtain

(5.5) g∗ijB
i
αY

j

(a) = (vjY
j

(a))(vi + li)B
i
α.

From (5.5), we can say that Y
j

(a) is normal to the subspace F ∗
m if and only if the

condition

(5.6) (vjY
j

(a))(vi + li)B
i
α = 0
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holds. This implies at least one of the conditions vjY
j

(a) = 0 and (vi + li)B
i
α = 0.

Suppose (vi + li)B
i
α = 0. Contracting this condition by wα and using Bi

αw
α = yi,

we get L+ viy
i = L∗ = 0 which is not possible. Hence, we have the first condition,

i.e.

(5.7) vjY
j

(a) = 0.

Thus, the vector Y
j

(a) is normal to the subspace F ∗
m if and only if the vector vj is

tangent to the subspace Fm. From (5.4), (5.5) and (5.7), we find that

(

Y
j

(a)√
L∗

L
(1+2ρ)

)

is a unit normal vector of the subspace F ∗
m. In view of (2.14), (2.15) and (2.16), we

obtain

(5.8) Y
∗j
(a) =

Y
j

(a)
√

L∗

L
(1 + 2ρ)

.

Contracting (3.8) by Y ∗i
(a) and using (2.15), we obtain

(5.9) Y
∗(a)
j =

√

L∗

L
(1 + 2ρ)Y

(a)
i .

Thus, we have

Theorem 5.1. Let F ∗
n = (Mn, L

∗) be a Finsler space whose metric function L∗

is obtained from the metric function L of the Finsler space Fn = (Mn, L) by the
transformation (1.1). If F ∗

m and Fm are m− dimensional subspaces of F ∗
n and Fn

respectively, then the vector vi(x, y) satisfying the condition (1.2) is tangent to Fm

if and only if any vector Y i
(a) normal to Fm is also normal to F ∗

m.

Let us assume that the transformation given by (1.1) is projective. Then, we
have

(5.10) G∗i
j = Gi

j + pjy
i + pδij ,

where p is a function of directional argument and of homogeneity one in yi and
∂̇jp = pj .
Contracting (4.4) by yk and using F i

jky
k = Gi

j , we get

(5.11) G∗i
j = Gi

j +Di
0j .

Thus, from (5.10) and (5.11), we have

(5.12) Di
0j = pjy

i + pδij .

Contracting (5.12) by Bj
αY

(a)
i , using (2.15) and (2.19(a)), we obtain

(5.13) Y
(a)
i Di

0jB
j
α = 0.
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If every geodesic in the subspace Fm with respect to the induced metric is also
a geodesic in the enveloping space Fn, the subspace Fm is called totally geodesic
subspace and this type of space is characterized by

(5.14) H(a)
α = 0,

i.e. its normal curvature vector vanishes identically.

In view of (2.21), the normal curvature vector H
∗(a)
α of the subspace F ∗

m in the

direction Y
(a)
i is given by

(5.15) H∗(a)
α = Y

∗(a)
i (Bi

0α +G∗i
j Bj

α).

Using (5.9) and (5.11) in (5.15), we get

(5.16) H∗(a)
α =

√

L∗

L
(1 + 2ρ) H(a)

α +

√

L∗

L
(1 + 2ρ) Y

(a)
i Di

0jB
j
α = 0.

In view of (5.13), (5.16) reduces to

(5.17) H∗(a)
α =

√

L∗

L
(1 + 2ρ) H(a)

α .

√

L∗

L
(1 + 2ρ) 6= 0 for

√

L∗

L
(1 + 2ρ) = 0 implies ρ = −(1/2), a contradiction to the

fact that ρ is a function of xi. Hence, we conclude from (5.17) that H
(a)
α vanishes

if and only if H
∗(a)
α vanishes as

√

L∗

L
(1 + 2ρ) 6= 0. Therefore, we have

Theorem 5.2. If a contravariant vector field vi satisfying the condition (1.2) is
tangent to a subspace Fm of the space Fn then Fm is totally geodesic if and only if
the subspace F ∗

m of F ∗
n is totally geodesic.

If there exists a projective change between the Finsler spaces Fn = (Mn, L) and
F ∗
n = (Mn, L

∗) over the underlying manifold Mn such that the later space is locally
Minkowskian then the space Fn is said to be projectively flat.

In 2005, M. Kitayama [7] showed that a totally geodesic subspace of a projec-
tively flat Finsler space is also projective.

Makato Matsumoto [8] proved that a Finsler space Fn(n > 3) is projectively
flat if the Weyl torsion tensor W i

jk and the Douglas tensor Di
jkh vanish, i.e.

(5.18) (a) W i
jk = 0, (b) Di

jkh = 0

and the converse part is also true.
Under a projective change W ∗i

jk = W i
jk and D∗i

jkh = Di
jkh, i.e. both tensors are

invariant [10]. Thus, we conclude following theorem, from Theorem 5.2 in view of
(5.18)

Theorem 5.3. Let the metric function L∗ of a Finsler space F ∗
n = (Mn, L

∗)
be obtained from the metric function L of a projective flat Finsler space Fn =
(Mn, L), n > 3, by the transformation (1.1). If a subspace Fm of Fn is totally
geodesic and the vector field vi satisfying (1.2) is tangential to it, then the corre-
sponding subspace F ∗

m of F ∗
n is projectively flat.
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QUASI STATISTICAL CONVERGENCE IN CONE METRIC

SPACES

Nihan Turan, Emrah Evren Kara and Merve İlkhan

Abstract. The main purpose of this paper is to define a new type of statistical conver-
gence of sequences in a cone metric space and investigate the relations of these sequences
with some other sequences.

Keywords: Cone metric, statistical convergence, statistical boundedness.

1. Introduction and Preliminaries

The study of statistical convergence apparently goes back to Steinhaus [19] and
Fast [7]. This concept has been studied under different names in spaces such as topo-
logical spaces, cone metric spaces etc. (see, for example [5],[8],[9],[12],[13],[14],[18]).
Long-Guang and Xian [11] suggested the idea of a cone metric space. The main
difference with a metric is that a cone metric is valued in an ordering Banach space.
Later, several authors studied cone metric spaces and applied different names. This
concept takes a vital role in computer science, statistics and some other research
areas as well as general topology (see, for example [2],[2],[7],[11],[16]). The defini-
tion of statistical convergence and statistical boundedness of a sequence in a cone
metric space was studied by Kedian, Shou and Ying [13]. In [10], the authors
defined the concept of a quasi-statistical filter. Also it is known that statistical
convergence is related to Cesaro summability and strong-Cesaro summability (see,
for example [4],[3],[18]). Recently, Sakaoğlu and Yurdakadim [15] defined the no-
tions of quasi-statistical convergence and strongly-Cesaro summability by relying
on [4], [3], [10] and [18], and they found some inclusion theorems between these
concepts. In the present paper, we introduce the quasi-statistical convergence and
quasi-statistical boundedness of a sequence on a cone metric space, and obtain some
theorems related to quasi-statistically convergent sequences. Later, we give the def-
inition of strongly-quasi summable sequences in a cone metric space and we also
investigate some theorems related to quasi-statistically convergent sequences and
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strongly–quasi summable sequences. Finally, we present some results related to
these theorems.

Throughout this paper, by N and R we denote the set of all positive integers
and the set of all real numbers, respectively. For a subset S of N, |S| stands for the
cardinality of S.

Definition 1.1. ([7]) Let S ⊂ N and S (m) = {i ∈ S : i ≤ m} for each m ∈ N. If
the following limit exists, then

δ(S) = lim
m→∞

|S (m)|

m

is called the asymptotic (or natural) density of S. It is clear that δ(S) ∈ [0, 1]. Also,
if δ(S) = 1, then S is said to be statistically dense. It can be easily obtained that
δ (N− S) = 1− δ (S) for each S ⊂ N.

Definition 1.2. ([8]) A sequence (xm) in R is said to be statistically convergent
to a point x ∈ R if for each ε > 0,

lim
m→∞

1

m
{i ≤ m : |xi − x| ≥ ε} = 0

or equivalently

lim
m→∞

1

m
{i ≤ m : |xi − x| < ε} = 1.

Definition 1.3. ([1]) Let E be a real Banach space. A subset P of E is called a
cone if it satisfies the following conditions:

(1) P 6= Ø, P 6= {0} and P is closed.

(2) ax+ by ∈ P for all x, y ∈ P and a, b ∈ R with a, b ≥ 0.

(3) If x ∈ P and −x ∈ P , then x = 0 for all x, y ∈ P .

A partial ordering ” � ” with respect to P is defined by x � y ⇔ y − x ∈ P .
Also, we mean x ≺ y ⇔ x � y, x 6= y and x ≺≺ y ⇔ y−x ∈ E+, where E+ denotes
the interior of P ; that is E+ = {c ∈ E : 0 ≺≺ c}. The cone P is called normal if
there is a number K > 0 such that for all x, y ∈ E, 0 � x � y implies ‖x‖ ≤ K ‖y‖.
The least positive number satisfying this inequality is called the normal constant of
P .

In this study, we always suppose that E is a Banach space, P is a cone in E

with E+ 6= Ø and ” � ” is a partial ordering with respect to P .

Definition 1.4. ([17]) Let X be a non-empty set. Suppose the mapping d : X ×
X → E satisfies

1. 0 � d (x, y) for all x, y ∈ X and d (x, y) = 0 if and only if x = y,
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2. d (x, y) = d (y, x) for all x, y ∈ X ,

3. d (x, y) � d (x, z) + d (y, z) for all x, y, z ∈ X .

Then d is called a cone metric on X , (X, d) is called a cone metric space.

Definition 1.5. ([11]) A sequence (xn) in a cone metric space (X, d) is said to be
convergent to x ∈ X if for every c ∈ E+ there exists a natural number N such that
d (xn, x) ≺≺ c for all n > N .

Definition 1.6. ([13]) A sequence (xn) in a cone metric space (X, d) is said to be
statistically convergent to x ∈ X if for every c ∈ E+

lim
n→∞

1

n
|{k ≤ n : d (xk, x) ≺≺ c}| = 1.

It is denoted by st- lim
n→∞

xn = x.

Definition 1.7. ([13]) A sequence (xn) in a cone metric space (X, d) is said to be
statistically bounded if there exist α ∈ X and c ∈ E+ such that

lim
n→∞

1

n
|{k ≤ n : d (xk, α) � c}| = 1.

Definition 1.8. ([15]) Let s = (sn) be a sequence of positive real numbers such
that

(1.1) lim
n
sn = ∞ and lim sup

n

sn

n
< ∞.

The quasi density of a subset K ⊂ N with respect to the sequence s = (sn) is
defined by

δs (K) = lim
n→∞

1

sn
|{k ≤ n : k ∈ K}| .

A sequence (xn) in R is called quasi-statistical convergent to x provided that for
every ε > 0 the set Kε = {k ∈ N : |xk − x| ≥ ε} has quasi-density zero. It is denoted
by stq-limn→∞ xn = x.

Throughout the study, we assume that s = (sn) and t = (tn) are sequences of
positive real numbers satisfying the conditions in (1.1).

Definition 1.9. ([15]) A sequence (xn) in R is said to be strongly quasi-summable
to x ∈ R if

lim
n→∞

1

sn

n
∑

k=1

|xk − x| = 0.
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2. Main Results

In this section, we first define the quasi-statistical convergence of a sequence in
a cone metric space. Later, we give some results related to this concept.

Definition 2.1. A sequence (xn) in a cone metric space (X, d) is said to be quasi-
statistical convergent to a point x ∈ X if for every c ∈ E+ we have

lim
n→∞

1

sn
|{k ≤ n : d(xk, x) ≺≺ c}| = 1

or equivalently

lim
n→∞

1

sn
|{k ≤ n : c � d(xk, x)}| = 0.

We denote it by stq − lim
n→∞

xn = x. If we take (sn) = (n), then we obtain that (xn)

is statistical convergent.

Theorem 2.1. Let (xn) be a sequence in a cone metric space (X, d). If (xn) is
convergent to x ∈ X, then it is quasi-statistical convergent to x.

Proof. Let lim
n→∞

xn = x. Then, for every c ∈ E+ there exists n0 ∈ N such that

d (xn, x) ≺≺ c for every n > n0. It follows that

1

sn
|{k ≤ n : c � d (xk, x)}| ≤

n0

sn

which means limn→∞
1
sn

|{k ≤ n : c � d (xk, x)}| = 0. Hence, (xn) is quasi-statistical
convergent to x. .

The converse of the previous theorem does not hold which can be seen from the
following example.

Example 2.1. Let E = R, P = [0,∞) and X = R. Consider X with usual metric
d(x, y) = |x− y|. Let sn = n

3/4. Define a sequence (xn) as follows:

xn =

{

0, n 6= m
2 for all m ∈ N

n, n = m
2 for some m ∈ N

It is obvious that (xn) is not convergent. On the other hand, it is quasi-statistical conver-
gent to 0. Indeed, given any c ∈ E

+, we obtain the inclusion

{n : c � d (xn, 0)} ⊂ {n : n = m
2
,m ∈ N}.

Hence we conclude that

lim
n→∞

1

sn
|{k ≤ n : c � d (xk, 0)}| ≤ lim

n→∞

1

sn

∣

∣

{

k ≤ n : k = m
2
,m ∈ N

}∣

∣

= lim
n→∞

1

sn

[∣

∣

√
n
∣

∣

]

= 0.
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Theorem 2.2. Let (xn) be a sequence in a cone metric space (X, d). If (xn) is
quasi-statistical convergent to x ∈ X, then it is statistical convergent to x.

Proof. Let stq- lim
n→∞

xn = x and M = sup
n

sn
n
. Then, for every c ∈ E+, we have

lim
n→∞

1
sn

|{k ≤ n : c � d (xk, x)}| = 0. The statistical convergence of the sequence

(xn) follows from the following inequality

1

n
|{k ≤ n : c � d (xk, x)}| ≤

M

sn
|{k ≤ n : c � d (xk, x)}| .

.

The converse of the previous theorem does not hold which can be seen from the
following example.

Example 2.2. LetX = R, E = R
2, P = {(x, y) ∈ E : x, y ≥ 0} , X = R and d : X×X →

E be the cone metric defined by d (x, y) = (|x− y| , α |x− y|), where α > 0 is a constant.

Assume that the sequence (sn) satisfies lim
n

√

n

sn
= ∞. We can choose a subsequence

(

snp

)

such that snp > 1 for each p ∈ N. Consider the sequence (xn) defined by

xn =







sn, n = m
2and sn ∈

{

snp : p ∈ N
}

1, n = m
2 and sn /∈

{

snp : p ∈ N
}

0, otherwise.
(m ∈ N)

Then, we have

d (xn, 0) =







(sn, αsn) , n = m
2 and sn ∈

{

snp : p ∈ N
}

(1, α) , n = m
2 and sn /∈

{

snp : p ∈ N
}

(0, 0) , otherwise.
(m ∈ N)

It is easy to see that (xn) is statistical convergent to zero. Now, we show that (xn) is not
quasi-statistical convergent to zero; that is,

lim
n→∞

1

sn
|{k ≤ n : c � d (xk, 0)}| 6= 0.

For c = (1, α) ∈ E
+ and n ∈ N, we have

|{k ≤ n : c � d (xk, 0)}| =
∣

∣

{

k ≤ n : k = m
2
, m ∈ N

}∣

∣

and

(2.1)
1

sn
|{k ≤ n : c � d (xk, 0)}| =

1

sn

(√
n− rn

)

,

where 0 ≤ rn < 1. If we take the limit of (2.1) as n → ∞, we conclude that (xn) is not
quasi-statistical convergent to zero.

Consequently, we have the following diagram:

convergent ⇒ quasi-statistical convergent ⇒ statistical convergent
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Theorem 2.3. Assume that

(2.2) h = inf
n

sn

n
> 0.

If a sequence (xn) in a cone metric space (X, d) is statistical convergent to x ∈ X,
then it is quasi-statistical convergent to x.

Proof. The proof follows from the inequality

1

n
|{k ≤ n : c � d (xk, L)}| ≥ h

1

sn
|{k ≤ n : c � d (xk, L)}| .

.

Corollary 2.1. Assume that the sequence (sn) satisfies (2.2). Then, (xn) is sta-
tistical convergent to x if and only if (xn) is quasi-statistical convergent to x.

Theorem 2.4. If (xn) is quasi-statistical convergent to x in a cone metric space
(X, d), then there is a sequence (yn) which is convergent to x and quasi-statistical
null sequence (zn) such that xn = yn + zn for all n ∈ N.

Proof. Let stq − lim
n→∞

xn = x. If the terms of the sequence (xn) is constant

after a certain stage, then the proof is trivial. Otherwise given any c ∈ E+, we
can find an increasing sequence of positive integers (Nj) such that N0 = 0 and
1
sn

∣

∣

∣

{

k ≤ n : e
j
� d (xk, x)

}∣

∣

∣
< 1

j
for all n > Nj (j = 1, 2, ...). Let us define (yk) and

(zk) as follows:

zk = 0 and yk = xk; if N0 < k ≤ N1,

zk = 0 and yk = xk; if d (xk, x) ≺≺ e
j
, Nj < k ≤ Nj+1,

zk = xk − x and yk = x; if e
j
� d (xk, x) , Nj < k ≤ Nj+1.

It is easy to see that xk = yk+zk for all k ∈ N. Now, we show that (yk) is convergent
to x. Given any c ∈ E+, choose j ∈ N such that e

j
≺≺ c.

If
e

j
� d (xk, x) for k > Nj, then d (yk, x) = d(x, x) = 0.

If d (xk, x) ≺≺ e
j
for k > Nj , then d (yk, x) = d (xk, x) ≺≺ e

j
≺≺ c. Hence, it follows

that lim
k→∞

yk = x.

To show that (zk) is quasi-statistical null sequence; it is enough to prove that

lim
n→∞

1

sn
|{k ≤ n : zk 6= 0}| = 0.

For c ∈ E+, it is clear that the inclusion

{k ≤ n : c � d (zk, 0)} ⊆ {k ≤ n : zk 6= 0}
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holds for all n ∈ N. Thus, we have

|{k ≤ n : c � d (zk, 0)}| ≤ |{k ≤ n : zk 6= 0}| .

Given any δ > 0 there is a j ∈ N such that 1
j
< δ. If Nj < k ≤ Nj+1, we have

|{k ≤ n : zk 6= 0}| =

∣

∣

∣

∣

{

k ≤ n :
e

j
� d (xk, x)

}
∣

∣

∣

∣

.

Thus, we have

1

sn
|{k ≤ n : zk 6= 0}| ≤

1

sn

∣

∣

∣

{

k ≤ n :
e

v
� d (xk, x)

}∣

∣

∣
<

1

v
<

1

j
< δ

for Nv < k ≤ Nv+1 and v > j which concludes the proof. .

The following result is an immediate consequence of the previous theorem.

Corollary 2.2. If (xn) is quasi-statistical convergent to x, then it has a subse-
quence (yn) which is convergent to x.

Definition 2.2. A sequence (xn) in a cone metric space (X, d) is said to be quasi-
statistical Cauchy if for every c ∈ E+ there exists n0 ∈ N such that

lim
n→∞

1

sn
|{k ≤ n : d (xk, xn0

) ≺≺ c}| = 1

or equivalently

lim
n→∞

1

sn
|{k ≤ n : c � d(xk, xn0

)}| = 0.

Theorem 2.5. Let (xn) be a sequence in a cone metric space (X, d). If (xn) is a
Cauchy sequence, then it is a quasi-statistical Cauchy sequence.

Proof. Let (xn) be a Cauchy sequence. Then, for every c ∈ E+ there exists
n0 ∈ N such that d (xn, xm) ≺≺ c for every n,m ≥ n0. It follows that

1

sn
|{k ≤ n : c � d (xk, xn0

)}| ≤
n0

sn

which means limn→∞
1
sn

|{k ≤ n : c � d (xk, xn0
)}| = 0. Hence, (xn) is quasi-statistical

Cauchy. .

The sequence given in Example 2.1 is also a quasi-statistical Cauchy sequence
which is not a Cauchy sequence.

Theorem 2.6. Let (xn) be a sequence in a cone metric space (X, d). If (xn) is a
quasi-statistical Cauchy sequence, then it is a statistical Cauchy sequence.
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Proof. Let (xn) be a quasi-statistical Cauchy sequence. Then, for every c ∈ E+

there exists n0 ∈ N such that lim
n→∞

1
sn

|{k ≤ n : c � d (xk, xn0
)}| = 0. Thus we have

1

n
|{k ≤ n : c � d (xk, xn0

)}| =
sn

n

1

sn
|{k ≤ n : c � d (xk, xn0

)}|

≤ K
1

sn
|{k ≤ n : c � d (xk, xn0

)}| ,

where K = supn
sn
n
. This implies that (xn) is a statistical Cauchy sequence in

X . .

Consequently, we have the following diagram:

Cauchy ⇒ quasi-statistical Cauchy ⇒ statistical Cauchy

Definition 2.3. A sequence (xn) in a cone metric space (X, d) is said to be quasi-
statistical bounded if there exist α ∈ X and c ∈ E+ such that

lim
n→∞

1

sn
|{k ≤ n : c � d (xk, α)}| = 0.

Theorem 2.7. If (xn) is quasi-statistical bounded sequence in a cone metric space
(X, d), then it is statistical bounded.

Proof. Let (xn) be a quasi-statistical bounded sequence, α ∈ X andH = sup
n

sn
n
.

Since the inequality

1

n
|{k ≤ n : c � d (xk, α)}| ≤

H

sn
|{k ≤ n : c � d (xk, α)}|

holds, the proof follows immediately. .

Lemma 2.1. Let P be a normal cone with normal constant K. The following
statements hold for sequences (xn) and (yn) in a cone metric space (X, d).

1. stq − lim
n→∞

xn = x ⇔ stq − lim
n→∞

d (xn, x) = 0

2. If stq− lim
n→∞

xn = x and stq− lim
n→∞

yn = y, then stq− lim
n→∞

d (xn, yn) = d (x, y) .

Proof. (1) Suppose that stq − lim
n→∞

xn = x. Then, for every c ∈ E+, we have

lim
n→∞

1

sn
|{k ≤ n : d (xk, x) ≺≺ c}| = 1.

Given any ε > 0, choose c ∈ E+ such that K ‖c‖ < ε. Suppose that k ∈ N satisfies
d (xk, x) ≺≺ c. Since P is a normal cone with normal constant K, we can write

‖d (xk, x)‖ ≤ K ‖c‖ < ε.
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Consequently, we obtain

1

sn
|{k ≤ n : d (xk, x) ≺≺ c}| ≤

1

sn
|{k ≤ n : ‖d (xk, x)‖ < ε}| .

Hence, we conclude that

lim
n→∞

1

sn
|{k ≤ n : ‖d (xk, x)‖ < ε}| = 1

which means stq − lim
n→∞

d (xn, x) = 0.

Conversely, suppose that stq − lim
n→∞

d (xn, x) = 0. Then for every ε > 0, we have

lim
n→∞

1

sn
|{k ≤ n : ‖d (xk, x)‖ < ε}| = 1.

Given any c ∈ E+, we can find an ε > 0 such that c − a ∈ E+ for all a ∈ E

with ‖a‖ < ε. Hence, if we choose k ∈ N such that ‖d(xk, x)‖ < ε, then we
obtain d(xk, x) ≺≺ c which implies that the inclusion {k : ‖d(xk, x)‖ < ε} ⊂ {k :
d(xk, x) ≺≺ c} holds. It follows that

1

sn
|{k ≤ n : ‖d (xk, x)‖ < ε}| ≤

1

sn
|{k ≤ n : d (xk, x) ≺≺ c}| .

Thus, we conclude that lim
n→∞

1
sn

|{k ≤ n : d (xk, x) ≺≺ c}| = 1 and so stq− lim
n→∞

xn =
x.

(2) Suppose stq − lim
n→∞

xn = x and stq − lim
n→∞

yn = y. Given any ε > 0, choose

c ∈ E+ such that ‖c‖ < ε
4K+2 . For k ∈ N with d(xk, x) ≺≺ c and d(yk, y) ≺≺ c,

we have ‖d(xk, yk) − d(x, y)‖ < ε from the proof of Lemma 5 in [11]. Hence, the
inclusion

{k : ‖d(xk, yk)− d(x, y)‖ ≥ ε} ⊂ {k : c � d(xk, x)} ∪ {k : c � d(yk, y)}

holds. It follows that

lim
n→∞

1

sn
|{k ≤ n : ‖d(xk, yk)− d(x, y)‖ ≥ ε}| = 0

which means that stq − lim
n→∞

d (xn, yn) = d (x, y) . .

Remark 2.1. Note that P does not need to be a normal cone to prove the sufficiency
condition in 1 of Lemma 2.1. That is; if stq − lim

n→∞

d (xn, x) = 0 in a cone metric space

(X, d), then we have stq − lim
n→∞

xn = x.

Theorem 2.8. Let (xn) and (yn) be two sequences in a cone metric space (X, d).
If stq− lim

n→∞
yn = y and d (xn, y) � d (yn, y) for every n ∈ N, then stq− lim

n→∞
xn = y.
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Proof. Suppose that stq− lim
n→∞

yn = y and d (xn, y) � d (yn, y) for every n ∈ N.

The proof follows from the fact that

1

sn
|{k ≤ n : d (yk, y) � c}| ≤

1

sn
|{k ≤ n : d (xk, y) � c}| .

.

Definition 2.4. A sequence (xn) in a cone metric space (X, d) is said to be
strongly quasi-summable to x, if

lim
n→∞

1

sn

n
∑

k=1

‖d (xk, x)‖ = 0

holds.

We will use Ns
q and Ss

q for the set of all strongly quasi-summable sequences and
all quasi-statistical convergent sequences, respectively. That is,

Ns
q =

{

(xn) : lim
n→∞

1

sn

n
∑

k=1

‖d (xk, x)‖ = 0 for some x

}

and

Ss
q =

{

(xn) : lim
n→∞

1

sn
|{k ≤ n : c � d(xk, x)}| = 0 for some x ∈ R and for all c ∈ E+

}

If we take t = (tn) instead of s = (sn), we will write N t
q and St

q instead of Ns
q and

Ss
q , respectively.

Theorem 2.9. Let sn ≤ tn for every n ∈ N. If a sequence (xn) in a cone metric
space (X, d) is quasi-statistical convergent to x with respect to s = (sn), then (xn)
sequence is quasi-statistical convergent to x with respect to t = (tn).

Proof. Suppose that for every c ∈ E+ we have lim
n→∞

1
sn

|{k ≤ n : c � d (xk, x)}| =

0. Since sn ≤ tn holds for every n ∈ N, we have the inequality

1

sn
|{k ≤ n : c � d (xk, x)}| ≥

1

tn
|{k ≤ n : c � d (xk, x)}| .

Letting n → ∞ in both sides of the above inequality, we obtain that the sequence
(xn) is quasi-statistical convergent to x with respect to t = (tn). .

Now, we consider the sequence (xn) in Example 2.2 and if we take tn = n and
sn = n1/4, then we observe that the sequence (xn) is quasi-statistical convergent
to zero with respect to the sequence t = (tn) but the sequence (xn) is not quasi-
statistical convergent to zero with respect to the sequence s = (sn). Thus, the
following result can given as a consequence of this theorem.
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Corollary 2.3. Let sn ≤ tn for every n ∈ N. Then, the inclusion Ss
q ⊂ St

q strictly
holds.

Theorem 2.10. Let sn ≤ tn for every n ∈ N. If a sequence (xn) in a cone metric
space (X, d) is strongly quasi-summable to x with respect to s = (sn), then the
sequence (xn) is quasi-statistical convergent to x with respect to t = (tn).

Proof. Let lim
n→∞

1
sn

∑

k=1

‖d (xk, x)‖ = 0. By using the fact that

n
∑

k=1

‖d (xk, x)‖ =

n
∑

k=1
‖d(xk,x)‖≥ε

‖d (xk, x)‖+

n
∑

k=1
‖d(xk,x)‖<ε

‖d (xk, x)‖ ≥ ε |{k ≤ n : ‖d (xk, x)‖ ≥ ε}|

and sn ≤ tn for every n ∈ N, we obtain

1

ε

1

sn

n
∑

k=1

‖d (xk, x)‖ ≥
1

tn
|{k ≤ n : ‖d (xk, x)‖ ≥ ε}| .

Since the limit of the left side equals to zero, we have stq − lim
n→∞

d (xn, x) = 0 with

respect to t = (tn). From Remark 2.1, we conclude that stq − lim
n→∞

xn = x with

respect to t = (tn). .

The converse of this theorem is not always true.

Example 2.3. Let E = R
2, P = {(x, y) ∈ E : x, y ≥ 0} , X = R and d : X ×X → E be

the cone metric defined by d (x, y) = (|x− y| , |x− y|). Consider the sequence (xn) defined
by

xn =

{

1, n = m
2

0, n 6= m
2 m ∈ N

Let (sn) =
(

n
1

4

)

and (tn) = (n). We have

d(xn, 0) =

{

(1, 1), n = m
2

(0, 0), n 6= m
2 m ∈ N

Hence, given any c ∈ E
+ and n ∈ N, we obtain

1

tn
|{k ≤ n : d (xk, 0) ≺≺ c}| ≥

1

tn

∣

∣

{

k ≤ n : n 6= m
2
}∣

∣ .

Since the limit of the right side equals 1, we conclude that the sequence (xn) is quasi-
statistical convergent to zero with respect to t = (tn).

Now, we will show that the sequence (xn) is not strongly quasi-summable to zero with
respect to s = (sn). It is clear that

‖d (xk, 0)‖ =

{ √

2, k = m
2

0, k 6= m
2 m ∈ N
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Then, we obtain that

n
∑

k=1

‖d (xk, 0)‖ = 0
∣

∣

{

k ≤ n : k 6= m
2 for all m ∈ N

}∣

∣

+
√

2
∣

∣

{

k ≤ n : k = m
2 for some m ∈ N

}∣

∣

= 0.
(

n−

[∣

∣

√
n
∣

∣

])

+
√

2
([∣

∣

√
n
∣

∣

])

.

and so

lim
n→∞

1

sn

n
∑

k=1

‖d (xk, 0)‖ = lim
n→∞

1

sn

√

2
([∣

∣

√
n
∣

∣

])

= ∞.

Consequently, we find that

lim
n→∞

1

sn

n
∑

k=1

‖d (xk, 0)‖ 6= 0.

which means the sequence (xn) is not strongly quasi-summable to zero with respect to
s = (sn).

Corollary 2.4. Let sn ≤ tn for every n ∈ N. The inclusion Ns
q ⊂ St

q, strictly
holds.

Theorem 2.11. Let sn ≤ tn for every n ∈ N. If a sequence (xn) in a cone metric
space (X, d) is strongly quasi-summable to x with respect to s = (sn), then the
sequence (xn) is strongly quasi-summable sequence to x with respect to t = (tn).

Proof. Suppose that the sequence (xn) is strongly quasi-summable to x with
respect to s = (sn). Then, we have

lim
n→∞

1

sn

n
∑

k=1

‖d (xk, x)‖ = 0.

From the fact that sn ≤ tn for every n ∈ N, we have the following inequality

1

sn

n
∑

k=1

‖d (xk, x)‖ ≥
1

tn

n
∑

k=1

‖d (xk, x)‖ .

Hence, we conclude that lim
n→∞

1
tn

n
∑

k=1

‖d (xk, x)‖ = 0. .

But the converse of this theorem is not always true. To observe this, consider
the sequences (xn), s = (sn) and t = (tn) defined in Example 2.3. It can be shown
that (xn) ∈ N t

q and (xn) /∈ Ns
q . Thus, the following corollary can be given as a

result of this theorem.

Corollary 2.5. Let sn ≤ tn for every n ∈ N. The inclusion Ns
q ⊂ N t

q , strictly
holds.
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