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HERIMITIAN SOLUTIONS TO THE EQUATION AXA∗ + BY B∗ = C,
FOR HILBERT SPACE OPERATORS

Amina Boussaid and Farida Lombarkia

Faculty of Mathematics and informatics, Department of Mathematics,

University of Batna 2, 05078, Batna, Algeria

Abstract. In this paper, by using generalized inverses we have given some necessary
and sufficient conditions for the existence of solutions and Hermitian solutions to some
operator equations, and derived a new representation of the general solutions to these
operator equations. As a consequence, we have obtained a well-known result of Dajić
and Koliha.
Keywords: Hilbert space, operator equations, inner inverse, Hermitian solution.

1. Introduction and basic definitions

Let H and K be infinite complex Hilbert spaces, and B(H,K) the set of all
bounded linear operators from H to K. Throughout this paper, the range and
the null space of A ∈ B(H,K) are denoted by R(A) and N (A) respectively. An
operator B ∈ B(K,H) is said to be the inner inverse of A ∈ B(H,K) if it satisfies
the equation ABA = A, we denote the inner inverse by A−. An operator A is called
regular if A− exists. It is well known that A ∈ B(H,K) is regular if and only if A
has closed range. There are many papers in which the basic aim is to find necessary
and sufficient conditions for the existence of a solution or Hermitian solution to
some matrix or operator equations using generalized inverses. In [15, 16, 18], Mitra
and Navarra et al. established necessary and sufficient conditions for the existence
of a common solution and gave a representation of the general common solution to
the pair of matrix equations

(1.1) A1XB1 = C1 and A2XB2 = C2.

Received November 11, 2019; accepted January 7, 2021.
Corresponding Author: Amina Boussaid, Faculty of Mathematics and informatics, Department of
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2 A. Boussaid and F. Lombarkia

In [23], Wang considered the same problem for matrices over regular rings with
identity. Furthermore, in [13, 16] Khatri and Mitra determined the conditions
for the existence of a Hermitian solution and gave the expression of the general
Hermitian solution to the matrix equation

(1.2) AXB = C,

In [8] J. Groß gave the general Hermitian solution to matrix equation (1.2), where
B = A∗.

Quaternion matrix equations and its general Hermitian solutions have attracted
more attention in recent years. The reason for this is a large number of applications
in control theory and many other fields, see [9, 10, 11, 12, 14, 24] and the references
therein. Among them, the matrix equation

(1.3) AXA∗ + BY B∗ = C,

has been studied by Chang and Wang in [1]. They used the generalized singular
value decomposition to find necessary and sufficient conditions for the existence of
real symmetric solutions. Also in [27, Corollary 3.1], Xu et al found necessary and
sufficient conditions for the equation (1.3) to have a Hermitian solution.

Recently several operator equations have been extended from matrices to infinite
dimensional Hilbert space, Banach space and Hilbert C∗-modules, see [3, 4, 21],
[6, 17, 22, 25, 26] and the references therein.

In this paper, our main objective is to give necessary and sufficient conditions for
the existence of a Hermitian solution to the operator equation AXA∗+BY B∗ = C.
After section one where several basic definitions are assembled, in section 2, we give
necessary and sufficient conditions for the existence of a common solution to the
operator equations

A1XB1 = C1 and A2XB2 = C2.

In section 3, we apply the result of section 2 to determine new necessary and suffi-
cient conditions for the existence of a Hermitian solution and give a representation
of the general Hermitian solution to the operator equation AXB = C. Finally,
we give some necessary and sufficient condition for the existence of a Hermitian
solution to the operator equation AXA∗ + BY B∗ = C.

2. Common solutions to the operator equations A1XB1 = C and
A2XB2 = C2

In this section, we give necessary and sufficient conditions for the existence of a
common solution to the pair of equations

A1XB1 = C1, A2XB2 = C2,

with A1, A2, B1, B2, C1 and C2 are linear bounded operators defined on Hilbert
spaces H, K, E, L, N and G. Before enouncing our main results, we recall the
following lemmas
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Lemma 2.1. [2] Let A,B ∈ B(H,K) are regular operators and C ∈ B(H,K).
Then the operator equation

AXB = C

has a solution if and only if AA−CB−B = C, or equivalently

R(C) ⊂ R(A) and R(C∗) ⊂ R(B∗).

A representation of the general solution is

X = A−CB− + U −A−AUBB−,

where U ∈ B(K,H) is an arbitrary operator.

Lemma 2.2. [2] Let A,B ∈ B(H,K) are regular operators and C,D ∈ B(H,K).
Then the pair of operators equations

AX = C and XB = D

has a common solution if and only if

AA−C = C, DB−B = D and AD = CB,

or equivalently

R(C) ⊂ R(A), R(D∗) ⊂ R(B∗) and AD = CB.

A representation of the general solution is

X = A−C + DB− −A−ADB + (IH −A−A)V (IH −BB−),

where V ∈ B(H) is an arbitrary operator.

The following two lemmas can be deduced from a result of Patŕicio and Puystjens
[20] originally formulated for matrix with entries in an associative ring. A simple
modification shows that it applies equally well to Hilbert space operators.

Lemma 2.3. [20] Let A ∈ B(H,K) and B ∈ B(E,K) be regular operators. Then(
A B

)
∈ B(H ×E,K) is regular if and only if S = (IK −AA−)B is regular. In

this case, the inner inverse of
(
A B

)
is given by

(
A B

)−
=

(
A− −A−BS−(IK −AA−)

S−(IK −AA−)

)
.

Lemma 2.4. [3] Let A ∈ B(H,K) and B ∈ B(H,E) be regular operators. Then
the regularity of any one of the following operators implies the regularity of the re-
maining three operators
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D = B(IH −A−A), M = A(IH −B−B),

(
A
B

)
and

(
B
A

)
.

In this case, the inner inverse of

(
A
B

)
is given by

(
A
B

)−
=
(

(IH −B−B)M− B− − (IH −B−B)M−AB−
)
.

Lemma 2.5. [2] Suppose that A1 ∈ B(H,K), A2 ∈ B(H,E), B1 ∈ B(L,G), B2 ∈
B(N,G), S1 = A2(IH − A−1 A1) and M1 = (IG − B1B

−
1 )B2 are regular operators.

Then
T1 = (IE − S1S

−
1 )A2A

−
1 and D1 = B−1 B2(IN −M−1 M1),

are regular with inner inverses T−1 = A1A
−
2 and D−1 = B−2 B1.

In the following theorem, we give necessary and sufficient conditions for the existence
of a common solution of the operator equations

A1XB1 = C1, A2XB2 = C2

Theorem 2.1. Suppose that A1 ∈ B(H,K), A2 ∈ B(H,E), B1 ∈ B(L,G), B2 ∈
B(N,G), M1 = (IG − B1B

−
1 )B2 and S1 = A2(IH − A−1 A1) are regular operators

and C1 ∈ B(L,K), C2 ∈ B(N,E). Then the following statements are equivalent

1. The pair of equations (1.1) have a common solution X ∈ B(G,H).

2. There exists two operators U ∈ B(N,K) and V ∈ B(L,E), such that the
operator equation AXB = C is solvable, where

A =

(
A1

A2

)
, B =

(
B1 B2

)
, C =

(
C1 U
V C2

)
.

3. For i = 1, 2, R(Ci) ⊂ R(Ai), R(C∗i ) ⊂ R(B∗i ) and

T1C1D1 = T2C2D2,

where T1 = (IE−S1S
−
1 )A2A

−
1 , T2 = (IE−S1S

−
1 ), D1 = B−1 B2(IN−M−1 M1)

and D2 = (IN −M−1 M1).

Proof.

(1)⇔ (2) The equivalence is easily established.

(2) ⇒ (3) According to Lemma 2.1, the operator equation AXB = C has a
solution if and only if

R(C) ⊂ R(A) and R(C∗) ⊂ R(B∗),
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then, we deduce that

(2.1) for i = 1, 2, R(Ci) ⊂ R(Ai) and R(C∗i ) ⊂ R(B∗i ).

On the other hand, we have

T1C1D1 = (IE − S1S
−
1 )A2A

−
1 C1B

−
1 B2(IN −M−1 M1)

(2.2) = (IE − S1S
−
1 )A2A

−
1 A1X0B1B

−
1 B2(IN −M−1 M1),

where X0 is the common solution to the pair of equations (1.1).
Let

S1 = A2(IH −A−1 A1) and M1 = (IG −B1B
−
1 )B2.

This implies that

(2.3) A2A
−
1 A1 = A2 − S1 and B1B

−
1 B2 = B2 −M1.

We insert (2.3) in (2.2) to obtain

(2.4) T1C1D1 = T2C2D2.

From (2.1) and (2.4), we deduce that (2)⇒ (3).

Conversely, since
T1C1D1 = T2C2D2.

Then
R(T2C2) ⊂ R(T1) and R(D∗1C

∗
1 ) ⊂ R(D∗2).

By applying Lemma 2.2, there exist U ∈ B(N,K) which is the common solution to
the pair of equations

(2.5)

{
T1U = T2C2

UD2 = C1D1,

given by

(2.6) U = C1D1 + T−1 (IE − S1S
−
1 )C2M

−
1 M1 + (A1A

−
1 − T−1 T1)ZM−1 M1,

where Z ∈ B(N,K) is an arbitrary operator.
On other hand, since

T1C1D1 = T2C2D2.

Then
R(T1C1) ⊂ R(T2) and R(D∗2C

∗
2 ) ⊂ R(D∗1).

It follows from Lemma 2.2 that there exist V ∈ B(L,E) which is the common
solution to the pair of equations

(2.7)

{
T2V = T1C1

V D1 = C2D2,
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given by

(2.8) V = T1C1 + S1S
−
1 C2(IN −M−1 M1)D−1 + S1S

−
1 Z ′(B−1 B1 −D1D

−
1 ),

where Z ′ ∈ B(L,E) is an arbitrary operator.
Thus, there exists U ∈ B(N,K) and V ∈ B(L,E) solutions to the pair of equations
(2.5), (2.7) and as for i = 1, 2, we have AiA

−
i Ci = Ci and CiB

−
i Bi = Ci, we obtain

AA−CB−B =

=

(
A1A

−
1 C1B

−
1 B1 A1A

−
1 (C1D1 + UM−1 M1)

(T1C1 + S1S
−
1 V )B−1 B1 T1(C1D1 + UM−1 M1) + S1S

−
1 (V D1 + C2M1M

−
1

)
= C.

So that, the operator equation AXB = C is solvable and (3)⇒ (2).

Theorem 2.2. Suppose that A1 ∈ B(H,K), A2 ∈ B(H,E), B1 ∈ B(L,G), B2 ∈
B(N,G), M1 = (IG−B1B

−
1 )B2 and S1 = A2(IH−A−1 A1) are regular operators and

C1 ∈ B(L,K), C2 ∈ B(N,E), when any one of the conditions (2), (3) of Theorem
2.1 holds, a general common solution to the pair of equations (1.1) is given by

X = (A−1 C1 + (IH −A−1 A1)S−1 (V −A2A
−
1 C1))B−1 (IG −B2M

−
1 (IG −B1B

−
1 ))

+ (A−1 U + (IH −A−1 A1)S−1 (C2 −A2A
−
1 U))M−1 (IG −B1B

−
1 ) + F

− (A−1 A1 + (IH −A−1 A1)S−1 S1)F (B1B
−
1 + M1M

−
1 (IG −B1B

−
1 )),(2.9)

where F ∈ B(G,H) is an arbitrary operator and U , V are given by
U = C1B

−
1 B2(IN −M−1 M1) + A1A

−
2 (IE − S1S

−
1 )C2M

−
1 M1 + A1A

−
1 ZM−1 M1

−A1A
−
2 (IE − S1S

−
1 )A2A

−
1 ZM−1 M1,

and

V = (IE − S1S
−
1 )A2A

−
1 C1 + S1S

−
1 C2(IN −M−1 M1)B−2 B1 + S1S

−
1 Z

′
B−1 B1

−S1S
−
1 Z

′
B−1 B2(IN −M−1 M1)B−2 B1,

where Z ∈ B(N,K) and Z ′ ∈ B(L,E) are arbitrary operators.

Proof. From Theorem 2.1, we get that the pair of equations (1.1) has a common
solution equivalently the two conditions (2) and (3) holds.
On the other hand, since the pair of equations (1.1) is equivalent to

(2.10)

(
A1

A2

)
X
(
B1 B2

)
=

(
C1 U
V C2

)
.

According to Lemma 2.3 and Lemma 2.4, we have(
A1

A2

)
∈ B(H,K × E) and

(
B1 B2

)
∈ B(L×N,G)
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are regular with inner inverses

(2.11)

(
A1

A2

)−
=
(

(IE −A−2 A2)S−1 A−2 − (IE −A−2 A2)S−1 A1A
−
2

)
,

and

(2.12)
(
B1 B2

)−
=

(
B−1 −B−1 B2M

−
1 (IG −B1B

−
1 )

M−1 (IG −B1B
−
1 )

)
,

respectively.
Using Lemma 2.1, we deduce that the general solution of (2.10) is given by

X =

(
A1

A2

)−(
C1 U
V C2

)(
B1 B2

)−
+(2.13)

+F −
(

A1

A2

)−(
A1

A2

)
F
(
B1 B2

) (
B1 B2

)−
.

By substituting (2.11) and (2.12) in (2.13), we get the solution X as defined in
(2.9) such that U , V are given in (2.6) and (2.8) respectively and F ∈ B(G,H) is
an arbitrary operator.

3. Hermitian solutions to the operator equations AXB = C and
AXA∗ + BY B∗ = C

Based on Theorem 2.1 and Theorem 2.2, in this section we give necessary and
sufficient conditions for the existence of Hermitian solutions to the operator equa-
tions

AXB = C and AXA∗ + BY B∗ = C

and obtain the general Hermitian solution to those operator equations respectively.
Before enouncing our main results we have the following lemma

Lemma 3.1. Let A ∈ B(H,K) and B ∈ B(K,H), such that A, B, S1 = B∗(IH −
A−A) and M1 = (IH −BB−)A∗ are regular. Then the operator equation

AXB = C,

has a Hermitian solution if and only if the pair of operator equations

(3.1) AXB = C and B∗XA∗ = C∗

has a common solution, a representation of the general Hermitian solution to AXB =
C is of the form

XH =
X + X∗

2
,

where X is the representation of the general common solution to the equations (3.1).
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Proof. From Theorem 2.1 the pair of operator equations (3.1) has a common solu-
tion if and only if

R(C) ⊂ R(A) and R(C∗) ⊂ R(B∗),

and

(IK − S1S
−
1 )B∗A−CB−A∗(IK −M−1 M1) = (IK − S1S

−
1 )C∗(IK −M−1 M1).

A representation of the general common solution to equations (3.1) is given by (2.9)
in Theorem 2.2, where A1 = A, B1 = B, C1 = C, A2 = B∗, B2 = A∗ and C2 = C∗.
Clearly XH is a Hermitian solution to (1.2).

From the above proof and Theorem 2.2, we obtain the following corollary.

Corollary 3.1. Let A ∈ B(H,K), B ∈ B(K,H), M1 = (IH −BB−)A∗ and
S1 = B∗(IH − A−A) are regular operators and C ∈ B(K). Then the operator
equation

AXB = C,

has a Hermitian solution if and only if

1. R(C) ⊂ R(A) and R(C∗) ⊂ R(B∗)

2. (IK − S1S
−
1 )B∗A−CB−A∗(IK −M−1 M1) = (IK − S1S

−
1 )C∗(IK −M−1 M1).

In this case, a representation of the general Hermitian solution is of the form

XH =
X + X∗

2
,

where

X = (A−C + (IH −A−A)S−1 (V −B∗A−C))B−(IH −A∗M−1 (IH −BB−))

+(A−U + (IH −A−A)S−1 (C∗ −B∗A−U))M−1 (IH −BB−) + F

− (A−A + (IH −A−A)S−1 S1)F (BB− + M1M
−
1 (IH −BB−),(3.2)

where F ∈ B(H) is an arbitrary operator and U , V are given by
U = CB−A∗(IK −M−1 M1) + A(B∗)−(IK − S1S

−
1 )C∗M−1 M1 + AA−ZM−1 M1

−A(B∗)−(IK − S1S
−
1 )B∗A−ZM−1 M1

and

V = (IK − S1S
−
1 )B∗A−C + S1S

−
1 C∗(IK −M−1 M1)(A∗)−B + S1S

−
1 Z

′
B−B

−S1S
−
1 Z

′
B−A∗(IK −M−1 M1)(A∗)−B,

where Z,Z
′ ∈ B(K) are arbitrary operators.
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Corollary 3.2. Let A ∈ B(H,K), C ∈ B(K) such that A is regular and C∗ = C.
Then the operator equation

AXA∗ = C

has a Hermitian solution X ∈ B(H) if and only if

R(C) ⊂ R(A)

In this case, a representation of the general Hermitian solution is

(3.3) XH = A−C(A−)∗ + F −A−AF (A−A)∗,

where F ∈ B(H) is an arbitrary Hermitian operator.

Proof. We put B = A∗ in Corollary 3.1 we get the result.

As a consequence of Corollary 3.1 we obtain the well-known Theorem of Alegra
Dajić and J.J. Koliha [3, Theorem 3.1].

Corollary 3.3. [3, Theorem 3.1] Let A,C ∈ B(H,K) such that A is a regular
operator. Then the operator equation

AX = C

has a Hermitian solution X ∈ B(H) if and only if

AA−C = C and AC∗ is Hermitian.

The general Hermitian solution is of the form

XH = A−C + (IH −A−A)(A−C)∗ + (IH −A−A)Z ′(IH −A−A)∗,

where Z ′ ∈ B(H) is an arbitrary Hermitian operator.

Proof. By applying Corollary 3.1, the operator equation AX = C has a Hermitian
solution if and only if

R(C) ⊂ R(A),

which is equivalent to
AA−C = C,

and
(IH − IH + A−A)A−CA∗ = (IH − IH + A−A)C∗,

this implies that
CA∗ = AC∗.

Hence, AC∗ is Hermitian. In this case,

X = [A−C + (IH −A−A)(A−C + (IH −A−A)C∗(A∗)− +

+ (IH −A−A)Z ′(IH −A−A)∗ −A−C)],

= A−C + (IH −A−A)(A−C)∗ + (IH −A−A)Z ′(IH −A−A)∗.
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It follows that,

XH =
X + X∗

2
,

= A−C + (IH −A−A)(A−C)∗ + (IH −A−A)Z ′(IH −A−A)∗.

Theorem 3.1. Let A,B ∈ B(H,K) and A1 = (IK −AA−)B, C1 = (IK −AA−)C
and S2 = B(IH − A−1 A1) be all regular and C ∈ B(K) is Hermitian. Then the
operator equation

AXA∗ + BY B∗ = C,

has a Hermitian solution if and only if

1. A1A
−
1 (IK −AA−)C(B∗)−B∗ = (IK −AA−)C

2. (IK − S2S
−
2 )[C −BA−1 (IK −AA−)C(B∗)−B∗](IK − (A−)∗A∗) = 0.

In this case, a representation of the general Hermitian solution is of the form

(XH , YH) =

(
X + X∗

2
,
Y + Y ∗

2

)
,

where X and Y are given by
X = A−(C −BY B∗)(A∗)− + F −A−AF (A−A)∗

and
Y = A−1 (IK −AA−)C(B∗)−+

+(IH −A−1 A1)S−2 [V −BA−1 (IK −AA−)C](B∗)− + U
−[A−1 A1 + (IH −A−1 A1)S−2 S2]UB∗(B∗)−,

and

V = (IK − S2S
−
2 )BA−1 (IK −AA−)C + S2S

−
2 C(IK − (A−)∗A∗)(A∗1)−B∗

+ S2S
−
2 Z(B∗)−(IH −A∗1(A−1 )∗)B∗,

with F ∈ B(H), U ∈ B(H) and Z ∈ B(K) are arbitrary Hermitian operators.

Proof. The operator equation (1.3) is equivalent to

(3.4) AXA∗ = C −BY B∗.

Applying Corollary 3.2, the operator equation (3.4) has a Hermitian solution if and
only if

R(C −BY B∗) ⊂ R(A) ⇔ AA−(C −BY B∗) = (C −BY B∗),

⇔ (I −AA−)(C −BY B∗) = 0.(3.5)
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Then, (3.5) is equivalent to the operator equation

(3.6) A1Y B∗ = C1,

with A1 = (IK −AA−)B, and C1 = (IK −AA−)C.
From Corollary 3.1, the operator equation (3.6) has a Hermitian solution if and
only if

R(C1) ⊂ R(A1) ⇔ A1A
−
1 C1 = C1,

⇔ A1A
−
1 (IK −AA−)C = (IK −AA−)C,(3.7)

and

R(C∗1 ) ⊂ R(B) ⇔ C1(B∗)−B∗ = C1,

⇔ (IK −AA−)C(B∗)−B∗ = (IK −AA−)C.(3.8)

From (3.7) and (3.8), we get

A1A
−
1 (IK −AA−)C(B∗)−B∗ = (IK −AA−)C.

On the other hand, we have

(IK − S2S
−
2 )BA−1 (IK −AA−)C(B∗)−A∗1 = (IK − S2S2−)C(IK − (A−)∗A∗).

This implies that

(IK − S2S
−
2 )[C −BA−1 (IK −AA−)C(B∗)−B∗](IK − (A−)∗A∗) = 0.

A representation of the general Hermitian solution to the operator equation (3.6)
is of the form

YH =
Y + Y ∗

2
,

where Y is given by (3.2) in Corollary 3.1 such that A = A1, B = B∗ and C = C1

Y = A−1 (IK −AA−)C(B∗)− + (IH −A−1 A1)S−2 [V −BA−1 (IK −AA−)C](B∗)− +

+ U − [A−1 A1 + (IH −A−1 A1)S−2 S2]UB∗(B∗)−,

and

V = (IK − S2S
−
2 )BA−1 (IK −AA−)C + S2S

−
2 C(IK − (A−)∗A∗)(A∗1)−B∗ +

+S2S
−
2 Z(B∗)−(IH −A∗1(A−1 )∗)B∗,

with U ∈ B(H) and Z ∈ B(K) are arbitrary Hermitian operators.
We return to the operator equation

AXA∗ = C −BY B∗,

in order to find the Hermitian solution X.



12 A. Boussaid and F. Lombarkia

By Corollary 3.2, the operator equation (3.4) has a Hermitian solution if and
only if

R(C −BY B∗) ⊂ R(A).

So the operator equation (3.4) has a Hermitian solution XH given by

XH = A−(C −BY B∗)(A∗)− + F −A−AF (A−A)∗,

with F ∈ B(H) is an arbitrary Hermitian operator.

4. Conclusions

This paper gives necessary and sufficient conditions for the existence of a common
solution to the pair of equations

A1XB1 = C1 and A2XB2 = C2;

We have applied this result to determine new necessary and sufficient conditions
for the existence of Hermitian solution and given a representation of the general
Hermitian solution to the operator equation

AXB = C.

Then, we have given necessary and sufficient conditions for the existence of Hermi-
tian solution and a representation of the general Hermitian solution to the operator
equation

AXA∗ + BY B∗ = C.
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Abstract. Let R be a commutative ring with identity and let M be an R-module. A
proper submodule P of M is called a classical prime submodule if abm ∈ P , for a, b ∈ R,
and m ∈ M , implies that am ∈ P or bm ∈ P . The classical prime spectrum of M ,
Cl.Spec(M), is defined to be the set of all classical prime submodules of M . We say M
is classical primefule if M = 0, or the map ψ from Cl.Spec(M) to Spec(R/Ann(M)),
defined by ψ(P ) = (P : M)/Ann(M) for all P ∈ Cl.Spec(M), is surjective. In this
paper, we study classical primeful modules as a generalization of primeful modules.
Also, we investigate some properties of a topology that is defined on Cl.Spec(M), named
the Zariski topology.
Keywords: Classical prime, Classical primeful, Classical top module

1. Introduction

Throughout the paper all rings are commutative with identity and all modules
are unital. Let M be an R-module. If N is a submodule of M , then we write
N ≤ M . For any two submodules N and K of an R-module M , the residual of
N by K is denoted by (N : K) = {r ∈ R : rK ⊆ N}. A proper submodule P
of M is called a prime submodule if am ∈ P , for a ∈ R and m ∈ M , implies
that m ∈ P or a ∈ (P : M). Also, a proper submodule P of M is called a
classical prime submodule if abm ∈ P , for a, b ∈ R and m ∈ M , implies that
am ∈ P or bm ∈ P (see for example [5]). The set of prime(resp. classical prime)
submodules of M is denoted by Spec(M)(resp. Cl.Spec(M)). The class of prime
submodules of modules was introduced and studied in 1992 as a generalization of
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the class of prime ideals of rings. Then, many generalizations of prime submodules
were studied such as primary, classical prime, classical primary and classical quasi
primary submodules, see [1, 8, 16, 4] and [7].

For a proper submodule N of an R-module M , the prime radical of N is
p
√
N = ∩{P |P ∈ V∗(N)}, where V∗(N) = {P ∈ Spec(M) | N ⊆ P}. Also the

classical prime radical of N is Cl
√
N = ∩{P |P ∈ V(N)}, where V(N) = {P ∈

Cl.Spec(M) | N ⊆ P}. If there are no such prime (resp. classical prime) sub-
modules, p

√
N (resp. Cl

√
N) is M . We say N is a radical (resp. classical radical)

submodule, if p
√
N = N(resp. Cl

√
N = N).

The set of all maximal submodules of M is denoted by Max(M). A Noetherian
module M is called a semi-local (resp. a local) module if Max(M) is a non-empty
finite (resp. a singleton) set. A non-Noetherian commutative ring R is called a
quasisemilocal (resp. a quasilocal) ring if R has only a finite number (resp. a
singleton) of maximal ideals. An R-module M is called a multiplication (resp. weak
multiplication) module if for every submodule (resp. prime submodule) of M , there
exists an ideal I of R such that N = IM(see [14] and [2]). If N is a prime submodule
of a multiplication R-module M , then N1 ∩ N2 ⊆ N , where N1, N2 ≤ M , implies
that N1 ⊆ N or N2 ⊆ N (see for more detail [11] and [19]). An R-module M is called
compatible if its classical prime submodules and its prime submodules coincide. All
commutative rings and multiplicative modules are examples of compatible modules,
(see for more detail [8]). A submodule N of M is said to be strongly irreducible if
for submodules N1 and N2 of M , the inclusion N1 ∩ N2 ⊆ N implies that either
N1 ⊆ N or N2 ⊆ N . Strongly irreducible submodules have been characterized in
[13].

Let M be an R-module. For any subset E of M , we consider classical varieties
denoted by V(E). We define V(E) = {P ∈ Cl.Spec(M) : E ⊆ P}. Then

(a) If N is a submodule generated by E, then V(E) = V(N).

(b) V(0M ) = Cl.Spec(M) and V(M) = Ø.

(c)
⋂

i∈I V(Ni) = V(
∑

i∈I Ni), where Ni ≤M
(d) V(N) ∪ V(L) ⊆ V(N ∩ L), where N,L ≤M .

Now, we assume that C(M) denotes the collection of all subsets V(N) of
Cl.Spec(M). Then, C(M) contains the empty set and Cl.Spec(M), and also C(M)
are closed under arbitrary intersections. However, in general, C(M) is not closed
under finite union. An R-module M is called a classical top module if C(M) is
closed under finite unions, i.e., for every submodules N and L of M , there exists a
submodule K of M such that V(N)∪V(L) = V(K), for in this case, C(M) satisfies
the axioms for the closed subsets of a tological space, then in this case, C(M) induce
a topology on Cl.Spec(M). We call the induced topology the classical quasi-Zariski
topology(see [9]).

In this paper, we introduce the notion of classical primeful modules and also we
investigate some properties of classical quasi-Zariski topology of Cl.Spec(M). In
Section 2, we introduce the notion of classical primeful modules as a generalization
of primefule modules. In particular, in Proposition 2.3, it is proved that if M is
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a classical primeful R-module, then Supp(M) = V(Ann(M)). Then we get some
properties of classical top modules. In Section 3, we get some properties of classical
quasi-Zariski topology of Cl.Spec(M) and also we get some properties of classical
top modules.

2. Classical primeful module

The notion of primeful modules was introduced by Chin P. Lu in [18] as follows:

Definition 2.1. An R-module M is primeful if either M = (0), or M 6= (0) and
the map φ : Spec(M) −→ Spec(R/Ann(M)), defined by φ(P ) = (P : M)/Ann(M)
for all P ∈ Spec(M), is surjective.

Now, we extend the notion of primeful modules to classical primeful modules.

Definition 2.2. Suppose Cl.Spec(M) 6= Ø, then the map ψ from Cl.Spec(M) to
Spec(R/Ann(M)) defined by ψ(P ) = (P : M)/Ann(M) for all P ∈ Cl.Spec(M),
will be called the natural map of Cl.Spec(M).

An R-module M is classical primeful if either

(i) M = (0), or

(ii) M 6= (0) and the map ψ : Cl.Spec(M) −→ Spec(R/Ann(M)) from above is
surjective.

Lemma 2.1. Let M be a classical top R-module. Then the natural map
ψ : Cl.Spec(M) −→ Spec(R/Ann(M)) is injective.

Proof. Let P,Q ∈ Cl.Spec(M). If ψ(P ) = ψ(Q), then

(P : M)/Ann(M) = (Q : M)/Ann(M).

So (P : M) = (Q : M) and then P = Q. �

Theorem 2.1. Let M be a classical top R-module. Then, If R satisfies ACC on
prime ideals, then M satisfies ACC on classical prime submodules.

Proof. Let N1 ⊆ N2 ⊆ . . . be an ascending chain of classical prime submodules of
M . This induces the following chain of prime ideals, ψ(N1) ⊆ ψ(N2) ⊆ . . ., where
ψ is the natural map

ψ : Cl.Spec(M) −→ Spec(R/Ann(M)).

Since R satisfies ACC on prime ideals, there exists a positive integer k such that
for each i ∈ N, ψ(Nk) = ψ(Nk+i). Now by Lemma 2.1, we have Nk = Nk+i as
required. �
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Remark 2.1. ([8, Proposition 5.3])) Let S be a multiplicatively closed subset of R,
p a prime ideal of R such that p ∩ S = Ø and let M be an R-module. If P is a
classical p-prime submodule of M with Ps 6= Ms, then Ps is also a classical ps-prime
submodule of Ms. Moreover if Q is a prime Rs-submodule of Ms, then

Qc = {m ∈M : f(m) ∈ Q}

is a classical prime submodule of M.

Let p be a prime ideal of a ring R, M an R-module and N 6 M . By the
saturation of N with respect to p, we mean the contraction of Np in M and designate
it by Sp(N). It is also known that

Sp(N) = {e ∈M |es ∈ Nfor some s ∈ R \ p}.

Saturations of submodules were investigated in detail in [17].

Proposition 2.1. For any nonzero R-module M , the following are equivalent:

(1) The natural map ψ : Cl.Spec(M) −→ Spec(R/Ann(M)) is surjective;

(2) For every p ∈ V(Ann(M)), there exists P ∈ Cl.Spec(M) such that (P : M) =
p;

(3) pMp 6= Mp, for every p ∈ V(Ann(M));

(4) Sp(pM), the contraction of pMp in M , is a classical p-prime submodule of M
for every p ∈ V(Ann(M));

(5) Cl.Specp(M) 6= Ø; for every p ∈ V(Ann(M)).

Proof. (1)⇐⇒(2): It is clear by Definition 2.2.

(2)=⇒(3): Let p ∈ V(Ann(M)) and let N be a classical p-prime submodule of
M . Then Np is a classical pRp-prime submodule of Mp by Remark 2.1. Now, since
pMp ⊆ Np (Mp, we conclude that pMp 6= Mp.

(3)=⇒(4): Since pRp is the maximal ideal of Rp and pMp 6= Mp, pMp =
(pRp)Mp is a pRp-prime, and therefore classical pRp-prime, submodule of Mp. Then
Sp(pM) = (pMp)c, the contraction of pMp in M , is a classical p-prime submodule
of M by Remark 2.1.

(4)=⇒(5) and (5)=⇒(2) are easy. �

Proposition 2.2. Every finitely generated R-module M is classical primeful.

Proof. If M = 0, evidently the results is true. Now, let M be a nonzero finitely
generated R-module. Then Supp(M) = V(Ann(M)), so for every p ∈ V(Ann(M)),
Mp is a nonzero finitely generated module over the local ring Rp. Then by virtue
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of Nakayama’s Lemma, pMp 6= Mp, for every p ∈ V(Ann(M)). Therefore by
Proposition 2.1, M is classical primeful. �

For every finitely generated module M , Supp(M) = V(Ann(M)). The next
proposition proves that the equality holds even if M is only a classical primeful
module.

Proposition 2.3. (see [18, Proposition 3.4])) If M is a classical primeful R-
module, then Supp(M) = V(Ann(M)).

Proof. If M = (0), then Supp(M) = V(Ann(M)) = Ø. Now let M be a nonzero
classical primeful R-module, so V(Ann(M)) 6= Ø. By Proposition 2.1, if p ∈
V(Ann(M)), then Sp(pM) is a classical p-prime submodule of M , so Sp(pM) 6= M .
Since Sp(0) ⊆ Sp(pM), then M 6= Sp(0), from which we can see that Mp 6= (0).
Thus V(Ann(M)) ⊆ Supp(M). The other inclusion is always true.

For every prime, ideal p of R, Rp is always a quasilocal ring. However, for
an arbitrary R-module M , Mp is not necessarily a local Rp-module. But by the
next proposition, if M is a nonzero classical top classical primeful R-module, then
R/Ann(M) is a quasilocal ring.

Proposition 2.4. Let M be a nonzero classical top classical primeful R-module.
If M is a semi-local (resp. local) module, then R/Ann(M) is a quasisemilocal (resp.
a quasilocal) ring.

Proof. Let M be a local module with unique maximal submodule P . Then p :=
(P : M) ∈ Max(R). Now let Ann(M) ⊆ q ∈ Max(R). It is enough to prove
q = p. To prove this, we note that Sq(qM) is a classical q-prime submodule of M
by Proposition 2.1. Now we show that Sq(qM) ∈ Max(M). Let Sq(qM) ⊆ K for
some submodule K of M . Then we have q = (Sq(qM) : M) = (K : M). Hence
Sq(qM) = K by Lemma 2.1. This implies that Sq(qM) = P and therefore q = p.
For the semi-local case we argue similarly. �

In the rest of this section, we get some properties of classical top modules. First
note that every classical top module is a top module([9, Proposition 2.4]). In the
next theorem, we introduce some modules that they are classical top modules.

Theorem 2.2. Let M be an R-module. Then M is a classical top module in each
of the following cases:

(1) M is a multiplication R-module.

(2) M be a module that every classical prime submodule of M is strongly irre-
ducible.
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(3) M is an R-module with the property that for any two submodules N and L of
M , (N : M) and (L : M) are comaximal.

Proof. (1). Let P ∈ V(N1∩N2) and so N1∩N2 ⊆ P . Since M is compatible, then
(N1 ∩ N2 : M) ⊆ (P : M), so N1 ⊆ P or N2 ⊆ P . Therefore P ∈ V(N1) or P ∈
V(N2). This implies that M is a classical top module.

(2). Let P ∈ V(N ∩ L). Since V(N) ∪ V(L) ⊆ V(N ∩ L), for each submodules
N and L of M , then N ∩L ⊆ P . Now, since P is strongly irreducible, then N ⊆ P
or L ⊆ P . Therefore P ∈ V(N) ∪ V(L). Thus C(M) is closed under finite unions.
Hence M is a classical top module.

(3). Let P be a classical prime submodule of M with N ∩ L ⊆ P . Then
(N : M)∩(L : M) ⊆ (P : M) ∈ Spec(R). We may assume that (N : M) ⊆ (P : M).
Then clearly (L : M) * (P : M) by assumption. Hence N ⊆ P . Therefore P is
strongly irreducible. This implies that M is a classical top module by (2). �

If Y is a nonempty subset of Cl.Spec(M), then the intersection of the members
of Y is denoted by T(Y ). Thus, if Y1 and Y2 are subsets of Cl.Spec(M), then
T(Y1∪Y2) = T(Y1)∩T(Y2). AnR-moduleM is said to be distributive if (A+B)∩C =
(A ∩ C) + (B ∩ C), for all submodules A, B and C of M(see for example [12]).

Theorem 2.3. Let M is a classical top module and cl
√
E = E for each submodule

E of M . Then M is a distributive module.

Proof. Let A, B and C be any submodules of M . Then,

(A+B) ∩ C = cl
√

(A+B) ∩ C
= ∩{P ∈ Cl.Spec(M)|(A+B) ∩ C ⊆ P}
= ∩{P |P ∈ V((A+B) ∩ C)}
= T(V((A+B) ∩ C))
= T(V(A+B) ∪ V(C))
= T((V(A) ∩ V(B)) ∪ V(C))
= T((V(A) ∪ V(C)) ∩ (V(B) ∪ V(C)))
= T((V(A ∩ C)) ∩ (V(B ∩ C)))
= T((V(A ∩ C) + (B ∩ C)))
= cl

√
(A ∩ C) + (B ∩ C)

= (A ∩ C) + (B ∩ C)

Hence M is a distributive module. �

Proposition 2.5. Let M be a classical top module. Then for every two submodules
A and B of M the equality cl

√
A ∩B = cl

√
A ∩ cl

√
B holds.

Proof. By definition, cl
√
A ∩B = T(V(A ∩B)) = T(V(A) ∪ V(B))

= T(V(A)) ∩ T(V(B)) = cl
√
A ∩ cl

√
B. �
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3. Some properties of topological space Cl.Spec(M)

In this section, we study some properties of topological space Cl.Spec(M). The
closure of Y in Cl.Spec(M) with respect to the classical quasi-Zariski topology
denoted by Y .

Lemma 3.1. Let M be a classical top module and let Y be a nonempty subset of
Cl.Spec(M). Then Y = V(T(Y )). Hence, for every N ≤M , V(T(V(N))) = V(N).

Proof. Suppose V(E) is a closed set of Cl.Spec(M) containing Y . Then for ev-
ery classical prime submodule P in Y , E ⊆ P . Therefore E ⊆ T(Y ) and so
V(T(Y )) ⊆ V(E). Since Y ⊆ V(T(Y )), then V(T(Y )) is the smallest closed subset
of Cl.Spec(M) containing Y . Thus Y = V(T(Y )).

Finally, since V(T(V(N))) = V(N), and since V(N) is a closed subset of Cl.Spec(M),
then V(N) = V(N). Consequntly V(T(V(N))) = V(N). �

Let X be a topological space and let x and y be two points of X. We say that
x and y can be separated if each lies in an open set which does not contain the
other point. X is a T1- space if any two distinct points in X can be separated. A
topological space X is a T1-space if and only if the singleton set {x} is a closed set,
for any x in X.

Theorem 3.1. Let M be an R-module. Then Cl.Spec(M) is T1-space if and only
if each classical prime submodule is maximal in the family of all classical prime
submodules of M . i.e, Max(M) = Cl.Spec(M).

Proof. Let P be maximal in Cl.Spec(M) with respect inclution. Then {P} =
V(T({P})) = V(P ), but P is maximal in Cl.Spec(M), so {P} = {P}. Then {P} is
a closed set in Cl.Spec(M). Thus Cl.Spec(M) is a T1 - space, and vice versa. �

Definition 3.1. Let X be a topological space and Y ⊆ X. Then:

(1) X is irreducible if X 6= Ø and for every decomposition X = A1 ∪ A2 with
closed subsets Ai ⊆ X, i = 1, 2, we have A1 = X or A2 = X.

(2) Y is irreducible if Y is irreducible as a space with the relative topology. For
this to be so, it is necessary and sufficient that, for every pair of sets F , G which
are closed in X and satisfy Y ⊆ F ∪G, then Y ⊆ F or Y ⊆ G[10, Ch. II, p. 119].

Lemma 3.2. Let M be an R-module. Then for every P ∈ Cl.Spec(M), V(P ) is
irreducible.

Proof. Let V(P ) ⊆ Y1∪Y2, for some closed sets Y1 and Y2. Since P ∈ V(P ), either
P ∈ Y1 or P ∈ Y2. Suppose that P ∈ Y1. Then Y1 = ∩i∈I(∪ni

j=1V(Nij)), for some
I, ni(i ∈ I) and Nij ≤ M . Then for all i ∈ I, P ∈ ∪ni

j=1V(Nij). Thus for all i ∈ I,
V(P ) ⊆ ∪ni

j=1V(Nij)), so V(P ) ⊆ Y1. Thus V(P ) is irreducible. �
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M. Behboodi and M. R. Haddadi show that if Y ⊆ Spec(M) and T(Y ) is a
prime submodule of M and T(Y ) ∈ Y , then Y is irreducible([6, Theorem 3.4]). In
the next proposition, we extend this fact to classical prime submodules.

Proposition 3.1. Let M be a classical top module and Y ⊆ Cl.Spec(M). Then
T(Y ) is a classical prime submodule of M if and only if Y is an irreducible space.

Proof. Let P = T(Y ) be a classical prime submodule of M and P ∈ Y , so
Y = V(P ). If Y ⊆ Y1 ∪ Y2, for closed sets Y1 and Y2, then Y ⊆ Y1 ∪ Y2. Since
V(P ) ⊆ Y1 ∪ Y2 and by Lemma 3.2, V(P ) is irreducible, then V(P ) ⊆ Y1 or V(P ) ⊆
Y2. Now, since Y ⊆ V(P ), then either Y ⊆ Y1 or Y ⊆ Y2. Thus Y is irreducible.
For the converse, we can apply [6, Theorem 3.4]. �

Corollary 3.1. Let M be a classical top module. Then for every classical prime
submodule P , V(P ) is an irreducible subspace of Cl.Spec(M). Consequently, V(N)
is irreducible if and only if Cl

√
N is a classical prime submodule.

Proof. First note that T(V(P )) =
⋂
{P |P ∈ V(P )} = cl

√
P = P . Then V(P ) is

an irreducible subspace of Cl.Spec(M), by Proposition 3.1. Finnaly, it is enough to
note that Cl

√
N = T(V(N)). �

Proposition 3.2. Let M be a classical top R-module, R = R/Ann(M) and let
ψ : Cl.Spec(M) −→ Spec(R/Ann(M)) be the natural map of Cl.Spec(M). Then ψ
is continuous in the classical quasi-Zariski topology.

Proof. It suffices to prove that ψ−1(V(I)) = V(IM), for every I ∈ V(Ann(M)).
Let P ∈ Cl.Spec(M), then P ∈ ψ−1(V(I)), so ψ(P ) ∈ V(I), therefore (P : M) ∈
V(I). Then (P : M) ∈ Spec(R) and I ⊆ (P : M), so (P : M) ∈ Spec(R) and
I/Ann(M) ⊆ (P : M)/Ann(M). Hence (P : M) ∈ Spec(R) and Ann(M) ⊆ I ⊆
(P : M). Now, since IM ⊆ (P : M)M ⊆ P , then P ∈ V(IM), which it shows that
ψ−1(V(I)) ⊆ V(IM). In similar way, we can show V(IM) ⊆ ψ−1(V(I)) and hence

ψ−1(V(I)) = V(IM).�

Lemma 3.3. Let M be a classical top R-module, R = R/Ann(M) and let ψ be the
natural map of Cl.Spec(M). If M is classical primeful, then ψ is both closed and
open; more precisely, for every submodule N of M , ψ(V(N)) = V((N : M)) and

ψ(Cl.Spec(M) \ V(N)) = Cl.Spec(R/Ann(M)) \ (V((N : M)).

Proof. First we show that ψ(V(N)) = V((N : M)), for every N ≤ M , whenever
M is classical primeful. Since ψ is continuous, as we have seen in Proposition 3.2,

ψ−1(V((N : M))) = V((N : M)M) = V(N).

Hence, ψ(V(N)) = ψ ◦ ψ−1(V((N : M)) = V((N : M), since ψ is surjective and M
is classical primeful. Consequently:

ψ(Cl.Spec(M) \ V(N)) = Spec(R/Ann(M)) \ (V((N : M)).�
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Corollary 3.2. Let M be a classical top R-module, R = R/Ann(M) and let ψ be
the natural map of Cl.Spec(M). Then ψ is bijective if and only if it is a homeo-
morphism.

Proof. This follows from Proposition 3.2 and Lemma 3.3. �

Proposition 3.3. Let M be a classical top R-module and let Y be a subset of
Cl.Spec(M). If Y is irreducible, then T = {(P : M)|P ∈ Y } is an irreducible subset
of Spec(R), with respect to Zariski topology.

Proof. Let R = R/Ann(M), ψ the natural map of Cl.Spec(M) and let Y be a
subset of Cl.Spec(M). Since ψ is continuous by proposition 3.2, Then ψ(Y ) = Y is
an irreducible subset of Spec(R/Ann(M)). Therefore

T(Y ) = (T(Y ) : M)/Ann(M) ∈ Spec(R/Ann(M)).

Therefore T(T ) = (T(Y ) : M) is a prime ideal of R, then by Proposition 3.1, T is
an irreducible subset of Spec(R). �

Clearly the next lemma is true(see for example [8], page 10).

Lemma 3.4. If {Pi}i∈I is a chain of classical prime submodules of an R-module
M , then

⋂
i∈I Pi is a classical prime submodule of M .

Let Y be a closed subset of a topological space. An element y ∈ Y is called a
generic point of Y if Y = Cl({y}), where Cl({y}) is the closure of {y} in Y . Note
that a generic point of a closed subset Y of a topological space is unique if the
topological space is a T0-space.

Theorem 3.2. Let M be a classical primeful R-module. If M is a classical top
module, then a subset Y of Cl.Spec(M) is an irreducible closed subset if and only
if Y = V(P ), for some P ∈ Cl.Spec(M). Thus every irreducible closed subset of
Cl.Spec(M) has a generic point.

Proof. By Corollary 3.1, for every P ∈ Cl.Spec(M), Y = V(P ) is an irreducible
closed subset of Cl.Spec(M). Conversely, if Y is an irreducible closed subset of
Cl.Spec(M), then Y = V(N), for some N ≤M . Now, since Y = V(N) = V( Cl

√
N),

then T(Y ) = T(V(N)) = Cl
√
N is a classical prime submodule of M by Lemma

3.4. Then V(T(Y )) = V(T(V(N))) = V( Cl
√
N), so by Theorem 3.1, Y = V(N) =

V( Cl
√
N), with Cl

√
N ∈ Cl.Spec(M). �

A maximal irreducible subset Y of X is called an irreducible component of X
and it is always closed. In the next theorem, we show that there exists a bijection
map from the set of irreducible components of Cl.Spec(M) to the set of minimal
classical prime submodules of M .
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Theorem 3.3. Let M be a classical top R-module. Then the map V(P ) 7−→ P
is a bijection from the set of irreducible components of Cl.Spec(M) to the set of
minimal classical prime submodules of M .

Proof. Let Y be an irreducible component of Cl.Spec(M). By Theorem 3.2, each
irreducible component of Cl.Spec(M) is a maximal element of the set {V(Q)|Q ∈
Cl.Spec(M)}, so for some P ∈ Cl.Spec(M), Y = V(P ). Obviously, P is a mini-
mal classical prime submodule of M . Suppose T is a classical prime submodule of
M that T ⊆ P , then V(P ) ⊆ V(T ), so P = T . Now, let P be a minimal classi-
cal prime submodule of M , so for every Q ∈ Cl.Spec(M), P ⊆ Q. Then for all
Q ∈ Cl.Spec(M), V(Q) ⊆ V(P ). Thus V(P ) is a maximal irreducible subset of
Cl.Spec(M). �

Theorem 3.4. Consider the following statements for a nonzero classical top prime-
ful R-module M :

1. Cl.Spec(M) is an irreducible space.

2. Supp(M) is an irreducible space.

3.
√

Ann(M) is a prime ideal of R.

4. Cl.Spec(M) = V(pM), for some p ∈ Supp(M).

Then (1) =⇒ (2) =⇒ (3) =⇒ (4). In addition, if M is a multiplication module,
then all of the four statements are equivalent.

Proof. (1) =⇒ (2): By Proposition 3.2, the natural map ψ is continuous and
by assumption ψ is surjective. Therefore Im(ψ) = Spec(R/Ann(M)) is also ir-
reducible. Now by Proposition 2.3, Supp(M) = V(Ann(M)) is homeomorphic to
Spec(R/Ann(M)). Therefore Supp(M) is an irreducible space.

(2) =⇒ (3): By Proposition 3.1, T(Supp(M)) is a prime ideal of R. Then
T(Supp(M)) = T(V(Ann(M))) =

√
Ann(M) is a prime ideal of R.

(3) =⇒ (4) Let a ∈
√

Ann(M). So for some integer n ∈ N , anM = 0. Therefore
for every classical prime submodule P of M , a ∈ (P : M). Then for each P ∈
Cl.Spec(M), Ann(M) ⊆

√
Ann(M) ⊆ (P : M). Since M is classical primeful, there

exists a classical prime submodule Q of M such that (Q : M) =
√

Ann(M). Then,

Cl.Spec(M) = {P ∈ Cl.Spec(M)|(Q : M) ⊆ (P : M)}

= V((Q : M)M)

= V(
√

Ann(M)M).

It is clear that p :=
√

Ann(M) ∈ Supp(M). Therefore Cl.Spec(M) = V(pM).

Now, let M be a multiplication module and let Cl.Spec(M) = V(pM), for some
p ∈ Supp(M). Since M is classical primeful, there exists P ∈ Cl.Spec(M), such
that (P : M) = p. Since M is multiplication, we have Cl.Spec(M) = V(pM) =
V((P : M)M) = V(P ). This implies that Cl.Spec(M) is an irreducible space by
Corollary 3.1. �
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Let M be an R-module. For each subset N of M , we denote Cl.Spec(M)−V(N)
by U(N). Further for each element m ∈M , U({m}) is denoted by U(m). Hence

U(m) = Cl.Spec(M)− V({m}).

Moreover, for any family {Ni}i∈I of submodules of M , we have

U(
∑
i∈I

Ni) = U(
⋃
i∈I

Ni).

Theorem 3.5. Let M be a classical top module. Then for every m ∈M , the sets
U(m) form a base for Cl.Spec(M).

Proof. Let U(N) be an open set in Cl.Spec(M), where N is a submodule of M .
Then:

U(N) = U(
⋃
n∈N
{n}) = Cl.Spec(M)− V(

⋃
n∈N
{n})

= Cl.Spec(M)−
⋂
n∈N
V({n})

=
⋃
n∈N

(Cl.Spec(M)− V({n}))

=
⋃
n∈N
U(n)

Then for every m ∈M , the sets U(m) form a base of Cl.Spec(M). �

For a submodule N of an R-module M , we put:

FG(N) := {L|L ⊆ N and L is finitely generated}

Lemma 3.5. Let M be an R-module and N be a submodule of M . Then V(N) =⋂
L∈FG(N) V(L) and U(N) =

⋃
L∈FG(N) U(L).

Proof. Suppose that P ∈ V(N). If L ∈ FG(N), then L ⊆ N ⊆ P . Then
P ∈ V(L), and V(N) ⊆

⋂
L∈FG(N) V(L). Now, let for every L ∈ FG(N), P ∈ V(L)

and P /∈ V(N). Since N * P , then there exists x ∈ N \ P . Then Rx ⊆ N and Rx
is finitely generated, hence Rx ∈ FG(N). Therefore x ∈ Rx ⊆ P , a contradiction.
Thus

⋂
L∈FG(N) V(L) ⊆ V(N). �

Theorem 3.6. Let M be a classical top R-module. Then every quasi-compact open
subset of Cl.Spec(M) is of the form U(N), for some finitely generated submodule
N of M .
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Proof. Suppose U(B) = Cl.Spec(M) \ V(B) is a quasi-compact open subset of
Cl.Spec(M). Then by Lemma 3.5, U(B) =

⋃
L∈FG(B) U(L). Now, since U(B) is

quasi-compact, then every open covering of U(B) has a finite subcovering, therefore
U(B) = U(L1) ∪ ... ∪ U(Ln) = U(

∑n
i=1 Li). �

Proposition 3.4. Let M be a classical top R-module. If Spec(R) is a T1-space,
then Cl.Spec(M) is also a T1-space.

Proof. Suppose Q is a classical prime submodule of M . Then Cl({Q}) = V(Q).
If P ∈ V(Q), then by Theorem 3.1, every prime ideal of R is a maximal ideal, so
(Q : M) = (P : M), then by Lemma 2.1, Q = P . Therefore Cl({Q}) = {Q} and
this implies that Cl.Spec(M) is a T1-space. �

Definition 3.2. A topological space X is Noetherian provided that the open (re-
spectively, closed) subsets ofX satisfy the ascending (respectively, descending) chain
condition (see for example [3], page 79 or [10], §4.2).

Theorem 3.7. An R-module M has Noetherian calssical spectrum if and only if
the ACC for classical radical submodules of M holds.

Proof. Let N1 ⊆ N2 ⊆ N3 ⊆ . . . be an ascending chain of classical radical sub-
modules of M . Since for all i ∈ N, Cl

√
Ni = Ni, then equivalently

Cl
√
N1 ⊆ Cl

√
N2 ⊆ Cl

√
N3 ⊆ . . .

is an ascending chain of classical radical submodules of M . Then equivalently

T(V(N1)) ⊆ T(V(N2)) ⊆ T(V(N3)) ⊆ . . .

is an ascending chain of classical radical submodules of M . Therefore

V(N1) ⊇ V(N2) ⊇ V(N3) ⊇ . . .

is a descending chain of closed sets V(Ni) of Cl.Spec(M). Now, R-module M has
Noetherian spectrum if and only if Cl.Spec(M) is a Noetherian topological space if
and only if there exists a positive integer k such that V(Nk) = V(Nk+n) for each
n = 1, 2, .... if and only if Cl

√
Nk = Cl

√
Nk+n if and only if Nk = Nk+n if and only

if the ACC for classical radical submodules of M holds.�

Theorem 3.8. Let M be a classical top R-module such that Cl.Spec(M) is a
Noetherian space. Then the following statements are true.

1. Every ascending chain of classical prime submodules of M is stationary.

2. The set of minimal classical prime submodules of M is finite. In particular,
Cl.Spec(M) =

⋃n
i=1 V(Pi), where Pi are all minimal classical prime submod-

ules of M .
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Proof. (1). Suppose N1 ⊆ N2 ⊆ N3 ⊆ . . . is an ascending chain of classical prime
submodules of M . Therefore V(N1) ⊇ V(N2) ⊇ . . . is a descending chain of closed
subsets of Cl.Spec(M), which is stationary by assumption. There exists an integer
k ∈ N such that V(Nk) = V(Nk+i), for each i ∈ N. Then for each i ∈ N, Nk = Nk+i.

(2). This follows from Theorem 3.3 and the fact that if X is a Noetherian space,
then the set of irreducible components of X is finite(see for example [10, Proposition
10]). �

Recall that if M is a Noetherian module, then each open subset of Spec(M) is
quasi-compact(see for example [15, Theorem 3.3]). The next theorem shows that
the same result is true for Cl.Spec(M) in Noetherian classical top modules.

Theorem 3.9. Let M be a Noetherian classical top module. Then each open subset
of Cl.Spec(M) is quasi-compact.

Proof. Let for every submodule N of M , U(N) be an open subset of Cl.Spec(M).
Also, let {U(ni)}ni∈N be a basic open cover for U(N). We show that there ex-
ist a finite subfamily of {U(ni)}ni∈N which covers Cl.Spec(M). Since U(N) ⊆⋃

ni∈N U(ni) = U(
⋃

ni∈N ni), then for every submodule K of M that is gener-
ated by the set A = {ni}i∈I , U(N) ⊆ U(K). Since M is a Noetherian module,
then K =< k1, k2, ..., kn >, for some ki ∈ K, therefore bi =

∑n
j=1 rijnij , where

i = 1, ..., n and nij ∈ A. Thus there exists the subset {ni1, ..., nin} ⊆ A such that
K =< ni1, ..., nin >. So U(N) ⊆ U(K) = U(< ni1, ..., nin >). Then

U(N) ⊆ U(

n⋃
i=1

ni) =

n⋃
i=1

U(ni).

consequently, U(N) is quasi-compact. �

Recall that a function Φ between two topological spaces X and Y is called an
open map if, for any open set U in X, the image Φ(U) is open in Y . Also, Φ is
called a homeomorphism if it has the following properties

(i) Φ is a bijection;

(ii) Φ is continuous;

(iii) Φ is an open map

A spectral space is a topological space homeomorphic to the prime spectrum of
a commutative ring equipped with the Zariski topology. By Hochster’s characteri-
zation [15], a topology τ on a set X is spectral if and only if the following axioms
hold:

(i) X is a T0-space.

(ii) X is quasi-compact and has a basis of quasi-compact open subsets.
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(iii) The family of quasi-compact open subsets of X is closed under finite intersec-
tions.

(iv) X is a sober space; i.e., every irreducible closed subset of X has a generic
point.

For any ring R, it is is well-known that Spec(R) satisfies these conditions(cf.
[10], Chap. II, 4.1 - 4.3]). We show that Cl.Spec(M) is necessarily a spectral space
in the classical quasi-Zariski topology for every module M .

We remark that any closed subset of a spectral space is spectral for the induced
topology.

Theorem 3.10. Let M be a classical top primful R-module, R = R/Ann(M) and
let ψ be the natural map of Cl.Spec(M). Then ψ is a homeomorphism.

Proof. It is clear by Lemma 2.1, Proposition 3.2, Lemma 3.3 and Corollary 3.2. �

Corollary 3.3. Let M be a classical top primful R-module. Then Cl.Spec(M)
with classical quasi-Zariski topology is a spectral space.

Lemma 3.6. Let M be a classical top R-module. Then the following statements
are equivalent:

(a) the natural map ψ : Cl.Spec(M) −→ Spec(R/Ann(M)) is injective.

(b) Cl.Spec(M) is a T0-space.

Proof. We recall that a topological space is T0 if and only if the closures of distinct
points are distinct. Now, the result follows from

P = Q⇐⇒ V(P ) = V(Q), ∀P,Q ∈ Cl.Spec(M).�

Corollary 3.4. Let M be a Noetherian classical primeful top module. Then the
following statements are holed:

(i) Cl.Spec(M) is a T0-space.

(ii) Cl.Spec(M) is quasi-compact and has a basis of quasi-compact open subsets.

(iii) The family of quasi-compact open subsets of Cl.Spec(M) is closed under finite
intersections.

(iv) Cl.Spec(M) is a sober space; i.e., every irreducible closed subset of Cl.Spec(M)
has a generic point.

Proof. It is clear by Lemma 3.6, Theorem 3.5, Theorem 3.9, Theorem 3.2. �
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ON BINOMIAL SUMS WITH THE TERMS OF SEQUENCES{gkn}
AND {hkn}
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Abstract. In this paper, we derive sums and alternating sums of products of terms of
the sequences {gkn} and {hkn} with binomial coefficients. For example,

n∑
i=0

(
n

i

)
imgk(n−ti)hkti

= 2n−mnmgkn − nm
(
c2k (−q)k + ckvk + 1

)n(1−t)

hn−m
kt gk(tm+tn−n),

where c is a nonzero real number, t is any integer and m is a nonnegative integer.
Keywords: Binomial sums, alternating sums, generalized Fibonacci numbers, recur-
rence relation.

1. Introduction

Define the second order linear recursive sequences {un} and {vn} for n ≥ 1 and
nonzero integers p, q, by

un+1 = pun + qun−1 and vn+1 = pvn + qvn−1

with initials u0 = 0, u1 = 1 and v0 = 2, v1 = p, respectively.

When q = 1, un = Un (the nth generalized Fibonacci number) and vn = Vn (the
nth generalized Lucas number). Also, when p = q = 1, un = Fn (the nth Fibonacci
number) and vn = Ln (the nth Lucas number). If α and β are the roots of the
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equation x2 − px− q = 0, the Binet formulae of the sequences {un} and {vn} have
the forms

un =
αn − βn

α− β
and vn = αn + βn,

respectively, where α, β =
(
p±
√

∆
)
/2 and ∆ = p2 + 4q. From [3], Kılıç and

Stanica derived the following recurrence relations for the sequences {ukn} and {vkn}
for k ≥ 0, n > 0. It is clear that

uk(n+1) = vkukn + (−1)
k+1

qkuk(n−1) and vk(n+1) = vkvkn + (−1)
k+1

qkvk(n−1),

where the initial conditions are 0, uk, and 2, vk, respectively. The Binet formulae
of the sequences {ukn} and {vkn} are given by

ukn =
αkn − βkn

α− β
and vkn = αkn + βkn,

respectively. It is clearly seen that u−kn = (−1)
kn+1

ukn and u2kn = uknvkn.

In [9], Komatsu obtained the two binomial sums of the generalized Fibonacci
numbers as follows:

n∑
i=0

(
n

i

)
ciui = gn (n ≥ 0)

which satisfies the recurrence relation

gn+1 = (pc+ 2) gn +
(
qc2 − pc− 1

)
gn−1 (n ≥ 1)

with g0 = 0, g1 = c and

n∑
i=0

(
n

i

)
cn−idiui = hn (n ≥ 0)

which satisfies the recurrence relation

hn+1 = (pd+ 2c)hn +
(
qd2 − pcd− c2

)
hn−1 (n ≥ 1)

with h0 = 0 and h1 = d, where c, d are nonzero real numbers. Also he gave several
Fibonacci identities including binomial coefficients by using the method of ordinary
power series generating functions.

In [1], Cook et al. obtained some binomial summation identities including the
terms of the sequence {gn} in [9]. For example,

2n∑
i=0

(
2n

i

)
(−1)

i (
qc2 − pc− 1

)2n−i
g2i+1 = (pc+ 2)

2n
g2n+1,
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and

2n∑
i=0

(
2n

i

)
(−1)

i (
qc2 − pc− 1

)2(2n−i)
g4i = c2n (pc+ 2)

2n (
p2 + 4q

)n
g4n.

In [10], Ömür et al. defined the subsequences {gkn} and {hkn} with binomial

sums gkn =
n∑
i=0

(
n
i

)
ckiuki and hkn =

n∑
i=0

(
n
i

)
ckivki. These subsequences satisfy the

following relations

gk(n+1) =
(
ckvk + 2

)
gkn −

(
c2k (−q)k + ckvk + 1

)
gk(n−1)

and
hk(n+1) =

(
ckvk + 2

)
hkn −

(
c2k (−q)k + ckvk + 1

)
hk(n−1)

in which g0 = 0, gk = ckuk and h0 = 2, hk = 2 + ckvk, respectively. The Binet
formulae of the sequences {gkn} and {hkn} are

gkn =

(
ckαk + 1

)n − (ckβk + 1
)n

α− β
and hkn =

(
ckαk + 1

)n
+
(
ckβk + 1

)n
,

respectively. The authors obtained some binomial summation identities of sequence
{gkn}. For example, for n > 0,

2n∑
i=0

(
2n

i

)(
c2k (−q)k + ckvk + 1

)2n−i
gk(2i+1) =

(
ckvk + 2

)2n
gk(2n+1),

and

2n∑
i=0

(
2n

i

)
(−1)

i
(
c2k (−q)k + ckvk + 1

)2n−i
gk(2i+1)

= c2kn
(
v2k + 4qk (−1)

k+1
)n

gk(2n+1).

In [7], Kılıç et al. introduced sums and alternating sums of products of terms of
sequences {Ukn} and {Vkn} as follows: for odd number n,

n∑
i=0

(
n

i

)
Uk(a+bi)Uk(e+fi) = D(n−1)/2

(
Unk(b+f)/2Uk(n(b+f)/2+a+e)

+ (−1)
e+(b−f)/2

Unk(b−f)/2Uk(n(b−f)/2+a−e)

)
,

and

n∑
i=0

(
n

i

)
(−1)

i
Uk(a+bi)Uk(e+fi) =

1

D

(
(−1)

n
V nk(b+f)/2Vk(n(b+f)/2+a+e)

− (−1)
e+n(b−f)/2

V nk(b−f)/2Vk(n(b−f)/2+a−e)

)
,
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where a, b, e, f are any integers, b+ f ≡ 2(mod 4) and D = p2 + 4.

In [5, 6], Kılıç considered and computed the alternating binomial sums of the
forms

n∑
i=0

(
n

i

)
(−1)

i
f(n, i, k, t) and

n∑
i=0

(
n

i

)
g(n, i, k, t),

where f(n, i, k, t) is UktiVk(n−ti) and UktiV(k+1)tn−(k+2)ti, and, g(n, i, k, t) is UkiUk(tn+i),
UkiVk(tn+i), VkiVk(tn+i) and VkiUk(tn+i) for positive integers t and n. For example,
for odd k,

n∑
i=0

(
n

i

)
(−1)

i
UktiVk(n−ti) = Unkt

{
(−1)

t
Vkn(t−1)D

(n−1)/2 if n is odd,
Ukn(t−1)D

n/2 if n is even,

where D is defined as before.

In [4],inspired by the works of [5, 6, 8], Kılıç et al. gave rising factorial of the
summation index instead of its powers. Clearly, they considered and computed the
generalized alternating weighted binomial sums :

n∑
i=0

(
n

i

)
im (−1)

i
f(n, i, k, t),

where f(n, i, k, t) as before and m is a nonnegative integer and xm stands for the
falling factorial defined by xm = x(x − 1)...(x − m + 1). These kinds of binomial
sums (except some special cases of k and t) have not been considered according to
our best literature acknowledgement. For example, for any integers k and t,

n∑
i=0

(
n

i

)
im (−1)

i
UktiVk(n−ti) = (−1)

kn(t+1)+m
nmUn−mkt

×
{

Uk(tn+tm−n)D
(n−m)/2 if n ≡ m(mod 2),

−Vk(tn+tm−n)D
(n−m−1)/2 if n ≡ m+ 1(mod 2),

where m is a nonnegative integer.

2. Sums of certain products with the terms of {gkn} and {hkn}

In this section, firstly, we will start with some lemmas for further use.

Lemma 2.1. For any integers m and n, we have

gk(m+n) + gk(m−n)

(
qk (−1)

k+1
c2k − ckvk − 1

)n
=

{
hkmgkn if n is odd,
gkmhkn if n is even,
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gk(m+n) − gk(m−n)

(
qk (−1)

k+1
c2k − ckvk − 1

)n
=

{
gkmhkn if n is odd,
hkmgkn if n is even,

hk(m+n) − hk(m−n)

(
qk (−1)

k+1
c2k − ckvk − 1

)n
=

{
hkmhkn if n is odd,

∆gkmgkn if n is even,

hk(m+n) + hk(m−n)

(
qk (−1)

k+1
c2k − ckvk − 1

)n
=

{
∆gkmgkn if n is odd,
hkmhkn if n is even,

where c is a nonzero real number.

Proof. By the Binet formulae of {gkn} and {hkn} , the claimed equalities are ob-
tained.

We recall some facts for the readers convenience: For any real numbers m and
n,

(2.1) (m+ n)
t

=



(t−1)/2∑
i=0

(
t

i

)
(mn)

i (
mt−2i + nt−2i

)
if t is odd,

t/2−1∑
i=0

(
t

i

)
(mn)

i (
mt−2i + nt−2i

)
+

(
t

t/2

)
(mn)

t/2

if t is even,

and

(2.2) (m− n)
t

=



(t−1)/2∑
i=0

(
t

i

)
(mn)

i
(−1)

i (
mt−2i − nt−2i

)
if t is odd,

t/2−1∑
i=0

(
t

i

)
(mn)

i
(−1)

i (
mt−2i + nt−2i

)
+

(
t

t/2

)
(−1)

t/2
(mn)

t/2

if t is even,

where t is a positive integer.

Lemma 2.2. For any integers r and s, we have

n∑
i=0

(
n

i

)(
c2k (−q)k + ckvk + 1

)r(n−i)
hk(2ri+s) = hk(rn+s)h

n
kr,

n∑
i=0

(
n

i

)(
c2k (−q)k + ckvk + 1

)r(n−i)
gk(2ri+s) = gk(rn+s)h

n
kr,

n∑
i=0

(
n

i

)
(−1)

i
(
c2k (−q)k + ckvk + 1

)r(n−i)
gk(2ri+s)

=

 −∆(n−1)/2gnkrhk(rn+s) if n is odd,

∆n/2gnkrgk(rn+s) if n is even,
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and

n∑
i=0

(
n

i

)
(−1)

i
(
c2k (−q)k + ckvk + 1

)r(n−i)
hk(2ri+s)(2.3)

=

 −∆(n+1)/2gnkrgk(rn+s) if n is odd,

∆n/2gnkrhk(rn+s) if n is even,

where c is a nonzero real number.

Proof. From (2.1), (2.2) and Lemma 2.1, the proof is obtained.

Lemma 2.3. [2]Let n and m be integers such that 0 ≤ m < n. For z 6= −1,

n∑
k=0

(
n

k

)
kmzk = zmnm (1 + z)

n−m
.

Theorem 2.1. Let a, b and e be any integers. Then

n∑
i=0

(
n

i

)(
c2k (−q)k + ckvk + 1

)−ai
gk(ai+b)gk(ai+e)

=
1

∆

(
hk(an+b+e)h

n
ka

(
c2k (−q)k + ckvk + 1

)−an
− 2nhk(b−e)

(
c2k (−q)k + ckvk + 1

)e)
,

n∑
i=0

(
n

i

)(
c2k (−q)k + ckvk + 1

)−ai
hk(ai+b)hk(ai+e)

= hk(an+b+e)h
n
ka

(
c2k (−q)k + ckvk + 1

)−an
+ 2nhk(b−e)

(
c2k (−q)k + ckvk + 1

)e
,

and

n∑
i=0

(
n

i

)(
c2k (−q)k + ckvk + 1

)−ai
gk(ai+b)hk(ai+e)

= gk(an+b+e)h
n
ka

(
c2k (−q)k + ckvk + 1

)−an
+ 2ngk(b−e)

(
c2k (−q)k + ckvk + 1

)e
,

where c is a nonzero real number.
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Proof. Consider that

n∑
i=0

(
n

i

)(
c2k (−q)k + ckvk + 1

)−ai
gk(ai+b)gk(ai+e)

=

n∑
i=0

(
n

i

)(
c2k (−q)k + ckvk + 1

)−ai

×

[(
ckαk + 1

)ai+b − (ckβk + 1
)ai+b] [(

ckαk + 1
)ai+e − (ckβk + 1

)ai+e]
(α− β)

2

=
1

(α− β)
2

n∑
i=0

(
n

i

)(
c2k (−q)k + ckvk + 1

)−ai
×
((
ckαk + 1

)2ai+b+e − (ckαk + 1
)ai+b (

ckβk + 1
)ai+e

+
(
ckβk + 1

)2ai+b+e − (ckαk + 1
)ai+e (

ckβk + 1
)ai+b)

=
1

∆

n∑
i=0

(
n

i

)(
c2k (−q)k + ckvk + 1

)−ai
hk(2ai+b+e)

− 1

∆

n∑
i=0

(
n

i

)(
c2k (−q)k + ckvk + 1

)e
hk(b−e).

From Lemma 2.2, the desired result is obtained. Similarly, the other cases are
given.

Theorem 2.2. Let a, b and e be any integers. Then

n∑
i=0

(
n

i

)
(−1)

i
(
c2k (−q)k + ckvk + 1

)−ai
gk(ai+b)gk(ai+e)

=

 −∆(n−1)/2gk(an+b+e)g
n
ka

(
c2k (−q)k + ckvk + 1

)−an
if n is odd,

∆(n−2)/2hk(an+b+e)g
n
ka

(
c2k (−q)k + ckvk + 1

)−an
if n is even,

n∑
i=0

(
n

i

)
(−1)

i
(
c2k (−q)k + ckvk + 1

)−ai
hk(ai+b)hk(ai+e)

=

 −∆(n+1)/2gk(an+b+e)g
n
ka

(
c2k (−q)k + ckvk + 1

)−an
if n is odd,

∆n/2hk(an+b+e)g
n
ka

(
c2k (−q)k + ckvk + 1

)−an
if n is even,
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and

n∑
i=0

(
n

i

)
(−1)

i
(
c2k (−q)k + ckvk + 1

)−ai
gk(ai+b)hk(ai+d)

=

 −∆(n−1)/2hk(an+b+e)g
n
ka

(
c2k (−q)k + ckvk + 1

)−an
if n is odd,

∆n/2gk(an+b+e)g
n
ka

(
c2k (−q)k + ckvk + 1

)−an
if n is even,

where c is a nonzero real number.

Proof. Consider that

n∑
i=0

(
n

i

)
(−1)

i
(
c2k (−q)k + ckvk + 1

)−ai
gk(ai+b)gk(ai+e)

=

n∑
i=0

(
n

i

)
(−1)

i
(
c2k (−q)k + ckvk + 1

)−ai

×

[(
ckαk + 1

)ai+b − (ckβk + 1
)ai+b] [(

ckαk + 1
)ai+e − (ckβk + 1

)ai+e]
(α− β)

2

=
1

(α− β)
2

n∑
i=0

(
n

i

)
(−1)

i
(
c2k (−q)k + ckvk + 1

)−ai
×
((
ckαk + 1

)2ai+b+e − (ckαk + 1
)ai+b (

ckβk + 1
)ai+e

+
(
ckβk + 1

)2ai+b+e − (ckαk + 1
)ai+e (

ckβk + 1
)ai+b)

=
1

∆

n∑
i=0

(
n

i

)
(−1)

i
(
c2k (−q)k + ckvk + 1

)−ai
hk(2ai+b+e)

− 1

∆

n∑
i=0

(
n

i

)
(−1)

i
(
c2k (−q)k + ckvk + 1

)e
hk(b−e).

From (2.3), the desired result is obtained. Similarly, using Lemma 2.2, the other
cases can be obtained.

Theorem 2.3. Let k and t be any integers. Then

n∑
i=0

(
n
i

)
im (−1)

i
gk(n−ti)hkti = (−1)

m
nm
(
c2k (−q)k + ckvk + 1

)n(1−t)
gn−mkt

×

 −∆(n−m)/2gk(tn+tm−n) if n ≡ m(mod 2),

∆(n−m−1)/2hk(tn+tm−n) if n ≡ m+ 1(mod 2),
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and

n∑
i=0

(
n
i

)
im (−1)

i
gktihk(n−ti) = (−1)

m
nm
(
c2k (−q)k + ckvk + 1

)n(1−t)
gn−mkt

×

 ∆(n−m)/2gk(tn+tm−n) if n ≡ m(mod 2),

−∆(n−m−1)/2hk(tn+tm−n) if n ≡ m+ 1(mod 2),

where c is a nonzero real number and m is a nonnegative integer.

Proof. Observe that

n∑
i=0

(
n

i

)
im (−1)

i
gk(n−ti)hkti

=
1

α− β

n∑
i=0

(
n

i

)
im (−1)

i
((
ckαk + 1

)n−ti − (ckβk + 1
)n−ti)

×
((
ckαk + 1

)ti
+
(
ckβk + 1

)ti)
=

(
ckαk + 1

)n
α− β

(
n∑
i=0

(
n

i

)
im (−1)

i
+

n∑
i=0

(
n

i

)
im (−1)

i

(
ckβk + 1

ckαk + 1

)ti)

−
(
ckβk + 1

)n
α− β

(
n∑
i=0

(
n

i

)
im (−1)

i
+

n∑
i=0

(
n

i

)
im (−1)

i

(
ckαk + 1

ckβk + 1

)ti)
,

which by Lemma 2.3, equals

(ckαk+1)
n

α−β

{
(−1)

m
(
ckβk+1
ckαk+1

)tm
nm
(

1−
(
ckβk+1
ckαk+1

)t)n−m}

− (ckβk+1)
n

α−β

{
(−1)

m
(
ckαk+1
ckβk+1

)tm
nm
(

1−
(
ckαk+1
ckβk+1

)t)n−m}

= (−1)
m
nm 1

α−β

{(
ckαk + 1

)n ( ckβk+1
ckαk+1

)tm(
1−

(
ckβk+1
ckαk+1

)t)n−m
−
(
ckβk + 1

)n ( ckαk+1
ckβk+1

)tm(
1−

(
ckαk+1
ckβk+1

)t)n−m}
= (−1)

m
nm (α− β)

n−m−1

×

{(
ckαk + 1

)n ( ckβk+1
ckαk+1

)tm( (ckαk+1)
t−(ckβk+1)

t

(α−β)(ckαk+1)t

)n−m
− (−1)

n−m (
ckβk + 1

)n ( ckαk+1
ckβk+1

)tm( (ckαk+1)
t−(ckβk+1)

t

(α−β)(ckβk+1)t

)n−m}
,

which by the Binet formulae, gives us the claimed result.
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Similar to the proof method of Theorem just above, we have the following results
without proof.

Theorem 2.4. Let k and t be any integers. Then

n∑
i=0

(
n

i

)
imgk(n−ti)hkti

= 2n−mnmgkn − nm
(
c2k (−q)k + ckvk + 1

)n(1−t)
hn−mkt gk(tm+tn−n),

and
n∑
i=0

(
n

i

)
imgktihk(n−ti)

= 2n−mnmgkn + nm
(
c2k (−q)k + ckvk + 1

)n(1−t)
hn−mkt gk(tm+tn−n),

where c is a nonzero real number and m is a nonnegative integer.

Theorem 2.5. Let k and t be any integers. Then

n∑
i=0

(
n

i

)
im
(
c2k (−q)k + ckvk + 1

)i
gktihkn(t+1)−ki(t+2)

= nm
(
c2k (−q)k + ckvk + 1

)m
hn−mk gk(nt−m) + nmhn−mk(t+1)gkm(t+1),

and
n∑
i=0

(
n

i

)
im
(
c2k (−q)k + ckvk + 1

)i
gkn(t+1)−ki(t+2)hkti

= nm
(
c2k (−q)k + ckvk + 1

)m
hn−mk gk(nt−m) − nmhn−mk(t+1)gkm(t+1),

where c is a nonzero real number and m is a nonnegative integer.

Theorem 2.6. Let k and t be any integers. Then

n∑
i=0

(
n

i

)
im (−1)

i
(
c2k (−q)k + ckvk + 1

)i
gktihkn(t+1)−ki(t+2)

= (−1)
m
nm∆(n−m)/2

×



(
c2k (−q)k + ckvk + 1

)m
×gn−mk gk(tn−m) + gn−mk(t+1)gkm(t+1)

if n ≡ m(mod 2),

∆−1/2

{(
c2k (−q)k + ckvk + 1

)m
× gn−mk hk(tn−m) − gn−mk(t+1)hkm(t+1)

} if n ≡ m+ 1(mod 2),
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and
n∑
i=0

(
n

i

)
im (−1)

i
(
c2k (−q)k + ckvk + 1

)i
gkn(t+1)−ki(t+2)hkti

= (−1)
m
nm∆(n−m)/2

×



(
c2k (−q)k + ckvk + 1

)m
×gn−mk gk(tn−m) − gn−mk(t+1)gkm(t+1)

if n ≡ m(mod 2),

∆−1/2

{(
c2k (−q)k + ckvk + 1

)m
×gn−mk hk(tn−m) + gn−mk(t+1)hkm(t+1)

} if n ≡ m+ 1(mod 2),

where c is a nonzero real number and m is a nonnegative integer.

Theorem 2.7. Let k and t be any integers. Then

n∑
i=0

(
n

i

)
im
(
c2k (−q)k + ckvk + 1

)i
gktihkn−ki(t+2)

= nm
(
c2k (−q)k + ckvk + 1

)−nt
hn−mk(t+1)gk(mt+nt+m) − nmhn−mk gkm,

and
n∑
i=0

(
n

i

)
im
(
c2k (−q)k + ckvk + 1

)i
gkn−ki(t+2)hkti

= −nm
(
c2k (−q)k + ckvk + 1

)−nt
hn−mk(t+1)gk(mt+nt+m) − nmhn−mk gkm,

where c is a nonzero real number and m is a nonnegative integer.

Theorem 2.8. Let k and t be any integers. Then

n∑
i=0

(
n

i

)
im (−1)

i
(
c2k (−q)k + ckvk + 1

)i
gktihkn−ki(t+2)

= (−1)
m
nm∆(n−m)/2

×



(
c2k (−q)k + ckvk + 1

)−nt
×gn−mk(t+1)gk(mt+nt+t) − g

n−m
k gkm

if n ≡ m(mod 2),

−∆−1/2

{(
c2k (−q)k + ckvk + 1

)−nt
×gn−mk(t+1)hk(mt+nt+t) − g

n−m
k hkm

} if n ≡ m+ 1(mod 2),
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and

n∑
i=0

(
n

i

)
im (−1)

i
(
c2k (−q)k + ckvk + 1

)i
gkn−ki(t+2)hkti

= (−1)
m
nm∆(n−m)/2

×



−
(
c2k (−q)k + ckvk + 1

)−nt
×gn−mk(t+1)gk(mt+nt+t) − g

n−m
k gkm

if n ≡ m(mod 2),

∆−1/2

{(
c2k (−q)k + ckvk + 1

)−nt
×gn−mk(t+1)hk(mt+nt+t) + gn−mk hkm

} if n ≡ m+ 1(mod 2),

where c is a nonzero real number and m is a nonnegative integer.
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Abstract. In this paper, we have introduced the concepts of ideal ∆α−lacunary statis-
tical convergence of order β with the fractional order α and ideal ∆α−lacunary strongly
convergence of order β with the fractional order α ( where 0 < β ≤ 1) and given some
relations about these concepts.
Keywords: I-convergence, lacunary sequence, difference sequence.

1. Introduction

The idea of statistical convergence was formerly given under the name “almost
convergence” by Zygmund [53] in the first edition of his monograph published in
Warsaw in 1935. The concept of statistical convergence was introduced by Steinhaus
[48] and Fast [24] and later reintroduced by Schoenberg [45]. Over the years and
under different names statistical convergence has been discussed in the theory of
Fourier analysis, Ergodic theory, Number theory, Measure theory, Trigonometric
series, Turnpike theory and Banach spaces. Later on, it was further investigated
from the sequence space point of view and linked with summability theory by Çakallı
et al. ([7],[8],[9]). Caserta et al. [10], Çınar et al. [12], Connor [11], Et et al. ([20],
[23]), Fridy [26], Fridy and Orhan [27], Isik et al. ([29],[30],[31]), Mursaleen [40],
Salat [47], Mohiuddine et al. ([5],[6],[33],[38],[39],[41]) and many others.

The idea of statistical convergence depends upon the density of subsets of the
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set N of natural numbers. The density of a subset E of N is defined by

δ(E) = lim
n→∞

1

n

n∑
k=1

χE(k), provided that the limit exists.

A sequence x = (xk) is said to be statistically convergent to L if for every ε > 0,

δ ({k ∈ N : |xk − L| ≥ ε}) = 0.

Recently, Çolak [13] have generalized the statistical convergence by ordering the
interval (0, 1] and defined the statistical convergence of order β and strong p−Cesàro
summability of order β, where 0 < β ≤ 1 and p is a positive real number. Şengül
and Et ([19],[49]) generalized the concepts such as lacunary statistical convergence
of order β and lacunary strong p−Cesàro summability of order β for sequences of
real numbers.

The notation of I-convergence is a generalization of the statistical convergence.
Kostyrko et al. ([36]) introduced the notation of I-convergence. Some further
results connected with the notation of I-convergence can be found in ([14],[15],[37],
[43],[44],[52]).

Let X be non-empty set. Then a family sets I ⊆ 2X ( power sets of X ) is said
to be an ideal if I additive i.e. A,B ∈ I implies A ∪ B ∈ I and hereditary, i.e.
A ∈ I, B ⊂ A implies B ∈ I.

A non-empty family of sets F ⊆ 2X is said to be a filter of X if and only if (i)
φ /∈ F, (ii) A,B ∈ F implies A ∩B ∈ F and (iii) A ∈ F, A ⊂ B implies B ∈ F.

An ideal I ⊆ 2X is called non-trivial if I 6= 2X .

A non-trivial ideal I is said to be admissible if I ⊃ {{x} : x ∈ X} .
If I is a non-trivial ideal in X, X 6= φ, then the family of sets

F (I) = {M ⊂ X : (∃A ∈ I) (M = X \A)} is a filter of X, called the filter associated
with I. Throughout this study, I will stand for a non-trivial admissible ideal of N
and by a sequence we always mean a sequence of real numbers.

Difference sequence spaces were defined by Kızmaz [35] and the concept was
generalized by Et et al. ([16],[17]) as follows:

∆m (X) = {x = (xk) : (∆mxk) ∈ X} ,

where X is any sequence space, m ∈ N, ∆0x = (xk) , ∆x = (xk − xk+1) , ∆mx =
(∆mxk) =

(
∆m−1xk −∆m−1xk+1

)
and so ∆mxk =

∑m
v=0 (−1)

v (m
v

)
xk+v.

If x ∈ ∆m (X) then there exists one and only one sequence y = (yk) ∈ X such
that yk = ∆mxk and

(1.1) xk =

k−m∑
v=1

(−1)
m

(
k − v − 1
m− 1

)
yv =

k∑
v=1

(−1)
m

(
k +m− v − 1

m− 1

)
yv−m,
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y1−m = y2−m = · · · = y0 = 0

for sufficiently large k, for instance k > 2m. After then, some properties of difference
sequence spaces have been studied in ([1],[2],[21],[22],[34],[44]).

For a proper fraction α, we define a fractional difference operator ∆α : w → w
defined by

(1.2) ∆α(xk) =

∞∑
i=0

(−1)i
Γ(α+ 1)

i!Γ(α− i+ 1)
xk+i.

In particular, we have ∆
1
2xk = xk− 1

2xk+1− 1
8xk+2− 1

16xk+3− 5
128xk+4− 7

256xk+5−
21

1024xk+6 · · ·

∆−
1
2xk = xk + 1

2xk+1 + 3
8xk+2 + 5

16xk+3 + 35
128xk+4 + 63

256xk+5 + 231
1024xk+6 · · ·

∆
1
3xk = xk − 1

3xk+1 − 1
9xk+2 − 5

81xk+3 − 10
243xk+4 − 22

729xk+5 − 154
6561xk+6 · · ·

∆
2
3xk = xk − 2

3xk+1 − 1
9xk+2 − 4

81xk+3 − 7
243xk+4 − 14

729xk+5 − 91
6561xk+6 · · ·

By Γ(r), we denote the Gamma function of a real number r and
r /∈ {0,−1,−2,−3, ...}. By the definition, it can be expressed as an improper
integral as:

Γ(r) =

∫ ∞
0

e−ttr−1dt.

From the definition, it is observed that:

(i) For any natural number n, Γ(n+ 1) = n!,

(ii) For any real number n and n /∈ {0,−1,−2,−3, ...},Γ(n+ 1) = nΓ(n),

(iii) For particular cases, we have Γ(1) = Γ(2) = 1,Γ(3) = 2!,Γ(4) = 3!, ....

Without loss of generality, we assume throughout that the series defined in (1.2)
is convergent. Moreover, if α is a positive integer, then the infinite sum defined in

(1.2) reduces to a finite sum i.e.,
∑α
i=0(−1)i Γ(α+1)

i!Γ(α−i+1)xk+i. In fact, this operator

is generalized the difference operator introduced by Et and Çolak [16].

Recently, using fractional operator ∆α (fractional order of α) Baliarsingh et al.
([3],[4],[42]) defined the sequence space ∆α (X) such as:

∆α (X) = {x = (xk) : (∆αxk) ∈ X} ,

where X is any sequence space.

By a lacunary sequence we mean an increasing integer sequence θ = (kr) of
non-negative integers such that k0 = 0 and hr = (kr − kr−1)→∞ as r →∞. The
intervals determined by θ will be denoted by Ir = (kr−1, kr] and the ratio kr

kr−1

will be abbreviated by qr, and q1 = k1 for convenience. In recent years, lacunary
sequences have been studied in ([7],[8],[9],[25],[27],[28],[32],[46],[50],[51]).
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1.1. Definitions and Main Results

Definition 1 Let θ = (kr) be a lacunary sequence, β ∈ (0, 1] and α be a
proper fraction. The sequence x = (xk) is said to be (∆α, I)−lacunary statistically

convergent of order β (or ∆α(Sβθ , I)−convergent ) to the number L, if there is a
real number L such that{

r ∈ N :
1

hβr
|{k ∈ Ir : |∆αxk − L| ≥ ε}| > δ

}
∈ I

for each ε > 0 and δ > 0. In this case, we write xk → L(∆α(Sβθ , I)). The set of
all (∆α, I)−lacunary statistically convergent of order β sequences will be denoted

by ∆α(Sβθ , I). If θ = (2r) , then we write ∆α(Sβ , I) instead of ∆α(Sβθ , I). In the

special cases θ = (2r) and β = 1, we write ∆α(S, I) instead of ∆α(Sβθ , I).

In particular, ∆α(Sβθ , I)−convergence includes many special cases; for example,
in case of α = m ∈ N, (∆α, I)−lacunary statistical convergence of order β reduces
to the (∆m, I)−lacunary statistical convergence which was defined and studied by
Et and Şengül [18].

Definition 2 Let θ = (kr) be a lacunary sequence, β ∈ (0, 1], α be a fixed
proper fraction and p ≥ 1 be a real number. A sequence x = (xk) is said to be

∆α(Nβ
θ , I)−summable to L (or ideal ∆α−lacunary strongly summable of order β)

if {
r ∈ N :

1

hβr

∑
k∈Ir

|∆αxk − L|p > ε

}
∈ I.

In this case we write xk → L(∆α(Nβ
θ , p, I)). We denote the class of all ideal

∆α−lacunary strongly summable sequences of order β by ∆α(Nβ
θ , p, I).

Theorem 1 Let 0 < β 6 γ 6 1. If xk → L(∆α(Sβθ , I)), then xk → L(∆α(Sγθ , I)).

Proof. The inclusion part of the proof is trivial. The following example shows
that the inclusion is strict. Let α ∈ N and define a sequence ∆αxk by

∆αxk =

{
k k = n3

1
3 otherwise

.

Then x ∈ (∆α(Sγθ , I)) for 1
3 < γ 6 1 but x /∈ (∆α(Sβθ , I)) for 0 < β 6 1

3 by (1.1) .

Theorem 2 If xk → L(∆α(Nβ
θ , p, I)), then xk → L(∆α(Nγ

θ , p, I)) and the
inclusion is proper.

Proof. The inclusion part of the proof is easy. The following example shows
that the inclusion is strict. Let α ∈ N and define a sequence ∆αxk by

∆αxk =

{
1 k = n2

0 otherwise
.
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Then x ∈ (∆α(Nγ
θ , p, I)) for 1

2 < γ 6 1 but x /∈ (∆α(Nβ
θ , p, I)) for 0 < β 6 1

2 by
(1.1) .

Theorem 3 If xk → L(∆α(Nβ
θ , p, I)), then xk → L(∆α(Sβθ , I)) and the inclu-

sion is proper.

Proof. Taking p = 1 and L = 0, we show the strictness of the inclusion. Let
α ∈ N and define a sequence ∆αxk by

∆αxk =

{ [
3
√
hr
]

k = 1, 2, 3, · · · ,
[

3
√
hr
]

0 otherwise
.

Then we have for every ε > 0 and 1
3 < β 6 1,

1

hβr
|{k ∈ Ir : |∆αxk − 0| ≥ ε}| 6

[
3
√
hr
]

hβr
,

and for any δ > 0 we get{
r ∈ N :

1

hβr
|{k ∈ Ir : |∆αxk − 0| ≥ ε}| > δ

}
⊆

{
r ∈ N :

[
3
√
hr
]

hβr
> δ

}

and so xk → 0(∆α(Sβθ , I)) for 1
3 < β 6 1 by (1.1). On the other hand, for 0 < β 6 2

3 ,

1

hβr

∑
k∈Ir

|∆αxk − 0| =
[

3
√
hr
] [

3
√
hr
]

hβr
→∞

and for α = 2
3 , [

3
√
hr
] [

3
√
hr
]

hβr
→ 1.

{
r ∈ N : 1

hβr

∑
k∈Ir |∆

αxk − 0| > 1
}

=

{
r ∈ N :

[ 3√hr][ 3√hr]
hβr

> 1

}
= {a, a + 1, a +

2, ...} ∈ F (I) for some a ∈ N, since I is admissible. Thus xk 9 0(∆α(Nβ
θ , p, I)) by

(1.1) .

The proof of the following theorems is straightforward, so we choose to state
these results without proof.

Theorem 4 If lim infr qr > 1, then xk → L(∆α(Sβ , I)) implies xk → L(∆α(Sβθ , I)).

Theorem 5 If lim infr
hαr
kr
> 0, then xk → L(∆α(S, I)) implies xk → L(∆α(Sβθ , I)).

Theorem 6 ∆α(Sβθ , I) ∩ `∞(∆α) is closed subset of `∞(∆α) for 0 < β 6 1.

Theorem 7 Let θ = (kr) and θ′ = (sr) be two lacunary sequences such that
Ir ⊂ Jr (for all r ∈ N) and β, γ ∈ (0, 1] be real numbers such that β 6 γ and α be
a proper fraction.
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Theorem 8 i) If

(1.3) lim
r→∞

inf
hβr
`γr

> 0,

then ∆α(Sγθ′ , I) ⊆ ∆α(Sβθ , I)

ii) If

(1.4) lim
r→∞

`r
hγr

= 1,

then ∆α(Sβθ , I) ⊆ ∆α(Sγθ′ , I).

Proof. i) Omitted.

ii) Let x = (xk) ∈ ∆α(Sβθ , I) and be (1.4) satisfied. Since Ir ⊂ Jr, for ε > 0 we
may write

1

`γr
|{k ∈ Jr : |∆αxk − L| > ε}| = 1

`γr
|{sr−1 < k 6 kr−1 : |∆αxk − L| > ε}|

+
1

`γr
|{kr < k 6 sr : |∆αxk − L| > ε}|+ 1

`γr
|{kr−1 < k 6 kr : |∆αxk − L| > ε}|

6
kr−1 − sr−1

`γr
+
sr − kr
`γr

+
1

`γr
|{k ∈ Ir : |∆αxk − L| > ε}|

=
`r − hr
`γr

+
1

`γr
|{k ∈ Ir : |∆αxk − L| > ε}|

6
`r − hγr
hγr

+
1

hγr
|{k ∈ Ir : |∆αxk − L| > ε}|

6

(
`r
hγr
− 1

)
+

1

hβr
|{k ∈ Ir : |∆αxk − L| > ε}|

for all r ∈ N, where Ir = (kr−1, kr] , Jr = (sr−1, sr] , hr = kr − kr−1 and `r =
sr − sr−1. Thus{

r ∈ N :
1

`βr
|{k ∈ Jr : |∆αxk − L| ≥ ε}| > δ

}
⊆

⊆
{
r ∈ N :

1

hβr
|{k ∈ Ir : |∆αxk − L| ≥ ε}| > δ

}
∈ I.

This implies that ∆α(Sβθ , I) ⊆ ∆α(Sγθ′ , I).

Theorem 9 Let θ = (kr) and θ′ = (sr) be two lacunary sequences such that
Ir ⊆ Jr for all r ∈ N, β and γ be fixed real numbers such that 0 < β 6 γ 6 1 and
0 < p <∞. Then we have,
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i) If (1.3) holds then ∆α(Nγ
θ′ , p, I) ⊂ ∆α(Nβ

θ , p, I),

ii) If (1.4) holds and x ∈ ∆α(`∞) then ∆α(Nβ
θ , p, I) ⊂ ∆α(Nγ

θ′ , p, I).

Proof. Omitted.

Theorem 10 Let θ = (kr) and θ′ = (sr) be two lacunary sequences such that
Ir ⊆ Jr (for all r ∈ N), β and γ be fixed real numbers such that 0 < β 6 γ 6 1 and
0 < p <∞. Then,

i) Let (1.3) holds, if a sequence is strongly ∆α(Nγ
θ′ , p, I)-summable to L, then it

is ∆α(Sβθ , I)-statistically convergent to L.

ii) Let (1.4) holds and x = (xk) be a ∆α−bounded sequence if ∆α(Sβθ , I)-
statistically convergent to L, then it is strongly ∆α(Nγ

θ′ , p, I)−summable to L.

Proof. i) For any sequence x = (xk) and ε > 0, we have∑
k∈Jr

|∆αxk − L|p =
∑
k∈Jr

|∆αxk−L|>ε

|∆αxk − L|p +
∑
k∈Jr

|∆αxk−L|<ε

|∆αxk − L|p

>
∑
k∈Ir

|∆αxk−L|>ε

|∆αxk − L|p

> |{k ∈ Ir : |∆αxk − L| > ε}|εp

and so that

1

`γr

∑
k∈Jr

|∆αxk − L|p >
1

`γr
|{k ∈ Ir : |∆αxk − L| > ε}|εp

>
hβr
`γr

1

hβr
|{k ∈ Ir : |∆αxk − L| > ε}|εp.{

r ∈ N :
1

hβr
|{k ∈ Ir : |∆αxk − L| ≥ ε}| > δ

}
⊆

⊆

{
r ∈ N :

1

`γr

∑
k∈Jr

|∆αxk − L|p >
hβr
`γr
δεp

}
∈ I.

Hence x = (xk) is ∆α(Sβθ , I)−statistically convergent to L.

ii) Suppose that ∆α(Sβθ , I)-statistically convergent to L and x = (xk) ∈ ∆α (`∞).
Then there exists some M > 0 such that |∆αxk −L| 6M for all k. Then for every
ε > 0 we may write

1

`γr

∑
k∈Jr

|∆αxk − L|p =
1

`γr

∑
k∈Jr−Ir

|∆αxk − L|p +
1

`γr

∑
k∈Ir

|∆αxk − L|p
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6

(
`r − hr
`γr

)
Mp +

1

`γr

∑
k∈Ir

|∆αxk − L|p

6

(
`r − hγr
`γr

)
Mp +

1

`γr

∑
k∈Ir

|∆αxk − L|p

6

(
`r
hγr
− 1

)
Mp +

1

hγr

∑
k∈Ir

|∆αxk−L|>ε

|∆αxk − L|p +
1

hγr

∑
k∈Ir

|∆αxk−L|<ε

|∆αxk − L|p

6

(
`r
hγr
− 1

)
Mp +

Mp

hγr
|{k ∈ Ir : |∆αxk − L| > ε}|+ hr

hγr
εp

6

(
`r
hγr
− 1

)
Mp +

Mp

hβr
|{k ∈ Ir : |∆αxk − L| > ε}|+ `r

hγr
εp

for all r ∈ N. {
r ∈ N :

1

`γr

∑
k∈Jr

|∆αxk − L|p > δ

}
⊆

⊆
{
r ∈ N :

1

hβr
|{k ∈ Ir : |∆αxk − L| ≥ ε}| >

δ

Mp

}
∈ I.

Using (1.4) we obtain that ∆α(Nγ
θ′ , p, I)-statistically convergent to L, whenever

∆α(Sβθ , I)-summable to L.

Definition 3 Let θ = (kr) be a lacunary sequence, β ∈ (0, 1], α be a proper
fraction. The sequence x = (xk) is said to be (∆α, I)−lacunary statistically Cauchy

sequence of order β (or ∆α(Sβθ , I)−Cauchy ) if there is a subsequence (xk′(r)) of (xk)
such that k′(r) ∈ Jr for each r ∈ N, xk′(r) → L(∆α) (i.e. limr |∆αxk′(r) − L| = 0){

r ∈ N :
1

hβr

∑
k∈Jr

|∆α(xk − xk′(r))| ≥ ε

}
∈ I

for each ε > 0.

Theorem 11 If x = (xk) is a ∆α(Nβ
θ , I)−summable if and only if it is a

∆α(Sβθ , I)−Cauchy sequence.

Proof. Assume that (xk) is a ∆α(Nβ
θ , I)−summable sequence to L. Then there

exists L such that xk → L(∆α(Nβ
θ , I). Therefore,

Hi =

{
i ∈ N : |∆αxk − L| <

1

i

}
for each i ∈ N. Hence for each i, Hi+1 ⊆ Hi and{

r ∈ N :
|Hr ∩ Jr|

hβr
>

1

r

}
∈ I.
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We choose k1, such that r > k1, then{
r ∈ N :

|H1 ∩ Jr|
hβr

< 1

}
/∈ I.

Next we choose k2 > k1 such that r > k2 implies{
r ∈ N :

|H2 ∩ Jr|
hβr

< 1

}
/∈ I.

Proceeding this way, we can choose kp+1 > kp such that r > kp+1, implies that
Hp+1 ∩ Jr 6= Ø. Also, we can choose k′(r) ∈ Hp ∩ Jr for each r satisfying kp 6 r <
kp+1 such that

|∆αxk′(r) − L| <
1

p
.

This implies that xk′(r) → L(∆α). Therefore, for every ε > 0, we getr ∈ N :
1

hβr

∑
k,k′(r)∈Jr

|∆α(xk − xk′(r))| ≥ ε

 ⊆
{
r ∈ N :

1

hβr

∑
k∈Jr

|∆αxk − L| ≥
ε

2

}

∪

r ∈ N :
1

hβr

∑
k′(r)∈Jr

|∆αxk′(r) − L| ≥
ε

2

 .

Then, r ∈ N :
1

hβr

∑
k,k′(r)∈Jr

|∆α(xk − xk′(r))| ≥ ε

 ∈ I.
Therefore (xk) is a ∆α(Sβθ , I)−Cauchy sequence.

Conversely suppose (xk) is a ∆α(Sβθ , I)−Cauchy sequence. Then for every ε > 0,
we have{
r ∈ N :

1

hβr

∑
k∈Jr

|∆αxk − L| ≥ ε

}
⊆

r ∈ N :
1

hβr

∑
k,k′(r)∈Jr

|∆α(xk − xk′(r))| ≥
ε

2


∪

r ∈ N :
1

hβr

∑
k′(r)∈Jr

|∆αxk′(r) − L| ≥
ε

2


and so (xk) is a (∆α(Nβ

θ , I)−summable sequence to L.

Definition 4 A lacunary sequence ρ = (k̄(r)) is called a lacunary refinement of
the lacunary sequence θ = (kr) if (kr) ⊂ (k̄(r)).
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Theorem 12 If ρ = (k̄(r)) is a lacunary refinement of a lacunary sequence θ

and xk → L(∆α(Nβ
ρ , I)), then xk → L(∆α(Nβ

θ , I)).

Proof. Suppose that for each Jr of θ contains the points (k̄r,t)
ν(r)
t=1 of ρ such

that kr−1 < k̄r,1 < k̄r,2 < · · · < k̄r,ν(r) = kr, where J̄r,t = (k̄r,t−1, k̄r,t]. For all r
and let ν(r) > 1 this implies kr ⊆ (k̄(r)). Let (J∗j )∞j=1 be the sequence of intervals

(J̄r,t) ordered by increasing right end points. Since xk ∈ L(∆α(Nβ
ρ , I)), then for

each ε > 0, j ∈ N :
1

(h∗j )
β

∑
J∗j ⊂Jr

|∆αxk − L| > ε

 ∈ I.
Also since hr = kr − kr−1, so h̄r,t = k̄r,t − k̄r,t−1. For each ε > 0, we get

{
r ∈ N :

1

(hr)β

∑
k∈Jr

|∆αxk − L| > ε

}

⊆

r ∈ N :
1

(hr)β

∑
k∈Jr

j ∈ N :
1

(h∗j )
β

∑
J∗
j
⊂Jr

k∈J∗
j

|∆αxk − L| > ε


 .

Therefore
{
r ∈ N : (hr)

−β∑
k∈Jr |∆

αxk − L| > ε
}
∈ I. Thus xk ∈ (∆α(Nβ

θ , I)).

Theorem 13 Let ψ be set of lacunary sequences.

a) If ψ is closed under arbitrary union, then ∆α(Nβ
µ , I) =

⋂
θ∈ψ ∆α(Nβ

θ , I),
where µ =

⋃
θ∈ψ θ,

b) If ψ closed under arbitrary intersection, then ∆α(Nβ
τ , I) =

⋃
θ∈ψ ∆α(Nβ

θ , I),
where τ =

⋂
θ∈ψ θ,

c) If ψ is closed under union and intersection, then ∆α(Nβ
µ , I) ⊆ ∆α(Nβ

θ , I) ⊆
∆α(Nβ

τ , I).

Proof. a) By hypothesis, we have µ ∈ ψ which is a refinement of each θ ∈ ψ.

Then from Theorem 12, we have if xk ∈ ∆α(Nβ
µ , I) implies that xk ∈ ∆α(Nβ

θ , I).

Therefore, for each θ ∈ ψ, we have ∆α(Nβ
µ , I) ⊆ ∆α(Nβ

θ , I). The reverse inclusion

is obvious. Hence ∆α(Nβ
µ , I) =

⋂
θ∈ψ ∆α(Nβ

θ , I).

b) By part a) and Theorem 12, we have ∆α(Nβ
τ , I) =

⋃
θ∈ψ ∆α(Nβ

θ , I).

c)By part a) and b)we get ∆α(Nβ
µ , I) ⊆ ∆α(Nβ

θ , I) ⊆ ∆α(Nβ
τ , I).
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1. H. Altınok, M. Et, M. and R. Çolak: Some remarks on generalized sequence
space of bounded variation of sequences of fuzzy numbers. Iran. J. Fuzzy Syst.
11(5) (2014), 39–46, 109.

2. N. D. Aral and M. Et: On lacunary statistical convergence of order β of dif-
ference sequences of fractional order. International Conference of Mathematical
Sciences, (ICMS 2019), Maltepe University, Istanbul, Turkey.

3. P. Baliarsingh: Some new difference sequence spaces of fractional order and
their dual spaces. Appl. Math. Comput. 219(18) (2013), 9737–9742.

4. P. Baliarsingh, U. Kadak and M. Mursaleen: On statistical convergence of
difference sequences of fractional order and related Korovkin type approximation
theorems. Quaest. Math. 41(8) (2018), 1117–1133.

5. N. L. Braha, H. M. Srivastava and S. A. Mohiuddine: A Korovkin’s type
approximation theorem for periodic functions via the statistical summability of
the generalized de la Vallee Poussin mean. Appl. Math. Comput. 228 (2014),
162–169.

6. C. Belen and S. A. Mohiuddine: Generalized weighted statistical convergence
and application. Appl. Math. Comput. 219(18) (2013), 9821–9826.
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Abstract. For a given element g of a finite group G, the probablility that the com-
mutator of randomly choosen pair elements in G equals g is the relative commutativity
degree of g.

In this paper we are interested in studying the relative commutativity degree of the
Dihedral group of order 2n and the Quaternion group of order 2n for any n ≥ 3 and
we examine the relative commutativity degree of infinite class of the Moufang Loops of
Chein type, M(G, 2).
Keywords. Relative commutativity degree, Moufang loop.

1. Introduction

Every algebraic structure here is non-commutative. A quasi-group is a non-
empty set with a binary operation such that for every three elements x, y and z
of that, the equation xy = z has a unique solution in this set, whenever two of
the three element are specified. A quasi-group with a neutral element is called a
loop and following [2, 6, 7, 8] one may see the definition of Moufang loop satisfying
four tantamount relators. These loops are of interest because of their appearance
in the projective geometry as planes and even they are non-associative, they retain
many properties of the groups. During the study of these loops an interesting
class introduced by Chein [3, 4, 5] where, for a finite group G and a new element
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u, (u /∈ G), the loop M(G, 2) is defined as M(G, 2) = G ∪Gu such that the binary
operation in M(G, 2) is defined by:

goh = gh, if g, h ∈ G,
go(hu) = (hg)u, if g ∈ G, hu ∈ Gu,
(gu)oh = (gh−1)u, if gu ∈ Gu, h ∈ G,
(gu)o(hu) = h−1g, if gu, hu ∈ Gu.

These loops are studied for their finiteness property in [1, 2]. It is obvious
that M(G, 2) is non-associative if and only if the group G is non-abelian. Our next
preliminary is the definition of generalized relative commutativity degree. Following
[1], for an integer n ≥ 2, the probability that for two elements x and y of an algebraic
structure, xny = yxn holds is called the nth-commutativity degree of the algebraic
structure and denoted this probability by Pn(S), for an algebraic structure S.

In what follows we examine Prg(M) and Prg(G), where for a given group G we
give a general relationship between them with M = M(G, 2). Since then we give
explicit descriptions for Prg(M) in two special cases when G is one of the dihedral
group of order 2m and the quaternion group of order 2m, for every m ≥ 3. Note that
these groups are non-abelian and then the loop M = M(G, 2) is non-associative.

2. Main results

For a given element g ∈ G we define the g-relative commutativity set of G as

Cg(G) = {(x, y) | x, y ∈ G, xyx−1y−1 = g}.

This set will be used in computation of Prg(G) and we have

Prg(G) =
|Cg(G)|
|G|2

.

Also we use the presentations < a, b | an = b2 = (ab)2 = 1 > and < a, b | a2n−1

=

1, b2 = a2
n−2

, (ab)2 = 1 > for the groups D2n and Q2n . Our main results are:

Lemma 2.1. For even values of n ≥ 4, if a, b ∈ D2n then

(i) [ai, b] = g if and only if [ai, ajb] = g,

(ii) [ai, b] = g if and only if [a
n
2 +i, b] = g,

(iii) [b, ai] = g if and only if [ajb, ai] = g,

(iv) [b, ai] = g if and only if [b, a
n
2 +i] = g,

(v) [b, aib] = g if and only if [b, a
n
2 +ib] = g,

(vi) [aib, ajb] = g if and only if [ai+1b, aj+1b] = g,
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where g ∈ D2n and (1 ≤ i, j ≤ n− 1).

Proof. Let n ≥ 4 be an even integer. Then by presentation of the group D2n we
get:

(i) :

[ai, b] = g ⇐⇒ aiba−ib−1 = g
⇐⇒ a−2ib2 = g
⇐⇒ a2iaj−jb2 = g
⇐⇒ ai+jba−i+jb = g
⇐⇒ aiajba−iajb = g
⇐⇒ aiajba−ib−1a−j = g
⇐⇒ [ai, ajb] = g.

(ii) :

[ai, b] = g ⇐⇒ aiba−ib−1 = g
⇐⇒ a2ib2 = g
⇐⇒ an+2ib2 = g
⇐⇒ a

n
2 +iba−

n
2−ib−1 = g

⇐⇒ [a
n
2 +i, b] = g.

The proof in other cases is similar and we omit it.

Corollary 2.1. Let n ≥ 4 be an even integer and a, b ∈ D2n. For every integers
0 ≤ i, j ≤ n− 1 if [aib, ajb] = g then g ∈ {1, a2, a4, . . . , an−2}.

Theorem 2.1. For even values of n > 3 if g ∈ D2n, (g 6= 1) then

Prg(D2n) =
3

2n

where, g = a2, a4, . . . , an−2.

Proof. Let n be an even integer and G = D2n = A∪B where, A = {1, a, . . . , an−1}
and B = {b, ab, . . . , an−1b}. Clearly, [ai, aj ] = 1, now if [ai, b] = g then by using [i]
in Lemma 2.1 we get there are n pairs (x, y) ∈ A× B such that [x, y] = g, also by
[ii] in Lemma 2.1 we get there are n pairs (x, y) ∈ A×B such that [x, y] = g. Also,
by [iii] and [iv] in Lemma 2.1 we heve there are 2n pairs (x, y) ∈ B × A such that
[x, y] = g and by [v] and [vi] in Lemma 2.1 there are 2n pairs (x, y) ∈ B × B such
that [x, y] = g.

Consequently,
|Cg(D2n)| = 2n + 2n + 2n = 6n,

and

Prg(D2n) =
|Cg(D2n)|
|D2n|2

=
6n

4n2
=

3

2n
.



60 H. H. Bashir, A. Iranmanesh, B. Azizi

Lemma 2.2. For odd values of n ≥ 3, if a, b ∈ D2n then

(i) [ai, b] = g if and only if [ai, ajb] = g,

(ii) [b, ai] = g if and only if [ajb, ai] = g,

(iii) [b, aib] = g if and only if [b, a
n
2 +ib] = g,

where, g ∈ D2n and (1 ≤ i, j ≤ n− 1).

Proof. The proof is similar to the proof of Lemma 2.1.

Corollary 2.2. Let n ≥ 4 be an odd integer and a, b ∈ D2n. For every integers
0 ≤ i, j ≤ n− 1 if [aib, ajb] = g then g ∈ {1, a, a2, . . . , an−1}.

Theorem 2.2. For odd values of n > 3 if g ∈ D2n, (g 6= 1) then

Prg(D2n) =
3

4n

where, g = a, a2, . . . , an−1.

Proof. Let n be an odd integer and G = D2n = A ∪B where, A = {1, a, . . . , an−1}
and B = {b, ab, . . . , an−1b}. Clearly, [ai, aj ] = 1, now if [ai, b] = g then by using [i]
in Lemma 2.2 we get there are n pairs (x, y) ∈ A×B such that [x, y] = g. Also, by
[ii] in Lemma 2.2 we heve there are n pairs (x, y) ∈ B ×A such that [x, y] = g and
by [iii] in Lemma 2.2 there are n pairs (x, y) ∈ B ×B such that [x, y] = g.

Consequently,
|Cg(D2n)| = n + n + n = 3n,

and

Prg(D2n) =
|Cg(D2n)|
|D2n|2

=
3n

4n2
=

3

4n
.

Lemma 2.3. For a given element g ∈ Q2n and any values of n ≥ 3, if a, b ∈ Q2n

and (1 ≤ i, j ≤ n− 1) then

(i) [ai, b] = g if and only if [ai, ajb] = g,

(ii) [ai, b] = g if and only if [a
n
2 +i, b] = g,

(iii) [b, ai] = g if and only if [ajb, ai] = g,

(iv) [b, ai] = g if and only if [b, a
n
2 +i] = g,

(v) [b, aib] = g if and only if [b, a
n
2 +ib] = g,

(vi) [aib, ajb] = g if and only if [ai+1b, aj+1b] = g.
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Corollary 2.3. Let n ≥ 3 be a positive integer and a, b ∈ Q2n . For every 0 ≤
i, j ≤ 2n−1 − 1, if [aib, ajb] = g then g ∈ {1, a2, a4, . . . , a2n−1−2}.

Theorem 2.3. For any values of n ≥ 3 if g ∈ Q2n , (g 6= 1) then

Prg(Q2n) =
3

2n

where, g ∈ {1, a2, a4, . . . , a2n−1−2}.

Proof. Let n ≥ 3 be an even integer and G = Q2n = A∪B, where A = {1, a, . . . , an−1}
and B = {b, ab, . . . , an−1b}. Clearly, [ai, aj ] = 1, now if [ai, b] = g then by using
[i, ii] in Lemma 2.3 we get there are 2n−1 pairs (x, y) ∈ A×B such that [x, y] = g.
Also, by [iii, iv] in Lemma 2.3 we heve there are 2n−1 pairs (x, y) ∈ B × A such
that [x, y] = g and by [v, vi] in Lemma 2.3 there are 2n−1 pairs (x, y) ∈ B×B such
that [x, y] = g. Consequently,

|Cg(Q2n)| = 2(2n−1) + 2(2n−1) + 2(2n−1) = 3(2n),

and

Prg(Q2n) =
|Cg(Q2n)|
|Q2n |2

=
3(2n)

(2n)2
=

3

2n
.

Lemma 2.4. Let G be a finite group of order n, g ∈ G and M(G, 2) be a finite
Moufang loop of order 2n. we have for all x, y ∈ G:

(i) ((xu)oy)o((xu)−1oy−1) = g if and only if y−2 = g,

(ii) ((xu)o(yu))o((xu)−1o(yu)−1) = g if and only if (x−1y)−2 = g.

Proof. By definition of the multiplication in M(G, 2) clearly:

(i)
((xu)oy)o((xu)−1oy−1) = g ⇐⇒ ((xy−1)u)o((xy)u) = g

⇐⇒ y−1x−1xy−1 = g
⇐⇒ y−2 = g.

(ii)
((xu)o(yu))o((xu)−1o(yu)−1) = g ⇐⇒ (y−1x)o(y−1x) = g

⇐⇒ (y−1x)2 = g
⇐⇒ (x−1y)−2 = g.

Proposition 2.1. For a given integer n ≥ 2 and a non-abelian group G,

Prg(M) =
1

4
(Prg(G) +

3Ng

|G|
),

where Ng is the number of elements y ∈ G such that y−2 = g.
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Proof. Let g ∈ M = M(G, 2) and Cg(M) = {(x, y) | x, y ∈ G, xyx−1y−1 = g}.
We first note that the multiplication table of the Moufang loop M(G, 2) will be as
follows:

o G Gu

G G ∗G G ∗Gu
Gu Gu ∗G Gu ∗Gu

Since Prg(M) =
|Cg(M)|
|M |2 . Thus it is sufficient to enumerate |Cg(M)|. For every

(x, y) ∈M we have the following four cases:
Case1: Both x, y ∈ G. Then there are |Cg(G)| distinct ordered pairs (x, y) ∈
Cg(M) in this case.
Case2: x ∈ Gu and y ∈ G. Then x = x1u where x1 ∈ G. By (i) of Lemma 2.1 we
conclude that y−2 = g, so there are precisely Ng|Gu| = Ng|G| pairs (x, y) ∈ Cg(M)
of this type.
Case3: x ∈ G and y ∈ Gu. Then y = y1u where y1 ∈ G. By using (i) of Lemma
2.1 we get there are Ng|G| distinct pairs in Cg(M) of this type.
Case4: Both x, y ∈ Gu. Then x = x1u and y = y1u where x1, y1 ∈ G. Using (ii) of
Lemma 2.1 we get there are Ng|G| distinct pairs in Cg(M) such that (x−1y)−2 = g.

Consequently,
|Cg(M)| = |Cg(M)|+ 3Ng|G|,

and so,

Prg(M) =
|Cg(M)|+ 3Ng|G|

(2|G|)2
=

1

4
(Prg(G) +

3Ng

|G|
).

Proposition 2.2. Let M = M(D2n, 2), n ≥ 3 is a positive integer. Then,

Prg(M) =


3
8n (Ng + 1), n is even,

3
16n (2Ng + 1), n is odd,

where, Ng is the number of elements y ∈ G such that y−2 = g.

Proof. By using Proposition 2.1 and Theorems 2.2 and 2.3 we get

Prg(M) =
1

4
(Prg(G) +

3Ng

|G|
) =


1
4 ( 3

2n +
3Ng

2n ) = 3
8n (Ng + 1), n is even,

1
4 ( 3

4n +
3Ng

2n ) = 3
16n (2Ng + 1), n is odd,

Corollary 2.4. Let M = M(D2n, 2), n ≥ 3 is a positive integer. Then,

Prg(M) ≤ 15

48
.
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Proposition 2.3. Let M = M(Q2n , 2), n ≥ is an integer . Then

Prg(M) =
3

2n+2
(Ng + 1),

where, Ng is the number of elements y ∈ G such that y−2 = g.

Proof. The proofs follows by considering the Proposition 2.1:

Prg(M) =
1

4
(

3

2n
+

3Ng

2n
) =

3

2n+2
(Ng + 1).

Corollary 2.5. Let M = M(Q2n , 2), n ≥ 3 is an integer . Then

Prg(M) ≤ 3

16
.
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TRIANGULAR A−STATISTICAL RELATIVE UNIFORM
CONVERGENCE FOR DOUBLE SEQUENCES OF POSITIVE

LINEAR OPERATORS
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Abstract. In this paper, we introduce the concept of triangular A−statistical relative
convergence for double sequences of functions defined on a compact subset of the real
two-dimensional space. Based upon this new convergence method, we prove Korovkin-
type approximation theorem. Finally, we give some further developments.
Keywords: positive linear operators, the double sequences, regular matrix, triangular
A-statistical convergence, Korovkin theorem.

1. Introduction

Classical Bohman-Korovkin theorem is a well known theorem which has an impor-
tant place in approximation theory ([13], [16], [21]). This theorem establishes the
uniform convergence in the space C [a, b] of all continuous real functions defined
on the interval [a, b] , for a sequence of positive linear operators (Ln), assuming
the convergence by the test functions fr (s) = sr, r = 0, 1, 2. Moreover, different
finite classes of test functions were studied, in both one and multi-dimensional case.
Many mathematicians studied and improved this theory by defining positive linear
operators via convergence methods on various function spaces ([1], [4], [5], [6], [15],
[18], [20], [23], [24], [25], [26], [34]). In recent years, general versions of Korovkin
theorem have been studied, in which a more general notion of convergence is used.
One of these convergences is the statistical convergence first introduced by Fast
and Steinhaus ([17], [30]). Korovkin type approximation theorems have been first
studied via the notion of statistical convergence by Gadjiev and Orhan [19]. For
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double sequences of positive linear operators, statistical convergence and some of
its generalizations to convergence generated by summability matrix methods were
carried on by Demirci and Dirik ([8], [14]). With the help of these studies, trian-
gular A−statistical convergence which is a different kind of statistical convergence
was identified by Bardaro et. al. ([2], [3]).

Recently, Demirci and Orhan [11] have defined the statistically relatively uniform
convergence by using statistical convergence and the relatively uniform convergence
and established its use in the Korovkin-type approximation theory. Also, a type of
modular convergence, called relative modular convergence, was introduced in [33]
originated by studies in modular spaces and these studies continued ([9], [10], [12]).

Our main aim in this paper is to present a new kind of statistical convergence
for double sequence, called triangular A−statistical relative uniform convergence.
We will compare this new convergence with triangular A−statistical convergence
and obtain more general results.

Now, we begin with the definitions and notations required for this article.

E. H. Moore [22] introduced the notion of uniform convergence of a sequence of
functions relative to a scale function. Then, E. W. Chittenden [7] gave the following
definition of relatively uniform converge which is equivalent to the definition given
by Moore:

A sequence (fn) of functions, defined on any compact subset of real space,
converges relatively uniformly to a limit function f if there exists a function σ (s) ,
such that for every ε > 0 there exists an integer nε such that for every n > nε the

inequality

|fn (s)− f (s)| < ε |σ (s)|

holds uniformly in s. The sequence (fn) is said to converge uniformly relatively to
the scale function σ or more briefly relatively uniformly. Similarly, Dirik and Şahin
[31] gave the following for double sequences of functions:

A double sequence (fi,j) of functions, defined on any compact subset of the real
two-dimensional space, converges relatively uniformly to a limit function f if there
exists a function σ (s, t) , called a scale function such that for every ε > 0 there is
an integer nε such that for every i, j > nε the inequality

|fi,j (s, t)− f (s, t)| < ε |σ (s, t)|

holds uniformly in (s, t) . The double sequence (fi,j) is said to converge uniformly
relatively to scale function σ or more briefly, relatively uniformly.

Let A = (ai,j) be a two-dimensional matrix transformation. For a double se-
quence x = (xi,j) of real numbers, we put

(Ax)i :=

∞∑
j=1

ai,jxi,j ,
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if the series is convergent. We will say that A is regular if limAx = L whenever
limx = L. The well-established characterization for regular two-dimensional matrix
transformation is known as the Silverman-Toeplitz conditions [32]:

(i) ‖A‖ = sup
iεN

∞∑
j=1

|ai,j | <∞

(ii) lim
i
ai,j = 0 for each j ∈ N,

(iii) lim
i

∞∑
j=1

ai,j = 1.

A double sequence x = (xi,j) of real numbers, i, j ∈ N, the set of all positive
integers, is said to be convergent in the Pringsheim’s sense or P−convergent if for
each ε > 0 there exists N ∈ N such that |xi,j − L| < ε whenever i, j > N and L is
called the Pringsheim limit ( denoted by P−lim

i,j
xi,j = L ) [28]. More briefly, we will

say that such an x is P−convergent to L. A double sequence is said to be bounded
if there exists a positive number K such that |xi,j | ≤ K for all (i, j) ∈ N2 = N×N.
Note that in contrast to the case for single sequences, a convergent double sequences
need not to be bounded, provided the double sequences converges in Pringsheim’s
sense for every (i, j) ∈ N2.

Let now A = (an,m,i,j) be a four-dimensional matrix and x = (xi,j) be a double

sequence. Then the double (transformed) sequence, Ax :=
(

(Ax)n,m

)
, is denoted

by

(Ax)n,m =

∞,∞∑
i,j=1,1

an,m,i,jxi,j ,

where it is assumed that the summation exists as a Pringsheim limit for each
(n,m) ∈ N2.

Recall that four-dimensional matrix A = (an,m,i,j) is said to be RH−regular if
it maps every bounded P−convergent sequence into a P−convergent sequence with
the same P−limit. The Robison-Hamilton conditions (see also [29]) state that a
four-dimensional matrix A = (an,m,i,j) is RH−regular if and only if

(i) P − lim
n,m

an,m,i,j = 0 for each i and j,

(ii) P − lim
n,m

∞,∞∑
i,j

an,m,i,j = 1,

(iii) P − lim
n,m

∞∑
i=1

|an,m,i,j | = 0 for each j ∈ N,

(iv) P − lim
n,m

∞∑
j=1

|an,m,i,j | = 0 for each i ∈ N,

(v)
∞,∞∑
i,j=1,1

|an,m,i,j | is P−convergent for every (n,m) ∈ N2,



68 S. Çınar

(vi) there exist finite positive integers A and B such that∑
i,j>B

|an,m,i,j | < A

for every (n,m) ∈ N2.

Let A = (an,m,i,j) be a nonnegative RH−regular summability matrix. If K ⊂
N2, then the A−density of K is denoted by

δ2A (K) := P − lim
n,m

∑
(i,j)∈K

an,m,i,j

provided that the limit on the right-hand side exists in the Pringsheim sense. A
real double sequence x = (xi,j) is said to be A−statistically convergent to L and
denoted by st2A−lim

i,j
xi,j = L if, for every ε > 0,

P − lim
n,m

∑
(i,j)∈K(ε)

an,m,i,j = 0,

where K (ε) =
{

(i, j) ∈ N2 : |xi,j − L| ≥ ε
}
. If we take A = C (1, 1) , then C (1, 1)−

-statistical convergence coincides with the notion of statistical convergence for dou-
ble sequences ([27]), where C (1, 1) = (ci,j,n,m) is the double Cesàro matrix, defined
by ci,j,n,m = 1/ij if 1 ≤ n ≤ i, 1 ≤ m ≤ j and ci,j,n,m = 0 otherwise. We state the
set of all A−statistically convergent double sequences by st2A.

2. Triangular A− Statistical Relative Uniform Convergence

First, we recall some definitions given in [2].

Let A = (ai,j) be a nonnegative regular summability matrix, K ⊂ N2 be a
nonempty set, and for every i ∈ N, let Ki := {j ∈ N : (i, j) ∈ K, j ≤ i} . Triangular
A−density of K, is given by

δTA(K) := lim
i

∑
j∈Ki

ai,j ,

provided that the limit on right-hand side exists in R.
In a similar manner to the natural density, we can give some properties for the

triangular A−density:

i) if K1 ⊂ K2, then δTA(K1) ⊂ δTA(K2),

ii) if K has triangular A−density, then δTA
(
N2 \K

)
= 1− δTA(K).

Let A = (ai,j) be a nonnegative regular summability matrix. The double se-
quence x = (xi,j) is triangular A−statistically convergent to L provided that for
every ε > 0

lim
i

∑
j∈Ki(ε)

ai,j = 0,
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where Ki (ε) = {j ∈ N : j ≤ i, |xi,j − L| ≥ ε} and this denoted by stTA − lim
i
xi,j =

L. We should note that if we take A = C1 := (ci,j) , the Cesàro matrix defined by

ci,j :=

{
1
i , if 1 ≤ j ≤ i,
0, otherwise,

then the triangular A−density is called triangular density which is denoted by

δT (K) = lim
i

1

i
|Ki|

where |Ki| be the cardinality of Ki. According to the above definitions triangular
A−statistical convergent reduces triangular statistical convergent.

Let S is a compact subset of the real two-dimensional space. By C(S) we define
the space of all continuous real valued functions on S and ‖f‖C(S) denotes the usual

supremum norm of f in C(S). Let f and fi,j belong to C(S).

Definition 2.1. Let A = (ai,j) be a nonnegative regular summability matrix. A
double sequence of fuctions (fi,j ) is said to triangular A−statistically uniformly
convergent to f on S provided that for every ε > 0,

lim
i

∑
j∈Ki(ε)

ai,j = 0,

where Ki (ε) =

{
j ∈ N : j ≤ i, sup

(s,t)∈S
|fi,j (s, t)− f (s, t)| ≥ ε

}
. In this case, we

write fi,j ⇒ f
(
stTA
)
.

Definition 2.2. Let A = (ai,j) be a nonnegative regular summability matrix.
(fi,j ) is said to be triangular A−statistically relatively uniformly convergent to f
on S if there exists a function σ (s, t) , |σ (s, t)| > 0, called a scale function, provided
that for every ε > 0,

lim
i

∑
j∈Ki(ε)

ai,j = 0,

where Ki (ε) =

{
j ∈ N : j ≤ i, sup

(s,t)∈S

∣∣∣ fi,j (s,t)−f(s,t)
σ(s,t)

∣∣∣ ≥ ε} . In this case, we write

fi,j ⇒ f
(
stTA, σ

)
.

It will be observed that triangular A−statistical uniform convergence is the
special case of triangular A−statistical relative uniform convergence in which the
scale function is a non-zero constant.

Example 2.1. Take A = C1 and S = [0, 1]× [0, 1] . For each (i, j) ∈ N2, define γi,j : S →
R by

γi,j (s, t) =

{
2i2j2st

1+i3j3s2t2
, i and j are square,

0, otherwise.
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Since ‖ γi,j−γ ‖C(S)= 1, this sequence does not triangular statistically uniform convergent
to γ = 0, but triangular statistically relatively uniform convergent to f = 0, with a scale
function defined by,

σ (s, t) =

{
1
st
, if (s, t) ∈ (0, 1]× (0, 1]

0, if s = 0 or t = 0

clearly, for every ε > 0,

lim
i

1

i

∣∣∣∣∣
{
j ∈ N : j ≤ i, sup

(s,t)∈S

∣∣∣∣γi,j (s, t)− γ (s, t)

σ (s, t)

∣∣∣∣ ≥ ε
}∣∣∣∣∣ = 0.

3. A Korovkin-type approximation theorem

Let L be a linear operator from C (S) into itself and is called positive, if L (f)≥ 0, for

all f ≥ 0. Also, we denote the value of L (f) at a point (s, t) ∈ S by L (f (u, v) ; s, t)
or, briefly, L (f ; s, t) .

Theorem 3.1. [2] Let A = (ai,j) be a nonnegative regular summability matrix and
(Li,j) be a double sequence of positive linear operators from C (S) into C (S) . Then
for every f ∈ C (S) we have

(3.1) stTA − lim
i
‖Li,j (f)− f‖C(S) = 0

if and only if

(3.2) stTA − lim
i
‖Li,j (fr)− fr‖C(S) = 0 for every r = 0, 1, 2, 3,

where f0 (s, t) = 1, f1 (s, t) = s, f2 (s, t) = t, f3 (s, t) = s2 + t2.

Now we have the following Korovkin type approximation theorem for triangular
A−statistical relative convergence that is our main theorem.

Theorem 3.2. Let A = (ai,j) be a nonnegative regular summability matrix. Let
(Li,j) be a double sequence of positive linear operators from C (S) into C (S) . Then,
for all f ∈ C (S) we have

(3.3) Li,j (f) ⇒ f
(
stTA, σ

)
if and only if,

(3.4) Li,j (fr) ⇒ fr
(
stTA, σr

)
( r = 0, 1, 2, 3) ,

where f0 (s, t) = 1, f1 (s, t) = s, f2 (s, t) = t, f3 (s, t) = s2 + t2 and σr (s, t) =
max {|σr (s, t)| ; r = 0, 1, 2, 3} , |σr (s, t)| > 0 and σr (s, t) is unbounded, r = 0, 1, 2, 3.
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Proof. Since each fr ∈ C (S) (r = 0, 1, 2, 3) , (3.3)=⇒(3.4) is obvious. Suppose now
that (3.4) holds. By continuity of f on the compact set S, we can write |f (s, t)| ≤M
where M := ‖f‖C(S) . Also, since f is continuous on S, for every ε > 0, there exists

δ > 0 such that |f (u, v)− f (s, t)| < ε for all (u, v) ∈ S satisfying |u− s| < δ and
|v − t| < δ. Hence, we get

(3.5) |f (u, v)− f (s, t)| < ε+
2M

δ2

{
(u− s)2 + (v − t)2

}
.

Since Li,j is linear and positive, we obtain

|Li,j (f ; s, t)− f (s, t)| = |Li,j (f (u, v)− f (s, t) ; s, t)

−f (s, t) (Li,j (f0; s, t)− f0 (s, t))|

≤
∣∣∣∣Li,j (ε+

2M

δ2

{
(u− s)2 + (v − t)2

}
; s, t

)∣∣∣∣
+M |Li,j (f0; s, t)− f0 (s, t)|

≤
(
ε+M +

2M

δ2
(
A2 +B2

))
|Li,j (f0; s, t)− f0 (s, t)|

+
4M

δ2
A |Li,j (f1; s, t)− f1 (s, t)|

+
4M

δ2
B |Li,j (f2; s, t)− f2 (s, t)|

+
2M

δ2
|Li,j (f3; s, t)− f3 (s, t)|+ ε

where A := max |s| , B := max |t| . Now we multiply the both-sides of the above
inequality by 1

|σ(s,t)| ,∣∣∣∣Li,j (f ; s, t)− f(s, t)

σ (s, t)

∣∣∣∣ ≤ K {∣∣∣∣Li,j (f0; s, t)− f0 (s, t)

σ (s, t)

∣∣∣∣+

∣∣∣∣Li,j (f1; s, t)− f1 (s, t)

σ (s, t)

∣∣∣∣
+

∣∣∣∣Li,j (f2; s, t)− f2 (s, t)

σ (s, t)

∣∣∣∣+

∣∣∣∣Li,j (f3; s, t)− f3 (s, t)

σ (s, t)

∣∣∣∣}+
ε

|σ (s, t)|
,(3.6)

where K = max
{
ε+M + 2M

δ2

(
A2 +B2

)
, 4Mδ2 A,

4M
δ2 B,

2M
δ2

}
and where

σ (s, t) = max {|σr (s, t)| ; r = 0, 1, 2, 3} . Taking the supremum over (s, t) ∈ S, we
get

sup
(s,t)∈S

∣∣∣∣Li,j (f ; s, t)− f(s, t)

σ (s, t)

∣∣∣∣ ≤ sup
(s,t)∈S

ε

|σ (s, t)|
+K

{
sup

(s,t)∈S

∣∣∣∣Li,j (f0; s, t)− f0 (s, t)

σ0 (s, t)

∣∣∣∣
+ sup

(s,t)∈S

∣∣∣∣Li,j (f1; s, t)− f1 (s, t)

σ1 (s, t)

∣∣∣∣
+ sup

(s,t)∈S

∣∣∣∣Li,j (f2; s, t)− f2 (s, t)

σ2 (s, t)

∣∣∣∣
+ sup

(s,t)∈S

∣∣∣∣Li,j (f3; s, t)− f3 (s, t)

σ3 (s, t)

∣∣∣∣
}
.(3.7)
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Now, for a given r > 0, choose ε > 0 such that sup
(s,t)∈S

ε
|σ(s,t)| < r . Then, setting

Di :=

{
j ∈ N : j ≤ i,

∥∥∥Li,j(f)−fσ

∥∥∥
C(S)

≥ r
}
,

Dr
i :=

{
j ∈ N : j ≤ i,

∥∥∥Li,j(fr)−frσr

∥∥∥
C(S)

≥
r− sup

(s,t)∈S

ε
|σ(s,t)|

4K

}
, r = 0, 1, 2, 3. It

is easy to see that

Di ⊆
3
∪
r=0

Dr
i

which gives, for all i ∈ N, then

∑
j∈Di

ai,j ≤
3∑
r=0

∑
j∈Dri

ai,j.

Letting i→∞ and using (3.4), we obtain (3.5). The proof is complete.

If one replaces the scale function by a non-zero constant, then the Theorem
3.2 reduces to the Theorem 3.1.

We now show that our result Theorem 3.2 is stronger than Theorem 3.1.

Example 3.1. Let consider the following Bernstein operators given by

(3.8) Bi,j (f ; s, t) =

i∑
k=0

j∑
p=0

f

(
k

i
,
p

j

)(
i
k

)(
j
p

)
sk (1− s)i−k tp (1− t)j−p

where (s, t) ∈ S = [0, 1]× [0, 1] ; f ∈ C (S) . Also, observe that

Bi,j (f0; s, t) = f0 (s, t) ,

Bi,j (f1; s, t) = f1 (s, t) ,

Bi,j (f2; s, t) = f2 (s, t) ,

Bi,j (f3; s, t) = f3 (s, t) +
s− s2

i
+
t− t2

j
,

where f0 (s, t) = 1, f1 (s, t) = s, f2 (s, t) = t and f3 (s, t) = s2 + t2. Using these
polynomials, we introduce the following positive linear operators on C (S) :

(3.9)
Pi,j (f ; s, t) = (1 + γi,j (s, t))Bi,j (f ; s, t) , (s, t) ∈ S = [0, 1]× [0, 1] and f ∈ C (S)

where γi,j (s, t) is given in Example 2.1. Now, take A = C1, the Cesàro matrix.
Since γi,j ⇒ γ = 0 (stT , σ) , where

σ (s, t) =

{
1
st , if (s, t) ∈ (0, 1]× (0, 1] ,
0, if s = 0 or t = 0.
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Then, we conclude that

Pi,j (fr) ⇒ fr (stT , σ) ( r = 0, 1, 2, 3) .

So by our main theorem, Theorem 3.2, we immediately see that

Pi,j (f) ⇒ f (stT , σ) for f ∈ C (S) .

However, since (γi,j) is not triangular statistically uniformly convergent to γ = 0
on the interval S, we can say that Theorem 3.1 does not work for our operators
defined by (3.9).

4. Rates of Triangular A−Statistical Relative Uniform Convergence

In this section, using the notion of triangular A−statistical relative uniform conver-
gence we study the rate of convergence of positive linear operators with the help of
modulus of continuity.

Let f ∈ C (S) . Then the modulus of continuity of f, defined to be

w (f ; δ)= sup

{
|f (u, v)− f (s, t)| : (u, v) , (s, t) ∈ S and

√
(u− s)2 + (v − t)2 ≤ δ

}
for δ > 0.

Then we hold the following result.

Theorem 4.1. Let A = (ai,j) be a nonnegative regular summability matrix. Let
(Li,j) be a double sequence of positive linear operators acting from C (S) into itself.

Assume that the following conditions hold:

(a) Li,j (f0) ⇒ f0
(
stTA, σ0

)
,

(b) w (f, δ) ⇒ 0
(
stTA, σ1

)
, where δ := δi,j =

√
‖Li,j (ϕ)‖C(S), with ϕ (u, v) =

(u− s)2 + (v − t)2 .
Then we have, for all f ∈C (S) ,

Li,j (f) ⇒ f
(
stTA, σ

)
where

σ (s, t) = max {|σ0 (s, t)| , |σ1 (s, t)| , |σ0 (s, t)σ1 (s, t)|} ,

|σi (s, t)| > 0 and σi (s, t) is unbounded for i = 0, 1.

Proof. Let f ∈ C (S) and (s, t)∈ S be fixed. Using linearity and positivity of Li,j

we have, for any (i, j) ∈ N2 and δ > 0,
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|Li,j (f ; s, t)− f (s, t)|
= |Li,j (f (u, v)− f (s, t) ; s, t)− f (s, t) (Li,j (f0; s, t)− f0 (s, t))|
≤ Li,j (|f (u, v)− f (s, t)| ; s, t) +M |Li,j (f0; s, t)− f0 (s, t)|

≤ Li,j

1 +

√
(u− s)2 + (v − t)2

δ

w (f ; δ) ; s, t


+M |Li,j (f0; s, t)− f0 (s, t)|

≤ w (f ; δ) |Li,j (f0; s, t)− f0 (s, t)|+ w (f ; δ)

δ2
Li,j (ϕ; s, t) + w (f ; δ)

+M |Li,j (f0; s, t)− f0 (s, t)| ,

where M = ‖f‖C(S) . Taking the supremum over (s, t) ∈ S in both sides of the
above inequality, we obtain, for any δ > 0,

∥∥∥∥Li,jf − fσ

∥∥∥∥
C(S)

≤ w (f, δi,j)

‖σ1‖C(S)

∥∥∥∥Li,jf0 − f0σ0

∥∥∥∥
C(S)

+
w (f, δi,j)

‖σ1‖C(S) δ
2

∥∥∥∥Li,jϕσ1

∥∥∥∥
C(S)

+
w (f, δi,j)

‖σ1‖C(S)

+M

∥∥∥∥Li,jf0 − f0σ0

∥∥∥∥
C(S)

.

Now, if take δ := δi,j =
√
‖Li,j (ϕ)‖, then we may write

∥∥∥∥Li,jf − fσ

∥∥∥∥
C(S)

≤ w (f, δ)

‖σ1‖

∥∥∥∥Li,jf0 − f0σ0

∥∥∥∥
C(S)

+ 2
w (f, δ)

‖σ1‖
+M

∥∥∥∥Li,jf0 − f0σ0

∥∥∥∥
C(S)

and hence,
(4.1)∥∥∥∥Li,jf − fσ

∥∥∥∥
C(S)

≤ K

{
w (f, δ)

‖σ1‖

∥∥∥∥Li,jf0 − f0σ0

∥∥∥∥
C(S)

+
w (f, δ)

‖σ1‖
+

∥∥∥∥Li,jf0 − f0σ0

∥∥∥∥
C(S)

}

where K = max {2,M} . For a given r > 0, define the following sets:
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T : =

{
j ∈ N : j ≤ i,

∥∥∥∥Li,j (f)− f
σ

∥∥∥∥
C(S)

≥ r

}
,

T1 : =

{
j ∈ N : j ≤ i, w (f, δ)

‖σ1‖

∥∥∥∥Li,jf0 − f0σ0

∥∥∥∥
C(S)

≥ r

3K

}
,

T2 : =

{
j ∈ N : j ≤ i, w (f, δ)

‖σ1‖
≥ r

3K

}
,

T3 : =

{
j ∈ N : j ≤ i,

∥∥∥∥Li,jf0 − f0σ0

∥∥∥∥
C(S)

≥ r

3K

}
.

It follows from (4.1) that
T ⊂ T1 ∪ T2 ∪ T3.

Also, define the sets:

T4 : =

{
j ∈ N : j ≤ i, w (f, δ)

‖σ1‖
≥
√

r

3K

}
,

T5 : =

{
j ∈ N : j ≤ i,

∥∥∥∥Li,jf0 − f0σ0

∥∥∥∥
C(S)

≥
√

r

3K

}
.

Then observe that T1 ⊂ T4 ∪ T5. So we have T ⊂ T2 ∪ T3 ∪ T4 ∪ T5.
Therefore, using (a) and (b), the proof is complete.

5. CONCLUSION

If we take A = C1 = (ci,j) , the Cesàro matrix defined by

ci,j :=

{
1
i , if 1 ≤ j ≤ i,
0, otherwise,

then triangular A−statistical relative uniform convergence reduces to the concept
of triangular statistical relative convergence. Furthermore, if we take A = C1 and

the scale function by a non-zero constant, then triangular A−statistical relative
uniform convergence reduces to the triangular statistical uniform convergence.

If one replaces the scale function by a non-zero constant, then the triangular
A−statistical relative uniform convergence reduces to the triangular A−statistical
uniform convergence.
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31. P. Şahin, F. Dirik: Statistical Relative Uniform Convergence of Double Sequence
of Positive Linear Operators. Appl. Math. 17 (2017) 207-220.
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Abstract. In this paper, we introduce a new sequential space as a generalization of
M−metric spaces and Mb−metric spaces. In this generalized space we define two
contractive mappings namely m−contraction and m−quasi-contraction and prove some
fixed point theorems for such type of mappings. Several illustrative examples have been
presented in strengthening the hypothesis of our theorems.
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1. Introduction and Preliminaries

The notion of metric has been generalized in several direction, see e.g. [1, 2, 6, 7,
8, 9]. Among all, we focus on partial metric and M−metric. The concept of partial
metric space was first introduced by S. Matthews [1] in 1994 as a generalization of
usual metric spaces. If (X, p) is a partial metric space then p(µ, µ), µ ∈ X need
not to be zero. Partial metric spaces have vast application potential, in particular,
it has been used in the construction of the topological structures in the study of
information science, computer science, etc. In 2014, Asadi et al. [2] have extended
the notion of the partial metric space: M−metric space. The authors [2] proved
the Banach contraction principle in the context of the complete M−metric space.
The definition of M−metric is given as follows:

Throughout the manuscript all considered sets are nonempty. Further, the no-
tation X2 denotes the cross-product of the set X, that is, X2 : X ×X .
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Definition 1.1. Let m : X2 → [0,∞) be a function over a set X. Then (X,m) is
said to be an M−metric space if m satisfies the following conditions:

(m1) m(p, p) = m(q, q) = m(p, q) if and only if p = q;

(m2) mpq ≤ m(p, q);

(m3) m(p, q) = m(q, p);

(m4) m(p, q)−mpq ≤ (m(p, r)−mpr) + (m(r, q)−mrq) for all p, q, r ∈ X,

where
mpq = min{m(p, p),m(q, q)},

and
Mpq = max{m(p, p),m(q, q)}.

It is seen that any partial metric space is an M−metric space. In [2] authors have
presented an example of M−metric that does not form a partial metric.

Example 1.1. Let X = {1, 2, 3} and m : X2 → [0,∞) be defined by m(1, 1) = 1,
m(2, 2) = 9, m(3, 3) = 5 and

In 2015, Jleli-Samet [5] introduce a new generalization of the notion of met-
ric spaces that involves b-metric and standard metric. Inspired by this work, we
characterize the M−metric space and observed a new metric space. We present an
example to indicate the novelty of this notion. Further, we observe some fixed point
results in the setting of this new M−metric space.

2. Main results

In this section we introduce a generalized M−metric space namely m∗−metric
space, as follows:

Let m : X2 → [0,∞) be a function such that mpq = min{m(p, p),m(q, q)} and
Mpq = max{m(p, p),m(q, q)}. Let us define the set

M(m, X, p) = {{pn} ⊂ X : lim
n→∞

(m(pn, p)−mpnp) = 0}(2.1)

for all p ∈ X.

Definition 2.1. A function m : X × X → [0,∞), over a set X, is called an
m∗−metric if the following conditions hold:

(m 1) m(p, p) = m(q, q) = m(p, q) if and only if p = q, p, q ∈ X;

(m 2) mpq ≤ m(p, q) for all p, q ∈ X;

(m 3) m(p, q) = m(q, p) for all p, q ∈ X;

(m 4) there exists some b > 0 such that for any (p, q) ∈ X2 and {pn} ∈
M(m, X, p) we have

m(p, q)−mpq ≤ b lim sup
n→∞

(m(pn, q)−mpnq).(2.2)

The pair (X,m) is called an m∗−metric space.
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In the following example we show that the newly defined m∗−metric space is
more stronger than M−metric space.

Example 2.1. Let X = N and we define m : X2 → R+ by m(n, n) = 1 for all n ∈ N,
m(1, 2) = m(2, 1) = 4, m(1, n) = m(n, 1) = 1 + 1

n
for all n ≥ 3, m(n, 2) = m(2, n) = 5

2

for all n ≥ 3 and m(n, k) = m(k, n) = 3 for any n, k /∈ {1, 2}. Here M(m, X, 1) =
{{1, 1, ...}, {3, 4, 5, ...}} and for any other x ∈ N, M(m, X, x) contains only the constant
sequence {x, x, ...}. Then one can easily check that (X,m) is an m∗−metric space.

Remark 2.1. In 2016, Mlaiki [10] defined Mb−metric space, by replacing the axiom
(m4) in Definition 1.1 by

(mb4) mb(p, q)−mbpq ≤ s[(mb(p, r)−mbpr ) + (mb(r, q)−mbrq )].

Now we show that (X,m) in Example 2.1 is not an Mb−metric space for any b > 0. Here
we see that m(n, k)−mnk = 2 for any n, k ≥ 3. But b[(m(n, 1)−mn1) + (m(1, k)−m1k)] =
b[ 1

n
+ 1

k
]→ 0 as n, k →∞ for any b > 0. This proves our assertion.

Remark 2.2. (1) Let (X,m) be an M−metric space (See Definition 1.1). Clearly m
satisfies the conditions (m 1), (m 2) and (m 3). Let (p, q) ∈ X2 and {pn} ⊂ X be such
that limn→∞(m(pn, p)−mpnp) = 0 then from condition (m4) we have

m(p, q)−mpq ≤ (m(p, pn)−mppn) + (m(pn, q)−mpnq)(2.3)

for all n ∈ N. Taking n→∞ we can easily see that m satisfies the condition (m 4). Hence
m satisfies all the conditions of m∗−metric and therefore (X,m) is an m∗−metric space.

(2) Let (X,mb) be an Mb−metric space with coefficient s ≥ 1. Then it is clear that
mb satisfies the conditions (m 1), (m 2) and (m 3). Let (p, q) ∈ X2 and {pn} ⊂ X be such
that limn→∞(mb(pn, p)−mbpnp) = 0 then from condition (mb4) we have

mb(p, q)−mbpq ≤ s[(mb(p, pn)−mbppn
) + (mb(pn, q)−mbpnq )](2.4)

for all n ∈ N. Taking n → ∞ it can be easily seen that mb satisfies the condition (m 4).
Hence mb satisfies all the conditions of m∗−metric and therefore (X,mb) is an m∗−metric
space.

Definition 2.2. Let (X,m) be an m∗−metric space.

(1) A sequence {pn} ⊂ X is said to be convergent to an element p ∈ X if
lim

n→∞
(m(pn, p)−mpnp) = 0 i.e. {pn} ∈M(m, X, p).

(2) A sequence {pn} ⊂ X is said to be Cauchy if lim
n,k→∞

(m(pn, pk)−mpnpk
) and

lim
n,k→∞

(Mpnpk
−mpnpk

) exist and finite.

(3) A sequence {pn} ⊂ X is said to be 0−Cauchy if lim
n,k→∞

(m(pn, pk)−mpnpk
) = 0

and lim
n,k→∞

(Mpnpk
−mpnpk

) = 0.

(4) An m∗−metric space (X,m) is said to be complete if every Cauchy sequence
{pn} ⊂ X is convergent to some point z ∈ X with lim

n→∞
(Mpnz −mpnz) = 0.
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Definition 2.3. Let (X,m) be an m∗−metric space and T : X → X be a mapping.
Then T is said to be continuous at ς ∈ X if {pn} ∈ M(m, X, ς) implies {Tpn} ∈
M(m, X, T ς).

Proposition 2.1. Let (X,m) be an m∗−metric space and p, q ∈ X. If {pn} ∈
M(m, X, p) ∩M(m, X, q) then m(p, q) = mpq. Moreover if m(p, p) = m(q, q) then
p = q.

Proof. Since {pn} ∈M(m, X, p) ∩M(m, X, q), we have

m(p, q)−mpq ≤ b lim sup
n→∞

(m(pn, q)−mpnq) = 0,(2.5)

implying that m(p, q) − mpq = 0 that is m(p, q) = mpq. If m(p, p) = m(q, q) also,
then clearly p = q.

Proposition 2.2. Let {pn} be a 0−Cauchy sequence in an m∗−metric space (X,m).
If {pn} has a convergent subsequence {pnk

} such that {pnk
} ∈M(m, X, z) then {pn}

is also convergent to z ∈ X.

Proof. Since {pn} is 0−Cauchy we have limn,k→∞(m(pn, pk)−mpnpk
) = 0 and

limn,k→∞(Mpnpk
−mpnpk

) = 0. Also it is given that limk→∞(m(pnk
, z)−mpnk

z) = 0.
Now,

m(pp, z)−mppz ≤ b lim sup
k→∞

(m(pp, pnk
)−mpppnk

)(2.6)

for all p ∈ N. Which implies that

lim
p→∞

[m(pp, z)−mppz] ≤ b lim
p→∞

lim sup
k→∞

(m(pp, pnk
)−mpppnk

) = 0.(2.7)

Therefore lim
p→∞

(m(pp, z)−mppz) = 0, implying that {pn} is convergent to z.

3. Topological m∗−metric space

Definition 3.1. Let (X,m) be an m∗−metric space. The open and closed ball of
center at p ∈ X and radius t > 0 in X are defined as follows:

Bm(p, t) = {q ∈ X : m(p, q) < mpq + t};
Bm[p, t] = {q ∈ X : m(p, q) ≤ mpq + t}.(3.1)

Remark 3.1. One can easily check that the collection

τm = Ø ∪ {U(6= Ø) ⊂ X : for any p ∈ U there exists t > 0 such that Bm(p, t) ⊂ U},

forms a topology on X.

Definition 3.2. Let (X,m) be an m∗−metric space and ∆ ⊂ X. Then ∆ is said
to be closed if there exists an open set U ⊂ X such that ∆ = U c.
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Proposition 3.1. Let (X,m) be an m∗−metric space and ∆ ⊂ X be closed. Let
{pn} ⊂ ∆ be such that {pn} ∈M(m, X, z), then z ∈ ∆.

Proof. If possible let z /∈ ∆. Then z ∈ ∆c = U, where U is open. So there exists t > 0
such that Bm(z, t) ⊂ U. Now limn→∞(m(pn, z)−mpnz) = 0 so for t > 0 there exists
N ∈ N such that m(pn, z)−mpnz < t whenever n ≥ N. Thus pn ∈ Bm(z, t) ⊂ U for
all n ≥ N, a contradiction. Hence z ∈ ∆.

Definition 3.3. Let (X,m) be an m∗−metric space and B ⊂ X. Then diam(B) =
sup{max{m(p, q)−mpq,Mpq −mpq} : p, q ∈ B}.

Definition 3.4. In an m∗−metric space (X,m), a sequence {∆n} of subsets of X
is said to be decreasing if ∆1 ⊃ ∆2 ⊃ ∆3 ⊃ ... .

Theorem 3.1. Let (X,m) be a complete m∗−metric space and {∆n} be a decreas-
ing sequence of nonempty closed subsets of X such that diam(∆n)→ 0 as n→∞.
Then the intersection ∩∞n=1∆n contains exactly one point.

Proof. Let pn ∈ ∆n be arbitrary for all n ∈ N. Since {∆n} is decreasing, we have
{pn, pn+1, ...} ⊂ ∆n for all n ∈ N.

Now for any n, p ∈ N with n, p ≥ k we have max{m(pn, pp) − mpnpp
,Mpnpp

−
mpnpp

} ≤ diam(∆k), k ≥ 1. Let ε > 0 be given. Then there exists some q ∈ N
such that diam(∆q) < ε since diam(∆n) → 0 as n → ∞. From this it follows that
max{m(pn, pp) − mpnpp ,Mpnpp − mpnpp} < ε whenever n, p ≥ q. Therefore {pn} is
Cauchy sequence, more specifically 0−Cauchy sequence in X. By the completeness
of X there exists z ∈ X such that {pn} ∈ M(m, X, z). Since {pn, pn+1, ...} ⊂ ∆n

and ∆n is closed for each n ∈ N, using Proposition 3.1 we have z ∈ ∩∞n=1∆n.

Next we prove the uniqueness of z. Let q ∈ ∩∞n=1∆n be another point, then
either m(z, q) > mzq or Mzq > mzq. That is max{m(z, q) − mzq,Mzq − mzq} > 0.
As diam(∆n)→ 0, there exists N0 ∈ N such that

diam(∆n) < max{m(z, q)−mzq,Mzq −mzq} ≤ diam(∆n)(3.2)

for all n ≥ N0, a contradiction. Hence ∩∞n=1∆n = {z} and this completes the proof
of our theorem.

4. Fixed point results on m∗−metric space

Definition 4.1. Let (X,m) be an m∗−metric space and T : X → X be a mapping.
Then T is said to be m−contraction if

m(Tp, Tq) ≤ k m(p, q)(4.1)

for all p, q ∈ X, where k ∈ (0, 1).
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Definition 4.2. Let (X,m) be an m∗−metric space and T : X → X be a mapping.
Then T is said to be m−quasi-contraction if

m(Tp, Tq) ≤ k max{m(p, q),m(p, Tp),m(q, T q),m(Tp, q),m(p, Tq)}(4.2)

for all p, q ∈ X and for some k ∈ (0, 1).

Now we come to our main fixed point theorems.

Theorem 4.1. Let (X,m) be a complete m∗−metric space and T : X → X be a
mapping such that it satisfies the following conditions:

(1) T is an m−contraction;

(2) there exists p0 ∈ X such that δ(m, T, p0) = sup{m(T ip0, T
jp0) : i, j ≥ 1} <

∞.
Then T has a unique fixed point in X.

Proof. Let us define δ(m, T p+1, p0) = sup{m(T p+ip0, T
p+jp0) : i, j ≥ 1} for any

p ≥ 0. Since T satisfies the contractive condition (4.1), we have

m(T p+ip0, T
p+jp0) ≤ k m(T p−1+ip0, T

p−1+jp0)

≤ k δ(m, T p, p0)(4.3)

for all i, j, p ≥ 1. From (4.3) it follows that

δ(m, T p+1, p0) ≤ k δ(m, T p, p0)

· · ·
≤ kp δ(m, T, p0)(4.4)

for all p ∈ N.As k ∈ (0, 1) we get lim
p→∞

δ(m, T p+1, p0) = 0. Therefore lim
n,k→∞

m(pn, pk) =

0 and lim
n→∞

m(pn, pn) = 0. Thus lim
n,k→∞

(m(pn, pk)−mpnpk
) = 0 and lim

n,k→∞
(Mpnpk

−

mpnpk
) = 0. So {pn} is Cauchy sequence in X. By the completeness of X we get

some z ∈ X such that {pn} ∈ M(m, X, z) with lim
n→∞

(Mpnz − mpnz) = 0. But

lim
n→∞

mpnz =

lim
n→∞

min{m(pn, pn),m(z, z)} = 0, follows that lim
n→∞

m(pn, z) = 0 = lim
n→∞

Mpnz.

Thus
m(pn+1, T z) = m(Tpn, T z) ≤ k m(pn, z)→ 0(4.5)

as n → ∞. Hence lim
n→∞

(m(pn+1, T z) − mpn+1Tz) = 0. Also m(z, z) = 0 and by the

contractive condition (4.1) we get m(Tz, Tz) = 0.

m(z, Tz)−mzTz = m(z, Tz) ≤ b lim sup
n→∞

(m(z, pn+1)−mzpn+1) = 0.(4.6)

Therefore it follows that z = Tz and z is a fixed point of T in X.
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If z and w are two fixed points of T , then we see that

m(z, w) = m(Tz, Tw) ≤ k m(z, w);

m(z, z) = m(Tz, Tz) ≤ k m(z, z);

m(w,w) = m(Tw, Tw) ≤ k m(w,w).

From which it follows that m(z, w) = m(z, z) = m(w,w) = 0 implies z = w i.e. T
has a unique fixed point in X.

Theorem 4.2. Let (X,m) be a complete m∗−metric space and T : X → X be a
mapping such that it satisfies the following conditions:

(1) T is an m−quasi-contraction with k ∈ (0, 1) ∩ (0, 1b );

(2) there exists p0 ∈ X such that δ(m, T, p0) = sup{m(T ip0, T
jp0) : i, j ≥ 1} <

∞.
Then the Picard iterating sequence {Tnx0} converges to some u ∈ X which is the
unique fixed point of T in X.

Proof. Similar as in Theorem 4.1 we define δ(m, T p+1, p0) = sup{m(T p+ip0, T
p+jp0) :

i, j ≥ 1} for any p ≥ 0. Since T satisfies the contractive condition (4.2), we have

m(T p+ip0, T
p+jp0) ≤ k max{m(T p−1+ip0, T

p−1+jp0),m(T p−1+ip0, T
p+ip0),

m(T p−1+jp0, T
p+jp0),m(T p−1+ip0, T

p+jp0),

m(T p−1+jp0, T
p+ip0)}

≤ k δ(m, T p, p0)(4.7)

for all i, j, p ≥ 1. By similar calculation as in Theorem 4.1 we deduce that the Picard
iterating sequence {pn} ∈M(m, X, u) for some u ∈ X with lim

n→∞
(Mpnu−mpnu) = 0.

Therefore we get lim
n→∞

m(pn, u) = 0 and m(u, u) = 0.

Now for any fixed n ∈ N we have,

m(u, Tnp0) = m(u, Tnp0)−muTnp0
≤ b lim sup

k→∞
(m(Tn+kp0, T

np0)−mTn+kp0Tnp0
)

= b lim sup
k→∞

m(Tn+kp0, T
np0)(4.8)

≤ b δ(m, Tn, p0) ≤ bkn−1δ(m, T, p0).

Now,

m(Tu, T 2p0) ≤ kmax{m(u, Tp0),m(u, Tu),m(Tp0, T
2p0),m(u, T 2p0),m(Tp0, Tu)}

≤ kmax{bδ(m, T, p0),m(u, Tu), δ(m, T, p0), bkδ(m, T, p0),m(Tp0, Tu)}(4.9)

= kmax{bδ(m, T, p0),m(u, Tu), δ(m, T, p0),m(Tp0, Tu)}.

Also,

m(Tu, T 3p0) ≤
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≤ kmax{m(u, T 2p0),m(u, Tu),m(T 2p0, T
3p0),m(u, T 3p0),m(T 2p0, Tu)}

≤ kmax{bkδ(m, T, p0),m(u, Tu), δ(m, T 2, p0), bk2δ(m, T, p0),m(T 2p0, Tu)}(4.10)

≤ kmax{bkδ(m, T, p0),m(u, Tu), kδ(m, T, p0),m(T 2p0, Tu)}
≤ kmax{bkδ(m, T, p0),m(u, Tu), kδ(m, T, p0), km(Tp0, Tu)}.

Proceeding in a similar way for every n ≥ 1 we get,

m(Tu, Tn+1p0) ≤(4.11)

≤ max{bknδ(m, T, p0), km(u, Tu), knδ(m, T, p0), knm(Tp0, Tu)}.

From (4.11) it follows that lim sup
n→∞

m(Tu, Tn+1p0) ≤ k m(u, Tu). Thus we have,

m(u, Tu) = m(u, Tu)−muTu ≤ b lim sup
n→∞

(m(Tn+1p0, Tu)−mTn+1p0Tu)

= b lim sup
n→∞

m(Tn+1p0, Tu)(4.12)

≤ bk m(u, Tu).

From the inequality (4.12) it clear that m(u, Tu) = 0. Since T satisfies the contrac-
tive condition (4.2), we get m(Tu, Tu) = 0. Therefore Tu = u and u is a fixed point
of T.

If w is a fixed point of T in X, then we get

m(u,w) = m(Tu, Tw) ≤ k max{m(u,w),m(u, u),m(w,w)};
m(u, u) = m(Tu, Tu) ≤ k m(u, u);

m(w,w) = m(Tw, Tw) ≤ k m(w,w).

From which it follows that m(u,w) = m(u, u) = m(w,w) = 0 implies u = w i.e.
u = w.

Example 4.1. Let X = {1, 2, 3} and we define m : X × X → [0,∞) as m(1, 1) = 1,
m(2, 2) = 2, m(3, 3) = 0 and

Example 4.2. Let X = {1, 2, 3} and we define m : X × X → [0,∞) as m(1, 1) = 2,
m(2, 2) = 1, m(3, 3) = 0 and

Corollary 4.1. The conclusion of Theorem 4.2 can be made also by using the
following contractive conditions instead of contractive condition (4.2):

(a) m(Tp, Tq) ≤ α[m(p, Tp) + m(q, T q)], α ∈ (0, 12 );

(b) m(Tp, Tq) ≤ β[m(p, Tq) + m(q, Tp)], β ∈ (0, 12 );

(c) m(Tp, Tq) ≤ ξ[m(p, q) + m(p, Tp) + m(q, T q)], ξ ∈ (0, 13 );

(d) m(Tp, Tq) ≤ ω[m(p, q) + m(p, Tq) + m(Tp, q)], ω ∈ (0, 13 );

(e) m(Tp, Tq) ≤ pm(p, q) + qm(p, Tp) + rm(q, T q) + sm(p, Tq) + tm(Tp, q),
p, q, r, s, t ∈ (0, 1) with p+ q + r + s+ t < 1;
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(f) m(Tp, Tq) ≤ γmax{m(p, q),m(p, Tp),m(q, T q)}, γ ∈ (0, 1);

(g) m(Tp, Tq) ≤ ηmax{m(p, q),m(p, Tq),m(Tp, q)}, η ∈ (0, 1);

(h) m(Tp, Tq) ≤ ζ max{m(p, q),m(p, Tp),m(q, T q),
m(p, Tq) + m(Tp, q)

2
}, ζ ∈

(0, 1).

5. Application to the stability of fixed point problem

In this section, we will discuss Hyers-Ulam stability of fixed points of mappings. For
more details on Hyers-Ulam stability of functional equations and its applications
on fixed point problems one can refer to [4], [11] and [12].

Let (X,m) be an m∗−metric space and T : X → X be a given mapping. Let us
consider the fixed point equation

Tp = p, m(p, p) = 0(5.1)

and the inequality

m(Tq, q)−mTq q < ε(5.2)

for any ε > 0.

Definition 5.1. The fixed point problem (5.1) is said to be Hyers-Ulam stable if
there exists an element c > 0 such that for each ε > 0 and an ε−solution (A solution
of (5.2)) v ∈ X there exists a solution u ∈ X of the fixed point equation (5.1) such
that m(u, v) < cε.

Theorem 5.1. Let (X,m) be a complete Mb−metric space with coefficient s ≥ 1
and T : X → X be a mapping such that T satisfies all the conditions of Theorem
4.1 with the Lipschitz constant k ∈ (0, 1s ). Then the fixed point equation of T is
Hyers-Ulam stable.

Proof. Since any Mb−metric space is m∗−metric space, from Theorem 4.1 we see
that T has a unique fixed point u in X with m(u, u) = 0 that is the fixed point
equation (5.1) of T has a unique solution. Let ε > 0 be arbitrary and v be an
ε-solution of T. Then

m(u, v) = m(u, v)−muv

≤ s[(m(u, Tv)−muTv) + (m(Tv, v)−mTv v)]

= s[m(Tu, Tv) + (m(Tv, v)−mTv v)]

≤ s[km(u, v) + (m(Tv, v)−mTv v)](5.3)

This implies m(u, v) ≤ s
1−sk (m(Tv, v) − mTv v) < s

1−sk ε. Therefore the fixed point
equation of T is Hyers-Ulam stable.
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Abstract. In this paper, we deal with modified Gauss-Weierstrass integral operators
from exponentially weighted spaces Lp,a (R) into Lp,2a (R). We give the rate of con-
vergence in terms of weighted modulus of continuity. Moreover, we prove weighted
approximation of functions belonging to the space Lp,a (R) by these operators with the
help of a Korovkin type theorem. Finally, we give pointwise approximation of such
functions by these operators at generalized Lebesgue points.
Keywords: Gauss-Weierstrass operators, Korovkin type theorem, exponential weighted
spaces

1. Introduction

The well-known Gauss-Weierstrass singular integral operators are given by

(Wnf) (x) :=

√
n

π

∞∫
−∞

f (x− t) e−nt
2

dt, x ∈ R, n ∈ N,

where the function f is selected such that the integrals are finite. These operators
were extensively studied by many researchers [3],[4],[5],[7] and [14]. Some approxi-
mation problems including Voronovskaya type theorem and quantitative type results
have been investigated in Lp and weighted Lp spaces in [9].

In [8], Agratini et al. considered a generalization of the Gauss-Weierstrass sin-
gular integral operators defined by
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(1.1) (W ∗nf) (x) =

√
n

π

∞∫
−∞

f (βn (x) + t) e−nt
2

dt, x ∈ (−∞,∞) , n ∈ N,

where

(1.2) βn (x) = x− a

2n
, n ≥ 1, a > 0.

These operators reproduce not only e0, where e0 (t) = 1, t ∈ R, but also certain
exponential functions. In that work, the authors studied these operators in the
polynomial weighted continuous functions spaces. They also proved that these
operators have better approximation properties than the classical ones. The linear
positive operators preserving exponential functions in approximation theory have
been intensively studied (see [10],[11],[12],[13],[15],[16] and [17]).

In this paper, we consider the operators W ∗n in the setting of large classes of
exponential weighted Lp spaces. Firstly, we show that these operators act from
the exponential weighted Lp,a (R) space into Lp,2a (R), which will be defined below.
Then, we get quantitative results for the rate of convergence by the operators in
terms of weighted Lp modulus of continuity. Similar result is also given for the
derivates of the operators. Furthermore, we obtain weighted approximation by
the operators using a weighted Korovkin type theorem. Finally, we investigate a
pointwise convergence result by the operators at generalized Lebesgue points.

Below, we recall the definition of exponential weighted space Lp,a (R).

Let a > 0 and 1 ≤ p <∞ be fixed,

νa (x) = e−ax
2

for x ∈ R,

and let Lp,a (R) be the space of all functions f : R → R for which νaf is Lebesgue
integrable with p-th power over R, where 1 ≤ p < ∞, and uniformly continuous
and bounded on R. The norm in Lp,a (R) is defined by

(1.3) ‖f‖p,a = ‖f (·)‖p,a =

 ∞∫
−∞

|νa (x) f (x)|p dx

1/p

, 1 ≤ p <∞

(see [6]).

As usual, for f ∈ Lp,a (R) the weighted modulus of continuity is defined as

(1.4) ω (f ;Lp,a (R) ; t) := sup
|h|≤t

‖∆hf (·)‖p,a for t ≥ 0,

where
∆hf (x) := f (x+ h)− f(x).

The above ω has the following properties:
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(1.5) ω (f ;Lp,a (R) ; t1) ≤ ω (f ;Lp,a (R) ; t2) for 0 ≤ t1 < t2,

(1.6) ω (f ;Lp,a (R) ;λt) ≤ (1 + λ) ea(λt)
2

ω (f ;Lp,a (R) ; t) for λ, t ≥ 0,

(1.7) lim
t→0+

ω (f ;Lp,a (R) ; t) = 0

for every f ∈ Lp,a (R) (see[1]).

2. Auxiliary results

In this part, we shall give some fundamental properties of the generalized Gauss-
Weierstrass integral operators W ∗n in the spaces Lp,2α (R) . Lemma 2.1 can be ob-
tained by elementary calculations.

Lemma 2.1. The equality

∞∫
0

xpe−2ax
2pdx =

1

2
p+3
2

Γ
(
p+1
2

)
(ap)

p+1
2

,

where Γ is the Gamma function and holds for every p ∈ [1,∞) and a > 0.

Lemma 2.2. (see [8]) If W ∗n , n ≥ 1, are the operators given by (1.1), then for
each integer j ≥ 0, ej (t) = tj t ∈ R, we have

(W ∗nej) (x) = βjn(x) +

bj/2c∑
s=0

(2s− 1)!

(2n)
s

(
j

2s

)
βj−2sn (x) , p ≥ 2 , x ∈ R.

Also, as particular cases, we have

W ∗ne0 = 1, W ∗ne1 = βn (x) , W ∗ne2 = β2
n (x) +

1

2n
.

This formula shows that W ∗nf (n > 2a, a > 0) is a sequence of linear positive
operators from Lp,a (R) into Lp,2a (R).

Lemma 2.3. If f ∈ Lp,α (R), with 1 ≤ p <∞, then for n > 2a, we have

(2.1) ‖W ∗nf‖p,2a ≤Mn ‖f‖p,a ,

where

Mn =

√
π

n− 2a
e

a3

2n2−4an .
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Proof. In view of the definition of the operators W ∗n , we can write

‖W ∗nf‖p,2a =

 ∞∫
−∞

∣∣∣e−2ax2

(W ∗nf) (x)
∣∣∣p dx

1/p

=

 ∞∫
−∞

e−2ax
2p

∣∣∣∣∣∣
√
n

π

∞∫
−∞

f (βn (x) + t) e−nt
2

dt

∣∣∣∣∣∣
p

dx

1/p

.

By a generalization of Minkowski’s inequality and making use of substitution βn (x)+
t = u, the above formula reduces to

‖W ∗nf‖p,2a ≤
√
n

π

∞∫
−∞

e−nt2p ∞∫
−∞

|f (u)|p e−2a(u+
a
2n−t)

2
pdu

1/p

dt

≤
√
n

π

∞∫
−∞

e−nt2p ∞∫
−∞

|f (u)|p e−au
2pe2a(

a
2n−t)

2
pdu

1/p

dt

≤
√
n

π

∞∫
−∞

e−nt
2

e2a(
a
2n−t)

2

 ∞∫
−∞

|f (u)|p e−au
2pdu

1/p

dt

= ‖f‖p,a

√
n

π

∞∫
−∞

e−nt
2+2a( a

2n−t)
2

dt

= ‖f‖p,a

√
π

n− 2a
e

a3

2n2−4an .

Thus, the proof of Lemma 2.3 is completed.

3. Approximation theorems

Firstly, we shall prove rate of convergence by the operators (1.1) of functions
belonging to Lp,α (R) .

Theorem 3.1. If f ∈ Lp,a (R) , then we have

‖W ∗nf − f‖p,2a ≤ ω
(
f ;Lp,2a;

a

2n

)
+ ω

(
f ;Lp,2a;

1√
n

)(√
n

n− a

)
for n > a.

Proof. From (1.1), (1.3) and the Minkowski inequality, we get

‖W ∗nf − f‖p,2a
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=

 ∞∫
−∞

∣∣∣e−2ax2

((W ∗nf) (x)− f (x))
∣∣∣p dx

1/p

=

 ∞∫
−∞

∣∣∣∣∣∣e−2ax2p

√
n

π

∞∫
−∞

(f (βn (x) + t)− f (x)) e−nt
2

dt

∣∣∣∣∣∣
p

dx

1/p

≤
√
n

π

∞∫
−∞

e−nt
2

 ∞∫
−∞

e−2ax
2p |f (βn (x) + t)− f (x) + f (x+ t)− f (x+ t)|p dx

1/p

dt

≤
√
n

π

∞∫
−∞

e−nt
2

 ∞∫
−∞

∣∣∣e−2ax2

(f (βn (x) + t)− f (x+ t))
∣∣∣p dx

1/p

dt

+

√
n

π

∞∫
−∞

e−nt
2

 ∞∫
−∞

∣∣∣e−2ax2

(f (x+ t)− f (x))
∣∣∣p dx

1/p

dt

≤
√
n

π

∞∫
−∞

e−nt
2

‖f (βn (·) + t)− f (·+ t)‖p,2a dt+

+

√
n

π

∞∫
−∞

e−nt
2

‖f (·+ t)− f (·)‖p,2a dt.

Then by (1.4), we obtain

‖W ∗nf − f‖p,2a ≤
√
n

π

∞∫
−∞

e−nt
2

ω
(
f ;Lp,2a;

a

2n

)
dt+

√
n

π

∞∫
−∞

e−nt
2

ω (f ;Lp,2a; t) dt

and from (1.6), we have

‖W ∗nf − f‖p,2a ≤ ω
(
f ;Lp,2a;

a

2n

)
+ ω

(
f ;Lp,2a;

1√
n

)√
n

π

∞∫
−∞

(
1 +
√
nt
)
e−t

2(n−a)dt

= ω
(
f ;Lp,2a;

a

2n

)
+ ω

(
f ;Lp,2a;

1√
n

)(√
n

n− a

)
, n > a.

Also, the following theorem is obvious from the formula

(W ∗nf)
(r)

(x) =

√
n

π

∞∫
−∞

f (r) (βn (x) + t) e−nt
2

dt.
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Theorem 3.2. If f (r) ∈ Lp,a (R) with fixed a > 0 and r ∈ N, then we have∥∥∥W ∗nf (r) − f (r)∥∥∥
p,2a
≤ ω

(
f ;Lp,2a;

a

2n

)
+ ω

(
f ;Lp,2a;

1√
n

)(√
n

n− a

)
for n > a.

Let ω be a positive continuous function on the whole real axis satisfying the
condition ∫

R

t2pω (t) dt <∞,

where p ∈ [1,∞) is fixed. Let also Lp,ω (R) denote the linear space of measurable,
p-absolutely integrable functions on R with respect to the weight function ω, that
is

Lp,ω (R) =

f : R→ R; ‖f‖p,ω :=

∫
R

|f (t)|p ω (t) dt

 1
p

<∞

 .

In [2], the authors obtained the following weighted Korovkin type approximation
theorem for any function f ∈ Lp,ω (R),

Theorem 3.3. (see [2]) Let (Ln)n∈N be a uniformly bounded sequence of positive
linear operators from Lp,ω (R) into Lp,ω (R), satisfying the conditions

lim
n→∞

‖Lnej − ej‖p,ω = 0, j = 0, 1, 2.

Then for every f ∈ Lp,ω (R) , we have

lim
n→∞

‖Lnf − f‖p,ω = 0.

Our aim is to study the weighted approximation by the sequence of operators
W ∗n in the norm Lp,2a(R). We consider a weight commonly used in defining spaces

of functions with exponential growth. If we choose ω (x) = e−2ax
2p, x ∈ R, we can

give the following theorem.

Theorem 3.4. If f ∈ Lp,a (R), then we have

lim
n→∞

‖W ∗nf − f‖p,2a = 0.

Proof. According to Theorem 3.3, for the proof, it is sufficient to show that the
conditions

(3.1) lim
n→∞

‖W ∗nej − ej‖p,2a = 0, j = 0, 1, 2
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are satisfied. Since W ∗ne0 = 1 the first condition of (3.1) is fulfilled for j = 0.
Considering Lemma 2.2, we have

‖W ∗ne1 − e1‖p,2a =

 ∞∫
−∞

∣∣∣e−2ax2

[(W ∗ne1) (x)− x]
∣∣∣p dx

1/p

=
a

2n

2

∞∫
0

e−2ax
2pdx

1/p

.

Then, we get

‖W ∗ne1 − e1‖p,2a =
a

n
2

1
p−1

(√
π

2ap

)1/p

,

and the second condition of (3.1) holds for j = 1 as n → ∞. Finally, from Lemma
2.2, we obtain

‖W ∗ne2 − e2‖p,2a =

 ∞∫
−∞

∣∣∣e−2ax2p
[
(W ∗ne2) (x)− x2

]∣∣∣p dx
1/p

=

 ∞∫
−∞

e−2ax
2p

∣∣∣∣ a24n2
+

1

2n
− ax

n

∣∣∣∣p dx
1/p

.

From triangle inequality

‖W ∗ne2 − e2‖p,2a ≤ 21+1/p

(
a2

4n2
+

1

2n

)∞∫
0

e−2ax
2pdx

1/p

+

+ 21+1/p a

n

∞∫
0

e−2ax
2pxpdx

1/p

,

and using Lemma 2.1, we get

‖W ∗ne2 − e2‖p,2a =

(
a2

4n2
+

1

2n

)
21+1/p

(√
π

2pa

)1/p

+ 2p
a

n

1

2
p+1
2p

Γ
(
p+1
2

)1/p
(ap)

p+1
2p

and the third condition of (3.1) holds for j = 2 as n → ∞. Thus, the proof is
completed.

Here, we give a pointwise convergence result at the points called as general-
ized weighted p-Lebesgue point which is consistent with exponential weighted space
Lp,a(R).
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Theorem 3.5. If x is a generalized weighted p-Lebesgue point of the function f ∈
Lp,a(R), i.e.; for x ∈ R the condition

(3.2) lim
h→0

 1

h

h∫
0

∣∣∣∣f (βn (x) + t) + f (βn (x)− t)− 2f(x)

e2αt2

∣∣∣∣p dt


1
p

= 0,

holds, where βn and α are given by (1.2), then we have

(3.3) lim
n→∞

W ∗n (f ;x) = f(x).

Proof. We observe that

W ∗n (f ;x) =

√
n

π

∞∫
−∞

f (βn (x) + t) e−nt
2

dt, x ∈ (−∞,∞) , n ∈ N

=

√
n

π

0∫
−∞

f (βn (x) + t) e−nt
2

dt+

√
n

π

∞∫
0

f (βn (x) + t) e−nt
2

dt

=

√
n

π

∞∫
0

[f (βn (x) + t) + f (βn (x)− t)] e−nt
2

dt.

Hence by the fact
√

n
π

∞∫
−∞

e−nt
2

dt = 1, we get

W ∗n (f ;x)− f(x) =

√
n

π

∞∫
0

[f (βn (x) + t) + f (βn (x)− t)− 2f(x)] e−nt
2

dt

=

√
n

π

∞∫
0

(
f (βn (x) + t) + f (βn (x)− t)− 2f(x)

e2at2

)
e−t

2(n−2a)dt.

Since f ∈ Lp,a(−∞,∞) , 1 ≤ p < ∞ and if 1
p + 1

p′ = 1, then by Hölder’s
inequality

|W ∗n (f ;x)− f(x)| ≤
∞∫
0

∣∣∣∣f (βn (x) + t) + f (βn (x)− t)− 2f(x)

e2αt2

∣∣∣∣
×
(√

n

π
e−t

2(n−2a)
) 1

p
(√

n

π
e−t

2(n−2a)
) 1

p
′

dt

≤

√n

π

∞∫
0

∣∣∣∣f (βn (x) + t) + f (βn (x)− t)− 2f(x)

e2αt2

∣∣∣∣p e−t2(n−2a)dt
 1

p

(3.4)
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×

√n

π

∞∫
−∞

e−t
2(n−2a)dt

 1

p
′

.

Since the integral at the last row is convergent for all n > 2a, we have

|W ∗n (f ;x)− f(x)|p ≤√
n

π

∞∫
0

∣∣∣∣f (βn (x) + t) + f (βn (x)− t)− 2f(x)

e2αt2

∣∣∣∣p e−t2(n−2a)dt.
Let

(3.5) F (t) :=

t∫
0

∣∣∣∣f (βn (x) + ξ) + f (βn (x)− ξ)− 2f(x)

e2aξ2

∣∣∣∣p dξ.
Then

dF (t) =

∣∣∣∣f (βn (x) + t) + f (βn (x)− t)− 2f(x)

e2at2

∣∣∣∣p dt.
Suppose that x is a generalized p-Lebesgue point of the function f . According to
conditions (3.2) and (3.5), we shall write

lim
h→0

F (h)

h
= 0.

In this case, for every ε > 0 there exist a δ > 0 such that when

(3.6) F (h) ≤ ε

B
h

for all h ≤ δ. Let

(3.7) B =

(
δe−δ

2(n−2a)2
√

(n− 2a) + 1

2
√

(n− 2a)

)
√
n.

We can split the right-hand side of the last inequality into two parts:

|W ∗n (f ;x)− f(x)|p ≤
√
n

π

δ∫
0

∣∣∣∣f (βn (x) + t) + f (βn (x)− t)− 2f(x)

e2at2

∣∣∣∣p e−t2(n−2a)dt
+

√
n

π

∞∫
δ

∣∣∣∣f (βn (x) + t) + f (βn (x)− t)− 2f(x)

e2at2

∣∣∣∣p e−t2(n−2a)dt
= I1 + I2.

To complete the proof, we have to show that

lim
n→∞

I1 = lim
n→∞

I2 = 0.
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We consider I1. Using integration by parts and (3.6), we find that

I1 =

√
n

π

δ∫
0

e−t
2(n−2a)dF (t)

=

√
n

π
e−t

2(n−2a)F (t)
∣∣∣δ
0

+ 2

√
n

π

δ∫
0

tF (t)(n− 2a)e−t
2(n−2a)dt

≤
√
n

π
e−δ

2(n−2a)F (δ) + 2

√
n

π
(n− 2a)

δ∫
0

tF (t)e−t
2(n−2a)dt

=

√
n

π
e−δ

2(n−2a)F (δ) + 2

√
n

π

ε

B
(n− 2a)

δ∫
0

t2e−t
2(n−2a)dt

≤
√
n

π
e−δ

2(n−2a) ε

B
δ + 2

√
n

π

ε

B
(n− 2a)

Γ( 3
2 )

2(n− 2a)
3
2

n− 2a > 0

=
√
ne−δ

2(n−2a) ε

B
δ +

√
n

2

ε

B

1√
(n− 2a)

≤ ε

B

√
n

(
2δe−δ

2(n−2a)
√

(n− 2a) + 1

2
√

(n− 2a)

)
.

Using (3.7), we have, for all ε > 0,

I1 < ε.

For I2, we can easily see that∣∣∣∣f (βn (x) + t) + f (βn (x)− t)− 2f(x)

e2at2

∣∣∣∣p
≤ 2p

(∣∣∣∣f (βn (x) + t) + f (βn (x)− t)
e2at2

∣∣∣∣p + 2p
∣∣∣∣ f(x)

e2αt2

∣∣∣∣p)
= 22p

(∣∣∣∣f (βn (x) + t)

e2at2

∣∣∣∣p +

∣∣∣∣f (βn (x)− t)
e2at2

∣∣∣∣p +

∣∣∣∣ f(x)

e2at2

∣∣∣∣p) .
Thus, we can write√

n

π

∞∫
δ

∣∣∣∣f (βn (x) + t) + f (βn (x)− t)− 2f(x)

e2at2

∣∣∣∣p e−2t2(2n−a)dt
≤

√
n

π
e−δ

2(n+α)22p

∞∫
δ

∣∣∣∣f (βn (x) + t)

e2at2

∣∣∣∣p dt+

∞∫
δ

∣∣∣∣f (βn (x)− t)
e2at2

∣∣∣∣p dt

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+

√
n

π
22p |f(x)|p

∞∫
δ

e−t
2(n+2a(p−1))dt.

Making use of the substitutions

(3.8) βn (x) + t = u, βn (x)− t = w and v = t2 (n+ 2a(p− 1)) ,

to the above integrals, respectively, we get
(3.9)
∞∫
−∞

∣∣∣∣ f (u)

e2a(u+
a
2n−x)2

∣∣∣∣p du ≤
∞∫
−∞

|f (u)|p

eαu
2p+2α( a

2n−x)2p
du = ‖f‖p

p,a
e−2ap(

a
2n−x)

2

≤ ‖f‖p
p,a

from (3.8) and (3.9), we can write the following inequality.

|W ∗n (f ;x)− f(x)|p ≤
√
n

π
e−δ

2(2n−a)22p+1 ‖f‖pp,a

+

√
n

π

22p−1 |f(x)|p

(n+ 2a(p− 1))

∞∫
δ2n+2a(p−1)

1√
v

n+2a(p−1)

e−vdv.

We get that

(3.10) lim
n→∞

√
n

π
e−t

2(2n−a) = 0 and lim
n→∞

∞∫
δ2(n+2a(p−1))

1√
v

n+2a(p−1)

e−vdv = 0.

If we take the limit of both sides of the last inequality, we find

lim
n→∞

I2 = 0

by (3.10). Therefore, for a large n, we obtain

|W ∗n (f ;x)− f(x)| < ε

and the proof is completed.
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Abstract. A difference BIBD is a balanced incomplete block design on a group, which
is constructed by transferring a regular perfect difference system by a subgroup of its
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1. Introduction

Let G be a finite group of order ν (|G| = ν) and k, λ be two integers, where k is
less than ν. A t−(ν, k, λ)-balanced incomplete block design is an ordered pair (G, β)
such that β is a family of k-subsets of G, named blocks, and every t elements of G
do appear in exactly λ blocks. For simplicity of notation, we write (ν, k, λ)-BIBD
(and some times (ν, k, λ)-block design) instead of 2− (ν, k, λ)-balanced incomplete
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block design. it will be called a trivial block design, when k = ν. Suppose that
D is a (ν, k, λ)-BIBD. A sub-design D′ : (ν, k, λ′)-BIBD of D is such that every
block of D′ is a block of D and this is denoted by D′ ≤ D. Two block designs are
isomorphic if there exists a bijection between the point sets such that blocks are
mapped onto blocks. The embedding of a (family of) block designs into others are
studied in [7, 11, 12, 14, 22, 23].Also there are some papers about the embedding of
some block designs into some other mathematical objects like graphs [16], groups
[1], surfaces or some applied mathematical concepts like (security of) coding, the
mutually orthogonal [24], fast name retrieval in databases (named hashing) used
for example in airports [5] or in social media [8]. A simple graph Γ is an ordered
pair (V (Γ), E(Γ)) consisting of a set V (Γ) of vertices and a set E(Γ), disjoint from
V (Γ), of edges, together with an incidence function ρΓ that associates with each
edge of Γ an unordered pair of vertices of Γ. A path Pn is a simple graph with n
vertices whose vertices can be arranged in a linear sequence in such a way that two
vertices are adjacent if they are consecutive in the sequence, and are non adjacent
otherwise. A cycle Cn is a Pn such that the first and the last vertices are adjacent.

The aim of this paper is to bring together two areas in which a family of BIBDs
have the same structure of groups. The first area is some of the block designs,
whereas some graphs depend on them. The second area is the structure of groups
as graphs.

Let B1, B2, . . . , Bc be k-subsets of G. For a finite group G, the difference of two
elements of the group, say x and y, is defined as xy−1. Let ∆β denote the list of all
possible differences between two blocks of β; ∆β = {xy−1|x ∈ B, y ∈ B′, B,B′ ∈ β}.
Let S = {B1, B2, . . . , Bc} be a subset of β. If every element of G does appear exactly
λ times in ∆S, then S is called a (ν, k, λ)-regular perfect difference system. This
naming is in agreement with [21]. In the notation of [17], every element of this list
is called an initial block and we will follow this notation. To shorten notation, we
continue to write (ν, k, λ)-d-system, for a (ν, k, λ)-regular perfect difference system
and only d-system if there is no confusion. When a d-system has only one initial
block, this block is well-known as a difference set. For a treatment of a more general
case we refer the reader to [3, 19]. The methods of constructing a d-system has been
noted by many researchers. The best general reference and the classical work here
is [6, 17].

Let θ and y be two elements of the group G, the transference of y by θ is equal
to θy and is denoted by yθ. The presentation B = [y1 y2 . . . yk] of a block
B is used instead of B = {y1, y2, . . . , yk} to avoid confusion with the set notation
and to mention that a block is different from a usual subset of G. Assume that
A is a subset of G, maybe equals to G. A transference of block B by a set A, is
the set BA := {Bθ|θ ∈ A}, where Bθ = [y1

θ y2
θ . . . yk

θ]. The transferring of a
(ν, k, λ)-difference system by its point set is a well known way to construct a BIBD,
which is called a (ν, k, λ)-difference block design or a (ν, k, λ)-d BIBD or briefly
d-BIBD, when it will cause no confusion. Also we can do this transferring by a
subgroup of G. It is easy to see and it is also well known that there is a bijection
between a d-BIBD and some copies of G as its point set (or some copies of one of its
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subgroups as a set, which is done the transferring of the d-system). The question,
which arises here is: ”Is this bijection a group-isomorphism?” In other words, does
a d-BIBD have an algebraic structure as G (or its subgroup) or some copies of it?
Or this bijection is only a one-to-one function? Our view point sheds some new
light on classification of d-BIBDs, finding the existence of some d-BIBDs and have
a regular creatures, which are in math. In this paper, we investigate this problem
and we can see that d-BIBDs have the same algebraic properties as their point set
(Corollary 3.3). Also, as another result of proving the Lemma 3.1 and Lemma 3.2,
we have the ordering of these designs, which can be applied to some groups. In fact,
the d-BIBD inherited the algebraic structure of the point set. The corollary gains
interest if we realize that it works for a bigger family of BIBDs. So we can see the
extension of this method in Section 4. In the end, our theorems provide a natural
and intrinsic characterization of these BIBDs (Theorem 4.1). These results can be
applied to all d-BIBDs, as some corollaries, which are omitted in this paper. We
can see a near view of these results about the automorphism of d-BIBDs in [19].

2. Notation and Preliminaries

Let D := (G, β) be a (ν, k, λ)-BIBD, b be the size of β and r be the number of
blocks with one point of G appearing in them. It is well known that

b =
ϑ(ϑ− 1)λ

k(k − 1)
,(2.1)

r =
(ϑ− 1)λ

k − 1
.(2.2)

Let B = [y1 y2 . . . yk] be a block in β. As it was said in the introduction, a
difference list of a difference system on G is the list

∆B := {Yi,j := yiyj
−1|1 ≤ i, j ≤ k}.

We want to use the transferring of difference system for building a BIBD on a
non-Abelian group. According to this method, we can use this method for non-
Abelian groups by fixing the direction of the group action from the left (or right)
(For example, for a set B = {x, y, z} ⊆ G, for every θ ∈ G; θB = {θx, θy, θz}) as is
done in [15]. This method will be denoted by LTDS (Left Transferring Difference
System). The right and the left action have the same results up to isomorphism
by a simple isomorphism function. We follow the LTDS on a non-Abelian group.
From now on, all block designs are built by the LTDS unless it is mentioned.

The following theorem is useful about the structure of subgroups of D2n, where
D2n is dihedral group of order 2n, i.e., D2n = 〈a, b|an = b2 = 1; bab = a−1〉.

Theorem 2.1. [9, Theorem 2.3] If N is any proper normal subgroup of D2n, then
D2n

N is a dihedral group.

Theorem 2.2. [9, Theorem 3.1] Every subgroup of D2n is cyclic or dihedral. A
complete listing of the subgroups is as follows:
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1. 〈ad〉, where d|n, with index 2d.

2. 〈ad, aib〉, where d|n and 0 ≤ i ≤ d− 1, with index d.

Every subgroup of D2n occurs exactly once in this listing.

By Theorem 2.2 and [9], for every two dihedral groups, D2n and D2m, either one
is a subgroup of the other or both of them are subgroups of D2w, where w =
lcm(2n, 2m). Assume that Γ and Υ are two graphs with vertex sets V (Γ) and
V (Υ), respectively. The adjoint of Γ and Υ, denoted by Γ ∨ Υ, is a graph with
vertex set V (Γ)∪V (Υ) and edge set E(Γ)∪E(Υ). The Cartesian product of Γ and
Υ denoted by (Γ � Υ) is a graph such that its vertex set is the Cartesian product
of V (Γ) and V (Υ) and any two vertices (u, u′) and (v, v′) are adjacent in Γ�Υ, if
and only if either u = v and u′ is adjacent with v′ in Υ, or u′ = v′ and u is adjacent
with v in Γ. Let G be a group and S be a self-inverse and unit-free subset of it. The
Cayley graph Cay(G,S) is a graph with vertex set G such that two vertices x and
y are connected by an edge if and only if xy−1 ∈ S. It’s well known that Cay(G,S)
is connected if and only if S is a generator of G, see [13].

Theorem 2.3. [4] Let C1 = Cay(G,S1) and C2 = Cay(H,S2) be two Cayley
graphs on groups G and H, respectively. Then the Cartesian product C1 � C2 is
the Cayley graph C = Cay(G×H,S), where S = {(x, 1), (1, y)|x ∈ S1; y ∈ S2} and
G×H is the direct product of the groups G and H.

Let s be an integer and d1, d2 be two integers less than s. A Toeplitz graph
Ts〈d1, d2〉 is a graph with {1, 2, . . . , s} as its vertex set and two integers f and f ′

from {1, 2, . . . , s} are adjacent if and only if |f − f ′| ∈ {d1, d2}.

Theorem 2.4. [18, Theorem 2] Tn〈d1, d2〉 decomposes into exactly gcd(d1, d2) con-
nected and isomorphic components.

Remark 2.1. Now let G be a cyclic group of order n as 〈a〉. Also d1 and d2 are two inte-
gers less than n. A Toeplitz graph TG〈ad1 , ad2〉 is a graph with G as its vertex set and two
elements f and f ′ of G are adjacent if and only if ff ′−1 ∈ {ad1 , ad2} or f−1f ′ ∈ {ad1 , ad2}.
As it is mentioned in [20], this graph is equal to the Cayley graph Cay(G, {ad1 , ad2}). Note
that there can be only one parameter for Toeplitz graphs.

3. The even difference block designs

One of the objectives in this section is to investigate difference block designs
with point sets of even size. Furthermore, for doing this, we need some relations of
these block designs, which can be found by algebraic properties of the point sets.
In this section, we illustrate construction of a block design on dihedral groups by
the LTDS method.

We are going to construct a block design (2n, k, λ)-BIBD on the point set D2n,
by the LTDS method. Let 〈a〉 = {1 = a0, a, a2, . . . , an−1} be a cyclic group of order
n.
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Assume that there is a d-system with c blocks B1, B2, . . . , Bc for a pair {k, λ}.
Transfer these blocks by 〈a〉 from the left. There is a (2n, k, λ)-BIBD by the LTDS.
From now on, all block designs are supposed that are constructed by the LTDS on
a d-system with c blocks. The set BHi will be called a family of blocks related to
Bi, where Bi is an initial block, H is a subgroup of G and 1 ≤ i ≤ c.

Example 3.1. The (10, 3, 2)- block design on D10 with d-system:

B1 = [b ab a2b], B2 = [a a4 b], B3 = [a2 a3 b],

B4 = [a a4 a2b], B5 = [a2 a3 b], B6 = [1 b a2b];

is a set of blocks as follow:

[b ab a2b] → [ab a2b a3b] [a2b a3b a4b] [a3b a4b b] [a4b b ab]
[a a4 b] → [a2 1 ab] [a3 a a2b] [a4 a2 a3b] [1 a3 a4b]
[a2 a3 b] → [a3 a4 ab] [a4 1 a2b] [1 a a3b] [a a2 a4b]
[a a4 a2b] → [a2 1 a3b] [a3 a a4b] [a4 a2 b] [1 a3 ab]
[a2 a3 a2b] → [a3 a4 a3b] [a4 1 a4b] [1 a b] [a a2 ab]
[1 b a2b] → [a ab a3b] [a2 a2b a4b] [a3 a3b b] [a4 a4b ab].

It’s clear that if we multiply b (b ∈ D2n) into families of blocks, then we have
these families with the new names again. So by multiplying b into initial blocks
and transferring them, again we have a block design with the same parameters but
different initial blocks. On the other hand, we know that the union of two block
designs D : (ν, k, λ1) and D′ : (ν, k, λ2) is a block design D̄ : (ν, k, λ1 + λ2). By
the above notations, if the initial blocks of block design D are transferred by D2n,
which is the union of 〈a〉 and 〈a〉b, then there is a block design D̄ with the same
point set and the same block sizes but with a different parameter λ. By these, we
can conclude the following remarks:

Remark 3.1. The difference block design D1 : (2n, k, λ) is isomorphic to a subdesign of
d-BIBD D2 : (2n, k, 2λ).

A difference block design on even points will be called the even block design.

Remark 3.2. Assume that B = [y1 y2 . . . yk] and B′ = [y′1 y′2 . . . y′k] are two
arbitrary blocks of an even block design. Suppose that they do not have any common
elements. By a simple calculation, we can see that Ba and B′a are disjoint, too.

3.1. Even difference block design as a finite group

In this section, we will provide some lemmas that we need for proving the main
result. Also we can present the structure of even d-BIBDs by these theorems. The
initial blocks are denoted by B1, B2, . . . , Bc. In this case, for any initial block,
the order of the points is arbitrary and fixed. Throughout this section, consider
G = D2n as the point set and D = (D2n, β) is a (ν, k, λ)-block design with n ≥ 5.
By Remark 3.1, apply the LTDS method with transferring of d-system by D2n,
unless it is mentioned and also λ is an even number.
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Definition 3.1. Assume that A and B are two sets such that B ⊆ P (A), where
P (A) is the power set of A. The independent graph of B is a graph with vertex set
B and two vertices are connected by an edge if and only if they are disjoint. The
independent graph is denoted by IG(A,B).

Base on design theory, the independent graph of a BIBD is a graph whose vertices
are the blocks of this BIBD and two blocks are adjacent if and only if they are
disjoint as two sets. The independent graph has its blocks as the vertices.

Lemma 3.1. Let Bi be an initial block of design D = (D2n, β), where k < n
3 .

Then the independent graph IG(D2n, Bi
D2n) is Hamiltonian.

Proof. It is sufficient to show that IG(D2n, Bi
D2n) has a spanning sub-graph, which

is Hamiltonian. Let ds := q (1 ≤ s ≤ κ =
(

2
k

)
) if and only if there are x and y in Bi

with xy−1 = aqbε (ε = 0, 1). And define ∆B̄i := {d1, d2, . . . , dκ}. Note that ∆B̄i is
a set of integers modulo n. The proof will be divided into two cases:

Case 1. Assume that there is an integer such that is relatively prime to n and
belongs to {1, 2, . . . , n}\∆Bi. Let d be the minimum integer with this property. So

by our assumption on d, it is clear that the set B = {Bi,h := Bi
ahd

}h=1,2,...,n is a
sequence of blocks such that Bi,h and Bi,h+1 are independent for every h and h+ 1
modulo n. This means that IG(D2n, B) is a cycle Cn, by Remark 2.1. The lemma
is proved for Bi

H with H = 〈a〉. Subtitute 〈a〉 and Bi for b〈a〉 and Bai , respectively.
There will be another cycle, by applying some of the above methods. By Remark
3.2, it is sufficient to find a block from Bi

〈a〉b, which is disjoint from Bi. If Bi
is a subset of 〈a〉 or 〈a〉b, then Bi

b is disjoint from Bi and so we find a common
edge. Assume that Bi contains the elements x ∈ 〈a〉 and y ∈ 〈a〉b. Without
loss of generality, suppose that x = by such that x = asbε and y = ajbδ, where
s, j ∈ {1, 2, . . . , n}, ε, δ ∈ {0, 1} and ε 6= δ. By multiplying b by y for obtaining
x = by, we have as+j−nbε−δ−1 = 1. It shows that s + j ≡ 0 (mod n). If there is
another element of Bi, which is equal to x after transferring by b, then it has to be
equal to y, which is impossible. Now we can consider another case, Bi

ab. Let z be
another element of Bi. By the above discussion, we know that ax 6= ay. If ax = abz
(ax = y), x = bz but z 6= y. If there are pairwise blocks with common element(s),
due to the condition k < n

3 , there is at least one block, which is disjoint from Bi,

say B′. There is j ∈ {1, 2, . . . , n} such that B′ = Bi
ajb (Fig.1). By Remark 3.2,

the set {{Bia
s

, Bi
as+jb}|1 ≤ s ≤ n} is a subset of edges of graph IG(D2n, Bi

D2n).
Clearly, this graph is Hamiltonian and the proof is complete in this case.

Case 2. Assume that there is not any element of the set {1, 2, . . . , n} \ ∆B̄i,
where these integers are relatively prime to n. Let d be the minimum element of
the set {1, 2, . . . , n} \ ∆B̄i and g := gcd(n, d). Remark 2.1 and our choosing in-
teger d, show that the transferring of B by ad, forms a new graph. This graph
includes g isomorphic components, which every component is a spanning sub-graph

of IG(D2n, Bi
D2n). Hence, the sequence {Bi,h := Bi

ahd

| h = 1, 2, . . . , n} forms g
isomorphic components by this transferring. Every component contains a spanning
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Fig. 3.1: The existence of an edge between two components of IG(D2n, B
D2n
i ).

cycle. So it is sufficient to find some edges between these components to obtain
a Hamiltonian cycle. Let d′ be an integer in {1, 2, . . . , n} \ {∆B̄i ∪ {d}}, so there
exists another element d′ due to the condition k < n

3 . Moreover, there is an edge

{Bi, Bia
d′

} because d′ is not in ∆B̄. On the other hand, every component is built
by transferring the blocks by ad and for every vertex of IG(D2n, Bi

D2n), this re-
sult can be applied by Remark 3.2, and hence the components are adjacent with
more than one edge. Since every component contains a spanning cycle, so does
IG(D2n, Bi

D2n).

As a consequence of the above Lemma, we have the following corollary.

Corollary 3.1. Let Bi be an initial block of design D = (D2n, β) and d be as in
the proof of Lemma 3.1 with, k < n

3 :

1. The graph IG(D2n, Bi
D2n) has a spanning sub-graph, which is isomorphic to

Cay(D2n, {ad, a−d, b});

2. There is a bijection between Bi
D2n and D2n.

Lemma 3.2. For a difference block design D, if k < n
3 , there is a cycle with

c vertices as a sub-graph of IG(D2n, β) containing one and only one vertex from
every Bi

D2n , for 1 ≤ i ≤ c.

Proof. Assume that there is a d-system of size c equal to {B1, B2, . . . , Bc} with c
different difference lists ∆B1,∆B2, . . . ,∆Bc, respectively. At first, we have to find
an edge, which has B1 as one of its vertices. Choose an element Bi ( 2 ≤ i ≤ c)
among all initial blocks. We continue the proof into two cases: either B1 ∩ Bi = φ
or B1 ∩ Bi 6= φ. In the first case, there is an edge between these blocks and we
should go to the next step. But by the second case, we need to find a block from
Bi

D2n , which is disjoint from Bi. For doing this, we need defining the new sets.
Put ∆B1,i = ∆B1 ∪∆Bi and ∆B̄1,i := {d | d ∈ {1, 2, . . . , n}; ad ∈ ∆B1,i or a

ib ∈
∆B1,i}. Choose an integer belongs to {1, 2, . . . , n} \ ∆B̄1,i and denote it by d1,i.
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Let B′i := (Bi)
ad1,i

. We can see that either B1 ∩ B2 = φ or B1 ∩ B′i 6= φ. In the
first case, we have the edge that we are looking for that. Suppose that there is at
least one common element between B1 and B′i. Then there are two cases:

1. There is no integer d ∈ ∆B̄1 such that d|d1,i or d1,i|d. So by transferring Bi
by ad1,i , we obtain the intended block.

2. There exists an integer d ∈ ∆B̄1 such that d|d1,i (or d1,i|d). In this case,
by transferring Bi by ad1,i repeatedly, we will achieve some blocks, which are not
disjoint from B1. But |B1| = k and k < n

3 , so we can choose another d from ∆B̄1,i.
It allows us to look for this block (a block disjoint from B1) between the vertices

of other components in IG(D2n, Bi
〈a〉). Note that by transferring Bi by ad1,i for

gcd(d1,i, n) times, if there is not a disjoint block from B1, then we should choose
another d from ∆B̄1,i. Now we find an edge between two blocks from two different

families B1
D2n and Bi

D2n . Continue process for the gained block ( B′i) and the
remaining initial blocks. Go on, until finding a path with c vertices. Denote the
last block of this path by B′j (Pc : B1, B

′
i, . . . , B

′
q, B

′
j). The proof falls into two

cases: either B1 ∩B′j = φ or B1 ∩B′j 6= φ. In the first case, there is a cycle, which
we were searching for. In other case, we need a restoration during the last step,
when we are finding the last block (B′j). We want to find a transference of block
Bj such that is disjoint from B1 and B′q. Consider the value d1,q,j instead of dq,j
to continue. This integer exists because of the condition k < n

3 . By the above

discussion, the transferring Bj by the (d1,q,j)
th

power of a, gives us a block, which
is disjoint from these three blocks. The cycle is completed now and so is the proof
(Figure 2).

Remark 3.2 guarantees that the transferring of the cycle, which is obtained in
Lemma 3.2, forms n isomorphic cycles in graph IG(D2n, β). Let Si be the set
{ad, a−d, b}, which is a subset of D2n as it is mentioned in the proof of Lemma
3.1, for every Bi (1 ≤ i ≤ c). Also, we have seen that the graph Cay(D2n, Si), for
1 ≤ i ≤ c, is isomorphic to a spanning sub-graph of IG(D2n, β) for a difference block
design (D2n, β), with k < n

3 . The following corollary is an immediate consequence
of the previous lemma.

Corollary 3.2. The Cartesian product of
∨
Cay(D2n, Si) and Cc, is isomorphic

to a spanning sub-graph of IG(D2n, β), with k < n
3 .

To embed an even d-BIBD into a finite group we use difference systems and graph
theory to find a relation between an even difference block design and a finite group.
By definition, it is clear that the Cartesian product of two Hamiltonian graphs is
a Hamiltonian graph. So by Corollary 3.2, we have a relation between groups and
difference block designs. By the method of constructing the even d-BIBDs, the size
of d-system, c is equal to b

2n . So by Corollary 3.1, Lemma 3.2 and Theorem 2.3, we
have the following theorem.

Theorem 3.1. Assume that there is a difference block design D : (2n, k, λ)-BIBD,
with k < n

3 and an even number λ, such that its d-system is transferred by D2n.
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Let c = (2n−1)λ
k(k−1) . Then there is a bijection between the group D2n ×Zc and the block

design D.

The bijection of previous theorem is:

Φ : β −→ D2n × Zc
B 7−→ (ajbε, i)

where B is the transference of Bi by ajbε (j ∈ {1, 2, . . . , n}). There is not any action
defined between the elements of β. The action between any pair of blocks of β, say
B and B′, will be defined as follows:

B �B′ = Φ(Φ−1(B) Φ−1(B′)).

Corollary 3.3. Under the above assumption, f := Φ−1 is an isomorphism from
D2n × Zc onto β.

We know that symmetric BIBDs are isomorphic to their point sets. Also, by def-
inition, in these symmetric difference block designs c = 1 and this isomorphism is
comparable with the above corollary.

Now suppose that λ is an odd number and equal to 2L + 1, where L is a pos-
itive integer. We saw in the proof of Lemma 3.1 that there are two cycles due to
transference by 〈a〉 and 〈a〉b, which are connected by n edges. For odd λ’s, the
transference can only be the group 〈a〉 (〈a〉b), by the LTDS method. By Theorem

2.4, IG(D2n, Bi
〈a〉) (IG(D2n, Bi

〈a〉b)) is a cycle or a union of isomorphic cycles. We
now apply the above argument again, with D2n or d copies of Dg replaced by C2n

or d copies of Cg, respectively, where d is as mentioned in proof of Lemma 3.1.

Corollary 3.4. Suppose that there is a difference block design D : (2n, k, λ)-BIBD
with k < n

3 , where λ is an even or an odd integer such that its d-system is transferred

by 〈a〉 of order n. Let c = (2n−1)λ
k(k−1) . Then there is an isomorphism between the group

〈a〉 ×Zc and the difference block design D.

Remark 3.3. Assume that there is a difference block design D : (2n, k, λ)-BIBD with
k < n

3
such that the d-system is transferred by H, where H is a subgroup of D2n. Let

c = 2n(2n−1)λ
k(k−1)|H| . Then there is a bijection between group H × Zc and the difference block

design D.

Remark 3.4. Let H be a subgroup of D2n of order n, which is not cyclic and suppose
that 4|n. By Theorem 2.1, D2n

〈b〉
∼= 〈a〉 and 〈b〉 ∼= Z2. Hence doing the LTDS method with

transferring by H, is a block design isomorphic to a difference block design on the point
set D2n, which is achieved by transferring via Dn.

3.2. Configurations and the ordering

In this section, we will see that the Hamiltonian cycle, which is achieved in the
proofs of Lemmas 3.1 and 3.2, gives us the ordering of even designs.
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Fig. 3.2: Configuration A1.

Definition 3.2. A ν-configuration is a collection of b lines (or subsets) having the
property that every t-element subset is contained in at most λ lines. And a (ν, l)-
configuration is a configuration of p points on l lines.

Definition 3.3. Let D = (V, β) be a BIBD with |β| = b. Let C be configuration
on l blocks. A Configuration ordering (or a C-ordering) for D is a list of the blocks
of D, B0, B1, . . . , Bb−1, with the property that Bi, Bi+1, . . . , Bi+l−1 ≡ C holds for
all 0 ≤ i ≤ b − l. If Bi, Bi+1, . . . , BI+l−1 ≡ C holds for all 0 ≤ i ≤ b − 1, with
subscript addition performed modulo b, then the ordering is called C − cyclic.

Let A1 be a configuration as is mentioned in [10](part 4.1.1) and is shown in Figure
1.

Theorem 3.2. [2] The existence of an A1-cyclic ordering is equivalent to existence
of a Hamiltonian cyclic in the independent graph of the block design.

It is known that the Cartesian product of two Hamiltonian graphs is Hamiltonian.
So by these two lemmas (3.1 and 3.2) and Theorems 3.2, we have the following
theorem:

Theorem 3.3. Every even block design with k < ν
6 , has the A1-ordering.

Remark 3.5. According to the Corollary 3.3, there is the A1-ordering on the point sets
of even block designs with k < ν

6
, by Theorem 3.3.

3.3. Even difference sub-designs and subgroups

We have seen that some copies of dihedral groups are embedded into an even d-
BIBD with k < n

3 . To find the relation between these BIBDs, we construct d-BIBDs
by the LTDS method and find an isomorphism between these BIBDs and dihedral
groups. Throughout this section, suppose that k < n

3 and H is a subgroup of group
G.
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Fig. 3.3: The regular relations between cycles.

Definition 3.4. Let G be a group and H be a subgroup of G. A design-group
DH(G, k, λ) is an even difference block design D with parameters k and λ with
point set G Also β = {BiH |1 ≤ i ≤ c}, where H is a subgroup of G. A design-group
DK(G, k, λ′) is a subdesign-group of DH(G, k, λ) if K is a subgroup of H and even
difference block design (G, k, λ′)K is a sub-design of (G, k, λ)H as an even difference
block design.

We can look at a design-group, both as a group and as a block design, simultane-
ously. Let D1 := DD2n(D2n, k, λ1), D2 := DH(D2n, k, λ2) and B be an arbitrary
block of D2 and H = 〈a〉. Note that the order of a is n. Therefore, the blocks of
D2 are blocks of D1 too. Because of the transference of its d-system by 〈a〉, it only
has c O(a)(= cn) blocks in D1. For every yj ∈ Bi, {yjH} is a cosset of H and is
closed under the product of H in itself. On the other hand, because of the same
c’s, for D1 and D2, the number of initial blocks is equal to c, but the number of θ’s
is different. By calculating the number c for both of them, if k > 3, then according
to equation (1), we obtain

c =
2n(2n− 1)λ1

k(k − 1)2n
, c =

2n(2n− 1)λ2

k(k − 1)n
.

So we have λ1

2 = λ2 and we can have Remark 3.1 as bellow by the new view of even
block designs:

Proposition 3.1. Let DD2n(D2n, k, λ) be an even design-group with even λ and
H = 〈a〉, then DH(D2n, k,

λ
2 ) is a subdesign-group of DD2n(D2n, k, λ).

In fact, by changing the set ofH (the set, which the transferring of the LTDS method
is done by that), we can control the possible values of λ. The last proposition shows
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us that for the point set D2n, if the d-system is transferred by the maximal subgroup
〈a〉, then we have a block design again. Now, what can we say about other subgroups
of a point set?

Theorem 3.4. Let D1 and D2 be two difference block designs as DH1(D2n, k, λ1)
and DH2(D2n, k, λ2), respectively with the same difference systems such that λ2 ≤
λ1 and k is odd.The even design-group D1 can be embedded into the even design-
group D2 if and only if H1 can be embedded into H2 as a subgroup.

Proof. By Theorem 2.2, it is sufficient to check two types of subgroups; 〈ad〉 and
〈ad, aib〉 (d|n and i = 0, 1, . . . , d − 1 ). Let D be a design-group DD2n(D2n, k, λ)
such that λ1 ≤ λ. We will prove the theorem for difference designs D and D1,so it
is true for every pair of designs. Let B be an initial block of D. The proof naturally
falls into the following two cases:

Case 1: Let θ ∈ 〈ad〉. This case is illustrated before in Proposition 3.1, for

d = 1. The block B of D1 is an element of B〈a〉. So B〈a
d〉 is a subset of BD2n .

Every difference block design has an independent graph. By the proof of Lemma
3.1, to obtain a new difference block design, the deletion of blocks from β has to

follow a rule: Choose all Bi
ad and Bi

adb such that Bi is an initial block and there
is a subgroup of G of order d. So if D1 is a sub-design of D, then it means that H1

can be embedded into D2n as a subgroup. Conversely, if H1 < D2n, then by the
above facts about the choosing of blocks and existence of the independent graph,
D1 < D as a difference block design.

Case 2: Let θ ∈ 〈ad, aib〉. For every initial block B, the set B〈a
d〉 is a subset

of B〈a〉, which was studied in Case 1, and all remaining blocks in this set are in
common with B〈a〉b. Again by Lemma 3.1, B〈a〉b and B〈a〉 are disjoint, for odd
k only. All blocks of B〈a〉b are in common between two design-groups and others
were studied in the previous case. The proof of the converse is similar to the above
procedure.

4. The second method and main result

Sometimes there is no way to construct a BIBD on a point set with a special
parameter. In these situations, there is a well known method: Assume that we
want to have a BIBD on (n + 1) points. By this method, at first we construct a
BIBD on group G with n elements and then we add an extra point, named ∞ such
that x∞ = ∞, for every x ∈ G. So for having a difference BIBD, it is sufficient
to add block(s) to the difference system such that the achieved system has the
parameters, which we want. In this paper, this method will be called the LTDSE
method ( the LTDS method with an Extra element). There are numbers of general
examples of the LTDSE method in [17]. From now on, a d-BIBD which is based
on the LTDS method will be called a type 1 BIBD and a d-BIBD, which is based
on the LTDSE method will be called a type 2 BIBD. Note that the initial blocks
of a type 2 BIBD are partitioned into two classes: a class of blocks including the
extra variety (∞), which is of the size r ({B′1, B′2, . . . , B′q}) and the other class
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includes the remaining blocks ({B1, B2, . . . , Bp}). All facts about the transference
of d-system {B1, B2, . . . , Bp} in Lemma 3.1 and Corollary 3.1, are applied for the
first class of blocks of type 2 BIBDs.

Every type 1 BIBD on even points is comparable to a type 1 BIBD on D2n, and
every type 2 BIBD on odd points is comparable to a type 2 BIBD on even points
with an extra variety. For having this generalization on the point sets, at the end
replace the integers by elements of dihedral group as below:

2i− 1(1 ≤ i ≤ n) 7−→ ai 2i(1 ≤ i ≤ n) 7−→ aib.

Assume that D is a d-BIBD. A natural question that arises here is ”How can we find
out whether 4it is a type 1 BIBD or a type 2 BIBD?” From the previous sections,
we know that replacing a subgroup of G, say H in the LTDSE, leads us to a d-BIBD
on mn + 1 points with λ less than the λ of the d-BIBD, which is constructed by
transferring its difference system by G. We have seen the relations between even
d-BIBDs with point sets of similar size. But what can we say about two even d-
BIBDs with point sets of different sizes? What can we say about d-BIBDs in a
general case?

Suppose that we can not see and detect the extra variety ∞ in blocks. Let
∆β be the list of all differences from the blocks of β and |∆β| = ψλ + R (where
0 ≤ R < λ). It is clear that R

(k
2)

is the number of initial blocks, which are including

the adjoined variety. First, we need some notations and observations:

Fact 1. By a review of the concept of the LTDS and the LTDSE methods, it is easy
to see that ψ is the size of the set, which transfers a d-system to obtain the
d-BIBD and ψ|b. So we obtain the size of H, a subgroup of the point set that
transfers d-system.

Fact 2. By doing the LTDS method and the LTDSE method, any element of ∆β is
repeated symmetrically ψλ times for type 1 BIBD, and at least (ψλ+1) times
for type 2 BIBD, By the definition of differences. Therefore the d-BIBD is of
type 1 if R = 0 and otherwise, it is a type 2 BIBD.

Fact 3. Assume that Bi is a block of β and Bi
(H) := {B ∈ β|∆Bi = ∆B}. If R = 0,

then |Bi(H)| = ψ; otherwise, delete the blocks of Bi
(H), which includes the

element ν.

Fact 4. Assume that d, d′ ∈ ∆Bi. To find the elements, which transfer Bi to build
Bi

(H), define B(d, d′) := {(x, y, z, )|xy−1 = d, yz−1 = d′; d 6= d′}. Then H is
equal to the set {x′x−1, y′y−1, z′z−1| ∀(x, y, z), (x′, y′, z′) ∈ Bi}. From now
on, all block designs are even difference block designs or a type 2 BIBD on an
odd number of points.

According to Fact 4, we have a subgroup of the point set H, for every block design
D, which is the transferrer for that d-BIBD; have a look at Theorem 2.2.
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Theorem 4.1. Let D1 : (ν1, k, λ1) and D2 : (ν2, k, λ2) be two difference block

designs based on the LTDS or the LTDSE method. Let ci = b |δβi|
λi
c be the number

of initial block(s) of the difference system of Di and pi, qi are the numbers of initial
blocks without ∞ and including ∞ in Di, respectively as introduced in beginning of
this section, for i = 1, 2.

1. Suppose that |∆β1| − b |∆β1|
λ1
c = 0 or |∆β2| − b |∆β2|

λ2
c = 0 and b |∆β2|

λ2
c is a

multplied of b |∆β1|
λ1
c. If cp1 ≤ cp2 , then D1 ≤ D2, otherwise D1 ≤ d c2c1 e copies

of D2.

2. Suppose that |∆βi| − b |∆βi|
λi
c 6= 0 and b |∆β2|

λ2
c is a multplied of b |∆β1|

λ1
c. If

cp1 ≤ cp2 and cq1 ≤ cq2 , then D1 ≤ D2, otherwise D1 ≤ d c2c1 e copies of D2.

Proof. Let |∆βi| = ψiλi +Ri such that 0 ≤ Ri < λi and ci = bi
ψi

, where i ∈ {1, 2}.
We follow the proof in two steps. We first compare an arbitrary family of each

design according to their Hi (B
(Hi)
i , for a block Bi of a design) and then compare

the number of these families, which is equal to ci. The numbers ν and µ can be odd
or even. As we have mentioned above, we illustrate difference block designs on even
points for type 1 BIBDs and on odd points for type 2 BIBDs. Let ν = 2n+ j and
µ = 2m + j′, where j, j′ ∈ {0, 1}. The numbers 2n and 2m, where m,n ∈ N , are
called the even parts of the ν and µ, respectively. Assume that w = gcd(2n, 2m)
and ν ≤ µ. So D2n and D2m are subgroups of Dw. If ν = µ and the designs are
type 1 BIBDs, then Theorem 3.4 lipids the relation between them. If Ri 6= 0 (for
difference block design on 2L + 1 points for a natural number L), then the initial
blocks are of two types, as we have seen: the blocks including the adjoined variety
βq := {B′1, . . . , B′q} and the blocks without the adjoined variety βp := {B1, . . . , Bp}.
For that q initial blocks, suppose that the new set of blocks is achieved by deleting
the adjoined variety: β′′q := {B′′1 , . . . , B′′q } such that B′′j = B′j \ {∞}, where j ∈
{1, . . . , q}. Note that maybe we do not see the adjoined variety as ∞, so there is
an element out of the D2L in blocks and also it is equal to 2L+ 1, where 2L is the
even part of the size of the point set. Also from now on, during the proof, i belongs
to {1, 2}. According to the proof of Lemma 3.1, we are allowed to delete the blocks
of every family by jumping d steps, as it is mentioned there, unless the remaining
blocks can not form a difference block design. This rule is the base of our work.

Step 1: Choose a block from each of the difference designs. Note, when we
choose a block from βi, it is an initial block (the representative of its family). In
the next choice, we can choose another initial block by choosing every block, which
doesn’t have the same list of differences to the first block. As the first choice,
assume that Bi is an initial block of Di. By Theorem 3.4, if D1 and D2 are type
1 BIBDs, then B1 ⊆ B2 if and only if H1 ≤ H2. If m, n are odd and ψ1, ψ2 have
the same parity, then both of the Hi’s are either cyclic groups or dihedral groups,
by Theorem 2.2. Therefore, B1 ⊆ B2 if and only if ψ1 ≤ ψ2. We need to know the
relations between H1 and H2. There is an algorithm to know that Hi is a cyclic
subgroup or a dihedral subgroup of Dω. By the above Facts, Hi is known. There
are some cases:
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1. H ≤ 〈a〉 such that O(a) = w;

2. H ≤ 〈a〉b such that O(a) = w and Ord(b) = 2.

3. Otherwise, H is a dihedral group (|H| is even) such that |Hi|
2 | Ord(a).

Note that 〈a〉b and 〈a〉 are isomorphic sets and one is a cosset of another in Dw.

1’. If both of the Hi’s are of the form of case 1 (or 2), then B
(H)
1 < B

(H)
2 if and

only if ψ1|ψ2.

2’. If H1 is of the form of case 1 or 2 and H2 is of the form 3, then B
(H)
1 < B

(H)
2

if and only if ψ1| ψ2

2 (it yields H1 ≤ H2).

3’. If both of the H1 and H2 are of the form 3, then B
(H)
1 < B

(H)
2 if and only if

ψ1|ψ2.

Now we are ready to illustrate the second step:

Step 2: Assume that B1
(H1) is a subgroup of B2

(H2) up to isomorphism. If
c1 ≤ c2, then D1 ≤ D2. Otherwise, D1 needs d c2c1 e copies of D2 to be embedded
into, because D1

∼= H1 × Zc1 and D2
∼= H2 × Zc2 . Also if H1 ≤ H2, then it has to

have the case Zc1 ≤ Zc2 , base on group theory (and Zc1 ⊆ Zc2). But due to the
condition c2 < c1, it is impossible unless there are d c2c1 e copies of D2.

We study the case R1 = R2 = 0 in steps 1 and 2. If R1 = 0 and R2 6= 0, we
apply the same manner as steps 1 and 2 on βp1 of D1 and βp2 of D2. If R1, R2 6= 0,
then we apply the same arguments in steps 1 and 2 on βp1 of D1 and βP2

of D2

after that we do that on β′′q1 of D1 and β′′q2 of D2.

5. Conclusion

As the first step, we find the algebraic structure of difference block design on a
dihedral group (D2n with arbitrary n) as its point set. We did that by finding
the relation between its independent-graph and the Cayley graph of dihedral group
with S, which is introduce during the proof of lemmas (Corollary 3.4). Due to
our method to find this relation, we can prove that there exists a configuration
ordering on these difference block designs (Theorem 3.3). Though the method of
finding initial blocks can be from [17] or a lot of other references. At the end,
we investigate these block designs, when they have an extra point. We present a
method to recognize, when they are with an extra point or with the odd points.
And finally, we can classify the big family of difference block designs, by presenting
the Theorem 4.1.
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1. Introduction

In this paper, we consider only simple undirected graphs. Let Γ and ∆ be two
graphs. These graphs are said to be isomorphic and write Γ ∼= ∆, if there exists a
bijection Φ from V (Γ) to V (∆) such that uv ∈ E(Γ) if and only if Φ(u)Φ(v) ∈ E(∆).
An isomorphism from Γ to itself is called an automorphism of Γ. We denote the
set of all automorphisms on Γ as Aut(Γ). A (vertex) coloring of Γ is a mapping
c : V (Γ) → S, where S is the set of colors. The vertices assigned to a given
color form a color class. If |S| = k, we say that c is a k-coloring (often we use
S = {1, . . . , k}). A coloring for Γ is proper if adjacent vertices have different colors
and it is k-colorable if Γ has a proper k-coloring. The chromatic number χ(Γ) is
the least number k such that Γ is k-colorable. Obviously, χ(Γ) exists as assigning
distinct colors to vertices yield a proper |V (Γ)|-coloring. An optimal coloring of Γ
is a χ(Γ)-coloring and Γ is called k-chromatic if χ(Γ) = k. Finally, Γ is planar if it
has no subdivision of the K3,3 and K5.

Suppose G and H are two groups. The group G is called a torsion group if the
order of elements of G is finite. The free product G ∗H of groups G and H is the
set of elements of the form g1h1g2h2 . . . grhr, where gi ∈ G and hi ∈ H, with g1 and
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hr possibly equal to the identity elements of G and H. The semidirect product of
a group G by a group H is a group T containing G and H, where H is normal in
T and G∩H = {1} and is denoted GoH. The symmetric group Sn of degree n is
the group of all permutations on n symbols. The cyclic group of order n is denoted
by Zn and for prime number p, the Prüfer p-group is denoted by Z(p∞).

Graphs associated to algebraic constructions are significant, because they have
valuable applications in mathematics and computer science (see, for example, the
survey [12] and the monographs [13, 14]). The power graph of a group G is the
graph with vertex set G, having an edge joining x and y whenever one is a power
of the other. The concept of a power graph was first introduced and considered in
[11] in the case of groups. Also, they in this paper described the structure of the
power graphs of all finite abelian groups. For semigroups, it was first investigated
in [10], and then in [8, 9]. Chakrabarty, Ghosh, and Sen in [4] characterized the
class of semigroups S for which P(S) is connected or complete. As a consequence,
they proved that P(G) is connected for any finite group G and P(G) is complete if
and only if G is a cyclic group of order 1 or pm. In [3] Cameron and Ghosh proved
that non-isomorphic finite groups may have isomorphic power graphs, but about
abelian groups with isomorphic power graphs, the groups are also isomorphic. In
[5] Doostabadi, Erfanian, and Jafarzadeh obtained some results on the power graph
of infinite groups. The power graphs were also investigated in [2, 17, 15]. In [7], the
automorphism groups of the power graph in general for finite groups are computed.
Also, Feng et al. [6], computed the full automorphism group of the power graph of
a finite group. In [1] Abawajy, Kelarev, and Chowdhury gave a survey of all results
on the power graphs of groups and semigroups obtained in the literature.

The purpose of this paper is to study the power graphs of infinite groups and
their automorphism groups.

2. Main Results

Let p be a fixed prime number. An infinite group T is called a Tarski Monster
group for p if every nontrivial subgroup (i.e. Every subgroup other than 1 and G
itself) has p elements. The group G is necessarily finitely generated. It is gener-
ated by every two non-commuting elements. It is simple. The Tarski groups were
first constructed by Olshanskii in 1979. Olshanskii showed in fact that there are
continuum-many non-isomorphic Tarski Monster groups for each prime p > 1075

[18, 19].

Let A be an abelian group. The generalized dihedral group Dih(A) is the semidi-
rect product A o Z2 , where Z2 is the cyclic group of order 2, and the generator
of Z2 maps elements of A to their inverses. If A is cyclic, then Dih(A) is called a
dihedral group. The finite dihedral group Dih(Zn) is commonly denoted by Dn or
D2n. The infinite dihedral group Dih(Z) is denoted by D∞ and is isomorphic to
the free product Z2 ∗ Z2 of two cyclic groups of order 2.

First, we state two theorems for the automorphism group of graphs.

Theorem 2.1. Let Γ be a graph, then Aut(nΓ) = Aut(Γ) o Sn.
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Theorem 2.2. Let Γ1,Γ2, . . . ,Γn be distinct graphs and

Γ = n1Γ1

⋃
n2Γ2

⋃
. . .

⋃
nrΓr.

Then
Aut(Γ) = (Aut(Γ1) o Sn1)× . . .× (Aut(Γr) o Snr ).

In the next theorem, we obtain the automorphism group of the power graph of
(Z × Z × . . .× Z,+), where Z is a set of integer numbers.

Theorem 2.3. The automorphism group of the power graph of (Z×Z×. . .×Z,+)
is isomorphic to

Aut(P(Z × Z × . . .× Z,+)) = (SP × SP × . . .× SP ) o S2.

Where P denotes the set of all prime numbers.

Proof. Consider the group Z under addition. Two integers a and b of Z are adjacent
in the power graph if and only if a | b or b | a. This graph has three components
containing {0}, Z+, and Z−, where Z+ and Z− are the set of all positive and
negative integers, respectively. On the other hand, any integer n is adjacent to all
positive multiples of n and there is no edge connecting a positive and a negative
number. The components containing all positive and all negative integers is denoted
by H1 and H2 and it can be easily seen that H1

∼= H2. We now calculate the
automorphism group of subgraph H1. By power graph structure of Z, Aut(H1) is
isomorphic to the automorphism group of the partially ordered set L = (N, |), that
N is set of the natural numbers. This group is isomorphic to the symmetric group
SP . Therefore, Aut(P(Z)) = SP o S2.

We now apply induction and Theorems 2.1 and 2.2. Since Aut(L×L×. . .×L) ∼=
SP × SP × . . .× SP , so,

Aut(P(Z × Z × . . .× Z,+)) = (SP × SP × . . .× SP ) o S2.

This completes the proof.

By [16, Proposition 7], P(D2n) is a union of P(Zn) and n copies of K2 that
share the identity element of D2n and by [15, Corollary 2.4], the automorphism
group of the power graph D2n, if n is a prime power, then is equal to Sn−1×Sn and
otherwise, is equal to Sn ×

∏
d|ϕ(n) Sϕ(d) that ϕ is Euler’s totient function. In the

next two theorems, we compute power graphs and automorphism groups of these
graphs for generalized dihedral group Dih(A) and D∞.

Theorem 2.4. For the dihedral groups Dih(A) and D∞,

Aut(P(Dih(A))) = Aut(P(A))× S|A|,
Aut(P(D∞)) = (SP o S2)× SL.

where L = (N, |).
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Proof. In the generalized dihedral group Dih(A), for an abelian group A, all ele-
ments outside A have order two. So, according to the power graph structure, the
power graph of Dih(A), is the union of a copy of P(A) and |A| copies of K2 that
share in identity. So Aut(P(Dih(A))) = Aut(P(A)) × S|A|. In this case, if A is a
finite abelian group, then the structure of the power graph of it described in [11].

Consider the infinite dihedral group D∞ =< r, s|s2 = 1, srs = r−1 >. The
power graph of this group is a union of a copy of P(Z) and infinite copies of K2

that share in identity. Thus, by Theorem 2.3, Aut(P(D∞)) = (SP o S2)× SL.

For the sake of completeness, we mention here two important results which are
crucial in our investigation of the power graphs of the infinite groups.

Theorem 2.5. [5] Let G be an infinite group. Then P(G) is complete if and only
if G ∼= Z(p∞) for some prime p.

By previous theorem Aut(Z(p∞)) ∼= SN .

Theorem 2.6. [5] Let G be a group. Then P(G) is planar if and only if G is a
torsion group and πe(G) ⊆ {1, 2, 3, 4}.

By previous theorem for the Tarski Monster group T , P(T ) is planar.

Theorem 2.7. For the Tarski Monster group T , Aut(P(T )) = Sp o SN . Also
χ(P((T )) = p.

Proof. The power graph of the Tarski Monster group T for the prime number p
is a union infinite copy of Kp that share in identity. So by Theorem 2.1, the
automorphism group of this graph is Aut(P(T )) = Sp o SN . Also, according to
power graph structure of the Tarski Monster group, χ(P((T )) = p.

Direct product of graphs Γ1(V1, E1), . . . ,Γn(Vn, En) is graph Γ(V,E), where
V = V1 × . . .× Vn and E is the set of all pairs ((a1, . . . , an), (b1, . . . , bn)) such that
(a1, . . . , an) 6= (b1, . . . , bn) and (ai, bi) ∈ Ei ∪4(Vi) for all 1 ≤ i ≤ n[11].

Theorem 2.8. [11] If group G is a direct product of the pi-primary components of
itself, that pi’s are pairwise distinct primes, then the power graph of G is the direct
product of the power graphs of the pi-primary component.

Corollary 2.1. We know that Q/Z =
⊕

p∈P Z(p∞) that Z(p∞)’s are p-primary
components of Q/Z. By theorem previous and Theorem 2.5, the power graph of
group Q/Z is a direct product of the power graphs of complete graphs.

Acknowledgment. The author would like to thank the referee for the valuable
suggestions and comments.
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APPROXIMATION PROPERTIES OF MODIFIED BASKAKOV
GAMMA OPERATORS

Seda Arpaguş and Ali Olgun

Kırıkkale University, Department of Mathematics, 71450 Kırıkkale, Turkey

Abstract. In this paper, we have studied an approximation properties of modified
Baskakov-Gamma operator. Using Korovkin type theorem, firste we gave the approx-
imation properties of this operator. Secondly, we computed the rate of convergence of
this operator by means of the modulus of continuity and we gave an approximation
properties of weighted spaces. Finally, we studied the Voronovskaya type theorem of
this operator.

1. Introduction

The Baskakov operators and their connections with different branches of analysis
such as convex and numerical analysis have been studied intensively.

In 1957, V.A. Baskakov defined the well known Baskakov operators as follows[22];

Bn (f ;x) =
∞∑
k=0

f

(
k

n

)(
n+ k − 1

k

)
xk

(1 + x)
n+k

x ≥ 0, n ∈ N.

Later, many authors studied the approximation properties and gave many gen-
eralizations of these operators [1] ,[5],[10],[11],[15],[16],[17],[25],[26].Recently İnce
İlarslan et al.[12]discussed some approximation properties of (p,q)-Baskakov-Kantoro
-vich operators. Some authors studied the approximation properties Szasz type
generalization[21].
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In 1998, V. Miheşan cosnructed and studied the convergence properties a gen-
eralization of the Baskakov operators as follows[24]:

(1.1) Ban (f ;x) =

∞∑
k=0

e−
ax
1+x

Pk (n, a)

k!

xk

(1 + x)
n+k

f

(
k

n

)
x ≥ 0, n ∈ N,

where Pk (x; a) =
k∑
i=0

(
k
i

)
(x)i a

k−i .

In [6], Wafi and Khatoon examined the convergence features of the integral type
modification of the operators (1.1)

(1.2) V an (f ;x) = n

∞∑
k=0

e
ax
1+x

Pk (n, a)

k!

xk

(1 + x)
n+k

k+1
n∫
k
n

f (t) dt x ≥ 0, n ∈ N.

In 2010, Erençin and Başcanbaz-Tunca [2] identified a more general version of
these operators, with the help of sequence, and examined the convergence features.

In 2011, Erençin constructed a Durrmeyer type modification of generalized
Baskakov operators (1.1) as follows

(1.3)

Lαn (f ;x) = e−
ax
1+x

∞∑
k=0

Pk(n,a)
k!

xk

(1+x)n+k
1

B(k+1,n)

∞∫
0

tk

(1+t)n+k+1 f (t) dt ; x ≥ 0

and studied some approximations properties[3].In (2012), Krech and Malejki inves-
tigated a modified type this operators[13].

In 2014, Erençin and Büyükdurakoğlu extended the operator (1.2) as

Kn (f ;x) = e−
anx
1+x

∞∑
k=0

Pk(n,a)
k!

xk

(1+x)n+k
bn

dn−cn

k+dn
bn∫

k+cn
bn

f (t) dt ; x ≥ 0, n ∈ N,

which is a more general version of the operators and examined the convergence
features in weighted spaces[1].

In 2017, N. Rao and A. Wafi [8] defined as follows

Lα,βn,a (f, x) = e−
ax
1+x

∞∑
k=0

Pk (n, a)

k!

xk

(1 + x)
n+k

f

(
k + α

n+ β

)

and examined the convergence features of Stancu variant the operator of (1.2) .

In 2015, Goyal and Agrawal examined the convergence features of bivariate
generalization of operators Lαn given by (1.3)[15].
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Gamma operator is identified as[7]

Gn (f, x) =

∞∫
0

xn+1

n!
e−xyynf

(
n

y

)
dy x ∈ (0,∞) , n ∈ N.

In 2011, L. Rempulska and M. Skorupka extended the modified version of
Gamma operator as follows

Gn,p (f, x) =

∞∫
0

xn+1

n!
e−xyynFp

(
x,
n

y

)
dy

and investigated the approximation properties for differentiable functions in poly-
nomial weighted spaces[14].

Different modification of this operator were examined[19],[20],[21].

In 2014, R. Malejki and E. Wachnicki[18] constructed integral type modification
the operators Bαn given by(1.1)as follows:

Mα,a
n (f, x) = e−

ax
1+x

∞∑
k=0

Pk (n, a)

k!

xk

(1 + x)
n+k

1

Γ (α+ k + 1)

∞∫
0

e−ns (ns)
α+k

f (s) ds

and studied approximation properties of the operator. In (2015), E. Pandey and
S.P. Mishra investigated a differet type this operators[9].

In 2016, I. Krech and R. Malejki[13] defined a multivariate version of the oper-
ators Mα,a

n .

In this paper, we give a new generalization consisting of the linear combination
of Baskakov- Gamma operators.

2. Constructions of the Operators

Let x ∈ (0,∞), n ∈ N, 0 < α < β and f be defined on the space CB(0,∞) of
all continuous bounded functions. We define the operator as follows:

(2.1) Sα,βn,a (f ;x) = e−
ax
1+x

∞∑
k=0

Pk (n, a)

k!

xk

(1 + x)
n+k

∞∫
0

xn+1

n!
yne−xyf

(
kn
xy + α

n+ β

)
dy

where a > 0 is a constant and

Pk (n, a) =

k∑
i=0

(
k

i

)
(n)i a

k−i



128 S. Arpaguş and A. Olgun

with (n)0 = 1, (n)i = n(n+1)(n+2)...(n+ i−1); i ≥ 1denotes Pochammer Symbol.

With the help of derivatives, e−
ax
1+x

∞∑
k=0

Pk+1(n,a)
k!

xk

(1+x)n+k = n(1 + x) + a and

e−
ax
1+x

∞∑
k=0

Pk+2(n,a)
k!

xk

(1+x)n+k = n(n+ 1) (1 + x)
2

+ 2an(1 + x) + a2 can be easily

proved.

3. Auxiliary results

Lemma 3.1. For the operators (2.1), we have

Sα,βn,a (1;x) = 1,
Sα,βn,a (t;x) = nx+α

n+β
ax

(1+x)(n+β) ,

Sα,βn,a

(
t2;x

)
= n2(1+n)x2

(n+β)2(n−1) +
[2an2(1+x)+α2n]

(n+β)2(n−1)
x2

(1+x)2

×{[n
2+2αn(n−1)](1+x)+[an+2aα(n−1)]}

(n+β)2(n−1)
x

1+x + α2

(n+β)2
.

Proof. Using the operator (2.1), , it follows

Sα,βn,a (1;x) = e−
ax
1+x

∞∑
k=0

Pk (n, a)

k!

xk

(1 + x)
n+k

xn+1

n!

∞∫
0

yne−xydy

If we say xy = t then it follows

Sα,βn,a (1;x) = e−
ax
1+x

∞∑
k=0

Pk (n, a)

k!

xk

(1 + x)
n+k

= 1,

which proves the first result.

For f(t) = t we have

Sα,βn,a (t;x)

= e−
ax
1+x

∞∑
k=0

Pk(n,a)
k!

xk

(1+x)n+k
xn+1

n!
1

n+β

[
n
∞∫
0

yne−xy k
xydy + α

∞∫
0

yne−xydy

]
= 1

n+β
x

1+x

(
e−

ax
1+x

∞∑
k=0

Pk+1(n,a)
k!

xk

(1+x)n+k

)
+ α

n+β = nx+α
n+β + ax

(1+x)(n+β) .

For f(t) = t2, it follows

Sα,βn,a

(
t2;x

)
= e−

ax
1+x

∞∑
k=0

Pk (n, a)

k!

xk

(1 + x)
n+k

xn+1

n!

∞∫
0

yne−xy

(
kn
xy + α

n+ β

)2

dy
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= e
− ax

1+x

(n+β)2

∞∑
k=0

Pk(n,a)
k!

xk+n+1

(1+x)n+kn!

×
[
n2
∞∫
0

yne−xy k2

x2y2 dy + 2αn
∞∫
0

yne−xy k
xydy + α2

∞∫
0

yne−xydy

]
= n

(n−1)(n+β)2
x2

(1+x)2

(
e−

ax
1+x

∞∑
k=0

Pk+2(n,a)
k!

xk

(1+x)n+k

)
+ n

(n−1)(n+β)2
x

1+x ×
(
e−

ax
1+x

∞∑
k=0

Pk+1(n,a)
k!

xk

(1+x)n+k

)
+ 2α

(n+β)2
x

1+x

(
e−

ax
1+x

∞∑
k=0

Pk+1(n,a)
k!

xk

(1+x)n+k

)
+ α2

(n+β)2

= n2(1+n)x2

(n+β)2(n−1) +
[2an2(1+x)+α2n]

(n+β)2(n−1)
x2

(1+x)2

+
{[n2+2αn(n−1)](1+x)+[an+2aα(n−1)]}

(n+β)2(n−1)
x

1+x + α2

(n+β)2
,

which completes the proof.

Sα,βn,a

(
t3;x

)
and San

(
t4;x

)
can be proved in a similarly way that of the proof of

Lemma 3.1.

Theorem 3.1. Let f ∈ CB(0,∞), x ∈ (0,∞) and n ∈ N. Then we have

lim
n→∞

(
Sα,βn,a (f ;x)− f (x)

)
= 0.

Proof. Proof is clear that by Lemma 3.1.

Lemma 3.2. For the operators (2.1),

Sα,βn,a

(
(t− x)

2
;x
)
≤M∗x

2 + x+ 1

(n+ β)
2

where Mi = (n, a, β, α), i = 1, 2, ...; M∗ = max (Mi) .

Proof. From linearity of the operator (2.1) and Lemma3.1, since xs

(1+x)l
5 xs for all

x = 0, l < s (l, s = 1, 2, 3, 4), we can write

Sα,βn,a

(
(t− x)

2
;x
)
≤ 1

(n+β)2

(
n(n+α2+2an+n2)−(n−1)(n+β)(n+2α−β)

n−1

)
x2

+ 1
(n+β)2

(
(n−2α+2nα)(a+n)−2α(n−1)(n+β)

n−1

)
x+ α2

(n+β)2

= x2

(n+β)2
M1 + x

(n+β)2
M2 + 1

(n+β)2
M3

≤M∗ x
2+x+1
(n+β)2

.
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4. Rates of Convergence

We can show the approximation of the operator with the help of the modulus
of continuity.

Theorem 4.1. Let x ∈ (0,∞), n ∈ N and f ∈ CB , then we have

∣∣Sα,βn,a (f ;x)− f (x)
∣∣ ≤M∗∗w(f ;

√
x2 + x+ 1

(n+ β)
2

)
.

Proof. By the definition of the operators (2.1) and properties of modulus of conti-
nuity, we may write∣∣Sα,βn,a (f ;x)− f (x)

∣∣ ≤
≤ e−

ax
1+x

∞∑
k=0

Pk (n, a)

k!

xk

(1 + x)
n+k

xn+1

n!

∞∫
0

yne−xy

∣∣∣∣∣f
(
kn
xy + α

n+ β

)
− f (x)

∣∣∣∣∣ dy
≤ e−

ax
1+x

∞∑
k=0

Pk(n,a)
k!

xk

(1+x)n+k
xn+1

n!

∞∫
0

yne−xyw

(
f ;

∣∣∣∣ knxy+αn+β − x
∣∣∣∣) dy

= w (f, δ) + e−
ax
1+x

∞∑
k=0

Pk(n,a)
k!

xk

(1+x)n+k
xn+1

n!
1
δw (f ; δ)

(∞∫
0

yne−xy
∣∣∣∣ knxy+αn+β − x

∣∣∣∣ dy)
By applying the Cauchy-Schwarz inequality two times succesively to the right

side, we get ∣∣Sα,βn,a (f ;x)− f (x)
∣∣ ≤ w (f, δ)

+ 1
δw (f ; δ)


(
e−

ax
1+x

∞∑
k=0

Pk(n,a)
k!

xk

(1+x)n+k

∞∫
0

xn+1

n! y
ne−xy

(
kn
xy+α

n+β − x
)2

dy

) 1
2

×
(
e−

ax
1+x

∞∑
k=0

Pk(n,a)
k!

xk

(1+x)n+k

∞∫
0

xn+1

n! y
ne−xydy

) 1
2

}
≤ w (f, δ) + 1

δw (f ; δ)
√
M∗
√

x2+x+1
(n+β)2

If we take δ =
√

x2+x+1
(n+β)2

, then it follows

∣∣Sα,βn,a (f ;x)− f (x)
∣∣ ≤M∗∗w(f ;

√
x2 + x+ 1

(n+ β)
2

)
.

which ends the proof where

M∗∗ = 1 +
√
M∗.
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Let CB (0,∞) denote the space of real valued continuous and bounded functions on
the interval (0,∞), with the norm

‖f‖ = sup
0≤x<∞

|f (x)| .

For every δ > 0, Peetre’s K- functional is defined by

K2 (f ; δ) = inf
g∈C2

B(0,∞)
{‖f − g‖+ δ ‖g′′‖}

where

C2
B (0,∞) = {g ∈ CB (0,∞) : g′, g′′ ∈ CB (0,∞)} .

There exists an absolute constant C > 0 such that

(4.1) K2 (f ; δ) ≤ Cw2

(
f ;
√
δ
)

holds where w2 is the second order modulus of smoothness of f, defined by

w (f ; δ) = sup
0<h≤δ

sup
0<x<∞

|f (x+ 2h)− 2f (x+ h) + f (x)| .

Now, we consider the following Ŝα,βn,a (f ;x) by means of operator Sα,βn,a

(4.2) Ŝα,βn,a (f ;x) = Sα,βn,a (f ;x)− f
(
ax+ (1 + x) (nx+ α)

(1 + x) (n+ β)

)
+ f (x) .

Then, the following Lemma can be given.

Lemma 4.1. Let g ∈ C2
B (0,∞) . Then we have

∣∣∣Ŝα,βn,a (g;x)− g (x)
∣∣∣ ≤ δn (x) ‖g′′‖

where

δn (x) = Sα,βn,a

(
(t− x)

2
;x
)

+

(
ax+ (1 + x) (α− xβ)

(1 + x) (n+ β)

)2

.

Proof. For the operators Ŝα,βn,a (f ;x), we get

Ŝα,βn,a (t− x;x) = Sα,βn,a (t− x;x)−
(
ax+(1+x)(α−xβ)

(1+x)(n+β)

)
= Sα,βn,a (t;x)− xSα,βn,a (1;x)− Sα,βn,a (t;x) + xSα,βn,a (1;x) = 0.
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Let g ∈ C2
B (0,∞) and x ∈ (0,∞) . By Taylor’s formula of g, we may write

g (t)− g (x) = (t− x) g′ (x) +

t∫
x

(t− u) g′′ (u) du ; t ∈ [0,∞) .

If we apply the operator Ŝα,βn,a to this equality, we obtain

Ŝα,βn,a (g (t)− g (x) ;x) = g′ (x) Ŝα,βn,a ((t− x) ;x) + Ŝα,βn,a

 t∫
x

(t− x) g′′ (u) du;x


= Ŝα,βn,a

(
t∫
x

(t− x) g′′ (u) du;x

)
= Sα,βn,a

(
t∫
x

(t− x) g′′ (u) du;x

)
−

−

 ax+(1+x)(nx+α)
(1+x)(n+β)∫

x

(
ax+(1+x)(nx+α)

(1+x)(n+β) − u
)
g′′ (u) du;x


+

x∫
x

(x− u) du.

By using the following inequality∣∣∣∣∣∣
t∫
x

(t− u) g′′ (u) du

∣∣∣∣∣∣ ≤ (t− x)
2 ‖g′′ (u)‖

we can write

ax+(1+x)(nx+α)
(1+x)(n+β)∫

x

(
ax+(1+x)(nx+α)

(1+x)(n+β) − u
)
g′′ (u) du ≤

(
ax+(1+x)(α−xβ)

(1+x)(n+β)

)2
‖g′′ (u)‖ .

In wiev of this inequality, we can conclude that∣∣∣Ŝα,βn,a (g;x)− g (x)
∣∣∣ ≤ {Sα,βn,a

(
(t− x)

2
;x
)

+
(
ax+(1+x)(α−xβ)

(1+x)(n+β)

)2}
‖g′′‖

= δn (x) ‖g′′‖ .

Theorem 4.2. Let f ∈ CB (0,∞) . For all x ∈ (0,∞) , there exists a constant
B > 0 such that

∣∣Sα,βn,a (f ;x)− f (x)
∣∣ ≤ Bw2

(
f ;
√
δn (x)

)
+ w

(
f ;
ax+ (1 + x) (α− xβ)

(1 + x) (n+ β)

)
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where

δn (x) = Sα,βn,a

(
(t− x)

2
;x
)

+

(
ax+ (1 + x) (α− xβ)

(1 + x) (n+ β)

)2

.

Proof. For the operators Ŝα,βn,a , we write

(4.3) Ŝα,βn,a (f ;x)− f (x) = Ŝα,βn,a (f − g;x) + (f − g) (x) + Ŝα,βn,a (g − g (x) ;x)

from the equality(4.1), it follows

(4.4)

Sα,βn,a (f ;x)− f
(
ax+(1+x)(nx+α)

(1+x)(n+β)

)
+ f (x)− f (x) = Ŝα,βn,a (f − g;x) + (f − g) (x)

+Ŝα,βn,a (g;x)− g (x)

and

∣∣Sα,βn,a (f ;x)− f (x)
∣∣ ≤ ∣∣∣Ŝα,βn,a (f − g;x)

∣∣∣+ |(f − g) (x)|

+
∣∣∣Ŝα,βn,a (g;x)− g (x)

∣∣∣+
∣∣∣f (ax+(1+x)(nx+α)

(1+x)(n+β)

)
− f (x)

∣∣∣ .
By taking the supremum of Ŝα,βn,a operators, we get∣∣∣Ŝα,βn,a (f ;x)

∣∣∣ =
∣∣∣Sα,βn,a (f ;x)− f

(
ax+(1+x)(nx+α)

(1+x)(n+β)

)
+ f (x)

∣∣∣
≤
∣∣Sα,βn,a (f ;x)

∣∣+ 2 ‖f‖
≤ 3 ‖f‖ .

Now if equality (4.3) is replaced by inequality (4.4), we have

|San (f ;x)− f (x)| ≤ 4 ‖f − g‖+
∣∣∣Ŝan (g;x)− g (x)

∣∣∣
+

∣∣∣∣f (ax+ (1 + x) (nx+ α)

(1 + x) (n+ β)

)
− f (x)

∣∣∣∣
from Lemma4.1 we obtain

∣∣Sα,βn,a (f ;x)− f (x)
∣∣ ≤ 4 {‖f − g‖+ δn (x) ‖g′′‖}

+w

(
f ;
ax+ (1 + x) (α− xβ)

(1 + x) (n+ β)

)
.
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By taking the infimum for all g ∈ C2
B (0,∞) on the right-hand side of the last

inequality and considering (4.1), we get that

∣∣Sα,βn,a (f ;x)− f (x)
∣∣ ≤ 4K2 (f ; δn) + w

(
f ;
ax+ (1 + x) (α− xβ)

(1 + x) (n+ β)

)
≤ 4Cw2

(
f ;
√
δn

)
+ w

(
f ;
ax+ (1 + x) (α− xβ)

(1 + x) (n+ β)

)
= Bw2

(
f ;
√
δn

)
+ w

(
f ;
ax+ (1 + x) (α− xβ)

(1 + x) (n+ β)

)
,

which completes the proof.

Theorem 4.3. Let 0 < γ ≤ 1 and f ∈ CB(0,∞). Then if f ∈ LipM (γ), that is,
the inequality

|f (t)− f (x)| ≤M |t− x|γ , x, t ∈ (0,∞)

holds, then for each x ∈ (0,∞) we have∣∣Sα,βn,a (f ;x)− f (x)
∣∣ ≤Mδ

γ
2
n (x)

where

δn = Sα,βn,a

(
(t− x)

2
;x
)

and M > 0 is a constant.

Proof. Let f ∈ CB(0,∞)∩LipM (γ) . By the linearity and monotonicity of the Sα,βn,a

operators, we get∣∣Sα,βn,a (f ;x)− f (x)
∣∣ ≤ Sα,βn,a (|f (t)− f (x)| ;x)
≤MSα,βn,a (|t− x|γ ;x)

= M
∞∑
k=0

e−
ax
1+x

Pk(n,a)
k!

xk

(1+x)n+k
xn+1

n!

∞∫
0

yne−xy
∣∣∣∣ knxy+αn+β − x

∣∣∣∣γ dy.
By applying the Hölder inequality two times succesively to the right side with

p = 2
γ , q = 2

2−γ , we obtain

∣∣Sα,βn,a (f ;x)− f (x)
∣∣

≤ M

e− ax
1+x

∞∑
k=0

Pk (n, a)

k!

xk

(1 + x)
n+k

xn+1

n!

∞∫
0

yne−xy

∣∣∣∣∣
kn
xy + α

n+ β
− x

∣∣∣∣∣
2

dy


γ
2

≤ MSα,βn,a

(
(t− x)

2
;x
) γ

2

= Mδ
γ
2
n (x) ,

which is the desired result.
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5. Weighted Approximation Properties

Firstly, we give some definitions and theorem

Let ρ (x) = 1 + x2 and Bρ [0,∞) denote the space of all functions having the
property

|f (x)| ≤Mfρ (x)

where x ∈ [0,∞) and Mf is a positive constant on f functions. The norm on
Bρ [0,∞) is defined as follows

‖f‖ρ = sup
0≤x<∞

|f (x)|
1 + x2

.

Cρ [0,∞) denotes the space of all continuous functions belonging to Bρ [0,∞)
and C0

ρ [0,∞) denotes the subspace of all functions f ∈ Cρ [0,∞) for which

lim
x→∞

|f (x)|
ρ (x)

= 0.

The basic theorem for approximation of weighted spaces is given by Gadjiev
in[4].

Theorem 5.1. Let {An} be a sequence of positive linear operators defined from
C0
ρ [0,∞) to Bρ [0,∞),and satisfying the conditions

lim
n→∞

‖An (tv;x)− xv‖ρ = 0, v = 0, 1, 2.

Then for any f ∈ C0
ρ [0,∞),

lim
n→∞

‖An (f ;x)− f (x)‖ρ = 0.

It is shown in [4] that, a sequence of linear positive operators An is defined from
C0
ρ [0,∞) to Bρ [0,∞) if and only if

‖An (ρ;x)‖ρ ≤Mρ

where Mρ is a positive constant.

Theorem 5.2. Let
{
Sα,βn,a

}
be the sequence of positive linear operators. For each

f ∈ C0
ρ(0,∞), we have

lim
n→∞

∥∥Sα,βn,a (f ;x)− f (x)
∥∥
ρ

= 0.
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Proof. Using Lemma3.2, we get

sup
0≤x<∞

|Sα,βn,a (ρ;x)|
1+x2 = sup

0≤x<∞

|Sα,βn,a (1+t2;x)|
1+x2

≤ 1 +
n(a+2n+α2+2an+n2)+α(n−1)(2a+2n+α)

(n+β)2(n−1) .

There exists a positive contant D such that for each n and α, a, β <∞

n
(
a+ 2n+ α2 + 2an+ n2

)
+ α (n− 1) (2a+ 2n+ α)

(n+ β)
2

(n− 1)
< D.

Hence we may write

sup
0≤x<∞

∣∣Sα,βn,a (ρ;x)
∣∣

1 + x2
=
∥∥Sα,βn,a (ρ;x)

∥∥
ρ
≤ 1 +D.

which shows that {San} is a sequence of positive linear operators defined from
C0
ρ(0,∞) to Bρ(0,∞).

For v = 0, it is clear that ∥∥Sα,βn,a (1;x)− 1
∥∥
ρ

= 0.

For v = 1, we have∥∥Sα,βn,a (t;x)− x
∥∥
ρ

= sup
0≤x<∞

|Sα,βn,a (t;x)−x|
1+x2

= sup
0≤x<∞

∣∣∣ax+(1+x)(nx+α)
(1+x)(n+β)

1
1+x2 − x

1+x2

∣∣∣
≤
∣∣∣ A
n+β

∣∣∣
holds. Similarly, for v = 2, we get∥∥Sα,βn,a

(
t2;x

)
− x2

∥∥
ρ
≤ sup

0≤x<∞

|Sα,βn,a (t2;x)−x2|
1+x2

≤
∣∣∣∣n(a+2n+α2+2an+n2)+α(n−1)(2a+2n+α)

(n+β)2(n−1) − 1

∣∣∣∣
=
∣∣∣ B
(n+β)2(n−1)

∣∣∣ .
As a result, we obtain

lim
n→∞

∥∥Sα,βn,a (tv;x)− xv
∥∥
ρ

= 0, v = 0, 1, 2.

Thus, the proof is completed.
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Theorem 5.3. Let x ∈ (0,∞), n ∈ N and f ∈ CB . For the operators

Sα,βn,a (f ;x) = e−
ax
1+x

∞∑
k=0

Pk (n, a)

k!

xk

(1 + x)
n+k

xn+1

n!

∞∫
0

yne−xyf

(
kn
xy + α

n+ β

)
dy

and

Lα,βn,a (f ;x) = e−
ax
1+x

∞∑
k=0

Pk (n, a)

k!

xk

(1 + x)
n+k

f

(
k + α

n+ β

)
,

the inequality

∣∣Sα,βn,a (f ;x)− Lα,βn,a (f ;x)
∣∣ ≤ w (f ; δ)ϕ (x)

is holds true, where

ϕ (x) =

(
1 +

1

δ

√
n(n+ 1) + 2an+ a2

(n− 1) (n+ β)
2 x2 +

n+ a

(n− 1) (n+ β)
2x

)
and

δ =

√
n(n+ 1) + 2an+ a2

(n− 1) (n+ β)
2 x2 +

n+ a

(n− 1) (n+ β)
2x.

Proof. From the definition and properties of modulus of continuity, we have∣∣Sα,βn,a (f ;x)− Lα,βn,a (f ;x)
∣∣

≤ e−
ax
1+x

∞∑
k=0

Pk(n,a)
k!

xk

(1+x)n+k
xn+1

n!

∞∫
0

yne−xy
∣∣∣∣f ( kn

xy+α

n+β

)
− f

(
k+α
n+β

)∣∣∣∣ dy
≤ w (f, δ) + 1

δw (f, δ) e−
ax
1+x

∞∑
k=0

Pk(n,a)
k!

xk

(1+x)n+k
xn+1

n!

[∞∫
0

yne−xy
∣∣∣∣ knxy+αn+β −

k+α
n+β

∣∣∣∣] dy.
By applying the Cauchy-Schwarz inequality two times succesively to the right

side, we get∣∣Sα,βn,a (f ;x)− Lα,βn,a (f ;x)
∣∣

≤ w (f, δ) + 1
δw (f, δ)


(
e−

ax
1+x

∞∑
k=0

Pk(n,a)
k!

xk

(1+x)n+k
xn+1

n!

∞∫
0

yne−xy
(

kn
xy+α

n+β −
k+α
n+β

)2

dy

) 1
2

×
(
e−

ax
1+x

∞∑
k=0

Pk(n,a)
k!

xk

(1+x)n+k
xn+1

n!

∞∫
0

yne−xydy

) 1
2

}

= w (f, δ) + 1
δw (f, δ)

√√√√Sα,βn,a

((
kn
xy+α

n+β −
k+α
n+β

)2

;x

)
.
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If we calculate the Sα,βn,a

((
kn
xy+α

n+β −
k+α
n+β

)2

;x

)
, we show that

Sα,βn,a

((
kn
xy+α

n+β −
k+α
n+β

)2

;x

)
= Sα,βn,a

(
k2( n

xy−1)
2

(n+β)2
;x

)
= 1

(n−1)(n+β)2

[(
n(n+ 1)x2 + 2an x2

(1+x) + a2x2

(1+x) + nx+ ax
(1+x)

)]
≤ n(n+1)+2an+a2

(n−1)(n+β)2 x2 + n+a
(n−1)(n+β)2x,

from which, it follows

lim
n→∞

Sα,βn,a

( kn
xy + α

n+ β
− k + α

n+ β

)2

;x

 = 0.

Thus, we have

∣∣Sα,βn,a (f ;x)− Lα,βn,a (f ;x)
∣∣

≤ w (f, δ) +
1

δ
w (f, δ)

√
n(n+ 1) + 2an+ a2

(n− 1) (n+ β)
2 x2 +

n+ a

(n− 1) (n+ β)
2x

≤ w (f, δ)ϕ (x) .

6. Voronovskaya Type Theorem

Lemma 6.1. For the operators Sα,βn,a (f ;x) defined (2.1), we have

Sα,βn,a (t− x;x) = α−βx
n+β + ax

(n+β)(1+x) .

Sα,βn,a

(
(t− x)

2
;x
)

= 2n2+nβ2−β2

(n+β)2(n−1)x
2 + 2a(n+β−nβ)

(n+β)2(n−1)
x2

1+x + a2n
(n+β)2(n−1)

x2

(1+x)2

+
(n2−2αβn+2αβ)

(n+β)2(n−1) x+ an+2aα(n−1)
(n+β)2(n−1)

x
1+x + α2

(n+β)2
.

Proof. By using the definition of Sα,βn,a , it can be proved easily.

Theorem 6.1. Let a, x > 0, 0 ≤ α ≤ β and n ∈ N. For f ∈ C2(0,∞) and
bounded, we have

lim
n→∞

(n+ β)
[
Sα,βn,a (f ;x)− f (x)

]
=

(
α− βx+

ax

1 + x

)
f ′ (x) +

2x2 + x

2
f ′′ (x) .
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Proof. Let x, t ∈ (0,∞), f ∈ C2(0,∞). By Taylor’s formula for f , we have

(6.1) f (t) = f (x) + (t− x) f ′ (x) +
(t− x)

2

2!
f ′′ (x) + (t− x)

2
φ (t;x)

where the function φ (t;x) ∈ C[0,∞) and lim
t→x

φ (t;x) = 0. By applying the operator

Sα,βn,a to the both sides of (6.1), we have

(6.2)

Sα,βn,a f (t) = f (x)Sα,βn,a (1;x) + f ′ (x)Sα,βn,a (t− x;x) + f ′′(x)
2! Sα,βn,a

(
(t− x)

2
;x
)

+Sα,βn,a

(
(t− x)

2
φ (t;x) ;x

)
.

According to Lemma6.1, the equality (6.2) can be written as follows

(n+ β)
[
Sα,βn,a (f ;x)− f (x)

]
= (n+ β)

[
α−βx
n+β + ax

(n+β)(1+x)

]
f ′ (x)

+ (n+ β)
[
2n2+nβ2−β2

(n+β)2(n−1)x
2 + 2a(n+β−nβ)

(n+β)2(n−1)
x2

1+x + a2n
(n+β)2(n−1)

x2

(1+x)2

+
(n2−2αβn+2αβ)

(n+β)2(n−1) x+ an+2aα(n−1)
(n+β)2(n−1)

x
1+x + α2

(n+β)2

]
f ′′(x)

2! + Sα,βn,a

(
(t− x)

2
φ (t;x) ;x

)
,

where

Sα,βn,a

(
(t− x)

2
φ (t;x) ;x

)
=

= e−
ax
1+x

∞∑
k=0

Pk (n, a)

k!

xk

(1 + x)
n+k

xn+1

n!

∞∫
0

yne−xyf

(
kn
xy + α

n+ β
− x

)2

φ (t;x) dy.

By applying the Cauchy-Schwarz inequality two times succesively to the right
side, we get

(6.3)

(n+ β)Sα,βn,a

(
(t− x)

2
φ (t;x) ;x

)
≤
√

(n+ β)
2
Sα,βn,a

(
(t− x)

4
;x
)√

Sα,βn,a (φ2 (t;x) ;x).

From Lemma 6.1, we have Sα,βn,a

(
(t− x)

4
;x
)

= O(n−2). Thus, we get

(6.4) lim
n→∞

(n+ β)
2
Sα,βn,a

(
(t− x)

4
;x
)

= 12x4 + 12x3 + 3x2.

On the other hand, since φ (t;x) ∈ C[0,∞) and lim
t→x

φ (t;x) = 0, then we conclude

(6.5) lim
n→∞

Sα,βn,a

(
φ2 (t;x) ;x

)
= φ2 (x;x) = 0.
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Hence, we get from (6.3), (6.4) and (6.5) that

lim
n→∞

(n+ β)Sα,βn,a

(
(t− x)

2
φ (t;x) ;x

)
= 0

and then, we find

lim
n→∞

(n+ β)
[
Sα,βn,a (f ;x)− f (x)

]
=

(
α− βx+

ax

1 + x

)
f ′ (x) +

2x2 + x

2
f ′′ (x)

which completed the proof. [1]
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A MIXED (NONLINEAR) INAR(1) MODEL

Predrag M. Popović
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Abstract. The paper introduces a new autoregressive model of order one for time se-
ries of counts. The model is comprised of a linear as well as nonlinear autoregressive
component. These two components are governed by random coefficients. The autore-
gression is achieved by using the negative binomial thinning operator. The method of
moments and the conditional maximum likelihood method are discussed for the param-
eter estimation. The practicality of the model is presented on a real data set.
Keywords: Time series of counts, Negative binomial thinning operator, Linear model,
Nonlinear model.

1. Introduction

In the past few decades, time series modeling has been drawing a lot of attention
to researchers as well as practitioners. Understanding the dependence and the evo-
lution of an observed series is an important task. A significant contribution in this
field is modeling time series of counts. Time series of counts arises in many real-life
situations. For example, number of infected persons, number of stock transactions,
number of spaces, number of committed crimes, etc. Studding of these types of
time series started after the introduction of the thinning operator in [15]. Some of
the first integer-valued autoregressive (INAR) models based on the thinning param-
eter are presented in [11], [1], [2]. These models experienced various modifications
regarding their structure, the definition of thinning operator and the dimensional-
ity. A comprehensive review of INAR models can be found in [16] and [14]. The
extension to bivariate INAR models can be found in [7], [9], [8].
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In general, the INAR models are composed of the survival and the innovation
process. The survival process is an autoregressive component, which is defined
through the thinning operator. Some of the most exploited thinning operators
are the binomial thinning operator introduced in [15], and the negative binomial
thinning operator introduced in [13]. The autoregressive component, usually named
the survival process, is of the form

α ◦X =

X∑
i=1

Wi,

where Wi is a counting sequence. And the major drawback of the autoregressive
models is that they put too much or too little weight on thier previous value when
predicting the next one. Some of the solutions to this problem were given in [5]
where the thinning parameter α is governed by an external process. The gener-
alization of this model was discussed in [6] and [4]. Some other modifications of
the autoregressive dependence are based on introducing a bilinear autoregressive
component, [3]. Also, there are autoregressive INAR modes that are dealing with
the excess number of zeros and ones [12].

The aim of this paper is to introduce a model whose autoregressive part is
comprised of a linear as well as a nonlinear component. The nonlinear component
is defined through the current state of the innovation process. The idea for that
lies in the fact that the survival process might depend on the innovation process.
For example, if we have a lot of new specimens of some population, probably the
environment conditions are adequate for that species so the survival rate will be
higher. Random coefficients determine whether the autoregressive component is
linear or not. The linear, as well as the nonlinear component, are defined through
the negative binomial thinning operator. Even though the model has this com-
plex definition of the autoregressive component, the conditional expectation can
be determined. This fact increases the practical aspect of the model, since the
one-step-ahead prediction is possible. Also, the model is proved to be stationary.

The next section gives us the definition of the model. In Section 3. the main
properties of the model are derived. Section 4. proposes two methods for the pa-
rameter estimation, whose efficiency are tested in Section 5. Section 6. discusses the
practical aspect of the model. The concluding remarks are given in Section 7.

2. Model definition

In this section, we introduce the Mixed nonlinear INAR(1) model (MNLINAR(1) )
in a general form, without specifying a distribution of the innovation process. For
such a model, we prove the existence and the strict stationarity. Also, the main
properties of the model are derived.

Let {Xt} be a non-negative integer-valued time series. Then, the MNLINAR(1)
model is defined as follows:

Xt =

{
α ∗Xt−1 + εt, w.p. p
α ∗ (Xt−1εt) + εt, w.p. 1− p(2.1)
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where the negative binomial thinning operator is defined as α ∗ X =
∑X
i=1Wi,

where {Wt} is independent identically distributed random variables with geometric
marginal distribution Geom(α/(1+α)), whose probability mass function is P (Wi =
w) = αw

(1+α)w+1 . The counting sequence {Wt} are independent of {Xt} and {εt}.
Further, the random variable εt is independent of Xs for s < t.

As we can see, the MNLINAR(1) model evolves as a linear model with prob-
ability p and as a nonlinear model with probability 1 − p. So, the model can be
expressed with random variables Ut and Vt where P (Ut = α, Vt = 0) = 1− P (Ut =
0, Vt = α) = p. Than the MNLINAR(1) model is defined as

Xt = Ut ∗Xt−1 + Vt ∗ (Xt−1εt) + εt.(2.2)

Theorem 2.1. There exist a unique strictly stationary bivariate time series {Xt}
that satisfies equation (2.2), when α(p + (1 − p)λ) < 1, α2(p + (1 − p)E(ε2t )) < 1
and E(ε2t ) <∞, where λ stands for E(εt).

Proof. Let us introduce a series {X(n)
t } in the following way:

X
(n)
t =


0, n < 0
εt, n = 0

U(t) ∗X
(n−1)
t−1 + V(t) ∗ (X

(n−1)
t−1 εt) + εt, n > 0

.

Here, notations U(t) and V(t) implies that the counting series that figure in U(t)∗X(n)

are fixed at time t for all n. Now, we define the Hilbert space L2(Ω,F , P ) =
{X : E(X2) <∞}, where the measure between two random variables is defined as

E(XY ). The idea is to prove that {X(n)
t } is strictly stationary, and then to show

that {X(n)
t } is a Cauchy sequence that belongs to just defined L2 space.

Using the same approach as in [3], it can be proved that the series {X(n)
t } is

strictly stationary, so we omit that proof here.

To show that X
(n)
t belong to the above defined Hilbert space, we need to prove

that E(X
(n)
t )2 < ∞. For n ≤ 0 it obviously holds, thus let us focus on n > 0. We
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obtain the following equation:

E
(
X

(n)
t

)2
= pE(α ∗X(n−1)

t−1 + εt)
2 + (1− p)E(α ∗ (X

(n−1)
t−1 εt) + εt)

= pE((α ∗X(n−1)
t−1 )2 + 2α ∗X(n−1)

t−1 εt + ε2t )

+(1− p)E((α ∗ (X
(n−1)
t−1 εt))

2 + 2α ∗ (X
(n−1)
t−1 εt)εt + ε2t )

= p
[
α2E(X

(n−1)
t−1 )2 + α(1 + α)E(X

(n−1)
t−1 )

+2αE(X
(n−1)
t−1 )E(εt) + E(ε2t )

]
+(1− p)

[
αE(X

(n−1)
t−1 εt)

2 + α(1 + α)E(X
(n−1)
t−1 εt)

+2αE(X
(n−1)
t−1 ε2t ) + E(ε2t )

]
= . . .

= E
(
X

(n−1)
t−1

)2 (
pα2 + (1− p)α2E(ε2t ) + E(X

(n−1)
t−1 )

)
·
[
α(1 + α) (p+ (1− p)E(εt)) + 2α

(
pE(εt) + (1−p)E(ε2t )

)]
+ E(ε2t ).

Since the series {X(n)
t } is strictly stationary, it follows that E

(
X

(n)
t

)2
< ∞ if

1 − α2(p + (1 − p)E(ε2t )) > 0, which is satisfied by the condition of the theorem.
In the above derivation, we used some known properties of the negative binomial
thinning operator which can be found in [13].

Now, let us prove that {X(n)
t } is a Cauchy sequence. Notice that equation (2.3)

holds if and only if the sequence {X(n)
t } is non-decreasing.

X
(n)
t −X

(n−1)
t =U(t)∗(X

(n−1)
t−1 −X(n−2)

t−1 )+V(t)∗((X
(n−1)
t−1 −X(n−2)

t−1 )εt)(2.3)

To show that the sequence is non-decreasing we use mathematical induction. Notice
that

X
(1)
t = U(t) ∗X

(0)
t−1 + V(t) ∗ (X

(0)
t−1εt) + εt ≥ εt = X

(0)
t .

Suppose that X
(k)
t > X

(k−1)
t for some k and let’s prove it for k + 1.

X
(k)
t = U(t) ∗X

(k−1)
t−1 + V(t) ∗ (X

(k−1)
t−1 εt) + εt ≤

≤ U(t) ∗X
(k)
t−1 + V(t) ∗ (X

(k)
t−1εt) + εt = X

(k+1)
t .

So, {X(n)
t } is non-decreasing and equation (2.3) holds. Taking expectation of the
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both sides of equation (2.3) we obtain that

E(X
(n)
t −X(n−1)

t )

= pαE(X
(n−1)
t−1 −X(n−2)

t−1 ) + (1− p)αE[(X
(n−1)
t−1 −X(n−2)

t−1 )εt]

= pαE(X
(n−1)
t−1 −X(n−2)

t−1 ) + (1− p)αλE(X
(n−1)
t−1 −X(n−2)

t−1 )

= (pα+ (1− p)αλ)E(X
(n−1)
t−1 −X(n−2)

t−1 ) = . . .

= (pα+ (1− p)αλ)
n−1

E(X
(1)
t−1 −X

(0)
t−1)

+ (pα+ (1− p)αλ)
n
E(ε2t ).

We can conclude that

E(X
(n)
t −X(n−1)

t ) −−−−→
n→∞

0⇐⇒ pα+ (1− p)αλ < 1.

Thus, {X(n)
t } is a Cauchy sequence in the above-defined Hilbert space which implies

that the Cauchy sequence converges, i.e. lim
n→∞

X
(n)
t = Xt. Since the series {X(n)

t }
is strictly stationary it follows that its limit is strictly stationary as well.

The uniqueness of the solution of equation (2.2) can be proved using the same
approach as [3], so we omit it here.

3. Properties of the model

In this section, we derive the most important properties of the MNLINAR(1) model,
including the first and the second moments as well as the conditional expectation
and the conditional probability mass function.

From the model definition given by equation (2.1), and the properties of the
negative binomial thinning operator we obtain

E(Xt) = αpE(Xt−1) + α(1− p)E(Xt−1)E(εt) + E(εt).

Having in mind that {Xt} is a strictly stationary process, and relying on the con-
ditions of Theorem 2.1, it follows that

E(Xt) =
E(εt)

1− α(p+ (1− p)E(εt))
.(3.1)

For the derivation of the second moment we use the same extensive technique as in
Theorem (2.1), so we only notice that

E
(
X2
t

)
= E (Xt−1)

2
(pα2 + (1− p)α2E(ε2t )

+E(Xt−1)
[
α(1 + α)(p+ (1− p)E(εt)) + 2α(pE(εt) + (1− p)E(ε2t ))

]
+ E(ε2t ).

Under the conditions of Theorem (2.1), it follows that

E
(
X2
t

)
=

E(Xt−1)
[
α(1+α)(p+(1−p)E(εt))+2α(pE(εt) + (1−p)E(ε2t ))

]
+E(ε2t )

1−α2(p+(1−p)E(ε2t ))
.(3.2)
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Further, let us pay the attention on the expected value of the product XtXt−k.
It is equal to

E(XtXt−k) = pE((α ∗Xt−1 + εt)Xt−k) + (1− p)E((α ∗ (Xt−1εt) + εt)Xt−k)

= αpE(Xt−1Xt−k) + α(1− p)E(Xt−1Xt−k)E(εt) + E(εt)E(Xt−k)

= (αp+ α(1− p)E(εt))E(Xt−1Xt−k) + E(εt)E(Xt−k) = . . .

= (αp+ α(1− p)E(εt))
kE(X2

t−k) + E(Xt−k)E(εt)

k−1∑
j=0

(αp+ α(1− p)E(εt))
j .

It can be notice that, under the conditions of Theorem 2.1,

E(XtXt−k) −−−−→
k→∞

E(Xt−k)E(εt)

1− α(p+ (1− p)E(εt))
.

Substituting E(εt) by using equation (3.1), we obtain

E(XtXt−k) −−−−→
k→∞

E(Xt)E(Xt−k).

For further discussion, it will be particularly important the case when k = 1, so
let us notice that

E(XtXt−1) = (αp+ α(1− p)E(εt))E(X2
t−1) + E(Xt−1)E(εt)

= (αp+ α(1− p)E(εt))E(X2
t ) + E(Xt)E(εt).(3.3)

But the autocorrelation structure of the series {Xt} would be much easier to
observe through the autocovariance function directly. Namely, we obtain the fol-
lowing:

Cov(Xt, Xt−k) = E(XtXt−k)− E(Xt)E(Xt−k)

= (αp+ α(1− p)E(εt))E(Xt−1Xt−k) + E(εt)E(Xt−k)

= (αp+ α(1− p)E(εt))Cov(Xt−1, Xt−k)

+E(εt)E(Xt−k) + (αp+ α(1− p)E(εt))E(Xt−1)E(Xt−k)− E(Xt)E(Xt−k)

= (αp+ α(1− p)E(εt))Cov(Xt−1, Xt−k) = . . .

= (αp+ α(1− p)E(εt))
kCov(Xt−k, Xt−k) = (αp+ α(1− p)E(εt))

kV ar(Xt).

The above equation follows from the property of the negative binomial thinning
operator, which can be found in Lemma 3 of [13]. Now, it can be easily concluded
that, under assumption of Theorem 2.1, the autocorrelation tends to zero when k
tends to infinity.

Regarding the practicality of the MNLINAR(1) model, the most important as-
pect of the model is the ability to predict forthcoming values of a modeled series.
Unlike some other nonlinear models ([3], [10]), for the MNLINAR(1) model the
conditional expectation can be derived as

E(Xt|Xt−1) = pE(α ∗Xt−1 + εt|Xt−1) + (1− p)E(α ∗ (Xt−1εt) + εt|Xt−1)

= p(αXt−1 + E(εt)) + (1− p)(αE(Xt−1εt|Xt−1) + E(εt))

= α(p+ (1− p)E(εt))Xt−1 + E(εt).
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Finally, we focus on the conditional probability mass function, where we focus
on the one-step-ahead conditional probability.

P (Xt = x|Xt−1 = u) = pP (α∗Xt−1 +εt = x|Xt−1 = u)

+(1−p)P (α∗(Xt−1εt)+εt = x|Xt−1 = u)

= p

x∑
i=0

P (α ∗Xt−1 = i|Xt−1 = u)P (εt = x− i)

+(1− p)
x∑
i=0

P (α ∗ (Xt−1εt) = i|Xt−1 = u, εt = x− i)P (εt = x− i)

= p

x∑
i=0

P (α ∗ u = i)P (εt = x− i)

+(1− p)
x∑
i=0

P (α ∗ (u(x− i)) = i)P (εt = x− i)

= p

x∑
i=0

P (N = i)P (εt = x− i)

+(1− p)
x∑
i=0

P (M = i)P (εt = x− i),(3.4)

where N and M are random variables with negative binomial distribution with
parameters (α, u) and (α, u(x− i)), respectively.

3.1. Specification of the innovation process

So far, we have not specified the marginal distribution of the innovation process
{εt}. And as we could notice, that didn’t affect the derivation of the MNLINAR(1)
model properties. In order to complete the definition of the MNLINAR(1) model,
we introduce the assumption about the distribution of εt. In the succeeding sections,
we assume that εt follows the geometric distribution with parameter λ/(1+λ). The

corresponding probability mass function is equal to P (εt = k) = λk

(1+λ)k+1 . Notice

that this model can be easily adjusted for a different type of series by introducing
different distributions of the innovation process.

4. Parameter estimation

In this section, we propose two methods for the estimation of unknown parameters
of the MNLINAR(1) model. First, we discuss in detail the method of moments, and
then the conditional maximum likelihood method. At the end, we test the efficiency
of the presented methods on simulated data sets.
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4.1. Method of moments

Assume that we have a realization of the series given by the equation (2.1) of length
N . Then, for the given series {X1, X2, . . . , XN}, first sample moment is denoted as
XN , the second sample moment as X2

N and E(XkXk−1) as γ.

Since we have that E(εt) = λ from equation (3.1) we obtain the estimate pa-
rameter λ as

λ =
XN (1− αp)

1 + α(1− p)XN

.(4.1)

Then, we can easily solve equation (3.3) for λ, since it is a linear equation with
respect to λ.

λ =
γ − αpX2

N

α(1− p)X2
N +XN

.(4.2)

The left sides of equations (4.1) and (4.2) are equal, so it follows that

XN (1− αp)
1 + α(1− p)XN

=
γ − αpX2

N

α(1− p)X2
N +XN

.

After some algebraic transformations, we can solve the above equation for α, where
we obtain

α =
γ−(XN)

2

(1−p)(X2
N−γ)XN+p(X2

N−(XN)
2
)

= Cx

(1−p)(X2
N−γ)XN+pDx

.(4.3)

where Cx is the sample lag-one covariance, and Dx is the sample variance. Further,
since the equation (3.2) is liner with respect to p, the estimate of parameter p we
obtain from equation (3.2) as

p=
X2

N−α2X2
NE(ε2t )−α(1+α)λXN−2αXNE(ε2t )−E(ε2t )

α2X2
N (1−E(ε2t ))+αXN [(1+α)(1−E(εt)+2(E(εt)−E(ε2t )]

(4.4)

Note that under the assumption introduced in Subsection 3.1. we have E(ε2t ) =
λ(2λ+ 1).

The system of equations (4.1), (4.3) and (4.4) cannot be solved analytically.
Thus, we apply the following numerical procedure. For a given p0, we can calculate
α0 from equation (4.3), and then with these two values we get λ0 from equation (4.1).
From equation (4.4) we obtain p1. We repeat the procedure until |pk+1−pk|+|λk+1−
λk|+ |αk+1 − αk| < δ, where δ is set to be a sufficiently small value.
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4.2. Conditional maximum likelihood

For the given series {X1, X2, . . . , XN}, we estimate the parameters of the MN-
LINAR(1) model using the conditional maximum likelihood method (CML). The
likelihood function that we maximize here, is actually the log-likelihood function
determined through equation (3.4). Let us denote the set of parameters of the
MNLINAR(1) model as vector θ = (α, p, λ). Then, the estimate of the vector θ is
obtained as

θ̂ = arg max
θ

L(θ),(4.5)

where

L(θ) =

N∑
i=2

lnP (Xi = xi|Xi−1 = xi−1)

=

N∑
i=2

ln

 pλxi

(1 + α)xi−1(1 + λ)xi+1

xi∑
j=0

(
j + xi−1 − 1

xi−1 − 1

)(
α(1 + λ)

λ(1 + α)

)j

+
(1− p)λxi

(1 + α)xi−1xi(1 + λ)xi+1

xi∑
j=0

(
j + xi−1(xi − j)− 1

xi−1(xi − j)− 1

)(
α(1 + λ)

λ(1 + α)1−xi−1

)j .
Since this maximization procedure cannot be done analytically, some numerical ap-
proach must be applied. For that purpose, we use built-in functions of the program
language R.

5. Simulation

In this section, by using the Monte Carlo method, we generate time series according
to equation (2.1). We conduct this procedure using different sets of parameters that
figure in the MNLINAR(1) model. On these simulated series we test the efficiency
of the MM and CML methods described in the previous section. The efficiency
of the proposed methods is measured with respect to the bias and the standard
deviation of the obtained estimates.

We have chosen four sets of parameters, considering conditions of Theorem 2.1.
The following parameter were used for the simulation purpose: a) α = 0.7, p = 0.7,
λ = 1; b) α = 0.3, p = 0.3, λ = 2; c) α = 0.5, p = 0.9, λ = 3; d) α = 0.1, p = 0.9,
λ = 7. The estimates obtained by the MM and CML methods are given in Table 8.1
(the table can be found in Appendix).

According to the results presented in Table 8.1, we can conclude that both
methods converge to the true value of parameters. Also, the standard error of
estimates is reducing with the increase of the sample size. It should be noticed
that the MM method is not very accurate estimates when the length of a sample is
100 and even 500. But for samples whose length is 1000 or 5000, the estimates are
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quite adequate. On the other side, CML demonstrates remarkable precision even
for samples of length 100.

The MM method is conducted through the iterative procedure described in Sub-
section 4.1. The maximal number of iterations was set to be 100, and the estimation
procedure is very fast. The method usually converges in less than 100 iterations.

The CML method is based on the numerical maximization of the function given
by equation (4.5). The numerical procedure is obtained using nlm function of the
programming language R. It doesn’t take too much of computation time except for
the samples of length 5000.

(a) The method of moments estimates.

(b) The conditional maximum likelihood method estimates.

Fig. 5.1: The box plots of estimates for the set of parameters α = 0.7, p = 0.7,
λ = 1, obtained by the method of moments (upper) and the conditional maximum
likelihood method (lower).

For the MM method, approximately, one of ten estimates is outside the feasible
range. On the other side, the CML method had only a few estimates outside the
feasible range, and only for the case when the length of the series was 100. The
distribution of the estimates for the parameter set a) is given in Figure 5.1. Also,
from Figure 5.1 we can notice the convergence of the estimates toward the true
values.
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Fig. 6.1: The partial autocorrelation function and the bar plot for DRUG series.

6. Real data example

In this section, we will demonstrate a practical aspect of the MNLINAR(1) model.
We test the ability of this model to capture and predict values of an observed time
series. Our goal is not to compare the MNLINAR(1) with all known models, but
to see what is the effect of having a model with the linear as well as the nonlinear
component, in comparison with the models that have only linear (named LINAR(1)
model which is actually the model presented in [13]) or only nonlinear component
(named NLINAR(1) model). The criteria for the goodness-of-fit are going to be the
root mean square error (RMS), the Akaike information criterion and the Bayesian
information criterion (BIC).

For this test, we use time series of criminal records, collected by the Pitts-
burgh police station number 2206. The data can be found on the link http:

//www.forecastingprinciples.com/. We focus on series of monthly drug offenses
(DRUG) that took place between January 1990 and December 2001. There are 144
observed values, whose mean value is 2.1 and the standard deviation 12.9. The bar
plot of the series is presented in Figure 6.1. In Figure 6.1 there is also the partial
autocorrelation diagram. Although the MNLINAR(1) model is not a standard au-
tocorrelated model, it has some properties of the autocorrelated model of order one.
Figure 6.1 shows that the observed series is autocorrelated on lag one.

The results obtained from the three tested models are presented in Table 6.1.
As we can see that by introducing the linear and the nonlinear component, we have
reduced the one-step ahead prediction error, while also reduced the values of AIC
and BIC measures. Having in mind that the MNLINAR(1) model has one more
parameter than the other two models, and considering values of AIC and BIC, we
can conclude that the best fit of the observed series is provided by the MNLINAR(1)
model.
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Table 6.1: Estimated parameters, standard errors of the estimates, the root mean
square error for one step ahead prediction, AIC and BIC values for MNLINAR(1)
, LINAR(1) and NLINAR(1) models.

Model Estimates RMS AIC BIC

MNLINAR(1)
α̂ = 0.174 (0.068)

3.37 548.17 557.08p̂ = 0.395 (0.204)

λ̂ = 1.49 (0.211)

LINAR(1)
α̂ = 0.044 (0.037)

3.52 565.06 573.97
λ̂ = 2.033 (0.343)

NLINAR(1)
α̂ = 0.108 (0.075)

3.42 551.15 560.06
λ̂ = 1.615 (0.192)

7. Conclusion

The model discussed in this paper is the INAR model of order one. Although
it is not a pure autoregressive model, it still preserves some of the autoregressive
properties. The survival component is composed of linear and nonlinear processes,
both defined through the negative binomial thinning operator, while the innovation
component is driven by the geometrical marginal distribution. The method of
moments and the conditional maximum likelihood method are presented for the
estimation of the model parameters. While the method of moments showed to
be unreliable for small samples, the conditional maximum likelihood provides very
accurate estimates for all testes samples. The practicality of the model was discussed
on a real data set, where the surplus of having both linear and nonlinear components
was demonstrated.

Some further modifications of the model can be based on choosing different
thinning operators or different marginal distribution of the innovation process. Both
components of the model can be adjusted in order to better model an observed series.
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8. Appendix

Table 8.1: The bias and the standard errors of the estimates obtained by the method
of moments and the conditional maximum likelihood method.

MM CML
N α p λ α p λ
a) α = 0.7, p = 0.7, λ = 1
100 -0.039 -0.195 -0.168 -0.007 -0.004 0.004

0.141 0.209 0.355 0.094 0.151 0.307
500 -0.069 -0.127 -0.156 -0.002 0.018 0.017

0.127 0.157 0.312 0.035 0.084 0.125
1000 -0.057 -0.154 -0.10 -0.003 0.007 0.012

0.121 0.183 0.187 0.026 0.062 0.094
5000 -0.034 -0.053 -0.07 -0.001 -0.002 0.008

0.104 0.164 0.048 0.01 0.025 0.039
b) α = 0.3, p = 0.3, λ = 2
100 0.159 -0.134 -0.189 0.035 -0.021 -0.032

0.14 0.118 0.548 0.114 0.127 0.24
500 0.087 -0.088 -0.163 0.011 0.005 -0.007

0.112 0.075 0.218 0.05 0.05 0.091
1000 0.058 -0.07 -0.111 0.006 0.004 -0.005

0.103 0.087 0.202 0.03 0.032 0.061
5000 0.034 -0.045 -0.07 0.003 0.002 0.007

0.08 0.051 0.153 0.01 0.022 0.011
c) α = 0.5, p = 0.9, λ = 3
100 0.027 -0.063 -0.634 -0.002 0.023 -0.113

0.098 0.033 0.973 0.048 0.238 1.279
500 0.032 -0.047 -0.533 0.001 0.002 -0.094

0.066 0.03 0.545 0.019 0.087 0.498
1000 0.017 -0.044 -0.366 0.001 -0.002 -0.081

0.05 0.023 0.289 0.013 0.055 0.324
5000 0.014 -0.031 -0.259 -0.002 -0.007 0.005

0.04 0.02 0.265 0.02 0.021 0.019
d) α = 0.1, p = 0.9, λ = 7
100 -0.033 -0.063 0.185 -0.003 0.001 -0.065

0.062 0.034 0.87 0.07 0.069 0.58
500 -0.023 -0.034 0.103 0.001 0.003 -0.026

0.048 0.033 0.477 0.029 0.025 0.241
1000 -0.013 -0.028 0.066 -0.001 -0.001 -0.011

0.04 0.036 0.423 0.022 0.02 0.181
5000 -0.001 -0.008 -0.018 -0.001 -0.001 0.007

0.02 0.025 0.231 0.019 0.011 0.059
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Ser. Math. Inform. Vol. 36, No 1 (2021), 157-163

https://doi.org/10.22190/FUMI200420013K

PARALLELISM OF DISTRIBUTIONS AND GEODESICS ON
F (±a2,±b2)-STRUCTURE LAGRANGIAN MANIFOLD

Mohammad Nazrul Islam Khan1 and Lovejoy S. Das2

1Department of Computer Engineering, College of Computer, Qassim University,

Buraydah, Saudia Arabia
2Department of Mathematics, College of Computer, Kent State University,

New Philadelphia, OH 44663, U.S.A.

Abstract. This paper deals with the Lagrange vertical structure on the vertical tangent
space TV (N) endowed with a non-zero (1,1) tensor field Fv satisfying (F 2

v − a2)(F 2
v +

a2)(F 2
v −b2)(F 2

v +b2) = 0. The similar structure on the horizontal subspace TH(N) and
on T (N) is investigated if the F (±a2,±b2)-structure on TV (N) is given. Furthermore,
we have proved some theorems and obtained conditions under which the distribution
P and Q are ∇-parallel, ∇̄ anti half parallel when ∇ = ∇̄. Finally, certain theorems on
geodesics on the Lagrange manifold are established.
Keywords: Distribution, Parallelism, Geodesic, Almost product structure.

1. Introduction

Let M and N be two differentiable manifolds of dimension n and 2n respectively
and (N, π,M) be vector bundle with π(N) = M . The local coordinate systems
(x1, x2, ....., xn) about x in M and (y1, y2, ....., yn) about y in N . Let (xi, yα), 1 ≤
i ≤ n, 1 ≤ α ≤ n be system of local coordinates in the open set π−1(U) and
called induced coordinates in π−1(U), where U is a coordinate neighborhood in M .

Let Tp(N) be tangent space and
{

∂
∂xi ,

∂
∂yα

}
canonical basis for Tp(N) such that

p ∈ π−1(U) and it is also denoted by {∂i, ∂α} where ∂i = ∂
∂xi . If (xh, xα

1

) be
coordinates of a point in the interesting region π−1(U) ∩ π−1(U), then [2, 6]

xi
1

= xi
1

(xi),(1.1)
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yα
1

=
∂xα

1

∂xα
yα,(1.2)

and another canonical basis in the intersecting region are given by

∂i1 =
∂xi

∂xi1
∂i(1.3)

∂α1 =
∂yα

∂yα1 ∂α.(1.4)

The tangent space of N is denoted by T (N) and spanned by {∂i, ∂α} and its
subspaces by TV (N) and TH(N) spanned by {∂α} and {∂i} respectively [8]. Then
we have,

dimTV (N) = dimTH(N) = n.(1.5)

The Riemannian material structure on T (N) is given by

G = gij(x
i, yα)dxi ⊗ dxj + gab(x

i, yα)δyα ⊗ δyb,(1.6)

where gij(x
i, yα) = gij(x

i), gab = 1
2∂a∂bL(xi, yα) and L(xi, yα) denotes the La-

grange function. The manifold referred as Lagrangian manifold [2].

Let X be an element of T (N), then

X = X̄i∂i +Xα∂α.(1.7)

The automorphism J : χ(T (N))→ χ(T (N)) given as

JX = X̄i∂i +Xα∂α(1.8)

is a natural almost product structure on T (N) that is J2 = I, I denotes the identity
operator. The projection morphisms of T (N) onto TV (N) and TH(N) denoted by
v and h respectively, then we have

J0h = v0J.(1.9)

2. The F (±a2,±b2)-structure

Let TV (N) be the vertical space and Fv a non-zero tensor field of type (1,1) satisfying
[10]

(F 2
v − a2)(F 2

v + a2)(F 2
v − b2)(F 2

v + b2) = 0,(2.1)

where a, b are real or complex constants, then the vertical space TV (N) admits
F (±a2,±b2)-structure. The rank (Fv) = r and such structure is called Lagrange
vertical structure on TV (N).

Theorem 2.1. Let TV (N) be a vertical space ad Fv Lagrange vertical structure
on TV (N). Then the structure define on the subspace TH(N) with respect to almost
product strcture of T (N).
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Proof: Suppose that

Fh = JFvJ,(2.2)

then Fh is a tensor field of type (1,1) on TH(N), where J is an almost product
structure on T (N).

Apply Fh on both sides we get

F 2
h = (JFvJ)(JFvJ) = JF 2

v J,

F 3
h = JF 3

v J

and so on.

In the view of equation (2.1), we have

(F 2
h − a2)(F 2

h + a2)(F 2
h − b2)(F 2

h + b2)(2.3)

= J((F 2
v − a2)(F 2

v + a2)(F 2
v − b2)(F 2

v + b2))J

= 0,

Hence, Fh gives F (±a2,±b2)-structure on TH(N).

Theorem 2.2. Let TV (N) be a vertical space ad Fv Lagrange vertical structure on
TV (N). Then the similar structure define on the enveloping space T (N) by using
projection morphism of T (N).

Proof: In the view of Theorem (2.1), the projection morphisms of TV (N) and TH(N)
on T (N) denoted by v and h respectively then we have

F = Fvh+ Fvv(2.4)

As hv = vh = 0 and h2 = h, v2 = v, we obtain

F 2 = F 2
hh+ F 2

v v

Now,

(F 2 − a2)(F 2 + a2)(F 2 − b2)(F 2 + b2)

= (F 2
h − a2)(F 2

h + a2)(F 2
h − b2)(F 2

h + b2)h

+(F 2
v − a2)(F 2

v + a2)(F 2
v − b2)(F 2

v + b2)v(2.5)

By theorem 2.1, we have

(F 2 − a2)(F 2 + a2)(F 2 − b2)(F 2 + b2) = 0.

As rank(Fv) = rank(Fh) = r,

Hence, rank(F ) = 2r.



160 M. N. I. Khan and L. S. Das

Let us define tensor fields p and q of type (1,1) on T (N) with F (±a2,±b2)-
structure of rank 2r as follows

p =
(F 2 + a2)(F 2 − a2)

b4 − a4

q =
(F 2 + b2)(F 2 − b2)

a4 − b4
(2.6)

Then it is easy to show that

p2 = p, q2 = q, pq = qp = 0, p+ q = I.(2.7)

This implies that p and q are complementary projection operators [4, 5, 7].

3. Parallelism of distributions

Suppose that N be Lagrangian manifold with F (±a2,±b2)-structure on T (N)
and let P and Q complementary distributions corresponding to complementary
projection operators p and q respectively. The linear connection ∇̄ and ∇̃ are given
by [2]

∇̄XY = p∇X(pY ) + q∇X(qY )(3.1)

and
∇̃XY = p∇pX(pY ) + q∇qX(qY ) + p[qX, pY ] + q[pX, qY ].(3.2)

We have the following definitions [3, 6]:

∇-parallel: The distribution P is said ∇-parallel if ∀X ∈ P, Y ∈ T (N) implies
that ∇YX ∈ P.
∇-half parallel: The distribution P is said ∇-half parallel if ∀X ∈ P, Y ∈

T (N), (∆F )(X,Y ) ∈ P where

(∆F )(X,Y ) = F∇XY − F∇YX −∇FXY +∇Y (FX)(3.3)

∇-anti half parallel: The distribution P is said ∇-anti half parallel if for all
X ∈ P, Y ∈ T (N), (∆F )(X,Y ) ∈ Q .

Theorem 3.1. On the F (±a2,±b2)-structure manifold, the complementary dis-
tributions namely P and Q are ∇̄-parallel and ∇̃-parallel.

Proof: By using the equations (3.1), (3.2) and pq = qp = 0, q2 = q, we obtain

q∇̄XY = q∇X(qY )

If Y ∈ P, qY = 0 so q∇̄XY = 0→ ∇̄XY = 0, as qY = 0 because Y is an element of
P .

This implies that ∇̄XY ∈ P .

Thus, ∀Y ∈ P,∀X ∈ T (N) ⇒ ∇̄XY ∈ P .
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Hence P is ∇̄-parallel.

In a similar way ∀X ∈ T (N),∀Y ∈ P
∇̃XY = q∇qX(qY ) + q[pX, qY ] = 0 as qY = 0.

So ∇̃XY ∈ P .

Thus P is ∇̃-parallel.

In a similar way, it can be shown that distribution Q is ∇̄ as well as ∇̃ parallel.

Theorem 3.2. On the F (±a2,±b2)-structure manifold, the complementary dis-
tributions namely P and Q are ∇-parallel iff ∇̄ = ∇̃.

Proof: Let distributions P and Q are ∇-parallel. By definition of ∇-parallel, we
have

q∇X(pY ) = 0, p∇X(qY ) = 0.

where X and Y are elements of T (N).

Using equation (2.7), we get

∇X(pY ) = p∇X(pY )(3.4)

and
∇X(qY ) = q∇X(qY )(3.5)

Thus
∇XY = p∇X(pY ) + q∇X(qY ) = ∇̄XY.

This shows that ∇ = ∇̄.
The converse of the theorem showed easily.

Theorem 3.3. On the F (±a2,±b2)-structure manifold N , the complementary dis-
tribution M is ∇̄-anti half parallel if

q∇̄Y (FX) = q∇FXqY.

where X is an element of Q and Y element of T (N).

Proof: Let ∇̄ be linear connection on N . Then by using equations (3.3) and (2.7),
we obtain

q(∆F )(X,Y ) = q∇̄Y FX − q∇̄FXY, as qF = Fq = 0.(3.6)

Making use of the equation (3.1), the obtained equation is

∇̄FXY = p∇FX(pY ) + q∇FX(qY )

operating q on both sides of above equation and using pq = 0, q2 = q, we get

q∇̄FXY = q∇FX(qY )
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and
q(∆F )(X,Y ) = q∇̄Y FX − q∇̄FXY,

as (∆F )(X,Y ) ∈ P so q(∆F )(X,Y ) = 0.

Hence,
q∇̄Y (FX) = q∇FX(qY ),

This completes the proof.

3.1. Geodesics on the Lagrangian manifold
Let T be tangent to the curve γ in N . The curve γ is said the geodesic concernig
to the connection ∇ if ∇TT [6].

Theorem 3.4. A curve γ is said to be geodesic concerning to connection ∇̄ if the
vector fields ∇TT −∇T (qT ) ∈ Q and ∇T (qT ) ∈ P .

Proof: The curve γ is said to be geodesic concerning to the connection ∇̄, we have
∇̄TT = 0.

In the view of the equation (3.1), ∇̄TT = 0 becomes

p∇T (pT ) + q∇T (qT ) = 0,(3.7)

Using the equation (2.7), the equation (3.7) becomes

p∇T (I − q)T + q∇T (qT ) = 0

or
p∇TT − p∇T (qT ) + q∇T (qT ) = 0.

or
p(∇TT −∇T (qT )) and q∇T (qT ) = 0.

Hence, ∇TT −∇T (qT ) ∈ Q and ∇T (qT ) ∈ P .

This completes the proof.

Theorem 3.5. The tensor fields p and q of type (1,1) are always covariantly con-
stants concerning to connection ∇̄.

Proof: Let X and Y be elements of T (N), then

(∇̄Xp)(Y ) = ∇̄X(pY )− p∇̄XY.(3.8)

From equation (3.1), we have

(∇̄Xp)(Y ) = p∇X(p2Y ) + q∇X(qpY )− p {p∇XpY + q∇XqY )}

Using the properties p2 = p, q2 = q, pq = qp = 0, we have

(∇̄Xp)(Y ) = p∇X(pY )− p∇XpY = 0.

This shows that p is covariantly constant. In similar way, q is covariantly constant
can be proved easily.
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Abstract. In this paper, we introduce the classes of (ω, c)-pseudo almost periodic
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1. Introduction and Preliminaries

The theory of almost periodic functions and almost automorphic functions is
an attractive field of investigation, which has a significant role in the qualitative
theory of ordinary and partial differential equations, physics, mathematical biology
and control theory.

The classes of (ω, c)-periodic functions and (ω, c)-pseudo periodic functions were
introduced by Alvarez, Gómez, Pinto in [3] and Alvarez, Castillo, Pinto in [4],
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motivated by some known results regarding the qualitative properties of solutions
to the Mathieu linear second-order differential equation

y′′(t) + [a− 2q cos 2t]y(t) = 0,

arising in seasonally forced population dynamics. The authors of [3] have ana-
lyzed the existence and uniqueness of mild (ω, c)-periodic solutions to the abstract
semilinear integro-differential equation

Dγ
t,+u(t) = Au(t) +

∫ t

−∞
a(t− s)Au(s) ds+ f(t, u(t)), t ∈ R,

whereA is a closed linear operator, a ∈ L1([0,∞)) is a scalar-valued kernel and f(·, ·)
satisfies some Lipschitz type conditions. Further on, Alvarez, Castillo and Pinto
have analyzed in [4] the existence and uniqueness of mild (ω, c)-pseudo periodic
solutions to the abstract semilinear differential equation of the first order:

u′(t) = Au(t) + f(t, u(t)), t ∈ R,

where A generates a strongly continuous semigroup. The authors have proved
the existence of positive (ω, c)-pseudo periodic solutions to the Lasota-Wazewska
equation with (ω, c)-pseudo periodic coefficients

y′(t) = −δy(t) + h(t)e−a(t)y(t−τ), t ≥ 0.

This equation describes the survival of red blood cells in the blood of an animal.
(ω, c)-Pseudo periodic functions can be also solutions of the time varying impul-
sive differential equations and the linear delayed equations; for further information
about applications of (ω, c)-pseudo periodic functions, we refer the reader to [8] and
references cited therein.

In our recent paper [8], we have introduced and analyzed various generalizations
of the concept of (ω, c)-periodicity. Among others, we have defined and analyzed
the classes of (asymptotically) (ω, c)-almost periodic functions and (asymptotically)
(ω, c)-almost automorphic functions. The main aim of this paper is to analyze the
classes of (ω, c)-pseudo almost periodic functions and (ω, c)-pseudo almost automor-
phic functions by taking into consideration the class of pseudo ergodic components
introduced by C. Zhang [13]. We introduce two new types of (ω, c)-pseudo ergodic
components and two new classes of (ω, c)-almost periodic ((ω, c)-almost automor-
phic) functions. It is our strong belief that these classes of functions will attract
the attention of our readers and serve for some new applications in the theory of
abstract differential equations soon.

The organization of paper is briefly described as follows. After recalling the
basic definitions from the theory of almost periodic functions and almost auto-
morphic functions in Subsection 1.2, we introduce the classes of (ω, c, i)-almost
periodic functions, resp. (ω, c, i)-almost automorphic functions, and (ω, c, i)-pseudo
ergodic vanishing components in Definition 2.2 and Definition 2.3; in Definition
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2.4, we introduce the notion of an (ω, c)-pseudo almost periodic function, resp.
an (ω, c)-pseudo almost automorphic function, and the notion of a two-parameter
(ω, c, i)-pseudo almost periodic function, resp. two-parameter (ω, c, i)-pseudo al-
most automorphic function (i = 1, 2). After that, we clarify some basic results
about the class of (ω, c)-pseudo almost periodic functions, resp. (ω, c)-pseudo al-
most automorphic functions, depending on one variable. Subsection 2.1 investigates
composition principles for introduced classes and Section 3 provides an interesting
application in the qualitative analysis of (ω, c)-pseudo almost periodic solutions of
the abstract semilinear Cauchy inclusions of the first order.

We use the standard notation throughout the paper. Let I = R or I = [0,∞);
unless stated otherwise, we will always assume henceforth that f : I → E is a
continuous function. By C(I : E), Cb(I : E) and C0(I : E) we denote the vector
spaces consisting of all continuous functions f : I → E, all bounded continuous
functions f : I → E and all bounded continuous functions f : I → E satisfying that
lim|t|→+∞ ‖f(t)‖ = 0. As is well known, Cb(I : E) and C0(I : E) are Banach spaces
equipped with the sup-norm, denoted by ‖ · ‖∞. If X is also a complex Banach
space, then by L(E,X) we denote the space consisting of all bounded continuous
mappings from E into X; L(E) ≡ L(E,E). The principal branches are always used
for taking the powers of complex numbers.

1.1. Almost Periodic Functions, Almost Automorphic Functions and
Their Generalizations

Let I = [0,∞) or I = R. Given ε > 0, we call τ > 0 an ε-period for f(·) if and
only if ‖f(t + τ) − f(t)‖ ≤ ε, t ∈ I. The set constituted of all ε-periods for f(·)
is denoted by ϑ(f, ε). It is said that f(·) is almost periodic if and only if for each
ε > 0 the set ϑ(f, ε) is relatively dense in I, which means that there exists l > 0
such that any subinterval of I of length l meets ϑ(f, ε). The vector space consisting
of all almost periodic functions is denoted by AP (I : E).

Let f : R→ E be continuous. Then it is said that f(·) is almost automorphic if
and only if for every real sequence (bn) there exists a subsequence (an) of (bn) and
a map g : R→ E such that limn→∞ f(t+ an) = g(t) and limn→∞ g(t− an) = f(t),
pointwise for t ∈ R. The space consisting of all almost automorphic functions will
be denoted by AA(R : E).

A function f : I × X → E is called almost periodic if and only if f(·, ·) is
bounded continuous as well as for every ε > 0 and every compact K ⊆ X there
exists l(ε,K) > 0 such that every subinterval J ⊆ I of length l(ε,K) contains a
number τ with the property that ‖f(t + τ, x) − f(t, x)‖ ≤ ε for all t ∈ I, x ∈ K.
The collection of such functions will be denoted by AP (I × X : E). Observe that
we require the boundedness of function f(·, ·) a priori, which is not the common
case in the existing literature. This is also not the case in the usual definition
of an almost automorphic function depending on two variables, given as follows.
A continuous function F : R × X → E is said to be almost automorphic if and
only if for every sequence of real numbers (s′n) there exists a subsequence (sn) such
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that G(t, x) := limn→∞ F (t + sn, x) is well defined for each t ∈ R and x ∈ X, and
limn→∞G(t−sn, x) = F (t, x) for each t ∈ R and x ∈ X. The vector space consisting
of such functions will be denoted by AA(R×X : E).

By PAP0(R : E) we denote the space consisting of all bounded continuous
functions Φ : R→ E such that limr→∞

1
2r

∫ r
−r ‖Φ(s)‖ ds = 0. For example, it is well

known that f ∈ PAP0(R : C) if and only if f · f ∈ PAP0(R : C). Moreover, let us
define

f(t) :=
1

2t

∫ t

−t
s| sin s|s

N

ds, t ∈ R,

where N > 6. From [1, Example p. 1143] we know that limt→+∞ f(t) = 0 and

therefore ·| sin ·|·N ∈ PAP0(R : C) for N > 6.

By PAP0(R×X : E) we denote the space consisting of all continuous functions
Φ : R × X → E such that {Φ(t, x) : t ∈ R} is bounded for all x ∈ X, and
limr→∞

1
2r

∫ r
−r ‖Φ(s, x)‖ ds = 0, uniformly in bounded sets of X. A function f ∈

Cb(R : X) is said to be pseudo-almost periodic, resp. pseudo-almost automorphic, if
and only if it admits a decomposition f(t) = g(t)+q(t), t ∈ R, where g ∈ AP (R : E),
resp. g ∈ AA(R : E), and q ∈ PAP0(R : E). The parts g(·) and q(·) are called
the almost periodic part of f(·), resp. the almost automorphic part of f(·), and
the ergodic perturbation of f(·). The vector space consisting of such functions is
denoted by PAP (R : E), resp. PAA(R : E); the sup-norm turns PAP (R : E),
resp. PAA(R : E), into a Banach space ([13]).

For more details about almost periodic type functions and almost automorphic
type functions, we refer the reader to the research monographs [5, 6, 7, 9, 12].

2. (ω, c)-Pseudo Almost Periodic Functions and (ω, c)-Pseudo Almost
Automorphic Functions

Unless specified otherwise, in the remainder of paper we will always assume that
c ∈ C\{0} and ω > 0. The following definition has been recently introduced in [8].

Definition 2.1. It is said that a continuous function f : I → E is (ω, c)-almost
periodic, resp. (ω, c)-almost automorphic, if and only if the function fω,c(·), defined
by fω,c(t) := c−(t/ω)f(t), t ∈ I, is almost periodic, resp. almost automorphic. By
APω,c(I : E), resp. AAω,c(I : E), we denote the space consisting of all (ω, c)-almost
periodic functions, resp. all (ω, c)-almost automorphic functions.

Let us recall that APω,c(I : E), resp. AAω,c(I : E), is a vector space with the
usual operations of addition of functions and pointwise multiplication of functions
with scalars ([8]). Furthermore, the space APω,c(I : E), resp. AAω,c(I : E),
equipped with the norm ‖ · ‖ω,c, where

‖f‖ω,c := sup
t∈I

∥∥∥c− t
ω f(t)

∥∥∥,
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is a Banach space.

With the exception of consideration preceding Definition 2.3, in the remainder
of paper we will deal with the interval I = R, only. Let us recall the (ω, c)-mean of
a function h : R→ E is introduced in [4] by

Mω,c(h) := lim
T→∞

1

2T

∫ T

−T
c−σ/ωh(σ) dσ,

whenever the limit exists. For example, for h1(t) = ct/ω and h2(t) = ct/ωeit, we
have that Mω,c (h1) = 1 and Mω,c (h2) = 0. Furthermore, Mω,c is a linear and
continuous operator. Indeed, if c−t/ωhn(t)→ c−t/ωh(t) uniformly as n→∞, then
Mω,c (hn)→Mω,c(h) as n→∞.

Remark 2.1. If h(·) is (ω, c)-almost periodic in the sense of Definition 2.1, then
the meanMω,c(h) always exists, because the function c−(·/ω)f(·) is almost periodic
and the usual mean value of any almost periodic function exists.

In this paper, we will use the space

PAP0;ω,c(R : E) :=
{
h ∈ C(R : E) ; c−·/ωh(·) ∈ PAP0(R : E)

}
.

A function h(·) is said to be c-ergodic if and only if belongs to this space. Therefore,
the ergodic space of Zhang ([13]) can be recovered by plugging c = 1 in the above
definition.

Furthermore, we will use the following two types of (ω, c)-pseudo ergodic com-
ponents:

Definition 2.2. Let c ∈ C\{0} and ω > 0.

(i) A function f ∈ C(R ×X : E) is said to be (ω, c, 1)-pseudo ergodic vanishing
if and only if c−t/ωf(t, ·) ∈ PAP0(R×X : E). The space of all such functions
will be denoted by PAP0;ω,c,1(R×X : E).

(ii) A function f ∈ C(R ×X : E) is said to be (ω, c, 2)-pseudo ergodic vanishing
if and only if c−t/ωf(t, ct/ω·) ∈ PAP0(R × X : E). The space of all such
functions will be denoted by PAP0;ω,c,2(R×X : E).

Similarly, we will use two different types of (ω, c)-almost periodic functions,
resp. (ω, c)-almost automorphic functions, depending on two variables (albeit some
composition principles for two-parameter (ω, c)-almost periodic functions have been
clarified in [8], we have not explicitly defined the notion of a two-parameter (ω, c)-
almost periodic function there; the notion introduced in Definition 2.3 should not
be mistakenly identified with the notion of an (ω, c)-almost periodic function of type
1 (type 2), introduced and analyzed in [8, Section 3]).

Definition 2.3. Let c ∈ C\{0}, ω > 0 and i = 1, 2.
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(i) A function f ∈ C(R × X : E) is said to be (ω, c, 1)-almost periodic, resp.
(ω, c, 1)-almost automorphic, if and only if c−t/ωf(t, ·) ∈ AP (R × X : E),
resp. c−t/ωf(t, ·) ∈ AA(R × X : E). The space of all such functions will be
denoted by APω,c,1(R×X : E), resp. AAω,c,1(R×X : E).

(ii) A function f ∈ C(R × X : E) is said to be (ω, c, 2)-almost periodic, resp.
(ω, c, 2)-almost automorphic, if and only if c−t/ωf(t, ct/ω·) ∈ AP (R×X : E),
resp. c−t/ωf(t, ct/ω·) ∈ AA(R ×X : E). The space of all such functions will
be denoted by APω,c,2(R×X : E), resp. AAω,c,2(R×X : E).

In [8], we have analyzed the classes of asymptotically (ω, c)-almost periodic
functions, resp. asymptotically (ω, c)-almost automorphic functions, defined on
the non-negative real axis by adding the usual ergodic components from the space
C0([0,∞) : E) to the principal components, which are (ω, c)-almost periodic func-
tions, resp. (ω, c)-almost automorphic functions. In order to stay consistent with
the notion introduced in [4, Definition 2.5], we will slightly change the approach
obeyed in [8] and use the following notion in case I = R :

Definition 2.4. Let c ∈ C\{0}, ω > 0 and i = 1, 2.

(i) A function f ∈ C(R : E) is said to be (ω, c)-pseudo almost periodic, resp.
(ω, c)-pseudo almost automorphic, if and only if it admits a decomposition
f(t) = g(t) + h(t), t ∈ R, where g(·) is (ω, c)-almost periodic, resp. (ω, c)-
almost automorphic, and h ∈ PAP0;ω,c(R : E). The space of all such functions
will be denoted by PAPω,c(R : E), resp. PAAω,c(R : E).

(ii) A function f(·, ·) ∈ C(R×X : E) is said to be (ω, c, i)-pseudo almost periodic,
resp. (ω, c, i)-pseudo almost automorphic, if and only if it admits a decompo-
sition f(t, x) = g(t, x) + h(t, x), t ∈ R, x ∈ X, where g(·, ·) is (ω, c, i)-almost
periodic, resp. (ω, c, i)-almost automorphic, and h(·, ·) ∈ PAP0;ω,i(R×X : E).
The space of all such functions will be denoted by PAPω,c,i(R×X : E), resp.
PAAω,c,i(R×X : E).

For simplicity, we will not consider here the class of (ω, c)-pseudo compactly
almost automorphic functions; for some applications of compactly almost auto-
morphic functions, the reader may consult the article [2] by Ait Dads, Boudchich,
Es-sebbar and references cited therein.

Theorem 2.1. Let f ∈ C(R : E). Then f(·) is (ω, c)-pseudo almost periodic, resp.
(ω, c)-pseudo almost automorphic, if and only if:

f(t) ≡ c∧(t)u(t), with c∧(t) ≡ ct/ω, u ∈ PAP (R : E),(2.1)

resp.
f(t) ≡ c∧(t)u(t), with c∧(t) ≡ ct/ω, u ∈ PAA(R : E).
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Proof. We will consider only (ω, c)-pseudo almost periodic functions for sim-
plicity. It is clear that if f(·) satisfies (2.1), then f(·) is an (ω, c)-pseudo almost
periodic function. In order to show the converse statement, let f ∈ PAPω,c(R : E).
Then there exists g ∈ APω,c(R : E) and PAP0;ω,c(R : E) such that f = g + h.
Therefore,

u(t) = c−t/ωg(t) + c−t/ωh(t) = F1(t) + F2(t), t ∈ R.

So, u(t) is written as a sum of F1(·) which is almost periodic and F2(·) which be-
longs to PAP0;ω,c(R : E).

Remark 2.2. Let us note that the decompositions given in Definition 2.4 are
unique; see also [4, Remark 2.9]. The proof of this simple fact can be left to the
interested readers.

It can be simply shown that:

(i) We have f + g ∈ PAPω,c(R : E), resp. f + g ∈ PAAω,c(R : E), and αh ∈
PAPω,c(R : E), resp. αh ∈ PAAω,c(R : E), provided f, g, h ∈ PAPω,c(R :
E), resp. f, g, h ∈ PAAω,c(R : E), and α ∈ C.

(ii) If τ ∈ R and f ∈ PAPω,c(R : E), resp. f ∈ PAAω,c(R : E), then fτ (·) ≡
f(·+ τ) ∈ PAPω,c(R : E), resp. fτ (·) ∈ PAAω,c(R : E).

Now we would like to endow the introduced space of (ω, c)-pseudo almost pe-
riodic functions, resp. (ω, c)-pseudo almost automorphic functions, with a certain
norm.

Proposition 2.1. The space PAPω,c(R : E), resp. PAAω,c(R : E), equipped with
the norm ‖ · ‖ω,c is a Banach space.

Proof. We will consider the space PAPω,c(R : E), only. Let (fn) be a Cauchy
sequence in PAPω,c(R : E). Then, given ε > 0, there exists N ∈ N such that, for
all m, n ≥ N , we have

‖fn − fm‖ω,c < ε.

Since fm, fn ∈ PAPω,c(R : E), Theorem 2.1 implies that there exists um, un ∈
PAP (R : E) such that fm(t) ≡ c∧(t)um(t) and fn(t) ≡ c∧(t)un(t) for all t ∈ R.
Now, for m, n ≥ N we have ‖um − un‖∞ ≤ ‖fn − fm‖ω,c < ε. It follows that
(un) is a Cauchy sequence in PAP (R : E). Since PAP (R : E) is complete, there
exists u ∈ PAP (R : E) such that ‖un − u‖∞ → 0 as n → ∞. Let us define
f(t) := c∧(t)u(t), t ∈ R. We claim that ‖un − u‖∞ → 0 as n → ∞. Indeed,
‖fn − f‖ω,c = supt∈R ‖un(t) − u(t)‖ → 0 (n → ∞). Hence, PAPω,c(R : E) is a
Banach space with the norm ‖ · ‖ω,c.

Lemma 2.1. ([4]) Assume that k∼(·) := c∧(−·)k(·) ∈ L1(R). Then h ∈ PAP0;ω,c(R :
E) implies that k ∗ h ∈ PAP0;ω,c(R : E).
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Theorem 2.2. Let f ∈ PAPω,c(R : E), resp. f ∈ PAAω,c(R : E), with f(·) =
c∧(·)p(·), p ∈ PAP (R : E), resp. p ∈ PAA(R : E). If for some k(·) we have that
k∼(·) := c∧(−·)k(·) ∈ L1(R), then

(k ∗ f)(t) =

∫ ∞
−∞

k(t− s)f(s) ds = c∧(t) (k∼ ∗ p) (t), t ∈ R.

In particular, k ∗ f ∈ PAPω,c(R : E), resp. k ∗ f ∈ PAAω,c(R : E).

Proof. As before, we will consider the space PAPω,c(R : E) only, because the
proof is quite analogous for the space PAAω,c(R : E). Since p ∈ PAP (R : E),
we have that there exists p1 ∈ AP (R : E) and p2 ∈ PAP0(R : E) such that
p = p1 + p2. Then f = f1 + f2, where f1(·) = c∧(·)p1(·) ∈ APω,c(R : E) and
f2(·) = c∧(·)p1(·) ∈ PAP0;ω,c(R : E). For every t ∈ R, we have

(k ∗ f)(t) =

∫ ∞
−∞

k(t− s)f(s) ds

=

∫ ∞
−∞

k(t− s)f1(s) ds+

∫ ∞
−∞

k(t− s)f2(s) ds

= (k ∗ f1) (t) + (k ∗ f2) (t) =: I1(t) + I2(t).

We have that I1 ∈ APω,c(R : E); see [8]. Next, by Lemma 2.1, we have that
I2 ∈ PAP0;ω,c(R : E). Moreover, by definition of f(·), we have (k ∗ f)(·) =
c∧(·) (k∼ ∗ p) (·) so that k ∗ f ∈ PAPω,c(R : E).

Example 2.1. ([12]) Let us consider the heat equation ut(x, t) = uxx(x, t), t > 0,
x ∈ R, with the initial value condition u(x, 0) = f(x). Let u(x, t) be a regular
solution satisfying the initial value condition. It is well known that

u(x, t) =
1

2
√
πt

+∞∫
−∞

e−
(x−s)2

4t f(s) ds, t > 0, x ∈ R.

Fix t0 > 0 and assume that f(·) is an (ω, c)-pseudo almost periodic function. Then,
by Theorem 2.2, the solution u(x, t0) is (ω, c)-pseudo almost periodic with respect
to x.

2.1. Composition principles

In this subsection, we will use two lemmae. The first one is a slight extension of the
well known result of H.-X. Li, F.-L. Huang and J.-Y. Li [10, Theorem 2.1], clarified
recently in [9, Lemma 2.12.2]:

Lemma 3.1. Let f ∈ PAP (R ×X : E) and u ∈ PAP (R : X). Then the mapping
t 7→ f(t, u(t)), t ∈ R belongs to the space PAP (R : E) provided that the following
conditions hold:
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(i) The set {f(t, x) : t ∈ R, x ∈ B} is bounded for every bounded subset B ⊆ X.

(ii) f(t, x) is uniformly continuous in each bounded subset of X uniformly in t ∈ R.
That is, for any ε > 0 and B ⊆ X bounded, there exists δ > 0 such that
x, y ∈ B and ‖x− y‖ ≤ δ imply ‖f(t, x)− f(t, y)‖ ≤ ε for all t ∈ R.

The second lemma is the following slight extension of the composition principle
established by J. Liang et al. in [11, Theorem 2.4]:

Lemma 3.2. (see [9, Theorem 3.2.4]) Suppose that f = g + φ ∈ PAA(R×X : E)
with g ∈ AA(R×X : E), φ ∈ PAP0(R×X : E) and the following holds:

(i) the mapping (t, x) 7→ g(t, x) is uniformly continuous in any bounded subset
B ⊆ X uniformly for t ∈ R;

(ii) the mapping (t, x) 7→ φ(t, x) is uniformly continuous in any bounded subset
B ⊆ X uniformly for t ∈ R.

Then for each u ∈ PAA(R : X) one has f(·, u(·)) ∈ PAA(R : E).

For simplicity, we will not consider Stepanov p-almost periodic functions and
Stepanov p-almost automorphic functions depending on two variables here (see [8,
Section 3] for some composition principles for Stepanov (p, ω, c)-almost periodic
functions).

Suppose now that a continuous function g : R ×X → E satisfies g(t + ω, x) =
cg(t, x) for all t ∈ R and x ∈ X, resp. g(t+ω, cx) = cg(t, x) for all t ∈ R and x ∈ X.
Define the functions

G1(t, x) := c−
t
ω g(t, x), t ∈ R, x ∈ X(2.2)

and
G2(t, x) := c−

t
ω g
(
t, ct/ωx

)
, t ∈ R, x ∈ X.(2.3)

Then, for every t ∈ R and x ∈ X, we have

G1(t+ ω, x) = c−
t+ω
ω g(t+ ω, x) = c−

t+ω
ω cg(t+ ω, x) = c−

t
ω g(t, x) = G1(t, x)

and
G2(t+ ω, x) = c−

t+ω
ω g
(
t+ ω, c

t+ω
ω x

)
= c−

t+ω
ω cg

(
t, ct/ωx

)
= c−t/ωg

(
t, ct/ωx

)
= G2(t, x).

In both cases, the function Gi(·, ·) is ω-periodic in time variable (i = 1, 2). Further-
more, if the requirements of [4, Theorem 2.24] hold (case i = 2), then condition (i) of
Lemma 3.2 holds with the function g(·, ·) replaced therein with the function G2(·, ·),
and condition (ii) of Lemma 3.2 holds with the function φ(·, ·) replaced therein with
the function h2(t, ·) ≡ c−t/ωh(t, ct/ω·), t ∈ R. Furthermore, G2 ∈ AA(R×X : E) and
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h2 ∈ PAP0(R×X : E) so that repeating verbatim the arguments used in the proof
of [11, Theorem 2.4] with appealing to [3, Theorem 2.11] in place of [11, Lemma 2.2]
immediately yields a much simpler proof of [4, Theorem 2.24]. Furthermore, the
statement of [3, Theorem 2.11] can be formulated for continuous functions which
maps the space R×X into E; in other words, we can use two different pivot spaces
X and E. Keeping in mind this observation, we can immediately clarify an extension
of [4, Theorem 2.24] in this context (the interested reader may try to reexamine [4,
Theorem 2.25] for (ω, c)-pseudo almost periodic functions and (ω, c)-pseudo almost
automorphic functions). Furthermore, using Lemma 3.2 we can immediately clarify
the following result:

Proposition 3.1.

(i) Suppose that f = g+φ with g ∈ AAω,c,1(R×X : E), φ ∈ PAP0;ω,c,1(R×X : E)
and the following holds:

(a) the mapping (t, x) 7→ G1(t, x) given by (2.2) is uniformly continuous in
any bounded subset B ⊆ X uniformly for t ∈ R;

(b) the mapping (t, x) 7→ φ1(t, x) given by (2.2), with the function g(·, ·)
replaced therein with the function φ(·, ·), is uniformly continuous in any
bounded subset B ⊆ X uniformly for t ∈ R.

Then for each u ∈ PAA(R : X) one has f(·, u(·)) ∈ PAAω,c(R : E).

(ii) Suppose that f = g+φ with g ∈ AAω,c,2(R×X : E), φ ∈ PAP0;ω,c,2(R×X : E)
and the following holds:

(c) the mapping (t, x) 7→ G2(t, x) given by (2.2) is uniformly continuous in
any bounded subset B ⊆ X uniformly for t ∈ R;

(d) the mapping (t, x) 7→ φ2(t, x) given by (2.2), with the function g(·, ·)
replaced therein with the function φ(·, ·), is uniformly continuous in any
bounded subset B ⊆ X uniformly for t ∈ R.

Then for each u ∈ PAAω,c(R : X) one has f(·, u(·)) ∈ PAAω,c(R : E).

Concerning possible applications of Lemma 3.1, we can immediately clarify the
following result:

Proposition 3.2.

(i) Let f ∈ PAPω,c,1(R × X : E) and u ∈ PAP (R : X). Then the mapping
t 7→ f(t, u(t)), t ∈ R belongs to the space PAPω,c(R : E) provided that the
following conditions hold:

(a) The set {c−t/ωf(t, x) : t ∈ R, x ∈ B} is bounded for every bounded subset
B ⊆ X.
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(b) c−t/ωf(t, x) is uniformly continuous in each bounded subset of X uni-
formly in t ∈ R.

(ii) Let f ∈ PAPω,c,2(R × X : E) and u ∈ PAPω,c(R : X). Then the mapping
t 7→ f(t, u(t)), t ∈ R belongs to the space PAPω,c(R : E) provided that the
following conditions hold:

(a) The set {c−t/ωf(t, ct/ωx) : t ∈ R, x ∈ B} is bounded for every bounded
subset B ⊆ X.

(b) c−t/ωf(t, ct/ωx) is uniformly continuous in each bounded subset of X
uniformly in t ∈ R.

3. An Application to the Abstract Semilinear Cauchy Inclusions in
Banach Spaces

Consider the semilinear fractional Cauchy inclusion

Dγ
t,+u(t) ∈ Au(t) + f(t, u(t)), t ∈ R,(3.1)

where Dγ
t,+ denotes the Riemann-Liouville fractional derivative of order γ ∈ (0, 1],

f : R→ E satisfies certain properties, and A is a closed multivalued linear operator
in E satisfying the condition

(P) There exists finite constants a, M > 0 and β ∈ (0, 1] such that

Ψ :=
{
λ ∈ C : Reλ ≥ −a

(
| Imλ|+ 1

)}
⊆ ρ(A)

and
‖R(λ : A)‖ ≤M

(
1 + |λ|

)−β
, λ ∈ Ψ.

Then there exists a finite constant M0 > 0 such that the degenerate strongly
continuous semigroup (T (t))t>0 ⊆ L(E) generated by A satisfies the estimate
‖T (t)‖ ≤M0e

−attβ−1, t > 0; cf. [9] for more details. By a mild solution of problem
(3.1), we mean any continuous function t 7→ u(t), t ∈ R satisfying

u(t) =

∫ t

−∞
T (t− s)f(s, u(s)) ds, t ∈ R.

We will use the following auxiliary result:

Lemma 4.1. (see the proof of [9, Lemma 2.12.3]) Suppose that f : R → E is
pseudo-almost periodic (pseudo-almost automorphic) and (R(t))t>0 ⊆ L(E,X) is
a strongly continuous operator family satisfying that ‖R(t)‖ ≤ Me−bttβ−1, t > 0
for some finite numbers M ≥ 1, b > 0 and β ∈ (0, 1]. Then the function F (t) :=∫ t
−∞R(t−s)f(s) ds, t ∈ R is well-defined and pseudo-almost periodic (pseudo-almost
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automorphic).

Suppose now that

0 < M0/(a+ (ln |c|/ω)) < 1(3.2)

and define the mapping

Pu : PAPω,c(R : E) → PAPω,c(R : E), resp. Pu : PAAω,c(R : E) → PAAω,c(R : E),

by

(Pu)(t) :=

∫ t

−∞
T (t− s)f(s, u(s)) ds, t ∈ R.

If the mapping f(·, ·) satisfies the requirements of Proposition 3.2(ii), resp. Proposi-
tion 3.1(ii), then we have that the mapping f(·, u(·)) belongs to the class PAPω,c(R :
E), resp. PAAω,c(R : E). Using the decomposition∫ t

−∞
T (t− s)f(s, u(s)) ds =

∫ t

−∞

[
c−

t−s
ω T (t− s)

][
c−

s
ω f(s, u(s))

]
ds, t ∈ R,

the estimate (3.2) yields that the mapping t 7→
∫ t
−∞ T (t − s)f(s, u(s)) ds, t ∈ R

belongs to the class PAPω,c(R : E), resp. PAAω,c(R : E). Hence, the mapping P (·)
is well defined. Using a simple calculation, we get that (see also Proposition 3.1):

‖Pu‖ω,c ≤
M0

a+ (ln |c|/ω)
‖Pu‖ω,c, u ∈ PAPω,c(R : E)

[
u ∈ PAAω,c(R : E)

]
.

Applying the Banach contraction principle, we get that the mapping P (·) has a
unique fixed point, so that there exists a unique solution of the abstract semilinear
Cauchy inclusion (3.1) which belongs to the class PAPω,c(R : E), resp. PAAω,c(R :
E).
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Abstract. In this article, we introduce a new subclass of analytic functions, using the
exponent operators of Rafid and q-derivative. The coefficient estimates, extreme points,
convex linear combination, radii of starlikeness, convexity and finally integral have been
investigated.
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1. Introduction

The theory of univalent functions can be described by using the theory of the q-
calculus. In recent years, such q-calculus as the q-integral and q-derivative have been
used to construct several subclasses of analytic functions [1, 6, 11, 12]. The theory
of q-analysis has motivated the researchers owing to many branches of mathematics
and physics. For example, in the areas of special functions, q-difference, q-integral
equations, optimal control problems, q-difference, q-integral equations, q-transform
analysis and in quantum physics see for instance, [7, 8, 10, 14].

The main subject of the present paper is to introduce and investigate a new
subclass of analytic functions in the open unit disk U by using the operators Rafid
and q-derivative. Let A denote the class of functions f(z) in the form of:

(1.1) f(z) = z +

+∞∑
k=2

akz
k,
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which are analytic in the punctured unit disk

U = {z ∈ C : |z| < 1}.

For f(z) ∈ A, the q- derivative, 0 < q < 1, of f(z) is defined by Gasper and Rahman
[5].

Dqf(z) =


f(qz)− f(z)

(q − 1)z
(z 6= 0)

f
′
(0) (z = 0).

(1.2)

where z ∈ U and 0 < q < 1.
Let T (p) be the class of all p -valent functions of the form

(1.3) f(z) = zp −
+∞∑

n=p+1

anz
n an ≥ 0,

which are analytic in the punctured unit disk

U = {z ∈ C : |z| < 1}.

If f ∈ T (p) is given by Equation (1.3) and g ∈ T (p) is given by

(1.4) g(z) = zp −
+∞∑

n=p+1

bnz
n bn ≥ 0,

then the Hadamard product f ∗ g of f and g is defined by

(1.5) (f ∗ g)(z) = zp −
+∞∑

n=p+1

anbnz
n = (g ∗ f)(z).

From Equation (1.2) for a function f(z) given by Equation(1.3) we get

(1.6) Dqf(z) = [p]qz
p−1 −

∞∑
n=p+1

[n]qanz
p−1 , z ∈ U,

where

[p]q :=
1− qp

1− q
= 1 + q + q2 + · · ·+ qp−1,

and

[n]q :=
1− qn

1− q
= 1 + q + q2 + · · ·+ qn−1.

Also [p]q → p and [n]q → n as q → 1. So we conclude that

lim
q→1

Dqf(z) = f
′
(z) , z ∈ U,
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see also [13].

Waggas and Rafid defined the Rafid -operator of a function f(z) = z−
∑+∞
n=2 anz

n

by

(1.7) Rθµ(f(z)) = z −
+∞∑
n=2

(1− µ)n−1Γ(θ, n)

Γ(θ + 1)
anz

n.

See for instance, [2, 3, 4]).
By using Rafid and q-derivative operators, we define the RθµDq(f(z)) for a function
f ∈ T (p) as follows:

Definition 1.1. The Rafid -operator of f ∈ T (p) , is denoted by RθµDq and defined
as following:

RθµDq(f(z)) =
z

[p]q(1− µ)p+θ+1Γ(p+ θ + 1)

∫ +∞

0

tθ−1e
−(

t

1− µ
)

Dq(f(zt))dt

(1.8)

Then it is easy to deduce the series representation of the function Rθµ(f(z)) as
following:

RθµDq(f(z)) = zp −
+∞∑

n=p+1

[n]q(1− µ)n−pΓ(n+ θ + 1)

[p]qΓ(p+ θ + 1)
anz

n

= zp −
+∞∑

n=p+1

M(n, p, q, µ, θ)anz
n(1.9)

where

(1.10) M(n, p, q, µ, θ) =
[n]q(1− µ)n−pΓ(n+ θ + 1)

[p]qΓ(p+ θ + 1)
.

We now define a new subclass Tp,qR(λ, α, β, µ, θ) of analytic functions of T (p)
by using the operators Rafid and q-derivative. Let f(z) ∈ T (p) is said to be in the
class Tp,qR(λ, α, β, µ, θ) if and only if it satisfies the inequality:∣∣∣∣∣ λz2(Rθµ(Dq(f ∗ g)(z)))

′′
+ z(Rθµ(Dq(f ∗ g)(z)))

′

z(Rθµ(Dq(f ∗ g)(z)))′ + (1− λ)(Rθµ(Dq(f ∗ g)(z)))
− (1− β)

∣∣∣∣∣ ≤ α.(1.11)

Here, 0 < q < 1, 0 ≤ λ < 1, 0 ≤ α ≤ 1, 0 ≤ µ < 1, 0 ≤ θ ≤ 1 and β < 1.

2. Main Results

Unless otherwise mentioned, we suppose throughout this paper that 0 < q < 1, 0 ≤
λ < 1, 0 ≤ α ≤ 1, 0 ≤ µ < 1, 0 ≤ θ ≤ 1 and β < 1. First we state coefficient
estimates on the class Tp,qR(λ, α, β, µ, θ).
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Theorem 2.1. Let f(z) ∈ T (p) , then f(z) ∈ Tp,qR(λ, α, β, µ, θ) if and only if

(2.1)

+∞∑
n=p+1

[
(n(n−1)−(α+β)+1)λ+(n+1)(α+β)−1

]
M(n, p, q, µ, θ)anbn ≤ 1−2λ.

Proof. Suppose f(z) difined by Equation(1.3) and f(z) ∈ Tp,qR(λ, α, β, µ, θ), then
Equation (1.11) holds true, we have

∣∣∣ [(2− β)λ+ 2β − 1]zp

(2− λ)zp − (n− λ+ 1)
∑+∞
n=p+1M(n, p, q, µ, θ)anbnzn

−
[n(1− n) + β − 1]λ+ 1− (1 + n)β]

∑+∞
n=p+1 n(n− 1)M(n, p, q, µ, θ)anbnz

n

(2− λ)zp − (n− λ+ 1)
∑+∞
n=p+1M(n, p, q, µ, θ)anbnzn

∣∣∣ < α.

Since Re(z) ≤ |z| for all z,

Re
{ [(2− β)λ+ 2β − 1]zp

(2− λ)zp − (n− λ+ 1)
∑+∞
n=p+1M(n, p, q, µ, θ)anbnzn

−
[n(1− n) + β − 1]λ+ 1− (1 + n)β]

∑+∞
n=p+1 n(n− 1)M(n, p, q, µ, θ)anbnz

n

(2− λ)zp − (n− λ+ 1)
∑+∞
n=p+1M(n, p, q, µ, θ)anbnzn

}
< α.

By letting z → 1 through real values, we have

+∞∑
n=p+1

[
(n(n− 1)− (α+ β) + 1)λ+ (n+ 1)(α+ β)− 1

]
M(n, p, q, µ, θ)anbn ≤ 1− 2λ.

Conversely, let Equation (2.1) holds true, it is enough to show that

X(f) =
∣∣∣λz2(Rθµ(Dq(f ∗ g)(z)))

′′
+ z(Rθµ(Dq(f ∗ g)(z)))

′

−(1− β)[z(Rθµ(Dq(f ∗ g)(z)))
′
+ (1− λ)(Rθµ(Dq(f ∗ g)(z)))]

∣∣∣
−α
∣∣∣z(Rθµ(Dq(f ∗ g)(z)))

′
+ (1− λ)(Rθµ(Dq(f ∗ g)(z)))

∣∣∣ ≤ 0

But for 0 < |z| = r < 1 we have

X(f)=
∣∣∣[(2− βλ[zp −

∑+∞
n=p+1 n(n− 1)M(n, p, q, µ, θ)anbnz

n]

+zp −
∑+∞
n=p+1 nM(n, p, q, µ, θ)anbnz

n

−(1− β)([zp −
∑+∞
n=p+1 nM(n, p, q, µ, θ)anbnz

n]

+(1− λ)[zp −
∑+∞
n=p+1 nM(n, p, q, µ, θ)anbnz

n])
∣∣∣

−α([zp −
∑+∞
n=p+1 nM(n, p, q, µ, θ)anbnz

n]

+(1− λ)[zp −
∑+∞
n=p+1 nM(n, p, q, µ, θ)anbnz

n])
∣∣∣

≤
∑+∞
n=p+1

[
(n(n− 1)− (α+ β) + 1)λ+ (n+ 1)(α+ β)− 1

]
M(n, p, q, µ, θ)|an||bn|rn

−(1− 2λ).
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Since the above inequality holds for all r (0 < r < 1), by letting r → 1 and using
Equation(2.1) we obtain X(f) ≤ 0. This completes the proof.

Corollary 2.1. If function f(z) of the form Equation (1.3) belongs to Tp,qR(λ, α, β, µ, θ)
then

an ≤
1− 2λ[

(n(n− 1)− (α+ β) + 1)λ+ (n+ 1)(α+ β)− 1
]
M(n, p, q, µ, θ)bn

where

M(n, p, q, µ, θ) =
[n]q(1− µ)n−pΓ(n+ θ + 1)

[p]qΓ(p+ θ + 1)
, n ≥ p+ 1.

With the equality for the function

f(z) = zp − 1− 2λ[
(n(n− 1)− (α+ β) + 1)λ+ (n+ 1)(α+ β)− 1

]
M(n, p, q, µ, θ)bn

zp

Next we obtain extreme points and convex linear combination property for f(z)
belongs to Tp,qR(λ, α, β, µ, θ).

Theorem 2.2. The function f(z) of the form Equation (1.3) belongs to Tp,qR(λ, α, β, µ, θ)
if and only if it can be expressed by

f(z) = σ1f1(z) +

∞∑
n=p+1

σnfn(z) , σn ≥ 1 , σ1 +

∞∑
n=p+1

σn = 1

where

f1(z) = zp,

fn(z) =
1− 2λ[

(n(n− 1)− (α+ β) + 1)λ+ (n+ 1)(α+ β)− 1
]
M(n, p, q, µ, θ)bn

zk,

(n ≥ p+ 1).

Proof. Let

f(z) = σ1f1(z) +
∑∞
n=p+1 σnfn(z)

= σ1f1(z)+
∑∞
n=p+1 σn

[
zn− 1−2λ[

(n(n−1)−(α+β)+1)λ+(n+1)(α+β)−1
]
M(n,p,q,µ,θ)bn

]
zn

= zp −
∑∞
n=p+1

1−2λ[
(n(n−1)−(α+β)+1)λ+(n+1)(α+β)−1

]
M(n,p,q,µ,θ)bn

σnz
n.
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Now apply Theorem 2.1 to conclude that f(z) ∈ Tp,qR(λ, α, β, µ, θ). Conversely,
if f(z) given by Equation (1.3) belongs to Tp,qR(λ, α, β, µ, θ), by letting

σ1 = 1−
+∞∑

n=p+1

σn,

where

σk =

[
(n(n− 1)− (α+ β) + 1)λ+ (n+ 1)(α+ β)− 1

]
M(n, p, q, µ, θ)bn

1− 2λ
an

(n ≥ p+ 1).

we conclude the required result.

Theorem 2.3. Let for t = 1, 2, · · · , k, ft(z) = zp −
∑+∞
n=p+1 an,tz

n belongs to

Tp,qR(λ, α, β, µ, θ), then F (z) =
∑k
t=1 σtft(z) is also in the same class, where∑k

t=1 σt = 1. Hence Tp,qR(λ, α, β, µ, θ) is a convex set.

Proof. According to Theorem 2.1 for every t = 1, 2, · · · , k we have

+∞∑
n=p+1

[
(n(n−1)− (α+β) + 1)λ+ (n+ 1)(α+β)−1

]
M(n, p, q, µ, θ)an,tbn ≤ 1−2λ.

But

F (z) =

k∑
t=1

σtft(z)

=

k∑
t=1

σt

(
zp −

∞∑
n=p+1

a
n,t
zn

)

= zp
k∑
t=1

σt −
∞∑

n=p+1

(
k∑
t=1

σtan,t

)
zn

= zp −
∞∑

n=p+1

( k∑
t=1

σtan,t

)
zn.
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Since

+∞∑
n=p+1

[
(n(n− 1)− (α+ β) + 1)λ+ (n+ 1)(α+ β)− 1

]
×M(n, p, q, µ, θ)an,tbn

( m∑
n=1

σnak,n

)
=

m∑
n=1

σn

( +∞∑
n=p+1

[
(n(n− 1)− (α+ β) + 1)λ+ (n+ 1)(α+ β)− 1

]
×M(n, p, q, µ, θ)an,tbn

≤
k∑
t=1

σt
(
1− 2λ

)
= (1− 2λ)

k∑
t=1

σt = 1− 2λ,

by Theorem 2.1 the proof is complete.

3. Radii of close−to−convexity, starlikeness and convexity

In this section we obtain radii of close−to−convexity, starlikeness , convexity and
investigate about partial sum property.

In the proof of next theorem, we need the Alexander’s Theorem. This theorem
states that if f is an analytic function in the unit disk and normalized by f(0) =
f
′
(0)− 1 = 0, then f(z) is convex if and only if zf

′
(z) is starlike.

Theorem 3.1. Let f(z) of the form Equation (1.3) belongs to Tp,qR(λ, α, β, µ, θ)
then

(i) f(z) is p−valently close−to−convex of order γ in |z| < R1, where 0 ≤ γ < p
and

R1 = inf
n

{ (p− γ)
[
(n(n− 1)− (α+ β) + 1)λ+ (n+ 1)(α+ β)− 1

]
M(n, p, q, µ, θ)anbn

n(1− 2λ)

} 1
n−p

,

(ii) f(z) is p−valently starlike of order γ in |z| < R2, where 0 ≤ γ < p and

R2 = inf
n

{ (p− γ)
[
(n(n− 1)− (α+ β) + 1)λ+ (n+ 1)(α+ β)− 1

]
M(n, p, q, µ, θ)anbn

(n− γ)(1− 2λ)

} 1
n−p

,

(iii) f(z) is p−valently convex of order γ in |z| < R3, where 0 ≤ γ < p and

R3 = inf
n

{p(p− γ)[(n(n− 1)− (α+ β) + 1)λ+ (n+ 1)(α+ β)− 1
]
M(n, p, q, µ, θ)anbn

n(n− γ)(1− 2λ)

} 1
n−p

.

Proof. (i) For close−to−convexity it is enough to show that∣∣ zf ′
zp−1 − p

∣∣ < p− γ,
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but ∣∣∣ zf ′zp−1 − p
∣∣∣ =

∣∣∣∣pzp−1−
∑+∞

n=p+1 nan|z|
n−pzp−1

zp−1

∣∣∣∣ ≤∑+∞
n=p+1 nan|z|n−p ≤ p− γ,

or
∑+∞
n=p+1

n
p−γ an|z|

n−p ≤ 1. By using Equation (2.1) we obtain

+∞∑
n=p+1

n

p− γ
an|z|n−p

≤
+∞∑
k=1

n(1− 2λ)|z|n−p

(p− γ)
[
(n(n− 1)− (α+ β) + 1)λ+ (n+ 1)(α+ β)− 1

]
× 1

M(n, p, q, µ, θ)anbn
≤ 1.

So, it is enough to suppose

|z|n−p

≤
(p− γ)

[
(n(n− 1)− (α+ β) + 1)λ+ (n+ 1)(α+ β)− 1

]
M(n, p, q, µ, θ)anbn

n(1− 2λ)
,

which completes the case (i).

(ii) For starlikeness it is enough to show that
∣∣ zf ′
f − p

∣∣ < p− γ.
But∣∣∣∣∣zf

′

f
− p

∣∣∣∣∣ =

∣∣∣∣∣
∑+∞
n=p+1(n− p)anzn

zp −
∑+∞
n=p+1 anz

n

∣∣∣∣∣ ≤
∑+∞
n=p+1(n− p)an|z|n−p

1−
∑+∞
n=p+1 an|z|n−p

≤ p− γ.

Therefore,

+∞∑
n=p+1

(n− p)an|z|n−p ≤ (p− γ)(1−
+∞∑

n=p+1

an|z|n−p),

or
+∞∑

n=p+1

n− γ
p− γ

an|z|n−p ≤ 1.

Now by Equation (2.1), we obtain

+∞∑
n=p+1

n− γ
p− γ

an|z|n−p

≤
+∞∑

n=p+1

(n− γ)(1− 2λ)|z|n−p

(p− γ)
[
(n(n− 1)− (α+ β) + 1)λ+ (n+ 1)(α+ β)− 1

]
× 1

M(n, p, q, µ, θ)anbn
≤ 1.
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So, it is enough to suppose

|z|n−p

≤
(p− γ)

[
(n(n− 1)− (α+ β) + 1)λ+ (n+ 1)(α+ β)− 1

]
M(n, p, q, µ, θ)anbn

(n− γ)(1− 2λ)
.

Hence we get the required result.

(iii) For convexity, by Alexander’s Theorem and by applying an easy calculation,
we reach the required result. Hence the result.

Theorem 3.2. The class Tp,qR(λ, α, β, µ, θ) is a convex set.

Proof. Let f(z) = zp −
∑+∞
n=p+1 anz

n and g(z) = zp −
∑+∞
n=p+1 bnz

n, be in the

class Tp,qR(λ, α, β, µ, θ). For t ∈ (0, 1), it is enough to show that the function
h(z) = (1 − t)f(z) + tg(z) is in the class Tp,qR(λ, α, β, µ, θ). Since h(z) = zp −∑+∞
n=p+1((1− t)an + tbn)zn,

+∞∑
n=p+1

[
(n(n− 1)− (α+β)+1)λ+(n+1)(α+β)− 1

]
M(n, p, q, µ, θ)((1− t)an + tbn)bn ≤ (1− 2λ)

and so h(z) ∈ Tp,qR(λ, α, β, µ, θ).

Corollary 3.1. Let fk(z), 1 ≤ k ≤ m, defined by fk(z) = zp −
∑+∞
n=p+1 an,kz

n be

in the class Tp,qR(λ, α, β, µ, θ), then the function F (z) =
∑m
k=1 ckfk(z) is also in

Tp,qR(λ, α, β, µ, θ), where
∑m
k=1 ck = 1.

4. Integral operators on Tp,qR(λ, α, β, µ, θ)

In this section we investigate properties of functions in the class Tp,qR(λ, α, β, µ, θ),
involving the familiar operator Fc(z) .

Theorem 4.1. If f(z) = zp−
∑+∞
n=p+1 anz

n belongs to Tp,qR(λ, α, β, µ, θ), then the

function Fc(z) defined by Fc(z) = c+p
zc

∫ 1

0
tcf(tz)dt, c ≥ 1, is also in Tp,qR(λ, α, β, µ, θ).
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Proof. Since f(z) belong to Tp,qR(λ, α, β, µ, θ),

Fc(z) =
p+ c

zc

∫ z

0

tc−1[zp −
+∞∑

n=p+1

ant
n]dt , c > 1,

=
p+ c

zc

∫ z

0

[tp+c−1 −
+∞∑

n=p+1

ant
n+c−1]dt

=
p+ c

zc
[

1

p+ c
tp+c −

+∞∑
n=p+1

an
1

n+ c
tn+c]z0

=
p+ c

zc
[

1

p+ c
zp+c −

+∞∑
n=p+1

an
1

n+ c
zn+c]

= zp −
+∞∑

n=p+1

p+ c

n+ c
anz

n

Since p+c
n+c < 1,

+∞∑
n=p+1

p+ c

n+ c

[
(n(n− 1)− (α+ β) + 1)λ+ (n+ 1)(α+ β)− 1

]
M(n, p, q, µ, θ)anbn

≤
+∞∑

n=p+1

[
(n(n− 1)− (α+ β) + 1)λ+ (n+ 1)(α+ β)− 1

]
M(n, p, q, µ, θ)anbn

≤ (1− 2λ).

Hence the result.

Corollary 4.1. If f(z) ∈ Tp,qR(λ, α, β, µ, θ) and Fc(z) is defined as Fc(z) =

c
∫ 1

0
vcf(vz) dv, c ≥ 1. Then Fc(z) ∈ Tp,qR(λ, α, β, µ, θ).
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Abstract. This paper investigates the phenomenon of the incomplete data samples by
analyzing their structure and also resolves the necessary procedures regularly used in
missing data analysis. The research gives a crucial perceptive of the techniques and
mechanisms needed in dealing with missing data issues in general. The motivation
for writing this brief overview of the topic lies in the fact that statistical researchers
inevitably meet missing data in their analysis. The authors examine the applicability of
regular approaches for handling the missing data situations. Based on several previously
published results, the authors provide an example of the incomplete data sample model
that can be implemented when confronting with specific missing data patterns.

Keywords: Missing data, EM algorithm, Listwise deletion, Missing data analysis.

1. Introduction

One important issue which affects almost all datasets, despite major advances
in the design and collection of data is the incompleteness. This situation appears
when no data value is stored for some feature or an attribute in the dataset. The
incompleteness may occur for different reasons. For instance, missing data in a
survey may arise when there are no data for a respondent or when some variables
for a respondent are unknown because of refusal to provide or failure to collect the
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response. Also, missing data may occur if the data collection was not done prop-
erly or if the mistakes were made with the data entry caused by the researchers
themselves. Nevertheless, the problem of an adequate conduction of missing data
remains, regardless of whether missing data result from a participant disintegration,
a nonresponse item, or an irregular availability of respondents. See [10] or [20] for
a summarization of these questions. In addition, we must point out a significant
difference between ”the item nonresponse” and ”the unit nonresponse”. The item
nonresponse situation indicates that the respondent skipped one or more questions
in the analysis. On the other hand, the unit nonresponse appears when the respon-
dent refused to cooperate and consequently, all the resulting data are missing for
this respondent. Trough the existing literature we conclude that the methods used
for the item nonresponse and the unit nonresponse have been completely different.

In the last few years many articles devoted to the problem where practical miss-
ing data issues are discussed have appeared in various domains such as: economy,
politics, biomedical research, social sciences, medicine and engineering. Giannone
et al.(see [8]) developed a formal method for evaluating gross domestic product
(GDP) growth using the large datasets with missing observations monitored by
central banks. Schumacher and Breitung (see [34]) used a novel real-time dataset
with missing values for the German economy in the empirical application of fore-
casting the GDP growth. For more practical applications with incomplete samples
in various domains see for instance: [16] and [22] in economy and finance, [9], [3],
[17] and [26] in biomedical field, [5] in social sciences and [29] in astrophysics.

The prosperity of the missing data procedures available to scientists often pro-
duces uncertainty regarding to the choice of the eventual implemented method. Our
purpose is to discuss the applicability of general methods for dealing with missing
data and to review current advances associated with specific missing data tech-
niques. An additional intention of this paper is to propose a mathematical model
(Chapter 4) that can be used in certain missing data situations under specified
conditions.

2. An overview of the missing data classification

The task of classification of the data incompleteness type is a complex phenom-
ena and its attaintment depends upon several factors that need to be taken under
consideration. In the results obtained in [27] each data has certain likelihood of
being missing. Based on that assumption he classified the incomplete sample prob-
lems into three categories. The data are said to be missing completely at random
(MCAR) if the probability of being missing is the same for all cases. This prac-
tically means that the reasons of the data missingness are unrelated to the data,
meaning that the missingness has nothing to do with the person being questioned.
For example, a questionnaire might be lost in the post, or a blood sample might
be ruined in the laboratory for an unknown reason, so that certain portion of the
data will be missing simply because of some bad coincidences. An example which
describes clearly this type of the data is when we take a random sample of a popula-
tion. In this situation, each member of the population has an equal chance of being
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included in the sample. So, the unobserved data of members in the population that
were not included in the sample are MCAR. Basically, we may conclude that the
points that are missing in the MCAR case present a random subset of the data.
There is no systematic mechanism that makes some data more likely to be missing
than others. Although in the MCAR pattern we may consequently neglect many of
the difficulties that come about the data are missing, we must have in mind that
the MCAR model is a bit rare in the real life statistical researches. If we denote a
full matrix of the data in the analysis with X, it is obvious that it can be written
in the form X = {X, X̃}, where X are the observed and X̃ the missing data. Let
us define R as a matrix with the identical dimensions as X where:

Ri,j =

{
1, if the data is missing

0, otherwise.

Now, mathematical simplification of MCAR data type can be formulated as:

P (R
∣∣X, X̃) = P (R),

meaning that the probability of the realization of R matrix will not depend neither
on the observed nor on the unobserved data.

The second structure of the incompleteness is missing at random (MAR) and
it covers much wider class of the statistical survey settlements. In this case, the
probability of being missing is the same only within groups defined by the observed
data. As an example of this situation is the case of a survey where only younger
people have missing values measuring IQ. This fact indicates that the probability
of missing data referring to IQ is clearly related to age. Another example might be
the missing answers considering the body weight only in the women’s respondents,
so that we may consequently conclude that in this case missingness is related to
sex. Such data obviously are not MCAR. But, if however, we know the sex of the
respondents and if we can assume MCAR within the particular gender, then the data
are MAR. Another example of MAR is when we take a sample from a population,
where the probability of the data being inserted depends on some known property.
Basically, missing data are missing at random (MAR) when the likelihood of missing
data on a variable depends on some other measured variable in the model, but not
to the value of the variable with missing values itself. Nevertheless, the assumption
that the pattern is MAR is in practice very difficult to prove, so it is crucial to
implement the correlates of missingness into the chosen missing data procedure in
order to reduce bias and enhance the chances of satisfying the MAR assumption.
Definitely, MAR is more general situation and therefore more realistic than MCAR.
The largest number of the modern incomplete data tools generally start from the
MAR hypothesis. Mathematically reduced, this data type can be express as follows:

P (R
∣∣X, X̃) = P (R

∣∣X),

meaning that the realization of the R matrix will depend on the observed data only.
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The third concept is called missing not at random (MNAR), although in the lit-
erature we can often notice the term NMAR (not missing at random) for the same
model. MNAR indicates that the data likelihood of being missing differs for some
unknown reasons. The fact is that in this particular case the missing values on a
variable are dependent on the values of that variable itself, even after controlling all
other variables. MNAR is the most complicated case for the researches. Approaches
to overcome the MNAR situation are to reveal more detailes about the causes of
the missingness or to carry out what-if analyses in order to evaluate the measure
of subtleness of the results. The example which illustrates this type of the data is
when the answers refer to IQ are missing only at the respondents with low IQ. An-
other illustration of this structure is that when the survey participants with serious
depression are more likely to refuse to fulfill the answers referring to the depression
severity. More, in public opinion research the MNAR appears when persons having
infirm opinions answer less frequently. The difficulty with the MNAR structure is
that it is unfeasible to prove that outcomes are MNAR without recognize the values
that are missing. So, the trouble lies in the fact that the data incompleteness is
totally related to the unobserved data, meaning to the incidences or components
that are not evaluated and registered by the researcher.

The differences between these structures that are firmly described in [27] are cru-
cial for realize why some techniques will offer better results against the others. His
basic hypothesis lays in the fact that the researcher needs to provide the conditions
under which a missing data method can produce valid statistical interpretations.
Basic methods settle only the restrictive and sometimes implausible MCAR premise.
Therefore, in this case we must have in mind that there is a substantial probability
of obtaining biased estimates. Mostly, missing data are neither MCAR nor MNAR.
Instead, the probability that an observation is missing commonly depends on infor-
mation for that subject that is present, meaning that the reason for missingness is
based on other observed respondent characteristics. This situation defines obviously
the MAR model. For the additional description and comparison of the three basic
patterns of the missing data see [33].

In order to illustrate an example taken from the real data, we used the result
[18] given by Lai, who created the regression line and predict the voting intention
by using peoples’ age. Please see Figure 2.1 of scatter plots for the comparison of
different types of the missing data. The model that we define in the Chapter 4 can
be implemented on the MCAR type of the data.
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Fig. 2.1: Scatter plots of different types of missing data

3. The analysis of the incomplete sample regulation techniques

The crucial strategy in dealing with the missing data problem is to apply the
data analysis techniques which are robust to the deviations caused by the incom-
pleteness of the data set. This robustness of the technique practically means that
there exists reliance that some smooth and tolerable violations of the premises and
starting hypothesis will result in almost no bias or misinterpretation in the resulting
outcomes based on the population under analysis. On the other hand, it needs to be
pointed out that it is not achievable to use such methods in every situation. That
is why a large number of different handling procedures for the missing data issues
has been established.

According to [10], the methods for dealing with missing values can be evaluated
by three means: it should yield to an unbiased parameter estimate, one should be
able to obtain reasonable estimates of the standard error of confidence intervals
and it should have good statistical power. Traditional missing data methods such
as complete case analysis often produce bias and inaccurate conclusions. Similar
problems extend to single imputation techniques commonly thought of as improve-
ments over complete case methods. Research demonstrates that procedures such as
multiple imputation, which incorporate uncertainty into estimates for missing data,
often provide significant improvements over traditional methods.

Generally, the most commonly used procedures can be divided into three main
groups which are explained thoroughly in next paragraphs: Deletion methods, Sin-
gle Imputation Methods and Multiple Imputation methods.

3.1. Deletion methods

Listwise deletion stands for the basic method in overcoming the possible com-
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plications caused by the incompleteness of the data set. This procedure is also
called the Complete-case analysis. The conducting mechanism simply ignores all
the cases which obtain one or more missing values recognizing the variables that are
under examination and it is an inevitable part of many statistical softwares such as
STATA, SPS, SAS etc.

The advantage of the listwise deletion method is its reliability, accuracy and its
availability. Under hypothesis of MCAR data type, the listwise deletion produces
the standard errors and significance levels absolutely acceptable referring to the
reduced subset of data. But, we must note that these values are often higher when
implement this technique using all possible data.

In real life situations various challenges occur. For instance, when the number of
variables is huge and when more than a half of the original sample is obscured and
vanished. More, dealing with structures that are not MCAR, the listwise deletion
can severely bias the evalution of means, regression coefficients and correlations. It
is showed in the study of Little and Rubin (see [20]) that the bias of the estimated
mean grows together with the disparity among means of the observed and missing
variables. Also, the bias grows with the higher percentage of the data that are miss-
ing. Interesting investigation on the subject was performed by Schafer and Graham
(see [33]), where the bias of the complete-case analysis under MAR and MNAR
premises was analyzed. It is important to imply that there are settlements in which
listwise deletion can give better estimates than even the most refined and smooth
statistical mechanisms. Miettinen (see [21]) indicates that this method states for
the only access that guaranties that no bias is possible under any conditions. If we
go further trough literature, Enders (see [7]) claims that in most settlements, the
discommodities of listwise deletion far exceed its conveniences. Schafer and Graham
(see [33]) show that only if the incompleteness problem can be solved by eliminating
only a small part of the sample, then the technique may be solidly efficient. Vach
(see [35]) claims that ”there exists something like a critical missing rate up to which
missing values are not too dangerous”.

Another method, known as the Pairwise deletion (often called the available-case
analysis) tries to improve the waist data problem of listwise deletion. In listwise
deletion a case is ignored from a survey for the reason that it consists of one or more
missing values within the variables under analysis. Pairwise deletion appears in the
situations when statistical method accepts cases that involve some missing data.
The technique cannot include the specific variable with a missing value into analysis,
but it can still exploits the incomplete case when investigating other variables with
complete values. The advantage of this procedure is that it increments a power of
the survey. On the other hand, it has certain deficiencies. It presumes that the
incomplete sample is MCAR.

The illustration for understanding the mechanism of the method of pairwise
deletion is to take a dataset having following variables: age, gender, education,
income, and political affiliation. For each case in the dataset, the values of some of
the variables are more likely to be missing than others depending on the surveyee’s
sensitiveness to the survey questions. Let’s say we are interested in knowing if
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there is a correlation between age and political affiliation. Using pairwise deletion,
any given case may contribute to certain analysis but not to others, depending on
whether the needed data are available. Hence for our analysis in this example, all
cases with available data on age and political affiliation will be included regardless
of the missing values for other variables like gender, income or education. The
pairwise deletion is an alternative to the listwise deletion to mitigate the loss of
data.

3.2. Imputation methods

Other routine way that is frequently practiced among the statisticians is impu-
tation. This method basically replaces the missing values with certain estimated
values and then it analysis the complete data set such that it treats the imputed es-
timates as the original observed values. The procedures for the best choice of these
estimates differ and in this paragraph we describe the most exploited imputations
that are used in surveys. The imputation procedures are divided in two groups:
single imputation methods and multiple imputation methods.

3.2.1. Single imputation

In single imputation, missing values are replaced by a value defined by a cer-
tain rule. For example, Mean imputation is a smooth and simple method which
evaluates the mean of the observed values for the particular variable in all cases
that are not missing. Conceivably, the preference of this technique is that it retains
the same sample size and the same mean. On the other hand, mean substitution
reduces the variation of analyzed scores and this reduction in separate variables
is proportional to the number of missing data. Further, mean substitution may
significantly transform the values of correlations. The regression imputation is a
procedure which utilizes the values of other variables in order to forecast the missing
values in a variable. That is achieved by applying a regression model. Usually the
regression model is structured by using the observed data and eventually related to
the regression weights the missing values are projected and restored.

Next example of the single imputation is the Hot-deck imputation, the technique
which inserts a missing value from a randomly selected similar data set. The part of
the expression ”deck” suggests that the contributed values arrive from the identical
set as the initial data-set. The term ”hot” in the above phrase is for the reason of
data being instantly employed.

On the contrary to the last method, the cold-deck imputation chooses contrib-
utors data belonging to a different data-set. It is a term for a technique that fills a
missing values with values from some outward origin, such as some previous similar
survey. According to the above explanation, the reason for the expression ”cold-
deck” is evident.

3.2.2. Multiple imputation

Multiple imputation methods use the distribution of the observed data in order
to estimate multiple values that catch the oscillations around the true value. The
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idea of multiple imputation (MI) was first introduced by Rubin (see [28]), in which
each missing value is replaced with m > 1 simulated values prior to analysis. In
multiple imputation, there are three operational steps: imputation or fill-in phase,
the analysis phase and pooling phase. First phase constitute the complete data set
by filling in the missing values with the estimated values (using some of the conve-
nient statistical methods). This process of fill-in repeats several times. The analysis
phase, studies each of the obtained complete data sets by using a suitable statistical
method. Finally, in the third step the parameter estimates resulted from each of the
considered data set are then connected and analyzed so that the best conclusions
can are accomplished. Final phase aggregates all the results and reveals the best
summary estimate of the missing data. Clearly, it is obvious that the method of
multiple imputation is more unbiased that the single imputation method, because
of the use of multiple sets. That way we kind of ”washing” out the coincidences
that might occur. The disadvantage of this approach is the greater expanse of time
and effort comparing to single imputation.

The most familiar and widely exploited model-based method is the EM algo-
rithm described thoroughly by Dempster et al (see [4]). Also, high influential articles
given by Rubin (see [27]) and Little and Rubin (see [19]), gave the formulation of
EM algorithm and the dominated framework for dealing with missing data. Many
examples of EM algorithm were provided by Little and Rubin (see [20]) and Schafer
(see [30]).This iterative technique involves the expectation (E-part) and the max-
imization (M-part). It replaces missing data with estimated values, evaluates the
parameters, repeatedly estimates the missing values, re-estimates the parameters
and iterates until convergence (see [20]). Over the repetitions until convergence, we
conclusively obtain the missing values.

To simplify this approach, let us assume that the complete data-set consists
of X = {X, X̃} but that only X is observed. The complete-data log likelihood

function is then denoted by l(θ;X, X̃) where θ is the unknown parameter vector for
which we need to find the MLE (which is based on EM algorithm). Further, let

t = 1, 2, ... represents all parameters of distribution and fθt(X) and fθt(X̃) are the
assumed probability distributions at t-th iteration. First, the E-part is activated
and evaluates the expected value of l(θ;X, X̃) given the observed data X and the
current iteration parameter estimate θ.

Principally, we define

(3.1) Q(θ; θt) := E[l(θ;X, X̃)|X, θt] =

∫
l(θ;X, X̃)p(x̃|X, θt)dx,

where p(·|X, θt) is the conditional density of X̃ given the observed data X and
assuming θ = θt.

Next, the M-part of the analysis starts and it maximizes the expectation (3.1)
over θ. That is we put:

θt := max
{θ}

Q(θ; θt).
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We then set θt = θt. The two steps are iterated until the sequence of θt converges.

Recent work implies that multiple imputation and specialized modeling pro-
cedures offer universal methods for handling the missing data. It is proven that
they perform fine over many types of missing data structures. There are different
EM algorithms for different applications. Although this method provides excellent
parameter estimates, EM is not particularly good for hypothesis testing.

Nevertheless, the development of informational technology and the advances
in relevant statistical software make these methods available to the researchers
in various fields. For example, multiple imputation procedures under the normal
model are implemented in Schafer’s NORM program [30]. Detailed, step-by-step
instructions for running NORM are available in [12] (also see [11], [31], [32]). ML
methods, often called FIML (full information maximum likelihood) methods deal
with the missing data, do parameter estimation, and estimate standard errors all in a
single step. Available software for running this procedure are AMOS: [1], LISREL:
[15]; also see Mplus: [24]; and Mx: [25]. Basically, in 1987. Little and Rubin
published their classical book Statistical Analysis With Missing Data (see [19]),
and they established the groundwork for missing data software to be developed
over the next 20 years and beyond. See also [13] for recent review of software
handling missing data.

4. Mathematical model generated for the MCAR type of data

Let X1, X2, ... be independent identically distributed random variables and let us
assume that only observations at certain points are available. Denote the observed
random variables among {X1, . . . , Xn} by X̃1, ..., X̃Mn

. Here the random variable
Mn represents the number of the registrated random variables among the first n
terms of the sequence (Xn). Incomplete sample may be obtained, for example, if
every term of (Xn) is observed with probability p, independently of other terms,
and in this case Mn is binomial random variable. This refers to MCAR type of
missing data distribution. Now, let:

E (Xj) = m, D (Xj) = σ2 and S(n) =

Mn∑
j=1

X̃j .

We obtain the following results straightforward:

E (S(n)) =

∞∑
k=0

E
(
S(n)

∣∣Mn = k
)
· P{Mn = k}

=

∞∑
k=0

E

Mn∑
j=1

X̃j

∣∣Mn = k

 · P{Mn = k}

=

∞∑
k=0

E

 k∑
j=1

X̃j

 · P{Mn = k} =

∞∑
k=0

k ·m · P{Mn = k}.
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Conclusively we have:

(4.1) E (S(n)) = m · E (Mn) = E(X1) · E (Mn) .

Further we have that:

D (S(n)) = E (S(n))
2 − (E(S(n))

2
= E (S(n))

2 −m2 (E (Mn))
2

= E

Mn∑
j=1

X̃j

2

−m2 (E (Mn))
2

=

∞∑
k=0

E

{Mn∑
j=1

X̃j

2 ∣∣Mn = k

}
· P{Mn = k} −m2 (E (Mn))

2

=

∞∑
k=0

E

 k∑
j=1

X̃j

2

· P{Mn = k} −m2 (E (Mn))
2

=

∞∑
k=0

{
D

 k∑
j=1

X̃j

+

 k∑
j=1

E(X̃j)

2}
· P{Mn = k} −m2 (E (Mn))

2

=

∞∑
k=0

(kσ2 + k2m2) · P{Mn = k} −m2 (E (Mn))
2

= σ2E(Mn) +m2E(Mn)2 −m2 (E (Mn))
2

= σ2E(Mn) +m2D(Mn).

Since we assumed that X1, X2, ... are identically distributed, the last equality we
can write as:

(4.2) D (S(n)) = D(X1)E(Mn) + E(X1)2D(Mn).

If Mn has a binomial distribution with parameters n and p where p is the
probability of a successful outcome, i.e the probability of a variable to be observed.
If we put q = 1− p the probability of failure, that is the probability of a variable to
be missing we have the equations (4.1) and (4.2) written in the form:

E (S(n)) = mnp

and

D (S(n)) = σ2np+m2npq = np(σ2 +m2 + q).

Further, it is possible to extend the application of the proposed model in the
case when the observed random variables are determined by a general point process
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and when only conditions on Mn are imposed. It may be interesting to see the
implementation of the proposed mathematical model based on a strictly station-
ary sequence of random variables (Xn)n>1 with ”short range” dependence. This
problem was considered and analyzed by Mladenovic and Piterbarg (see [23]) where
consistency of Hill’s estimator was proved. The main presumed condition in the
paper means that the finite dimensional distributions of (Xn) are invariant under
shifts and the dependence between observations from (Xn) becomes weaker as time
separation becomes larger. More, under additional conditions this model of incom-
pleteness was considered by Ilic and Mladenovic (see [14]), where the asymptotic
behavior of the Pareto index estimator, proposed by Bacro and Brito (see [2]), was
analyzed. Also it it can be proved that in the case when the number of observed
variables Mn has the binomial distribution the sequence X̃1, ..., X̃Mn

of observed
variables is asymptotically stationary (according to the definition from [6]). The
proposed model can be used for various practical situations where more thorough
theoretical tool is necessary in order to describe the incompleteness of the data. It
can be interesting for the researchers in this area for the mathematical establishment
of certain incomplete structures in the surveys.

Finally, we give the necessary conditions that are used in the above research
papers in order to enhance the mathematical approach in confronting with the
missing data in stationary sequences.

Assumption A. The sequence X1, X2, . . . does not depend on Mn and

Mn

n

p−→ c0 > 0 as n→ +∞.

Suppose βn is a sequence of real numbers such that

lim
n→∞

βn =∞ and lim
n→∞

βn
n

= 0.

Let

Kn =

[
Mn

βn

]
and Bn =

{
0, Mn = 0
Kn

Mn
, Mn ≥ 1

where the floor function [.] denotes the largest previous integer. Define Ỹi = (ln X̃i−
lnF−1(1−Bn))+ and Ỹ ζi = I

{
ln X̃i − lnF−1(1−Bn) > ζ√

Kn

}
where ζ ∈ R.

Assumption B. For any h ∈ N and θ ∈ R

V ar

{ h∑
j=1

(
(Ỹj+k − EỸj+k) + θ(Ỹ ζj+k − EỸ

ζ
j+k)

)}
does not depend on k.

Remark 4.1. In the case when the number of observed variables Mn has the binomial
distribution both the Assumption A and Assumption B are satisfied. In this case the
sequence X̃1, ..., X̃Mn of observed variables is asymptotically stationary, according to the
definition from [6].
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5. Conclusion

Missing data is an intermittent issue in many areas such as: market research,
database analysis, social analysis, medical research and generally in survey research.
Even a small percent of missing data can produce significant problems in the sta-
tistical analysis possibly leading to wrong conclusions. The purpose of this article
is to identify the problem, to recognize the missing data pattern and to choose the
proper methodology for dealing with the incomplete sample. Further intention of
this paper is to indicate the possibility of the potential implementation of the pro-
posed mathematical formulation in statistical researches having the MCAR data
structure. Prospective research will undeniably derive further improvements and
expansions of the proposed mathematical models and practical techniques in order
to achieve higher efficiency in situations in which missing data appear.
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22. P. Mladenović and Z. Petrovic: Cagan’s paradox and money demand in hy-
perinflation:Revisited at daily frequency. Journal of International Money and Fi-
nance, 29 (2010) 1369–1384.
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Abstract. The rapid development of digital computer hardware and software has had
a dramatic influence on mathematics, and vice versa. The advanced hardware and
modern sophisticated software such as computer visualization, symbolic computation,
computer-assisted proofs, multi-precision arithmetic and powerful libraries, have pro-
vided resolution to many open problems, very difficult mathematical problems, and
discovering new patterns and relationships, far beyond a human capability. In the first
part of the paper, we give a short review of some typical mathematical problems solved
by computer tools. In the second part we present some new original contributions, such
as an intriguing consequence of the presence of roundoff errors, distribution of zeros of
random polynomials, dynamic study of zero-finding methods, a new three-point family
of methods for solving nonlinear equations and two algorithms for the inclusion of a
simple complex zero of a polynomial.
Keywords: Experimental mathematics, computer graphics, symbolic computation,
visualization of iterative processes, interval arithmetic, roundoff error.

1. Introduction

The advance of digital computer hardware and software, circa 1970, has had a
remarkable impact on almost every part of scientific disciplines such as mathema-
tics, engineering disciplines, physics, chemistry, communication, biology, education,
astronomy, geology, banking, business, insurance, health care, social science, as well
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as many other fields of human activities. At present, computers are playing an
increasingly central role in mathematics; they have found the application in almost
every branch of mathematics. Many practical problems are solved by numerical
methods of various types, for instance, simulating dynamical systems and deter-
mining their global properties, or calculating approximate solutions to nonlinear
equations where no closed-form solution is available. Symbolic computation, a part
of computer algebraic systems, is manipulating, simplifying, factorizing, and ex-
panding complicated expressions that contain variables and non-numerical values.
This powerful tool is very useful for solving very difficult mathematical problems
producing, in addition, exact computation. Graphical representations can visualize
complex objects to a good extent and thereby comprehend their properties, see [1].

For a long time (many decades and even centuries) a lot of mathematical prob-
lems remained unsolved. Simply, “paper-and-pencil methods”, human-memory lim-
itation, impossibility to handle lengthy expressions, primitive computer tools (log-
arithmic tables, abacus, slide rule) and other objective obstacles, were insufficient
to solve them. These problems resisted until the digital computer era emerged. In
this paper, we present a short review of some typical mathematical problems solved
by computer tools (Section 2) and some new original contributions (Section 3).

2. Computers in mathematical research - a review

First applications of computers in mathematics were restricted to the calculation of
complicated numerical expressions and the verification of some particular mathe-
matical identities, relations and other issues. The brutal force of computers was
used to suggest or test general claims and to pose hypotheses based on a finite
number of patterns.

Let us mention some well-known examples concerned with the application of
computers. The first calculation of the number π happened in 1949, when the out-
standing scientist John von Neumann and his team used a room-sized digital com-
puter with vacuum tubes ENIAC (Electronic Numerical Integrator And Computer)
to compute 2 037 digits of π. The time of calculation: 70 hours. Computer-assisted
proof of the four-color theorem, given by Appel and Haken in 1977, is a typical
example where brute force combinatorial enumeration played an essential role in
solving this 125 years old open problem (posed by F. Francis Guthrie in 1852).
A similar combinatorial enumeration method (combined with interval arithmetic)
was used in Thomas Hales’s proof of the Kepler conjecture (posed in 1611), which
asserts that the optimal density of packing equal spheres is achieved by the familiar
face-centered cubic packing (see, e.g., [2], [3], and pretty interesting, on the markets
where oranges are packed).

Today, computers are employed in mathematical research in a number of ways;
one of the simplest ways is the implementation of proof-by-exhaustion: posting a
proof so that a statement is valid for a large but finite number of cases and then
check all the cases by a suitable program using a computer. More sophisticated use
of computers is to discover and analyze interesting patterns in data, which then
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serve to state conjectures. Helping to find conjectures is the first step, a proper
advance is a rigorous proof of them.

Extensive development of computer algebra systems (briefly CAS), such as
Mathematica and Maple, provides very fast manipulations with complex mathemat-
ical expressions, a work beyond human ability. Can you check that the sequence
“0123456789” appears in the decimal expansion of π? Using a computer, Yasumasa
Kanada of the University of Tokyo found in 1997 that this sequence begins at po-
sition 17 387 594 880. Advance versions of CAS deliver new improvements and very
powerful algorithms. Evaluating the infinite product

∞∏
n=2

n4 − 1

n4 + 1
,

Mathematica 6 (issued 2007) gives the result involving the Gamma function. Ma-
thematica 10 (2014) delivers the answer directly:

∞∏
n=2

n4 − 1

n4 + 1
=

π sinhπ

cosh(π
√

2)− cos(π
√

2)
.

Both tasks are obviously missions impossible for humans.

Symbolic computation, embedded in computer algebra systems like Mathematica
or Maple, was a great advance in manipulating very complicated expressions of more
variables. Suitable algorithms implemented on current powerful computers can
solve problems whose answers are algebraic expressions tens or thousands of terms
long. David Bailey, a mathematician and computers scientist at Lawrence Berkeley
National Laboratory and one of the world leaders in experimental mathematics,
said: “The computer can then simplify this to five or 10 terms. Not only could a
human not have done that, they certainly could not have done it without errors.”
In & 3.5 we will show how to construct new iterative methods for solving nonlinear
equations and determine the order of convergence by using symbolic computation
in CAS Mathematica. Besides, CAS provides a powerful computer visualization of
data, which is a very useful tool in helping us understand the behavior of iterative
processes, as shown in & 3.5.

2.1. Short list of mathematical problems solved by computer

Below we give a list of theorems proved (completely or partially) with the help
of computer programs. It is assumed that this list is far from being exhaustive.

� Archimedes’ cattle problem, 1965 (the most famous ancient Diophantine
equation), was solved by H. C. Williams, R. A. German and C. R. Zarnke
[4] using computers).

� Euler’s wrong hypothesis, 1966. In 1769 Euler stated that there is no nth
degree which can be sum of less than n nth degrees of natural numbers. In
1966 L. L. Lander and T. R. Parker found by computer the counterexample
for n = 5 in the form of identity 275 + 845 + 1105 + 1335 = 1445.
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� Four color theorem, 1976. The four-color theorem states that any map in
a plane (divided into contiguous regions) can be colored using no more than
four colors so that no two adjacent regions have the same color. The theorem
was proved by Kenneth Appel and Wolfgang Haken (published in [5], [6]) by
inspecting reduced graph configurations by a computer program. Widely ac-
cepted proof of the four-color theorem was given in 2008 by Georges Gonthier
with general-purpose theorem-proving software [7].

� Perfect squared square of the lowest order, 1978. The task is tilling one inte-
gral square using only other integral squares of different sizes. In 1978, using
a computer program, the Dutch computer scientist A. J. W. Duijvestijn found
the perfect squared square of lowest order consisting of 21 smaller squares.

� Mitchell Feigenbaum’s universality conjecture in non-linear dynamics, 1982
(proved by O. E. Lanford using rigorous computer arithmetic);

� The non-existence of a finite projective plane of order 10, 1989 (proved by C.
W. H. Lam, L. Thiel and S. Swiercz).

� Problems solved by interval arithmetic 1993+: Kepler’s conjecture [8] (par-
tially applied), the existence of eigenvalues of the Sturm-Liouville problem
[9], the bound of Feigenbaum constant [10], the double bubble conjecture [11],
verification of chaos [12], [13], Lorenz attractor [14], etc.

� BBP (Borwein, Bailey, Plouffe) formula for π, 1996 (published in [15]):

π =

∞∑
k=0

1

16k

( 4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)
.

BBP formula is revolutionary and fascinating since provides the determina-
tion, for example, the one-billionth hexadecimal digit (or the four billionth
binary digit) of π without needing to compute any of the previous digits.
Practical BBP algorithm for computing the requested individual digit of π
was described in [16, pp. 121–125].

� Robbins conjecture, 1996: All Robbins algebra, supplied with a single bi-
nary operation denoted by ∨ (OR) and a single unary operation denoted by
¬ (NEGATION) are Boolean algebras. This conjecture was proved by W.
McCune in 1996.

� Kepler conjecture (from 1611) on the most density package of identical spheres
in three-dimensional Euclidean space, 2000. The measure of the density δ =
Vs/Vc is the total volume Vs of all packed spheres divided by the total volume
Vc of the container in the form of a cube assuming that the cube edge is
infinitely large. In 2000 Tomas Hales completed the solution proving that the
so-called face-centered cubic packing has the maximum density δmax = π/

√
18,

just as Kepler assumed (see the book [3, pp. 137–147] for details). Hales’ proof,
published in [8], combines methods from the theory of global optimization,
linear programming and interval arithmetic.
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� Lorenz attractor, 2002, known as 14th of Smale’s problem. It is the solution
of Lorenz’s system that describes chaotic behavior. Its existence was shown by
W. Tucker [14] using validated interval arithmetic and normal forms; he also
proved that Lorenz attractor is so-called strange attractor. Lorenz attractor
appears in fluid dynamics and illustrates the phenomenon now known as the
butterfly effect which demonstrates sensitive dependence on initial conditions.

� NP-hardness of minimum-weight triangulation. The minimum-weight trian-
gulation problem belongs to computational geometry and computer science
that asks for the minimal sum of the length of perimeters which make a tri-
angulation (subdivision by triangles) of a given polygon or the convex hull.
In 2008 W. Mulzer and G. Rote proved that this problem is NP-hard.

� Optimal solutions for Rubik’s Cube can be obtained in at most 20 face moves
starting from arbitrary initial position, 2010 (computer-assisted proof was
given by T. Rokicki, H. Koceimba, M. Davidson, J. Dethridge).

� The primality test of very large natural numbers and the factorization of
very large numbers, 1949+. Many cryptographic protocols are based on the
difficulty of factoring large composite integers. At present, the largest prime
number is 282589933− 1 having 24 862 048 decimal digits (found by Laroche et
al. in December of 2018).

Although the computer solution of the four-color theorem (1976) and the Ke-
pler’s conjecture (2006) attracted considerable attention in mathematics, the proofs
were not accepted by all mathematicians who made a serious objection that the
presented computer-assisted proofs (better to say, the program codes) were not ver-
ifiable for a human by hand. Their reaction with many arguments against Hales’
computer-assisted proof was justified; for illustration, Hales’ computer program
consisted of 40 000 lines. Fortunately, these two stories had a happy ending. As
mentioned above, in 2008 G. Gonthier [7] delivered widely accepted proof of the
four-color theorem using general-purpose theorem-proving software. Hales started
in 2003 with a project named FlysPecK (F, P and K standing for Formal Proof of
Kepler) aiming to come up with a formal proof of the Kepler conjecture that can be
checked by automated proof verifying software. After 14 years Hales and his team
finished this challenging but very difficult project; their formal proof was published
in the journal Forum of Mathematics in 2017.

2.2. Interval arithmetic and self-validated method

An important use of computers in proving mathematical hypotheses and prob-
lems, known as self-validating numerics, is a special kind of computation that pre-
serves strong mathematical rigor. This approach uses interval arithmetic which
provides the enclosure, control, and propagation of roundoff and truncation errors
of the executed calculation. The fruitful feature of interval arithmetic is the inclu-
sion principle (essentially meaning subset property) which assures that the results of
computations or solutions of the posed mathematical problems are enclosed by the
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set-valued output. In this way, it is possible to calculate upper and lower bounds
on the sets of solutions. Therefore, self-validating numerical methods deliver true
results.

The described very useful property has provided the application of interval arith-
metic not only in mathematics but also in many scientific disciplines where the
control of a true result is of primary interest. Some of the mathematical prob-
lems solved by self-validated methods is listed above. Note that German scientist
Siegfried M. Rump (Technische Universität Hamburg) created a special software
INTLAB, based on Matlab, intended for the implementation of interval arithmetic
for solving a huge number of mathematical problems [17].

Note that Professor Urlich Kulisch, one of the greatest world experts in the field
of computer architecture and interval arithmetic, claims that further advance in
computer technology and software will lead to the weird situation that the accuracy
of results obtained by a computer can only be verified with the help of a computer
(again!) and interval arithmetic that would control the intermediate results at every
step, see his monograph Computer Arithmetic and Validity [18].

2.3. Experimental mathematics

A relatively new approach to mathematics that makes use of advanced and
powerful computing technology to investigate mathematical objects and identify
properties and patterns is called experimental mathematics, the term introduced by
J. Borwein, D. Bailey, R, Girgensohn and their contributors, see, e.g., the books [16],
[19], [20]. Experimental mathematics, a growing branch of applied mathematics,
provides computational methodologies of doing mathematics that include the use
of computations for the following activities quoted in [16]:

(1) Gaining insight and intuition.

(2) Discovering new patterns and relationships.

(3) Using graphical displays to suggest underlying mathematical principles.

(4) Testing and especially falsifying conjectures.

(5) Exploring a possible result to see if it is worth a formal proof.

(6) Suggesting approaches for formal proof.

(7) Replacing lengthy hand derivations with computer-based derivations.

(8) Confirming analytically derived results.

In the book Mathematics by Experiments [16], J. Borwain and D. Bailey, the
world-leading experts in experimental mathematics, gave the list of things comput-
ers do better than humans. We cite their list below:

� High precision integer and floating-point arithmetic;
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� Symbolic computation for algebraic and calculus manipulations;

� Formal power-series manipulation;

� Changing representations, e.g., continued fraction expansions, partial fraction
expansions, Padé approximations;

� Recursion solving (e.g., Rsolve in Mathematica);

� Integer relation algorithms, e.g., the PSLQ algorithm;

� Creative telescoping (e.g., the Gosper and Wilf-Zeilberger methods) for prov-
ing summation identities;

� Iterative approximations to continuous functions;

� Identification of functions based on graph characteristics;

� Graphics and visualization methods.

“Some of the algorithms involved in this list have had the great influence on the
development and practice of science and engineering”, wrote Dongarra and Sulli-
van in [21], and added often cited sentence: “Great algorithms are the poetry of
computation.”

2.4. Computer-assisted proofs

Attempts have been also made in the area of Artificial Intelligence research to
create new proofs of mathematical theorems using machine reasoning techniques.
A computer-assisted proof or automated theorem prover are relatively recent no-
tions which mean that a mathematical proof has been generated (at least par-
tially) by computer. The majority of computer-aided proofs of mathematical the-
orems up to now were the simple application of proofs-by-exhaustion of all items
of the problem (brute force, backtrack algorithms), for example, in searching for
counterexamples of hypotheses in Number theory or solutions of problems hav-
ing a huge outcomes/configurations. In contrast to the exhaustion method, in-
teractive proof assistants most frequently gives human-readable proofs which can
be checked for correctness; hence it is considerably preferable. The third type,
sometimes named a proper computer-aided proofs, is completely based on sets of
axioms and logical statements of computer software and gives reliable and correct
results. More details devoted to computer-assisted proofs can be found on the link
https://en.wikipedia.org/wiki/Computer-assisted proof.

As examples of important achievements in the field of computer-assisted proofs,
let us mention theorem-proving packages and algorithms of Wilf-Zeilberger’s type.
Theorem-proving package methods, such as Microsoft’s Z3 Theorem Prover (now
available under MIT Open Source), can either verify certain types of statements or
find a counterexample demonstrating that a statement is false. The Wilf-Zeilberger
method (invented by Doron Zeilberger and Herbert Wilf in 1990) can perform sym-
bolic computations working with variables instead of numbers to produce exact
results in a general form free of roundoff errors.
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2.5. Computer visualization

The development of high quality computer visualization enables entirely new
and remarkable insights into a wide variety of mathematical concepts and objects.
Today researchers are able to study the geometric aspects of many mathematical
and engineering disciplines. Computer graphics have become powerful tools for
discovering new properties on various topics of mathematics and constructing new
very efficient algorithms. Undoubtedly, computer visualization delivers modern
and novel perspectives of some mathematical topics yielding a new dimension and
a deep insight into properties and behavior of many mathematical processes, as
well as various processes and phenomena in physics, biology, chemistry, and other
scientific disciplines.

As one illustration of high sophistication of computer visualization, we present
Tupper’s astounding formula

1

2
<
⌊
mod

(⌊ y
17

⌋
2−17bxc−mod(byc,17), 2

)⌋
.

published in 2001. Here bxc denotes the floor function (the greatest integer part
of a number x) and mod(a,m) is the remainder in dividing the integer a by the
integer m (the mod function). The area of graphics is determined by 0 6 x 6 105
and k 6 y 6 k + 16 where k is the natural number with 543 digits

960 939 379 918 958 884 971 672 962 127 852 754 715 004 339 660 129 306 651 505
519 271 702 802 395 266 424 689 642 842 174 350 718 121 267 153 782 770 623 355
993 237 280 874 144 307 891 325 963 941 337 723 487 857 735 749 823 926 629 715
517 173 716 995 165 232 890 538 221 612 403 238 855 866 184 013 235 585 136 048
828 693 337 902 491 454 229 288 667 081 096 184 496 091 705 183 454 067 827 731
551 705 405 381 627 380 967 602 565 685 016 981 482 083 418 783 163 849 115 590
225 610 003 652 351 370 343 874 461 848 378 737 238 198 224 849 863 465 033 159
410 054 974 700 593 138 339 226 497 249 461 751 545 728 366 702 369 745 461 014
655 997 933 798 537 483 143 786 841 806 593 422 227 898 388 722 980 000 748 404
719

Using Tupper’s formula, a simple program in CAS Mathematica

ArrayPlot[Table[Boole[1/2 < Floor[Mod[Floor[y/17] 2^ (-17 Floor[x]-

Mod[Floor[y], 17]), 2]]], {y,n,n+16},{x,105,-2,-1}],
PixelConstrained -> True, Frame -> False, ImageSize -> 400]

gives the self-referential “plot” presented in the figure below.
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In fact, Tupper demonstrated a method of decoding a bitmap stored in the
constant k; k is a simple monochrome bitmap image of the formula treated as a
binary number and multiplied by 17. Note that Tapper’s approach is a general-
purpose method to draw any other image.

2.6. Symbolic computation

Symbolic computation, a part of Computer algebra serving as a bridge between
Mathematics and Computer science, is handling non-numerical values. Symbolic
computation is widely used to experiment in mathematics and to study and design
formulas, algorithms and software that are used in numerical programs. Computer
algebra systems that perform symbolic calculations contain a lot of routines to carry
out many operations, like polynomial factorization, solving nonlinear equations,
manipulation with very complicated expressions. They are also capable to expand or
simplify mathematical expressions with symbols, or differentiate or integrate them,
etc. It should be emphasized that, contrary to numerical computation, symbolic
computation produces exact computation with expressions containing variables that
are manipulated as symbols.

As an illustration of the use of symbolic computation we present everyday practi-
cal problem posed by George Polya, a Stanford professor, in American Mathematical
Monthly article (1956). In how many ways can you make change for a dollar? We
modify Polya’s task and consider Serbian currency assuming that there are 1, 2, 5,
10, 20, 50, 100, 200, 500, 1000, 2000 and 5000 coins or banknotes. Hence:

In how many ways can you make change for a banknote of 5000 Serbian dinars?

Problems of this type are solved by generating functions. Let Pk be the number
of all possible ways of changes. The problem reduces to the generating function
(the Serbian currency case)

∞∑
k=1

Pkx
k =

1

(1− x1)(1− x2)(1− x5)(1− x10)(1− x20) · · · (1− x2000)(1− x5000)
.

To find P5000 it is necessary to develop the expression on the right-hand side into
geometric series and sum all coefficients standing next to x5000. Using a Mathematica
command

Series[1/((1-x)*(1-x^2)*(1-x^5)* (1-x^(10))*(1-x^(20))*(1-x^(50))

*(1-x^(100))*(1-x^(200))*(1-x^(500))*(1-x^(1000))

*(1-x^(2000)*(1-x^(5000),{x,0,5000}]

computer calculates P5000 = 23 303 034 594 532. It is impossible for a human to
determine such a huge number. In the case of US currency, one obtains P100 = 292,
which is reachable for a human so that Polya’s task had a sense in 1956.

Symbolic computation has successfully substituted lengthy manual calculation
with computer-based computation and manipulation. In this paper, we concentrate
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in & 3.5 on methods and procedures for the construction, analysis and practical ap-
plication of algorithms for solving nonlinear equations with the support of symbolic
computation. We emphasize that the construction of presented root-solvers is most
likely impossible without the use of this specific computer software.

2.7. Computer-assisted proofs: how much can we trust computers

The use of computers in mathematics is undoubtedly widespread and in un-
stoppable expansion. Many mathematicians have turned to numerical experiments,
symbolic computation, computer visualization and other computer methods as their
main tools for mathematical investigation. In that way, they have achieved extraor-
dinary results. However, ignoring these advances, a number of researchers often un-
derestimate the role of computers in mathematics. In some cases, their skepticism
cannot be fully disregarded since there are some specialized fields in mathematics
that do not need the use of computers. Recall that, without using a computer,
Andrew Wiles solved the famous Fermat last theorem (stated by Fermat in 1637)
in 1995, Grigori Perelman presented a proof of Poincaré’s conjecture, one of the
most important open problems in topology, through three papers made available in
2002 and 2003 on arXiv of Cornell University. The proof of the Riemann hypothesis
on the locations of zeros of the Riemann zeta function (posed in 1859) has not yet
been given. Many mathematicians believe that the Riemann hypothesis, one of the
most important open problems in mathematics, will be proved by a human using
an analytical method, not by computer tools.

It seems that another kind of disputable question is more serious. Today, in
search for the exact result or ultimate truth, mathematicians, philosophers and
computer scientists (among them, Turing, Voevodsky, Avigard, Teleman, Kim,
Mancosu, Hanke), ask: “How much can we trust computers, whether computer-
assisted proofs have the mathematical sense, is it possible to verify so many logical
steps, how to evaluate the reliability of the data, how to check that the computer
source program is perfectly accurate, whether the researcher can fully believe in the
perfect work of hardware, what if there is a bug?, etc.” Errors of this kind could
be sometimes avoided by using different programming languages, different compil-
ers, and different computer hardware. For instance, this approach was applied to
Gonthier’s proof of the four-color theorem, see [7].

Professor Jonathan Hanke, a number theorist and skilled programmer at the
Princeton University, is quite careful; he is focused on developing and implementing
algorithms to solve concrete problems in programming language Python. To his
opinion, software should never be trusted; it should be checked. Besides, in Hanke’s
opinion, the only way to avoid false results is to use computers in the proofs of
theorems step by step very carefully, using special tests applied to separated sections
(small or large, as needed) of a global program with unmistakable logic.

The science of program proving was a formally accepted field of computer sci-
ence. Program proving, model checking, theorem solving – this is the terminology
occupying the research space of computer science devoted to making sure programs
work correctly. Computer programs analyze, check and inspect key situations and
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outcomes by sophistical algorithms, and verify the validity of the theorem using the
data collected passing through this process. David Bailey, a mathematician and
computers scientist at Lawrence Berkeley National Laboratory (now at University
of California, Davis), one of the world leaders in experimental mathematics, said:
“The time when someone can do real, publishable mathematics completely without
the aid of a computer is coming to a close. Or if you do, you are going to be
restricted into some specialized realms.”

Doron Zeilberger (1950– ), a world-renowned Israeli professor at Rutgers Uni-
versity, the winner of prestigious awards such as Ford Award, Steele Prize, Eu-
ler Medal and Robbins Prize, does not share the mentioned view of his scep-
tical colleagues. He said: “Contemporary mathematics is becoming significantly
complicated, making further progress more difficult. In many mathematical dis-
ciplines computers are so much incorporated that only at the frontiers of some
research areas of mathematics, human proofs still exist.”. Note that Zeilberger
writes his own code using a computer algebra system Maple and believes computers
are overtaking humans in their ability to discover new mathematics. See the link
www.wired.com/2013/03/computers=and=math/ .

Searching for ultimate truth in mathematics, the Field medallist Vladimir Vo-
evodsky (1966–2017) (Institute for Advanced Studies in Princeton) posed the ques-
tion: “How do mathematicians know that something they prove is actually true?”
Similarly, as Zeilberger and Bailey, he comprehended that increasing the complex-
ity of mathematics could be resolved only by the computer since a human brain
could not keep up a huge amount of data and manipulate with them. To resolve
this very hard problem, Voevodsky started, as the leader of a team, a long-term
extraordinary project to create fundamentally new computer tools to confirm the
accuracy of proofs. For this purpose, Voevodsky and his team have united different
research fields, such as homotopy theory, mathematical logic, and the theory of
programming languages, to make computer-verified proofs.

We end this section with an interesting story that tells how much Zeilberger
believes in computer-assisted proofs and other computer tools for solving mathe-
matical problems. Some thirty years ago several mysterious but excellent research
papers (77 in total) appeared in a short period in the renowned mathematical jour-
nals (co)-authored by Shalosh B. Ekhad; in addition, notable Rutgers University
(New Jersey) was marked as the affiliation. Curious mathematicians have tried to
learn anything about the personality of Ekhad for three reasons; this name was
fully unknown in the mathematical literature, nobody has ever seen him, and there
was no Professor Ekhad employed at Rutgers University. The Israeli mathemati-
cian Doron Zeilberger from Rutgers University (the affiliation was correct) resolved
the mystery admitting that Shalosh B. Ekhad is not a person but his computer.
In Hebrew the words ”Shalosh and ”Ekhad” mean THREE and ONE respectively,
and ”three B one” refers to the AT&T 3B1, the first computer that he had been
using in his work. Wishing to emphasize the great importance of computers to his
research, Zeilberger cited Shalosh B. Ekhad as his co-author of scientific papers.
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3. Computers in mathematical research - authors contributions

In this section we present some illustrative mathematical problems of dual na-
ture; they belong to numerical mathematics but also to computer science (roundoff
error analysis). An unexpected but interesting behavior of iteration procedure,
arising as a consequence of the presence of roundoff errors, are discussed in Section
2.& 3.1 and & 3.2. Strange distribution of zeros of algebraic polynomials with ran-
dom coefficients is demonstrated by two examples in & 3.3. In & 3.4 we present the
dynamic study of root-finding methods by basins of attractions and point to useful
benefits of visualization and associate data. A new three-point weighted family of
iterative methods for approximating solutions of nonlinear equations is the subject
of & 3.5. The derivation of the method and its convergence analysis are performed
using symbolic computation. This study deals with very complicated and lengthly
expressions (consists of 200 and more outcome lines) so that the construction and
analysis of the proposed family is far beyond human capability. Two self-validated
iterative methods for the inclusion of a simple zero of a given polynomial are pre-
sented and numerically tested in & 3.6.

3.1. Strange recurrent relation and roundoff errors

This example originally constructed in [22], inspired by Kahan’s recurrent re-
lations, presents in illustrative way the influence of roundoff error to the accuracy
of result of computation. Let us calculate the members of the sequence {xk} in
floating-point arithmetic of double or quadruple precision using the recurrent rela-
tion 

x0 = 1,
x1 = −5,

xk+1 = 207− 1412

xk
+

2400

xk−1xk
.

(3.1)

After a certain number of iterative steps, we observe that xk approaches 200, see
Figure 3.1. However, using methods for solving difference equations we find the
general solution of the recurrent relation (3.1) in the form

xk =
200k+1a+ 4k+1b+ 3k+1

200ka+ 4kb+ 3k
,

where a and b are arbitrary constants. For the given initial values x0 = 1 and
x1 = −5 one obtains a = 0, b = −2/3, so that the above formula reduces to the
simple form

xk =
− 2

3 · 4
k+1 + 3k+1

− 2
3 · 4k + 3k

= 4− 1

1− 2
3

(
4
3

)k .(3.2)

From (3.2) it is clear that xk → 4 when k →∞.
Incorrect result (xk → 200) is the consequence of roundoff error during calcu-

lation. Namely, the application of floating-point arithmetic does not calculate the



Computer Tools for Solving Mathematical Problems: A Review 217

theoretical value a = 0 but a = η 6= 0 and b = −2/3 + ε, where η and ε are of the
order of machine-precision, say 10−16. In this way, instead of (3.2), we have

x̂k ≈
200k+1η + (− 2

3 + ε) · 4k+1 + 3k+1

200kη + (− 2
3 + ε) · 4k + 3k

= ϕ(k, η, ε) + 200.

where

ϕ(k, η, ε) =
−49(3ε− 2) · 4k+1 − 197 · 3k+1

3η · 200k + (3ε− 2) · 4k + 3k+1
.

Since ϕ(k, η, ε)→ 0 when k →∞ independently on the value of η and ε (but having
in mind that both are of the order of machine-precision), one obtains x̂k → 200.
Observe that if η = ε = 0, then ϕ(k, η, ε)→ −196 and x̂k → 4.

Fig. 3.1: Convergence of the sequence (3.1) to (incorrect) limit 200; double-precision
arithmetic was employed.

Calculating xk by (3.1) in double -precision arithmetic and using the termination
criterion |xk−xk−1| < τ, we have found that the iterative computation breaks when
k = 36 dealing with τ = 10−12. First 36 iterations and the values of xk are given in
Figure 3.1. From this figure, we observe that, in the beginning, approximations of
xk approach the exact limit x∞ = 4 but do not reach the required precision. The
minimal error is x23 − 4 ≈ 3.55× 10−3. Then a very steep jump appears for k = 25
and through few steps xk approaches (incorrect) limit 200. This jump, in fact,
arises due to the presence of roundoff errors η and ε which make that the function
ϕ(k, η, ε) acquires a vertical asymptote. Note that this asymptote does not appear
for k > 2 if η = ε = 0.
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3.2. Power method for dominant eigenvalue – the benefit of roundoff

Let λ1, λ2, . . . , λn be the eigenvalues of an n × n matrix A. λ1 is called the
dominant eigenvalue or spectral radius of A if

|λ1| > |λi| (i = 2, . . . , n).

The eigenvector corresponding to λ1 is called dominant eigenvector of A. In the
literature, the spectral radius is most frequently denoted by ρ(A).

The power method is an iterative method which is often applied for approxi-
mating spectral radius of a given matrix A. Scaling version of the power method
can be presented in the following algorithmic form:

1. Choose starting non-zero vector y0 = {y1,0, . . . , yn,0};
2. For k = 1, 2, . . . calculate

zk = Ayk−1, yk = zk/αk,

where αk is the coordinate of the vector zk with the largest moduli.

3. Finish the iterative process when the stopping criterion is fulfilled.

(3.3)

Note that
αk → λ1 and yk →

x1

‖ x1 ‖∞
,

where x1 is the dominant eigenvector that correspond to the dominant eigenvalue
λ1. The value αk is taken to be the approximation of the spectral radius λ1 = ρ(A).

In practical problems, the presence of roundoff error can often cause inaccurate
results. Opposite to the previous request, in the application of the power method
roundoff errors can play a positive role, as mentioned by Higham [39]. Such a
situation is demonstrated by the following example.

Example 3.1. Let us determine the approximative value of the spectral radius of
the matrix

A =

 0.5 −0.8 0.3
−0.6 0.8 −0.2

0.24 0.67 −0.91


using the presented power method with scaling. First of all, note that the power
method (3.3) applied in single precision fails if we take y1 = {1, 1, 1} since in
the next step it produces the zero vector. Hence, there is no indication of the
wanted dominant eigenvalue. However, executing the first step in double-precision
arithmetic, we get

y1 = A · {1, 1, 1} = {5.55112× 10−17, 5.55112× 10−17, 0.} .

The presence of roundoff errors produces y1 6= 0.. Applying the power method
(8), after 18 iterations we obtain α18 = 1.30818 and take this value as an approx-
imation of the spectral radius. The spectral radius of A with 15 correct decimal
digits is ρ(A) = 1.308114998551363, which means that the approximation α18 has
5 significant decimal digits.
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3.3. Distribution of zeros of random polynomials

Algebraic polynomials whose coefficients are random numbers are of great impor-
tance since they appear in various problems of physics, engineering and economics
such as filtering theory, spectral analysis of random matrices, statistical communi-
cation, regression curves in statistics, characteristic equations of random matrices,
the study of random difference equations, the analysis of capital and investment in
mathematical economics. etc. For these reasons, a number of books and papers
have been devoted to the study of random polynomials, see, e.g., [23] and [24].
Working in the area of Experimental Mathematics, we have used graphical methods
to visualize an important theorem on distribution of zeros and pose a conjecture of
the symmetry of complex zeros od random polynomials.

Example 3.2. Denote a sequence of independently identically distributed (real or
complex) valued random variables with {ck}∞k=0. Let

Fn(z) = cnz
n + cn−1z

n−1 + · · ·+ c1z + c0

be a random polynomial of degree n with the zeros ζ1, ζ2, . . . , ζn of Fn. Furthermore,
for a, b (0 6 a 6 b < ∞) introduce a probability measure on the complex plane
Rn(a, b) = Nn({z : a 6 |ζi| 6 b}), where Nn(·) denotes the number of zeros that
belong to the ring {z : a 6 |ζi| 6 b} in the complex plane. Then Rn/n defines the
empirical distribution of zeros of Fn. If for any δ ∈ (0, 1) define a = 1− δ, b = 1 + δ,
then δ is called delta measure in the empirical distribution.

The following theorem has been proved in [24]:

Theorem 3.1. If and only if

E log(1 + |c0|) <∞,

then the sequence of the empirical distributions Rn/n converges to the delta measure
at 1 almost surely, that is,

1

n
Rn(1− δ, 1 + δ)

P−→ 1, n→∞

holds for any δ ∈ (0, 1).

In the above theorem, E is mathematical expectation while the denotation
P−→

denotes so-called convergence in probability. This theorem asserts that, under
some weak constraints on the coefficients of a random polynomial, almost all its
zeros “concentrate uniformly” close to the unit circle with high probability.

Using graphical tools of Mathematica we have tested a random polynomial of
degree 2000 with random coefficients belonging to the interval [−2, 2]. From Figure
3.2 we observe that almost all zeros are located in the ring {z | 1− δ < |z| < 1 + δ}
where δ ≈ 0.01, which empirically confirms Theorem 3.1 to a good extent.
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Fig. 3.2: Location of zeros of random polynomials

Example 3.3. Several years ago, on a web page concerning the distribution of
zeros of polynomials, the following question appeared: Given ten or more thousand
polynomials of degree n ∈ [n1, n2] with the leading coefficient 1 while the remaining
coefficients are chosen randomly from the set {−1,+1}. Mark the location of each
zero by a small circle in the complex point in such a way that the different zeros
of the selected polynomial are colored by different colors. Does the plotted figure
possess some specific properties?

Fig. 3.3: Distribution of zeros of a random polynomial of degree n ∈ [10, 18]

We have taken the range [10,18] for the polynomial degrees and plotted the
location of zeros of 50 000 random polynomials. The generated figure, plotted by
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using the program BWH in Mathematica and presented in Figure 3.3, is of “bagel-
with-handle” (BWH) form.

BWH PROGRAM (Mathematica)

Clear[koef]; koef := Sign[-0.5 + Random[ ]]; Clear[genP];

genP[n ] := Sum[koef x^k, {k, 0, n}]; Clear[solP];

solP[p ] := Map[x /. # &, Solve[p == 0, x] // Flatten ] // N;

Clear[graP];

graP[s ] := ListPlot[Map[{Re[#], Im[#]} &, s], Frame -> True,

AspectRatio -> 1, PlotRange -> {{-2, 2}, {-2, 2}},
PlotStyle -> {RGBColor[Random[ ], Random[ ], Random[ ]],

PointSize[0.01]}]; t = Table[genP[RandomInteger[10,18]],{50000}];
s = Map[solP, t]; g = Map[graP, s]; Show[g]

From Figure 3.3 we observe that the generated picture BWH is entirely symmet-
ric to any straight line Lα passing through the origin, where α ∈ (0, π) is the angle
related to the positive direction of abscissa axes. More precisely, any pair of the
boundaries ∂A and ∂B of exterior parts A and B bounded by two lines Lα and Lβ
are of the same shape. The same is valid for two corresponding interior boundaries.
To the authors’ hypothesis, the presented symmetry arises following the low of large
numbers, an important theorem in Probability theory. This theorem asserts that
the average of the results of performing the same experiment a large number of
times approaches the expected value, as the case in our experiments. This effect
is known in the statistics when dealing with very large randomly chosen numbers
with uniform distribution.

The second characteristic of our BWH figure is the existence of an empty space
(hole) inside BWH. What is the size of this hole? More generally, what are the
bounds of the zeros of the considered polynomials

Pn,m(z) = a
(m)
0 zn + a

(m)
1 zn−1 + · · ·+ a

(m)
n−1z + a(m)

n ,(3.4)

a
(m)
k ∈ {−1,+1}, n ∈ [10, 18], m = 1, 2, . . . , 50 000 ?

Let ζ1,k, . . . , ζn,k be the zero of the polynomial Pn,m. According to Henrici’s
result [25, p. 457], all zeros of Pn,m are contained in the disk centered at the origin
and with radius R determined as

ρ = 2 max
16j6n

∣∣∣∣a(m)
j

a
(m)
0

∣∣∣∣1/j .(3.5)

Note that this result holds for polynomials with arbitrary coefficients. According
to (3.4) and (3.5) we find |ζj,k| 6 ρ = 2. Substituting y = 1/z in (3.4) and applying
again (3.5), we determine the lower bound |ζj,k| > 1

2 . Therefore,

1

2
6 |ζj,k| 6 2 for any j ∈ {1, . . . , n} ∨ k ∈ {1, . . . , 50 000}.
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According to the last inequalities, we conclude that all zeros of all 50 000 polynomials
lie in the disk {0; 2} and there is “no zero” in the hole containing the disk {0; 0.5}.

Finally, if we deal with the polynomials of relatively low degree (as in the pre-
sented example), we can observe the holes on the real axis at the points −1 and
1, see Figure 3.3. We also see that there is no complex zeros in these holes. This
effect was noted in the book [20] but without discussion and explanation.

3.4. Dynamic study of root-finding methods

One of the most challenging tasks in the area of iterative methods for solving
nonlinear equations is to detect the best algorithm or at least the group of best
algorithms. For a long time, the comparative studies of root-finding algorithms were
based on comparisons of (i) the number of iterations needed to provide the required
accuracy of produced approximations to the solutions, (ii) the convergence rate,
(iii) the number of function evaluations per iteration, and (iv) the computational
costs of compared algorithms often measured by the consumed CPU time required
to fulfill the given stopping criterion. All of the mentioned criteria suffer from the
disadvantage consisting of the request for ideal conditions; namely, they are usable
only if the chosen initial approximation to the wanted zero of a given function is
sufficiently good to provide the convergence, which is difficult to achieve in practice.
Even in those cases when it is possible, the rank of compared methods is not reliable
since the convergence behavior of root-finding methods depends in a complicated
and unpredictable way on the starting points.

The growing development of computer hardware and computer graphics at the
end of the twentieth century has provided the significant advance of a new metho-
dology for the visual study of convergence behavior of root-finding methods. It
turned out that a realistic quality study of root-finding methods and their reliable
ranking can be successfully accomplished by plotting the basins of attraction for the
methods. Basins of attractions are the sets of points in the complex plane which
simulate the convergence to the zeros of a given function by applying the iterative
process. They are of great benefit since offer essential information and insight into
the basic features of a considered iterative method such as its convergence behavior
and domain of convergence. Also, we can apply basins of attraction to analyze the
computational advantages of one iteration function against another and to rank
root-solvers within a class of iteration functions, which is of interest for the user to
decide which iteration method is preferable for solving a concrete problem.

Definition 3.1. Let f be a given sufficiently many times differentiable function in
some complex domain R ⊆ C with simple or multiple zeros α1, α2, . . . , αλ ∈ S, and
a (convergent) root-finding iteration defined by

zk+1 = g(zk) (k = 0, 1, 2, . . .),

the basin of attraction for the zero αi is defined as follows:

Bf,g(αi) = {ζ ∈ R | the iteration zk+1 = g(zk) with z0 = ζ converges to αi}.
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The dynamic study for the comparison of root-finding algorithms for simple
zeros is based on basins of attraction for a given method and a given example. It
was launched by Stewart [26] and Varona [27] and continued in the works of Amat
et al. [28]–[30], Scott et al. [31], Chun and Neta [32], [33], Neta et al. [34], Argyros
and Magreñan [35], Kalantari [36], I. Petković and Neta [37], I. Petković and -D.
Herceg [38] and others.

In the case of algebraic polynomials, the basin of attraction for a given rectangle
R with sides parallel to coordinate axes is plotted in the following way. Let (a1, b1)
be the lower left vertex and (a2, b2) the upper right vertex (a2, b2) of this rectangle.
Using computer algebra system Mathematica by the statement

CountRoots[P[z],{z,a1+I*b1,a2+I*b2}]

we determine the number of zeros of P (z) inside the rectangle R. Analyzing con-
vergence behavior for all zeros of a polynomial of degree n, the rectangle R must be
taken so that the outcome NP of the above statement is n (= number of polynomial
zeros). Otherwise, we continue with the enlargement of the size of the rectangle R
until NP = n is satisfied.

The considered method is tested on the m1 ×m2 equally spaced points in the
rectangle R = {a1, b1}×{a2, b2} (forming an equidistant lattice LR) centered at the
origin. At the beginning we define the limit number of iterations IT ; if the iterative
process, starting from an initial point z0 ∈ LR, does not satisfy the given stopping
criterion in 6 IT iterations, then this starting point is proclaimed “divergent.”
For each basin we record the CPU time in seconds for all m1 ×m2 points, average
number of iterations (for all points of the lattice LR) required to satisfy the stopping
criterion |zk − α| < τ (τ defines the accuracy of approximations, say, τ = 10−5 or
τ = 10−6) and the number of black (divergent) points for each method and each
example. We associate exactly one color to each attraction basin of a root following
two rules: 1) each basin will have a different color and 2) the shading is darker if
the number of iterations is higher. Starting points which do not fulfill the stopping
criterion after IT iterations are colored black.

The basin of attraction is a kind of computer visualization that provides visual
insight into convergence behavior of a root-finding method but it also delivers some
valuable qualitative data such as the CPU execution time, the average number
of iterations and function evaluations per point, and the number of “divergent”
points. These data are most frequently sufficient for deeper insight into the behavior
of an iterative method and its domain of convergence from the point of view of
dynamical systems. Obviously, a method is better if the consumed CPU time, the
average number of iterations and function evaluations per point, and the number of
“divergent” points are smaller. It is desirable that the number of divergent point is
0, which points to global convergence of the method.

Convergence behavior of any method can also be estimated to a certain extent
according to the shape of basins of attraction for the tested example. It is preferable
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that the basins of attraction for the zeros have as large as possible unvaried con-
tiguous areas, separated by the boundaries that have (approximately) straight-line
form. As small as possible blobs and fractals on the boundaries also point to good
convergence properties.

To demonstrate the dynamic study of two iterative methods for finding simple
zeros, we give three examples. In all examples we have used an equidistant lattice
made of 360 000 points, that is, the resolution is 600 × 600, the permitted number
of iterations is IT = 40, and the stopping criterion has been given by |zk − α| <
10−6 = τ.

We emphasize that the dynamic study by basins of attraction is most frequently
used in comparative study of different methods of the same order of convergence.
Since the main goal of this section is only the presentation of a graphical method for
the analysis of the quality of particular methods, any comparative study is beyond
our consideration.

We have considered the well-known Halley’s method of the third order

xk+1 = xk −
f(xk)

f ′(xk)
· 1

1− f ′′(xk)f(xk)

2f ′(xk)2

(k = 0, 1, 2, . . .),(3.6)

and the three-point-method of order eight

yk = xk −
f(xk)

f ′(xk)
,

zk = yk −
1

1− 2f(yk)
f(xk)

· f(yk)

f ′(xk)
,

xk+1 = zk −
f [zk, yk]

f [zk, xk]
· f(zk)

2f [zk, yk]− f [zk, xk]

(k = 0, 1, 2, . . .),(3.7)

proposed by Sharma and Arora in [40]. It is not difficult to show (see [41]) that
this method is a special case of the family of three-point methods constructed in
[42]. An extensive investigation presented in [43] and [41] shown that the method
(3.7) possesses the best convergence characteristics among three-point methods of
the (maximal) order eight in the class of algebraic polynomials.

Example 3.4. We have plotted two basins of attraction applying the methods
(3.6) and (3.7) to the polynomial

P1(z) = z5 − 1

and the square R = {z = x + iy | − 3 6 x 6 3,−3 6 y 6 3}. The basins are given
in Figures 3.4 and Figure 3.5.
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Fig. 3.4: Halley’s method (3.6) Fig. 3.5: Three-point method (3.7)

Plotting these two basins of attraction we have recorded the following useful
data:

Halley’s method (3.6) Three-point method (3.7)
divergent point 12 21
average number of iterations 5.20 3.45
CPU time (in sec) 58.16 35.37

According to the above data, we conclude that both methods diverge for less than
0.006% starting points, which is rather satisfactory. The three-point method (3.7)
reaches the stopping criterion using only 3.45 iterations (in average) against 5.30 for
Halley’s method and consumes 35.37 seconds for all 360 000 starting points, which
is considerably less than Halley’s method (58.16 seconds). Regarding the shapes
of basins, we observe that in both cases particular basins are of large unvaried
size. However, the basins of Halley’s method (3.6) has a mild advantage since their
boundaries are almost straight lines and contain only a few small blobs, while the
boundaries of basins of the method (3.7) have not only larger blobs but also fractal
parts.

Example 3.5. We have plotted the basin of attraction for the method (3.7) applied
to the polynomial

P2(z) = z15 − 1.94409z14 − 1.89382z13 − 0.00444z12 − 0.51467z11 − 0.77406z10

−1.80464z9 + 1.18177z8 + 0.36718z7 + 1.31631z6 − 1.061788z5

+1.43835z41.86766z3 + 0.53726z2 + 1.72913z − 0.08069,

whose zeros are contained in the square R = {z = x+iy | −4 6 x 6 4,−4 6 y 6 4}.
This polynomial has random coefficients (except the leading coefficient) belonging
to the interval [−2, 2].



226 I. Petković and -D. Herceg

Fig. 3.6: The basins of attraction for the method (3.7) applied to P2(z).

The basin of attraction for all 15 zeros is presented in Figure 3.6. Small circles
mark the location of zeros of the polynomial P2(z). Considering all 360 000 points
we have recorded:

� 0 divergent points,

� the average number of iterations = 6.44,

� the CPU time = 298.8 sec.

The fact that the number of divergent points is 0 points to the global conver-
gence of the method (3.7). However, the boundaries of particular basins are not
straight lines but strips (corresponding to some other zeros). This undesirable phe-
nomenon is typical for random polynomials of a high degree, which can lead to
certain problems when choosing initial approximations.

Example 3.6. The three-point method (3.7) has been applied to the polynomial

P3(z) =
13∏
m=1

(z −m).

of Wilkinson’s type. It is well-known that polynomials of this form are ill-conditioned,
causing that many root-finding methods work with big efforts in solving this class
of polynomials. However, the applied method (3.7) showed very good convergence
behavior, which is evident from the basins of attraction presented in Figure 3.7:
particular basins have large unvaried contiguous areas with regular boundaries free
of fractal parts and with very small blobs. The associated data are given below:
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� 0 divergent points (excellent outcome),

� the average iteration = 4.69,

� the CPU time = 422.7 sec.

Fig. 3.7: The basins of attraction for the method (3.7) applied to P3(z).

3.5. On a new three-point weighted method for simple zeros

We start from three-point iterative scheme

N(xk) =
f(xk)

f ′(xk)
,

yk = xk −N(xk),

zk = yk − ukH(uk)N(xk),

xk+1 = zk − wk(2wk + 1)P (uk)Q(vk)N(xk),

(3.8)

where

uk =
f(yk)

f(xk)
, vk =

f(zk)

f(yk)
, wk = ukvk.

We omit the iteration index k and define the errors

ε = x− α, εy = y − α, εz = z − α, ε̂ = x̂− α,

where x̂ is a new approximation xk+1. Introduce

cr =
f (r)(α)

r!f ′(α)
(r = 1, 2, . . .).



228 I. Petković and -D. Herceg

We will use the following development of the function f about the zero α

f(x) = f ′(α)
(

1 + c1ε+ c2ε
2 + c3ε

3 + c4ε
4 + c5ε

5 + c6ε
6 + c7ε

7 + c8ε
8 +O(ε9)

)
,

and a program in Mathematica. As usual, in finding the weight functions H, P
and Q, we represent these functions by their Taylor’s series at the neighborhood of
u = 0 (for H and P ), and v = 0 (for Q):

H(u) = H(0) +H ′(0)u+
H ′′(0)

2
u2 +

H ′′′(0)

6
u3 + · · · ,

P (u) = P (0) + P ′(0)u+
P ′′(0)

2
u2 +

P ′′′(0)

6
u3 + · · · ,

Q(v) = Q(0) +Q′(0)v +
Q′′(0)

2
v2 +

Q′′′(0)

6
v3 + · · · .

The coefficients of Taylor’s developments of the weight functions P and Q are
determined using an interactive approach by combining the program realized in
Mathematica (two parts) and the annihilation of coefficients standing at ε of lower
degree. For simplicity, we write H0 = H(0), H1 = H ′(0), Q3 = Q′′′(0), etc, and

fa = f ′(α), fx = f(x), fy = f(y), fz = f(z), fx1 = f ′(x), newt = f(x)/f ′(x),

e = ε, ey = εy, ez = εz, e1 = ε̂.

PART I (Mathematica)

fxx = 1+c1*e+c2*e^2+c3*e^3+c4*e^4 +c5*e^5+c6*e^6+c7*e^7+ c8*e^8;

fx = fa*e*fxx; fx1 = D[fx, e]; newt = Series[fx/fx1,{e, 0, 8}];
ey = e - newt; fy = fa*ey (1+1*ey+2*ey^2+c3*ey^3+c4*ey^4);

u = fy*Series[1/fx, {e, 0, 8}];
H = H0+H1*u+H2/2*u^2+H3/6*u^3;

ez = Series[ey - u*newt*H // FullSimplify, {e, 0, 8}]

This program gives

ez = (c1 − c1H0)e2 + (−2c2(−1 +H0) + c21(−2 + 4H0 −H1))e3 +O(e4)

To annihilate coefficients by e2 and e3, it is necessary and sufficient to take

H0 = 1, H1 = 2, H2 and H3 arbitrary,

which gives
ez = (−c1c2 + c31(5−H2/2))e4 +O(e5).

The part II of the program uses previously found entries and serves for finding
additional conditions which provide optimal order eight.
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PART II - CONTINUATION (Mathematica)

fz = fa*ez*(1+c1*ez+c2*ez^2); v = fz*Series[1/fy,{e, 0, 8}];
P = P0+P1*u+P2/2*u^2+P3/6*u^3;

Q = Q0+Q1*v;

e1 = Series[ez-u*v*P*G*(2u*v+1)*newt,{e,0,8}]//FullSimplify

The error ε̂ = x̂− α (= e1) is given in the form

ε1 =

8∑
r=4

Trε
r +O

(
ε9
)

From the conditions T4 = 0, T5 = 0, T6 = 0, T7 = 0, we find the following relations
for finding the required coefficients:

H(0) = 1, H ′(0) = 2,

P ′(0) = 2P (0), P ′′(0) = P (0)(2 +H ′′(0)), P ′′′(0) = P (0)(H ′′(0) + 6H ′′(0)− 24),

Q(0) = Q′(0) =
1

P (0)
.

A natural choice P (0) = 1 gives

H(0) = 1, H(0) = 2,

P (0) = 1, P ′(0) = 2, P ′′(0) = 2 +H ′′(0), p′′′(0) = H ′′′(0) + 6H ′(0)− 24,(3.9)

Q(0) = Q′(0) = 1.

In this way we have proved the following assertion.

Theorem 3.2. If the initial approximation x0 is sufficiently close to the zero
α of f and the conditions (3.9) are valid, then the order of the three-point family
(3.8) is eight.

Kung-Traub hypotheses [44] assert that as high as possible order of convergence
of the n-point method that uses n+ 1 function evaluations per iteration is 2n. Such
methods are called optimal methods. Therefore, according to this hypothesis and
Theorem 3.2, the three-point iterative method (3.8) is optimal.

3.6. Iterative method for the inclusion of a simple complex zero

R. E. Moore, the founder of Interval analysis, introduced in his monograph [45]
the interval version of Newton’s method, often called Moore-Newton’s method. Let
f be a differentiable function on a real interval Ω and let X0 = [ x0, x0] ⊂ Ω be
a real interval containing a simple real zero η of f. An interval extension F ′(X)
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over the interval X is a real interval such that F ′(X) ⊇ f̄(X) = {x |x ∈ X}.
Moore-Newton’s method is defined by

Xk+1 =
{
m(Xk)− m(Xk)

F ′(Xk)

}
∩Xk (k = 0, 1, . . .),(3.10)

where m(Xk) = 1
2

(
[ xk, xk]

)
is the midpoint of the interval Xk. It is obvious that

this method will be defined if 0 /∈ F ′(Xk) in every iteration.

Moore-Newton’s method (3.10) can be applied only for enclosing real zeros,
which is a serious disadvantage. Here we present two simple algorithms for finding
a simple complex zero ζ of a given algebraic polynomial P that produces a disk
{c; r} := {z | |z − c| 6 r} in the complex plane such that |c − ζ| < r. In this
way, these methods provide the upper error bound (given by the radius r) of the
approximation c to the desired complex zero ζ. Recall that the inversion of a disk
{c; r} not containing 0 (that is, |c| > r holds) is defined in [46] by

{c; r}−1 =
{ c̄

|c|2 − r2
;

r

|c|2 − r2
}
.

Finding initial approximation to the sought zero of a function, sufficiently close
to this zero to provide guaranteed convergence, is an equally important task as the
construction of an efficient iterative method. This topic is beyond the main subject
of this paper and it will not be considered here. Instead, we cite the paper [47]
and the master thesis [48] where a composed search-subdividing algorithm for the
localization of all complex zeros of algebraic polynomials has been presented with
the help of CAS Mathematica. This algorithm produces arbitrary small inclusion
squares, each of which contains one and only one zero, and calculate the multiplicity
of these zeros. It can be of benefit for iterative methods implemented in ordinary
complex arithmetic and complex interval arithmetic, discussed in what follows.

Algorithm 1. Let Z0 = {a;R} = {z0; ρ} be the disk that contains one and
only one zero ζ of a polynomial P of degree n. The following iterative method was
proposed in [49]:

Zk+1 = zk −
1

{ck; ρk}
=

{
zk −

c̄k
|ck|2 − ρ2k

;
ρk

|ck|2 − ρ2k

}
(k = 0, 1, . . .),(3.11)

ck =
P ′(zk)

P (zk)
− (n− 1)(z̄k − ā)

R2 − |zk − a|2
, ρk =

(n− 1)R

R2 − |zk − a|2
, (k > 0).(3.12)

The stopping criterion was given by |P (ck)| < τ , where τ is, say, 10−16 or 10−33.

Considering the formulas (3.11) and (3.12) we observe two drawbacks of Algo-
rithm 1. To avoid the division by a zero-interval in (3.11) (which produces a disk of
infinity large radius) and negative radius (formula (3.12)), it is necessary to satisfy
two conditions in each iteration

(i) |ck| > ρk, (ii) R > |zk − a|.
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Regarding (i) we conclude that ck must be reasonably large and hence, |P (zk)|
should be rather small. Therefore, zk should be a very good approximation to the
zero ζ. Most frequently this is not the case at the beginning of any iterative process
so that the first iterations are very critical. To resolve this inconvenient situation
the only way is to choose the center a of the initial inclusion disk {a;R} very close
to the sought zero ζ, which is rather strong requirement (the first drawback). From
this discussion there follows zk ≈ a so that ρk ≈ (n− 1)/R. The choice of small R
increases ρk (see (3.12)) so that the validity of inequality (i) may be endangered.
Therefore, contrary to the usual request for as small as possible radius of initial
inclusion disk, in the case of Algorithm 1 the radius R should be relatively large.
Consequently, in this way the inequality (ii) will be ensured. On the other hand,
a large R can lead to an undesired enclosure of other zeros of P (next to the zero
ζ). It follows that the choice of R has to be refined, sometimes by trial and error
method (the second drawback).

Example 3.7. Using Algorithm 1, determine sufficiently small disk that contains
the zero ζ = 2i of the polynomial

P (z) = z9 + 3zt8 − 3z7 − 9z6 + 3z5 + 9z4 + 99z3 + 297z2 − 100z − 300,

starting from the inclusion disk Z0 = {0.1 + 2.1i; 1.7} and setting τ = 10−33. The
locations of all zeros of P and initial disks Z0 (containing the sought zero ζ = 2i)
are displayed in Figure 3.8.

Fig. 3.8: The locations of all zeros of P and initial disks Z0

We have used CAS Mathematica and multi-precision arithmetic (40 significant
decimal digits). The following inclusion disks have been obtained:

Z1 = {0.00473 + 1.97173 i ; 0.0856}
Z2 = {−0.00128 + 2.00249 i ; 0.00456 . . .}
Z3 = {−1.7× 10−5 + 2.00000697 i ; 3.70× 10−5}
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Z4 = {−4.33× 10−10 + 1.99999999931 i ; 1.6× 10−9}
Z5 = {1.25× 10−18 + 2.00000000000000000096 i ; 3.11× 10−18}
Z6 = {5.95× 10−36 + 2. 0000000000 · · · 0000000000︸ ︷︷ ︸

thirty six 0

74 i ; 1.18× 10−35}

Algorithm 2. We present a combined method for approximate a simple zero
of a given polynomial. This method possesses a low computation cost since it uses
Newton’s method in ordinary complex arithmetic in all iterations except the last
one, where a very simple procedure is applied to provide the upper error bound
which is involved in the following theorem due to Laguerre (see, e.g., [25, pp. 466–
468]):

Theorem 3.3. Let z be an arbitrary complex number and let P be a given
algebraic polynomial. Then the disk D = {z;n|P (z)/P ′(z)|} contains at least one
zero of P.

The disk D is usually called Laguerre’s disk. As in the case of Algorithm 1,
Algorithm 2 also requires sufficiently good initial approximation z0 to the zero.

1◦ step: Starting from z0, apply Newton’s iteration

zk+1 = zk −
P (zk)

P ′(zk)

for k = 1, 2, ...,K, where K is the iteration index of the approximation zK that fulfils
the stopping criterion given in the form |P (zK)| < τ.

2◦ step: We use the last approximation zK obtained in the first step and, using
Laguerre’s disk defined in Theorem 3.3, calculate the inclusion disk

Zk =
{
z7;n

∣∣∣ P (z7)

P ′(z7)

∣∣∣}.
The upper error bound is determined by the radius r = n|P (zK)/P ′(zK)|.

Example 3.8. Using Algorithm 2, determine the inclusion disk for the zero ζ = 2i
of the polynomial P given in Example 3.7. In contrast to Algorithm 1, the initial
approximation z0 need not to be very close to ζ and we have chosen z0 = 0.2 + 2.3i.
As in Example 3.7, we have used CAS Mathematica, multi-precision arithmetic (40
significant decimal digits) and τ = 10−33. First, we have applied Newton’s method
until the fulfilment of the stopping criterion |P (zK)| < 10−33 and obtained

z1 = 0.11848 + 2.10232 i

z2 = 0.03978 + 2.00577 i

z3 = 0.00151 + 1.99709 i

z4 = −1.97× 10−5 + 2.0000106 i
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z5 = −9.04× 10−10 + 1.99999999933 i

z6 = 2.26× 10−18 + 1.99999999999999999983 i

z7 = −4.14× 10−37 + 1. 9999999999999999999999999999999999︸ ︷︷ ︸
thirty four 9

89 i.

Since |P (z7)| < 10−33 we have stopped Newton’s method and calculated the
radius

r = n
∣∣∣ P (z7)

P ′(z7)

∣∣∣ = 9.62× 10−35.

Hence, the inclusion disk containing the zero ζ = 2i is given by

Z7 = {−4.14×10−37+1. 9999999999999999999999999999999999︸ ︷︷ ︸
thirty four 9

89 i ; 9.62×10−35}.

Considering the results of Examples 3.7 and 3.8, we observe that the upper error
bounds are very small and of the same order. Algorithm 1 finished the iterative
process through 6 iterations, while Algorithm 2 requested one more. However, the
computational cost of Algorithm 2 is considerably less than the cost of Algorithm
1.
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