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CONVERGENCE OF S-ITERATIVE METHOD TO A SOLUTION
OF FREDHOLM INTEGRAL EQUATION AND DATA
DEPENDENCY
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Abstract. The convergence of normal S-iterative method to solution of a nonlinear
Fredholm integral equation with modified argument is established. The corresponding
data dependence result has also been proved. An example in support of the established
results is included in our analysis.

Key words: Fredholm equation, data dependency, Fixed-point theorem.

1. Introduction and Preliminaries

The past few decades have witnessed substantial developments in the field of
integral equations and their applications have arisen in many areas, ranging from
economics to engineering. Now it is an unquestionable fact that the theory of
iterative approximation of fixed points plays a significant role in recent progress
of integral equations and their applications. In this context, fixed point iterative
methods for solving integral equations have already gained a splendid boost over
the past few years (see, for example [1],[2],[4],[5],[7],[8],[16],[17],[19],[20]).
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686 Y. Atalan, F. Giirsoy and A. R. Khan

In 2011, Sahu [23] introduced a normal S-iterative method as follows:

(11) Tnt+1 = TyTH
Yn = (1 - gn) Tn +€nTxn7 necN
where X is an ambient space, T' is a self-map of X and {fn}zozo is a real sequence
in [0, 1] satisfying certain control condition(s).
It has been shown both analytically and numerically in [23] and [12] that the it-

erative method (1.1) converges faster than Picard [22], Mann [21], and Ishikawa [10]
iterative processes in the sense of Berinde [3] for the class of contraction mappings.

This iterative method, due to its simplicity and fastness, has attracted the atten-
tion of many researchers and has been examined in various settings (see [9],[11],[13],
[14],[15],[18],[24]).

In this paper, inspired by the above mentioned achievements of normal S-
iterative method (1.1), we will use it to show that normal S-iterative method (1.1)
converges strongly to the solution of the following integral equation which has been
considered in [6]:

b
(1.2) a:(t):/K(Ls)~h(s,sc(s),x(a),x(b))ds+f(t), tela,b],

where K : [a,b] x [a,b] > R, h:[a,b] x R® - R and f, z: [a,b] — R.
Also we give a data dependence result for the solution of integral equation (1.2)
with the help of normal S-iterative method (1.1).

We need the following pair of known results:

Theorem 1.1. [6] Assume that the following conditions are satisfied:
(A1) K € C ([a,b] x [a,b]);
(A3) heC ([a,b] X R3);
(As) f, x € Cla,b];
(A4) there exist constants «, B, v > 0 such that
|h (s, u1,u2,u3) — h(s,v1,v2,v3)] < a|u; —v1| + B lug — va| + 7 |us — vs],
for all s € [a,b], u;, v; R, i =1,2,3;
(A5) Mg (o +B+7) (b—a) <1,
where My denotes a positive constant such that for all t, s € [a,b]
|K(tvs>| < MK-

Then the equation (1.2) has a unique solution x* € C'la,b], which can be obtained
by the successive approximations method starting with any element xo € C'[a,b].
Moreover, if x, is the n-th successive approrimation, then one has:

lon — 2] < (Mg (a4 B+7) (b—a)"
" T 1-Mg(a+B+7)(b-a)

'|.’E0—.’£1|.
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Lemma 1.1. [25] Let {8,},-, be a sequence of non negative numbers for which
one assumes there exists ng € N (set of natural numbers), such that for all n > ng

ﬁn+1 < (1 - Nn) ﬁn + HnYn,

where p, € (0,1), for alln € N, > p, = o0 and v, > 0, ¥Yn € N. Then the
n=0

following inequality holds:

0 <lim sup B, <lim sup 7.

n—oo n—oo

2. Main Results

Theorem 2.1. Assume that all the conditions (A1) — (As) in Theorem 1.1 are
fulfilled. Let {&,},—, be a real sequence in [0,1] satisfying > &, = oo. Then

n=0
equation (1.2) has a unique solution x* € C'la,b] and normal S-iterative method

(1.1) converges to x* with the following estimate:

Mg (a+B+7) (b—a)"™
e(I—Mx (a+B+7)(b—a)) ji_o &k

[€ns1 — 2" < l[zo — ™|

Proof. We consider the Banach space B = (C'[a, b], ||||), where ||-|| is the Cheby-
shev’s norm on C [a, b], defined by |||, = {sup|z (¢)| : t € [a,b]} . Let {z,},~, be
iterative sequence generated by Normal-S iteration method (1.1) for the operator
T : B — B defined by

b

(2.1) T(z(t) :/K(t,s)-h(s,x(s),x(a),x(b))ds—i—f(t),t6 [a,b].

a
We will show that x,, — x* as n — oc.
From (1.1), (2.1), and assumptions (A;) — (A4), we have that

[tnga () =2 (O] = T (yn () = T (2" ()]
b

/K(t,s). [ h (8, yn () yn (@) s yn (b))

A
—
\.(‘F

VA
-

>
—
uCIJ
<
3
—

VA
=
<
3
—

Q
~
N
3
—~
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lyn () — 2" (1)]

IN
—~
—
|
A}
3
-
3
—~
~
~—
|
*
—~
~
= =
+
o
3
~
—
&
3
~
—~~
~
~
I
N
—~~
8
*
~—
—~~
~~
=

IA
—
-
|
o/,
3
)
=
< s
—~
=
|
K
—
3
-

a o (5) = 2* (5)] + 8| (a) — a* (0]
o [ | e () ~ o (0) J

Now, by taking supremum in the above inequalities, we get

(2.2) [#n41 — 2" < Mk (a4 B+7) (b= a) [lyn — =7,

and

(2.3) [yn — 2" < [1 =& (1 = Mk (a4 B +7) (b—a)] lzn — 27,
respectively.

Combining (2.2) with (2.3), we obtain

(24)  lzap — a7
< Mg (a+B+7)(b—a)[l =& (1 - Mg (a+B+7)(0—a)]|z, — 2.

Thus, by induction, we get

|zt —2*[| < Jlzo — 2*|| [Mk (a+ B+7) (b—a)]"*!

(2.5) ><H [1—& (1= Mg (a+B+7)(b—a)).
Since & € [0,1] for all k € N, the assumption (As) yields
(2.6) & (1—Mg(a+B+7)(b—a) <l

From the classical analysis, we know that 1 —z < e™* for all « € [0,1]. Hence by
utilizing this fact with (2.6) in (2.5), we obtain

(2.7) |zni1 =2l < o — 2" [Mk (a+ B+7) (b—a)]""
w e~ (1= Mic(a+B+7)(b=0)) Sii— €

which yields lim, o |2, —2*|| = 0. O

We now prove a closeness of solutions of integral equation (1.2) with the help of the
normal-S iterative method (1.1).

We consider the following equation:

b
(2.8) f(f(t)):/K(t s)-h(s,2(s),2(a),z(b))ds+g(t),t € [a,b],

a
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where K : [a,b] x [a,b] = R, h: [a,b] x R®* > R and g : [a,b] — R.

Now, we define the following normal-S iterative methods associated with 7" in
(2.1) and T in (2.8), respectively:

xo € C'la,b],

tst = K (65) 150 (5) 5 (0) (D) s+ £ 1)
Yn = (1i§n)xn
+&n [ K (t,8) - h(s,2 (8),2n (a) ,zn (b)) ds+ f(t),t € [a,b] ,n €N,
(2.9) ’
and
Zo € C'la,b],
Tt = [ K (1,5) B (5,50 (5), 5 (@), T (D) ds + (1)
o= (1)
& [ K (t,8) - B (8,Fn (5),%n (@), Fn (b)) ds+ g (t),t € [a,b],n €N,
(2.10) ’

where {&,},7 is areal sequence in [0,1], K : [a, b] x [a,b] — R, h, h:fa,b)xR3 - R
and f,g: [a,b] = R.

Theorem 2.2. Consider the sequences {x,},_, and {Z,}.—, generated by (2.9)
and (2.10), respectively, with the real sequence {&,},~ yin [0,1] satisfying % <¢, for
all n € N. Assume that:

(i) all the conditions of Theorem 2.1 hold and x* and T* are solutions of equa-
tions (2.1) and (2.8), respectively;

(i) there exist non negative constants 1 and €2 such that

‘h(&u,v,w) —h(s,u,v,w)| <egand|f(t) —g(t)] <eq, forallt,s € [a,b], u,v,w €

If the sequence {T,},-, converge to T*, then we have

% ~x 3[MK(b7a)€1 +€2}
(211) S S A R [}

Proof. Using (1.1), (2.1), (2.8)-(2.10), and assumptions (A;)-(A4) and (ii), we ob-

tain

[Tt (8) = Fs (O] = T () () = T () (1
b

/K(t,sm(s,yn (5)m (@) 9 () ds + F ()

a
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[Yn (1)

— Un (1)

IN

IN

IN

IN
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Yn (@), Yn (b)) ds — g ()

/Kts[fzﬁﬁﬁﬁyggﬂﬁ

+f(t) =g @)
(st |
- S, Yn \S),Yn Q) Yn
M?/ +‘@@m@)m@»%@)‘ -
a 1 (8, (8) , U (@) , T (b))
+1f (@) —g(t)]

b
& [y (5) = G (3)
”“/<+5%m%@mm+vmww@um+m)“

+€&2

alyn (s) = yn ()]

Mie +81yn (@) = Yn (@) + 7 |yn (b) — n (b)] )ds

EldS + €9,

—é
N =
p\@ —

T (2,) (t) = T (32) (¢)

Rk
rendi | +’@@i@ﬁﬁwﬂﬁw»‘ o
© ] 5,70 (9), 7 (@), 7 )

(
« |xn (S) - (En (S)|
JrS”JMK/( +6 |an (@) — Ty (a)| + 7 |20 (b) — 2y (D)] + &1 >d5

+€n52 .

Now, by taking supremum in the above inequalities, we get

(2.12)

lTni1 = Tpyall < Mi(a+B+7)(b—a)llyn — Unll

+Mg (b—a)el + €2,
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and

(213)  lyn —nll £ =& (10— Mg (a+B+7)(b—a)]lzn -z
+&, My (b — CL) €1+ &nea,

respectively.

Combining (2.12) with (2.13) and using assumptions (As) and 3 < &, for all
n € N in the resulting inequality, we get

[znt1 = Tppall < [1=& (11— Mg (a+B+7)(b—a)]llzn —Zn
+€nMK (b - a’) €1+ 57152 + 2£nMK (b - a) €1+ 2§n€2
= [1-&(0—-Mg(a+B+7)(b—a))]llz, —Zn|
+&n (1= Mg (a+B+7) (b—a))
3[MK (b—a)sl +52]
214) T Mg (01BN 0 —a)
Denote by
ﬂn = ||xn - /j}n” 5
Hn = gn(l_MK(a"_ﬂ'f"Y)(b_a))e(071)7

3[MK(b7a)€1 +€2]
1—Mg(a+B+7)(b—a) ~

Tn =

(o)
The assumption % < &, for all n € N implies Y &, = co. Now it can be easily
n=0
seen that (2.14) satisfies all the conditions of Lemma 1.1. Hence it follows by its
conclusion that

. - . 3[Mk (b—a)e; + €2
0 <lim sup ||z, — Z,| <lim su .
< fim sup | | nvoo L= M (@ + B+7) (b - a)

By (i), we have that lim,,_ oo z, = *. Using this fact and the assumption
lim,, o0 T, = T, we get

. o~ 3[Mg (b—a)er + €3]
o™ =27 < 1I-Mg(a+B+7)(b-a)

O

Remark 2.1. The result given in Theorem 2.2 relate the solutions of equations (2.1) and
(2.8) in the sense that if f is close to g and h is close to l~z, then not only the solutions
of equations (2.1) and (2.8) are close to each other, but also depend continuously on the
functions involved therein. Further, if e — 0 and €2 — 0, then the solution z* of equation
(2.1) tends the solution Z* of the equation (2.8).
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Example 2.1. Consider the following integral equation

t4+e !

]ds—l— ,t€0,1].

/13t—25 {s—si;m:(s) +$(O)—;—x(1)

where K € C'([0,1] x [0,1]), K (t,s) = 2225 h € C ([0,1] x R®), h(s,u,v,w) = =524 4
vw feCo1], f(t)= t+§7t, z € C'[0,1] and its perturbed integral equation

t+2et
3 bl

-5+ ]d+ efo0,1],

5 2 3 7

1
E(t):/gti% {sfsini(s) +5(0)+5(1)
0
where K€€ €01 [0.1), K (6) = %52 £ € € (10,1 B), b (s, 0,0) = =522
vw g1 1 geCo], g(t) =2 FeCo,1].
Define the operator 7' : C'[0,1] — C'[0,1] by

1

/3t—25 {s—sinx(s)_i_x(())-i-a:(l) t+et

a + 716 (),1
2 3 5 3
0

We now show that the operator T is a contraction with contractivity factor %. Indeed,

T (21 (1)) = T (2 (1))]
/ 3t—2s [s—sinx1(s)  z1(0)+x1(1) s—sinz2(s) x2(0)+z2 (1)
- / 5 | 2 + 3 - 2 - 3 } ds

- 0/1‘315_25 s—sir;:cl (s) n 1 (0)-!)’—:1’1 (1) _ 5—512172(5) _Z2 (O);—m (1)’ds
. /1‘315 — 25 [% lsin a1 (s) — sinza (5)] + % |1 (0) — 22 (0)] + % |x1 (1) — 2 (l)l] ds|.
0

Now using the Chebyshev norm, we obtain

3t — 2s
5

|Tz1 — Tx2|] < sup
t,5€[0,1]

11 1
44 Z)(1= —
(2+3+3>( 0) ||z1 — 2|

19 ler — 22|l

One can easily show on the same lines as above that the mapping T : C [0,1] — C[0,1]
defined by

. —s+ | ds+ —=—— te0,1],

1
~ /3t—2s s—sinf(s)+f(0)+5(1) 1 t+2e"
2 3 7 3
0

is also a contraction with contractivity factor

10
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Since all the conditions of Theorem 2.1 are satisfied by the integral equations (2.1) and

(2.8) so by its conclusion, normal S-iterative method (1.1) converges to unique solution z*
and z*, respectively in C'[0, 1].

Now we have the following estimates:

K =252 < Mtse o),
1 1
|h (s,u,v,w) — k (s,u,v,w)| = s—?‘ S?zel,forallse[0,1],u,v,w€R,
t+et—t—2e" et 1
t)—g(t) = = — < - = 1].
R C<locaeny

In view of the above estimates, all the conditions of Theorem 2.2 are satisfied and hence
from (2.11), we have

10.
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-7 < 2=
ot -0 < o
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Abstract. Using the domination parameters of Cayley graphs constructed out of Z, x
Zom, where m € {p®,p*q®,p*¢®r7},p,q,7 are distinct prime numbers and «, 3,7 are
positive integers, in this paper we have discussed the total and connected domination
number and diameter of these Cayley graphs.
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1. Introduction and Preliminaries

Let (G,-) be a group and S = S~! be a non empty subset of G not containing
the identity element e of G. The simple graph I' whose vertex set V(I') = G
and edge set E(I') = {{v,vs}lv € V(I'),s € S} is called the Cayley graph of G
corresponding to the set S and is denoted by Cay(G,S). By Z, we denote the
cyclic group of order n. For any vertex v € V(I'), the open neighborhood of v is
the set N(v) = {u € V(I')[{u,v} € EI')} and the closed neighborhood of v is
the set N[v] = N(v) U{v}. For a set X C V(I'), the open neighborhood of X is
N(X) = Uyex N(v) and the closed neighborhood of X is N[X]| = N(X)U X [6].
A set D C V(') is said to be a dominating set if N[D] = V(T') or equivalently,
every vertex in V(I')\D is adjacent to at least one vertex in D. The domination
number y(I') is the minimum cardinality of a dominating set in I'. A dominating
set with cardinality v(T") is called a y-set. A set T C V(I') is said to be a total
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dominating set it N(T) = V(I') or equivalently, every vertex in V(I') is adjacent
to a vertex in T. The total domination number ~;(T') is the minimum cardinality
of a total dominating set in I'. A total dominating set with cardinality (') is
called a ~;-set. A graph I is said to be connected graph if there is at least one path
between every pair of vertices in I'. The connected components of a graph are its
maximal connected subgraphs. A dominating set D of I is said to be a connected
dominating set if the induced subgraph generated by D is connected. The minimum
cardinality of a connected dominating set of I' is called the connected domination
number of T" and is denoted by ~.(T"), and the corresponding set is denoted by ~.-set
of T'. Let X\ be the length of the longest sequence of consecutive integers in Z,,,
each of which shares a prime factor with m. Dominating sets were defined by Berge
and Ore [1, 16]. The concept of total domination in graphs was initiated by E.J.
Cockayne and R.W. Dows and S.T. Hedetniemi [4]. S.T Hedetniemi, R.C. Laskar[7]
introduced the connected domination number in graphs. Madhavi [10] present the
concept of Euler totient Cayley graphs and their domination parameters studied by
Uma Maheswary and B. Maheswary [11]. Also some properties of direct product
graphs of Cayley graphs with arithmetic graphs discussed by Uma Maheswary and
B. Maheswary [13], and their domination parameters studied by Uma Maheswary
and B. Maheswary and M. Manjuri [12, 14, 15].

A walk is a sequence of pairwise adjacent vertices of a graph. A path is a walk
in which no vertex is repeated. The distance between two vertices of a graph is the
number of edges of the shortest path between them. The diameter of a connected
graph is the maximum distance between any two vertices of the graph. According
to this definition, the diameter of a disconnected graph is infinite, but if we consider
the diameter as the maximum finite shortest path length in the graph, this is the
same as the largest of diameters of the graph’s connected components. So in this
paper by diameter of a disconnected graph we mean the largest diameter of its
connected components. Let v, w € V(T') then the distance between v, w is denoted
by d(v,w) and the diameter of I" is denoted by diam(T") [2, 3].

Here we study the total and connected dominating sets and diameter of Cayley
graphs constructed out of Z, X Z,, where m € {p™, p°¢%, p*¢®r7}, p, ¢, r are distinct
prime numbers and «, 3,7 are positive integers. The domination number of these
graphs are presented in [8] and we present some of the results without proofs .

Theorem 1.1. LetT' = Cay(Z, X Zpo, D) where & = ¢, X @pa. Then
1) v(T') =2 where p=2 and a = 1.
2) v(T') =4 where p=2 and o > 2.
3) v(T') =3 where p >3 and a > 1.

Theorem 1.2. Let I' = Cay(Zy X Zyogs, ®) where @ = @, X ©pags, p,q > 2 and
a,B > 1. Then ~(T) is given by Table 1.1.

Theorem 1.3. Let I' = Cay(Zy, X Zyoo,+,P) where ® = @, X Qpogspm, P, ¢, > 2
and o, B,y > 1. Then v(T') is given by Table 1.2.
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Table 1.1: v(Cay(Zp X Zpags, P))

r ~(T) Comments
Cay(Zy X Zpq, @) 4
Cay(Zy X Lgays, ®) 8 (o, B) # (1,1)
CaY(ZP X ZQ”pﬁa q)) 6 (O[7B) 7é (17 1)
Cay(Zy X Zyogs, P) 5 (o, B) # (1,1)
p=3,9q250rq=3,p=25
Cay(Zy X Lypogs, P) 4 (o, B) # (1,1)
pP;q =95

Table 1.2: v(Cay(Zy X Zyogo,+, P))

r ~(T) Comments
Cay(Z2 X qur, (I)) 8
Cay(Z, X Zopy, P) 8
Cay(Zy X Lgogp,, P) 12 a#lor#lory#1
Cay(Zy X Loopsy~, P) 10 aFlorf#lory+#1
p=3,r>5orr=3,p=>5
Cay(Zp X Ligopsy~, P) 8 a#lor#lory#1
p,r>5
Cay(Zy X Lyogor,®) | 6 <y(I') <8 a,B,7v>1
one of the prime factors is 3
Cay(Zy X Lyo sy, P) 5 p,qg,r>5and o, B,y > 1
Let p1,p2, ..., pr be consecutive prime numbers, o, a1, o, ..., ax are positive inte-
gers and ® = ¢y X Poaplipe2  pok-

Theorem 1.4. Let I' = Cay(Zy x Liga o1 po2.
Then v(T') > 4k + 4.

..p:k7¢)), where py = 3 and a > 2.

For p = 2, the Cayley graph Cay(Z, x Z,,,®), where ® = ¢, X @, and m
is a multiple of 2, is a disconnected graph with two connected components, say
I'y and T'y, where V(I'1) = {(1,v)|v is odd} U {(0,v)|v is even} and V(I'y) =
{(0,v)|v is odd} U {(1,v)|v is even}. Since every Cayley graph Cay(G,S) is |S|-
regular (see for example [5]), we find that T is |®|-regular.

Let X be a set of consecutive integers in Z,, such that for every x € X, we have
ged(z,m) > 1. In this case we call X; a consecutive set. We use X[ to show that
the consecutive set X; has k elements.

Let I' = Cay(Z, X Zy,,®). In Section 2. we calculate v;(I") and ~.(I') and

diam(T') where m = p®. We consider the case m = p®¢” in Section 3. and the case
m = p®¢°r7 is considered in Section 4.
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2. Total and connected domination number and diameter of
Cay(Zy x Lpo, P)

Let p be a prime number, a a positive integer and ® = ¢, X ¢pa. In this section, we
obtain the total and connected domination number and diameter of I' = Cay(Z, X
Lpe, ®).

Theorem 2.1. Let ' = Cay(Z, X Zpo,®). Then
1) diam(T') = 1 where p =2 and o = 1.

2) diam(I') =2 wherep=2,a >2 orp>3,a > 1.

Proof. 1) In this case I' = 2K, and clearly the diameter of T is 1.

2) Let p = 2 and « > 2. Then T is a disconnected graph with two connected
components, say I'y and I's, where V(I'1) = {(1,v)|v is odd} U {(0,v)|v is even}
and V(T'2) = {(0,v)|v is odd} U {(1,v)|v is even}.

Let (u,v), (u',v") € V(I'1). Then we have the following two possibilities:

i)u=u and v # v . Obviously (u,v) and (u,v") are not adjacent. This implies
that d((u,v),(u ,v)) > 2. On the other hand the vertex (v — 1,v — 1) is adjacent
to both vertices. So d((u,v), (u ,v)) = 2.

1) u # v and v # v'. We know that u —u' € 5 and v — v’ is an odd integer.
Since all of the odd integers in Zoo to be included into a (ga, hence v — v € @aa.
Thus (u,v) is adjacent to (u ,v ). So d((u,v), (u ,v)) = 1.

Since (u,v) and (u',v") are arbitrary vertices of I', hence the diameter of I'; is
2. Similarly the diameter of I'y is 2.

Let p > 3 and o > 1. Then T is connected graph where

V() ={(0,0),...,(0,p* = 1),...,(p—1,0),...,(p—1,p* = 1)}.

Assume that (u,v) and (u',v") are arbitrary vertices of I'. Now we have the following
three possibilities:

i)u=1u and v # v . Since (u,v) and (u',v) are not adjacent d((u,v), (u,v")) >
2. Let v and v' be multiple of p. Note that 0 is multiple of p. Then (u—1,p—1)
is adjacent to both (u,v) and (u',v"). Let v and v" be non-multiple of p. Then
(u—1,p) is common neighbor of (u,v) and (u’,v"). Now let one of either v or v is
multiple of p. Without loss of generality let v is multiple of p and v s non-multiple

of p. Suppose that v and v are both even or odd. Then (u—1, ”Jg” ) is adjacent

to both (u,v) and (u',v'). Since v —v" is even so v — v is divisible by 2. Hence

’ ’
v+v v —v
2

vty _ 2u—v—v __ v—w 4
o = 2=t = P28 € e and also v — = 5" € ppa. Now assume

that one of either v or v’ is even. Then (u—1, 211,) is common neighbor of (u,v)
and (u ,v ). Therefore d((u,v), (u ,v)) = 2.

i) u #u and v =v'. In this case vertex (u”,v—1) where u” # u,u’ is adjacent
to both (u,v) and (u ,v ). Thus d((u,v), (u ,v)) = 2.

v —
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i) u#u and v £ 0. If (u,v) and (u',v") be adjacent then d((u,v), (u ,v")
1. If (u,v) and (u ,v ) be non-adjacent then similar to i) and i4), d((u,v), (u ,v )
2. Therefore in this case diam(I') =2. O

)=

Theorem 2.2. LetI' = Cay(Z, X Zpo,P). Then

1) %(T') =4 and v.(T") does not exist where p =2 and o > 1.

2) () =~.(T) =3 where p > 3 and o > 1.

Proof. 1) Let p=2 and o = 1. Then T" & 2K5, and obviously v(T") = 4.

Assume that p = 2 and « > 2. Then by [8, Theorem 2.1], v(I') = 4 and
D = {(0,0),(0,1),(1,0),(1,1)} is a y-set for I'. Since (0,0) and (0, 1) are adjacent
to (1,1) and (1,0), respectively. Hence D is a 7;-set for T'. Thus 7,(T") = 4.

In this case I' is a disconnected graph. Hence by the definition of connected
dominating set, v.-set does not exist for I'

2) Let p > 3 and o > 1. By [8, Theorem 2.1], we find that v(I') = 3 and
D = {(0,1),(1,0),(2,2)} is a y-set for I". Vertices of D dominate among themselves.
Therefore v (T) = ~.(I') =3. O

Example 2.1. Let I't = Cay(Z2 X Zgya, ®) and I'y = Cay(Zs X Zs, P), which are shown
in Figures 2.1 and 2.2, respectively. Clearly I'1 is a disconnected graph with two con-
nected components. Thus 7.-set does not exist for I'y. Also, total dominating set of
I'1, is {(0,0),(0,1),(1,0),(1,1)}. Note that total and connected dominating set of I'z is
{(0,1), (1,0), (2,2)}.

F1a. 2.1: The graph I'y = Cay(Zs x Zga, ®) and its total dominating set.
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(0,0)

(2, 2) e (0, 1)

F1G. 2.2: The graph I'y = Cay(Zs x Zs, ®) and its total and connected dominating
set.

3. Total and connected domination number and diameter of
Cay(Zp X Zpaq/37‘1))

Let p,q be prime numbers, «, 8 positive integers and ® = , X @,a,s. In this
section, we find the total and connected domination number and diameter of I' =
Cay(Zp X Lyogs, P).

Lemma 3.1. Let I' = Cay(Zy X Zgoys,®), where o, f > 1. Then diam(I") = 3.

Proof. T is a disconnected graph with two connected components, say I'y and I's,
where V(T'1) = {(1,v)|v is odd} U{(0,v)|v is even} and V(T'2) = {(0,v)|v is odd} U
{(1,v)|v is even}.

Let (u,v), (u',v") € V(I'1). Then we have the following two possibilities:

i) u=u and v #v. Clearly d((u,v),(u ,v")) > 2. Let v and v be multiple of
2q. Then (u —1,2¢ — 1) is common neighbor of (u,v) and (u ,v ). Also if v and v
be non-multiple of 2¢, then (u — 1,2¢q) is adjacent to both (u,v) and (u ,v ). Note
that a trivial observation shows that v and v’ have the same parity. Let v and v
be both multiple of one of the prime factors 2 or gq. Then the other prime factor
is adjacent to both v and v . Now let one of either v or v is odd and is multiple
of ¢. Then (u,v), (u',v") € {(1,v)|v is odd}. If L4 be even, then (u —1,%5%-) is
common neighbor of (u,v) and (u',v"). Also if - be odd, then (u — 1, *5%- + q)
is adjacent to both (u,v) and (u',v"). Let one of either v or v is multiple of 2¢. So

(u,v), (u',v") € {(0,v)|v is even}. If uy ¢ 2008, then (u — 1, %) is common

neighbor of (u,v) and (u',v"). Moreover if LAY be even, then (u — 1, # +q) is

adjacent to both (u,v) and (u’,v). Thus in this case d((u,v), (u,v)) = 2.
iWuu andv£v. Ifv—0v € ©Poage, then d((u,v), (', v

that v — v’ & Poays, since u # u and u,u' € Zo, we have no common neighbor

between (u,v) and (u',v'). This implies that d((u,v), (u',v")) > 3. Without loss of

)) = 1. Suppose
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generality assume that u = 0 and u = 1. Since v — v is an odd integer, we find
that v —v +2 € @Yaage. Thus (0,v)(1,v +1)(0,v + 2)(1,v") is a path of length 3
between (0,v) and (1,v). So diam(I';) = 3 and similarly diam(T'y) = 3. Therefore
diam(I') =3. O

Lemma 3.2. Let I' = Cay(Za X Zgays,®), where o, > 1. Then v.(I') does not
exist and (') = 8.

Proof. T is a disconnected graph with exactly two connected components I'y and I';
where V(I'1) = {(1,v)|v is odd} U{(0,v)|v is even} and V(I's) = {(0,v)|v is odd} U
{(1,v)|v is even}. Hence by the definition of connected dominating set, v.-set does
not exist for I.

Assume first that (o, 8) = (1,1). Then by [8, Proposition 3.1], A = {(0,0), (1,¢)}
and B = {(0,1),(1,¢+ 1)} dominate V(I';)\A and V(I'3)\ B, respectively. Hence
~(T') = 4. Vertices of A are not adjacent to each other and A is not dominated
by one vertex. Note that (1,1) and (0,¢q + 1) are adjacent to (0,0) and (1,q), re-
spectively. Hence 77 = {(0,0), (1,1),(1,q),(0,¢+ 1)} is a -set for I';. Similarly
Ty ={(0,1),(1,0),(0,q9),(1,q+ 1)} is a y;-set for I's. Therefore ~,(I") = 8.

Next consider the case where (o, 8) # (1,1). By [8, Lemma 3.2], v(I') = 8 and
D = {(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3)} is a y-set for I'. Vertices
(0,1),(0,0), (0,3),

(0,2) are adjacent to vertices (1,0), (1,1), (1, 2), (1, 3) respectively. Thus D becomes
a yi-set for T'. Hence v(T') =8. O

Proposition 3.1. Let ' = Cay(Z, X Zsa
3.

®), where o, f > 1. Then diam(T") =

phH

Proof. Let (u,v),(u',v") € V(I'). Then we have the following three possibilities:

i) u=u and v # v'. In this case d((u,v), (u ,v)) > 2. Suppose that v and v’
are both even or odd. Hence by case ¢) of Lemma 3.1, d((u,v), (v ,v)) = 2. Since
in Zg % ZQQPﬁ we have two connected components, Where in each of them, if u = '
then v and v are both even or odd.

Assume that one of either v or v’ is even. Wlthout loss of generality let v
is even and v is odd. Also let (v ,v ) where u # u, is common neighbor be-
tween (u,v), (u',v"). If v be even then v — v ¢ Poaps and if v" be odd then

’ "
v —v & @gaps. Thus we have no common neighbor between (u,v) and (u',v).
"

Hence d((u,v), (u',v")) > 3. We consider u' ,u" # u, if vand v be multiple of
p; then (u, v)( ! D= 2)(u",p —1)(u,v") is a path of length 3 between (u v) and
(u',v"). If v and v be non-multiple of p, then the path (u,v) (", p)(u” ,2v IS
is connected. If v be multiple of p and v be non-multiple of p, since v — v e goza

then (u,v)(u" , v )(u" ,v)(u',v") is a path of length 3 between (u,v) and (u',v").
i) u # v and v = v'. In this case (u”,v — 1) where v’ # u,u’ is common
neighbor of (u,v) and (u ,v ). Hence d((u,v), (u ,v)) = 2.
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i) u#u and v #£v. If (u,v) and (u',v") be adjacent then d((u,v), (u,v')) =
1. Now assume that (u,v) and (u ,v") are not adjacent. Let v and v" be both even
or odd. Then by case i) of Lemma 3.1, we know that there is a vertex (u",v"),
where u” # u, v and v is adjacent to v and v/, that is adjacent to both (u,v) and
(u',v). Thus d((u,v), (u',v")) = 2.

Now let one of either v or v" is even. Then by second paragraph of case i) and
also by using of case ii) of Lemma 3.1, we see that d((u,v), (u,v")) = 3. Therefore
diam(T') =3. O

Proposition 3.2. Let I' = Cay(Z, X Zgo,s, ®), where a, 3 > 1. Then

i) %(l') =6.
1) Yc(I') is given by Table 3.1.

Table 3.1: v.(Cay(Zy X Zgays, ®)) where o, 3 > 1.

r 7.(T") | Comments
Cay(Zy X Lnops, P) 7 p=3
Cay(Zy X Lgops, ) 6 p>5

Proof. i) Let (a, 8) = (1,1). By [8, Proposition 3.1], we see that v(I') = 4 and D =
{(0,0),(0,1),(1,p), (1,p+1)}is a y-set for T". Vertices of D are not adjacent to each
other. Hence (I') > 4. Let a vertex say (u,v) dominates all vertices of D. Then
(u,v) is adjacent to (0,0) hence (u,v) € ®. On the other hand (u,v) is adjacent
to (0,1) thus (u,v) ¢ ®, which is impossible. We conclude that ~(I') > 5. Since
vertex (p—1,p—1) is adjacent to vertices (0, 1), (1,p) and also vertex (p—1,2p—1)
is adjacent to vertices (0,0), (1,p+1). Hence T = {(0,0), (0,1), (1,p), (1,p+1), (p—
1,p—1),(p—1,2p—1)} is a y-set for T.

Finally (o, 8) # (1,1). In this case by [8, Proposition 3.3], ¥(I') = 6 and D' =
{(0,0),(0,1),(1,2),(1,3),(2,4),(2,5)} is a vy-set for I'. If p = 3, then we find that
vertices (0,0),(0,1),(1,3) are adjacent to vertices (2,5),(1,2),(2,4), respectively
and if p > 5 then vertices (0,0),(1,3),(2,4),(0,1),(1,2) are adjacent to vertices
(1,3),(2,4),(0,1),(1,2),(2,5), respectively. Thus D’ becomes a ~;-set for T

Note that both 7" and D’ are two ~v¢-sets for I', where o, 8 > 1. Therefore
7(I') = 6.

i1) By using a similar argument given in the proof of case i), we have v.(T") > 6.

Assume first that p = 3. Then the subgraphs generated by T" and D’ are discon-
nected. Since the subgraph generated by D’ has exactly three connected compo-
nents which are induced subgraphs generated by sets {(0,0), (2,5)}, {(0,1),(1,2)}
and {(1, 3), (2,4)}, also the subgraph generated by T has exactly two connected com-
ponents which are induced subgraphs generated by sets {(0,1), (1,p),(p—1,p—1)}
and {(0,0),(1,p+1),(p —1,2p — 1)}. We conclude that .(T") > 7.
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Note that vertex (0, p) is adjacent to vertices (p—1,p—1) and (1, p+1). Therefore
C ={(0,0),(0,1),(1,p),(1,p+1),(p—1,p—1),(p—1,2p—1),(0,p)} is a connected
dominating set for I’ with minimum cardinality. Therefore ~.(T) = 7.

Now suppose that p > 5. According to the proof of final part of case i), we
see that D’ becomes a connected dominating set for I' with minimum cardinality.
Therefore in this case v.(I') = 6. O

Proposition 3.3. LetI' = Cay(Zy X Zpays,®), where p,q > 3 and a, 3 > 1. Then
diam(T") = 2.

Proof. Let (u,v),(u,v") € V(T'). Then we have the following three possibilities:
i)u=1u and v # v . Hence d((u,v), (u,v)) > 2. Let v and v’ be multiple of
pq, then (u—1,pg—1) is common neighbor of (u,v) and (u ,v ). Let v,v € ppays,
then (u — 1,pq) is adjacent to both (/u,v) and (u',v"). Let v and v’ be multiple of
p, then ¢ is adjacent to b/oth vand v . Allso llet v and v be multiple of ¢, then p is
adjacent to both v and v. So d((u,v), (v ,v )) = 2. Let v is multiple of p and v is
multiple of ¢. If v and v’ be both even or odd, then we show that (u—1, %) is a
common neighbor of (u,v) and (u/7 v/). Assume that v = kpand v = k'q; k, k' € Z.
+v

Then v — &% = =% = @. Suppose that % & ppags and without loss

of generality assume kp;k 9 — k"p; k" € Z. Then kp — k'q = 2k"p which implies

kp— 2kﬂp = k/q. Hence (k_kz,k )p = ¢, which is impossible, since ¢ is not a multiple
of p. Hence % € Ppags, and v is adjacent to % Similarly v s adjacent to

L£v If one of either v or v’ be odd, then 2(v + v') is adjacent to both v and v’
Assume that v = kp is even and v o= k,q is odd. Without loss of generality let

2(v + v/) —v=v+20 =k"p. Then kp+ 2k'q = k" p. This implies (kzk_,k)p =gq,

which is impossible. Thus v is adjacent to 2(v 4+ v'). Similarly v" is adjacent to
2(v+wv ). Hence d((u,v), (u,v )) = 2. Let v be multiple of p or g and v € @pays.

Assume that v and v be both even or odd. If v — v € Ypags then it is easy to see

that “Jg” is adjacent to both v and v and if v—v & @pegs then v — v s adjacent
to both v and v". Now suppose that one of either v or v is odd. If v be multiple of
p then v,q is adjacent to both v and v If v be multiple of ¢ then v/p is adjacent
to both v and v". Moreover if v be multiple of pg then U,(p + q) is adjacent to both
v and v". Thus d((u,v), (u',v")) = 2. Let one of either v or v" is multiple of p or
q and other is multiple of pg. We know that +2 and —2 is adjacent to all of the
multiple of pg. Since by proof of [8, Proposition 3.1], A = 2, hence v is adjacent
to +2 or —2 or both of them. So we have a common neighbor between (u, v) and
(u',v). Therefore d((u,v), (u',v")) = 2.

i) u+#u and v =" In this case the vertex (u",v — 1) where v # u,u’, is a
common neighbor of (u,v) and (u',v"). Thus d((u,v), (u',v")) = 2.

#ii) u#u and v # v'. Hence by i) and i), d((u,v), (u',v")) = 2.

Therefore diam(I') = 2. O
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Proposition 3.4. LetI' = Cay(Zy X Zpays, ®), where p,q > 3 and o, 3 > 1. Then
(L) and 7.(T) is given by Table 3.2.

Table 3.2: v;(Cay(Zp X Zpogs,®)) = ve(Cay(Zy X Zyogs,P)) where p,q > 3 and
a,B>1.

r Y (1), ve (1) Comments
Cay(Zy X Loy, P) 5 one of the prime factors is 3
Cay(Zp X Zpaqg, D) 4 p.qg>5

Proof. Assume first that one of the prime factors is 3. Let («,5) = (1,1). Then
by [8, Proposition 3.1], v(I') = 4 and D = {(0,0),(0,1),(1,2'),(1,9")} is a y-set
for T', where x,2’ and y,y’ are consecutive integers in Z,,, each of which shares a
prime factor with pg where z’ is a multiple of p and v’ is a multiple of q. Note that
vertices of D are not adjacent to each other. Hence 7:(T") > 4. Also D is dominated
by {(2,2)}. Thus T = {(0,0),(0,1),(1,2'),(1,¥"),(2,2)} is a y-set and v.-set for
I.

The next case is where (o, 3) # (1,1). By [8, Table 1], 4(I') = 5 and D =
{(0,0),(0,1),(1,2),(2,3),(2,4)} is a y-set for I". Vertices (0,0),(2,4),(1,2),(0,1)
are adjacent to vertices (2,4), (1,2),(0,1), (2, 3), respectively. Hence D dominates
all vertices of I' and the subgraph generated by D is connected. Thus D becomes
a yi-set and ~y.-set for I'. Therefore v;(I") = 7.(T') = 5.

Finally assume that p,q > 5. Then by [8, Proposition 3.1, Table 1], v(I') = 4
and D = {(0,0),(1,1),(2,2),(3,3)} is a y-set for I'. Since p,q > 5 then vertices of
D dominate among themselves. Therefore v(I') = ~.(I') =4. O

As an immediate consequence of Lemma 3.2 and Propositions 3.2, 3.4, we have
the following theorem.

Theorem 3.1. Let I' = Cay(Zy X Zyoys,®), where p,q > 2 and o, > 1. Then
(L) and 7.(T) is given by Table 3.3.

Table 3.3: v¢(Cay(Zy X Zpays, ®)), ve(Cay(Zy X Zpeys, ®)) where a, 3 > 1.

r 7 (T) 7e(T) Comments
Cay(Z2 X Ligoys, ®) 8 does not exist
Cay(Z, X Zoeys, @) |6 7 p=3
y(Z X Z2ap/3 (I)) 6 6 P Z 5
Cay(Zy X Lyogs, P) 5 5 one of the prime factors is 3
Cay(Zyp X Lyogs,P) 4 4 P,q>5
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Example 3.1. The graph I' = Cay(Z2 X Zgy32,®), which is shown in Figure 3.1, is
a disconnected graph with two connected components, say 't and I's. Thus ~.-set
does not exist for I'. In this graph two sets 71 = {(0,0),(0,4),(1,1),(1,3)} and T> =
{(0,1),(0,3),(1,0),(1,4)} are ~y;-sets sets for I'y and I'z, respectively. Hence 7;(I") = 8.

F1G. 3.1: Two connected components of T' = Cay(Zza X Zgy3zz, @), left T'y, right 'y

Example 3.2. Let p = 3, ¢ = 5. Then total and connected dominating set of I' =
Cay(Zs x Z15,®), which is shown in Figure 3.2, is {(0,0), (0, 1), (1,6), (1, 10), (2,2)}.

F1G. 3.2: The graph ' = Cay(Z3 X Z15,®) and its total dominating set.

4. Total and connected domination number and diameter of
Cay(Z, x Y/ D)

Let p,q,r be three prime numbers, o, 3,7 positive integers and ® = ¢, X @pag8,7-
In this section, we obtain the total and connected domination number of Cay(Z, x
Lipogsrr» ®) and we extend the results in the previous section for diameter of this
graph.
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Lemma 4.1. LetI' = Cay(Zo X Zgagys,~, ®), where p,q,r are distinct prime num-
bers and a, B,y > 1. Then diam(T") = 3.

Proof. T is a disconnected graph with two connected components, say I'y and I's,
where V(I'1) = {(1,v)|v is odd} U{(0,v)|v is even} and V(I's) = {(0,v)|v is odd} U
{(1,v)|v is even}.

Let (u,v), (u',v") € V(I'1). Then we have the following two possibilities:

i) u=nu,v#v. Since u =u" hence d((u,v),(u’,v")) > 2. Now by Table 4.1
we show that d(( v),(u',v")) = 2. In this table, when v, v are odd we have
w=1 =1, u —Oandwhenv v are even we have u = u’ =0, u =1. We prove
the rows 6, 8 of the table and the rest is similarly proven.

Let v,v/ are odd and v = kq, v = k,qr, k, k' ez 1f % be non-multiple of ¢

then we show that “J;” is adjacent to both v and v
Let k' € Z. If v — " = 2", then k(g — 1) — k'r = 2k”. This implies

" ’
__ 2k +kr
k= i

. Since 2k” 4+ k'r is odd and q — 1 is even hence k is non-integer, which

is impossible. If v — 2= = k"¢, then = = (k—k")g, which is inaccurate because
q q

”'Z” is non-multiple of q. Moreover if v — % = k"r, then k = (kqfli )r. But

we know that k is non-multiple of r. So v — ”'Z” € Pgagsyy and similarly v s

. ! . "o, . ! ” ! . .
adjacent to %. Since u is adjacent to u,u thus (u , %) is common neighbor

between (u,v), (u',v"). Similarly it is easy to see that if “J;” be multiple of ¢ then

(u”, % + 2r) is adjacent to both (u,v) and (u',v").

Let v € (IOerq[ir'y,'U, = kq is odd and k, ' ez Iftov-— (v+ 1},)’1“ = 2k”, then
v=2k"+ (v—&—v')r Hence v is even, Which is inaccurate. Also if v—(v40v )r =k ¢,
then v = (k +k’”)q and if v — (v 4+ v )r = k"7, then v = (k” +v+ v/)n which are
impossible. Hence v is adjacent to (v + v )r. Similarly it is easy to see that v s
adjacent to (v+v )r. Therefore (u , (v+v )r ) is adjacent to both (u,v) and (u ,v ).

W utu,vEv. Ifo be adjacent to v', then d((u v), (u',v")) = 1. Suppose
that v be non-adjacent to v since u 75 u and uw,u € Zso, hence we have no
common neighbor between (u, v) and (u',v"). This implies that d((u,v), (u',v")) >
3. Without loss of generahty assume that v =0 and u = 1. Now by Table 4.2 we
show that d((u,v), (u',v")) = 3. In this table u,u =0 and also v ,u" = 1. Now
we prove the ﬁfth row and the rest is similarly proven. Let v = 2kr k € Z and
v e Poagsp. Clearly u, u' are adjacent to u .

First we show that v is adjacent to ¢q. Let YA

Ifv—gq= 2/{”, then ¢ = 2(kr — k”).

"

+1
2k

1" k
If v—qg=k g, then r = ( )q.
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Ifv—qg=Fk r, then ¢ = (2k — k”)r.
In all three cases, we came across a contradiction. So v — q € Qga g, -

Next we prove that ¢ is adjacent to (¢ + v,)r.

If (q—&—v')r —q=2k", then k = %
' ,, cK —r 1
If (qg+v)r—qg==k g, thenwv :(77“'_)(1.
T

If (g+v)r—q=k r theng=(¢g+v —k )r.
which is impossible, since k' s integer and v € Pgag8,r+ and also g is non-integer
of r.

Finally we show that (¢ + v')r is adjacent to v .

If (¢+v)r—v =2k, then k = W

kK —r
r—1

If (g+v)r—v =k ¢ thenv =( )q.

If (g+v)r—v =k r, thenv = (g+v —k )r.

Again which are impossible. This implies that (u,v)(u ,q)(u’", (¢ + v )r)(u',v")
is shortest path between (u,v) and (u,v ). Thus diam(I';) = 3 and similarly
diam(T'g) = 3. Therefore diam(I') =3. O

Lemma 4.2. Let I' = Cay(Za X Zags,~, ®), where o, 3,7 > 1. Then ~.(I') does
not exist and (') = 12.

Proof. Clearly I is a disconnected graph with two connected components say I'1 and
Iy. Let V4 = V(I'1) and Vo = V(I'). Then Vi = {(1,v)]v is odd}U{(0,v)|v is even}
and Vo = {(0,v)]v is odd} U{(1,v)|v is even}. Hence by the definition of connected
dominating set, v.-set does not exist for I.

Let (o, 8,7) = (1,1,1). Then we find by [8, Lemma 4.1], that v(I') = 8 and
Dy ={(0,0),(0,2), (1,z4), (1,24)} and Do = {(0,1),(0,3), (1, z5), (1, z5)} are mini-
mal dominating sets for I'y and I's respectively, where Xf = {21, 29, T3, 24,25} and
X? = {af,ah, x5, 2,25} are consecutive integers in Zsg,,, each of which shares
a prime factor with 2¢r. Since vertices of D; are not adjacent to each other,
we conclude that v(I'y) > 4. On the other hand it is clear that D; is not
dominated by one vertex. Hence v (I'y) > 5. Vertex (1,1) is adjacent to ver-
tices (0,0),(0,2) and vertex (0,4) is adjacent to vertices (1,z4),(1,2%). Thus
Ty = {(0,0),(0,2),(0,4),(1,1),(1,x4),(1,2,)} dominates all vertices of I';. Sim-
ilarly T» = {(0,1),(0,3),(0,5),(1,2), (1,z5), (1,2%5)} dominates all vertices of I's.
Hence (") = 12.
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Table 4.1: Common neighbor between (u,v), (u',v") in T' = Cay(Zy x Liyor gy, @)

and v’ is odd and multiple of gr

1"

u 4 2q)

U=1u,v#v common neighbor Comments
v,V € Yoo gBry ('LL 12q7n)
v,v are odd and multiple of ¢ (u”, 2r)
v,v are odd and multiple of r (" ,2q)
v,v are odd and multiple of ¢r (u,2)
v is odd and multiple of ¢ (u”7 ”ng ) if % be even
and v is odd and multiple of r (u”, L+ gr) if “£2 be odd
v is odd and multiple of ¢ (u”7 ”J;” ) if % +kq, keZ
and v is odd and multiple of ¢r (u”7 % +2r) | if % =k'q k €Z
v is odd and multiple of r u”, %) if HTU *kr, keZ

if vt g K e

U € Poags,y and v is odd and multiple of ¢

U € Poags,» and v is odd and multiple of r

u,(v+v)g)

v € Pgags,y and v is odd multiple of ¢r

77

(
(@’ (v +0)r)
( 7

W' (0 +v)2)

v,v are even and multiple of r (u ,q)
v,v are even and multiple of ¢ (u ,7)
v,v are even and non-multiple of ¢ and r (u”7 qr)
v,v are even and multiple of 2¢r (u ,2qr —1)
v is even and multiple of ¢ (u”, ”"‘T”/ +qr) if %”/ be even
and v is even and multiple of (u”, ) if “£% be odd
v is even and multiple of ¢r (u ; %) if % € Poagsr
and v is even and non-multiple of (u”7 5 +qr) if % ¢ Qoags,m
qand r
v is even and multiple of ¢r (u”7 % +qr) if % #*kq, keZ
and v’ is even and multiple of ¢ (u”7 % +7) if % = k/q, kK ez
v is even and multiple of ¢r (u”7 -+ qr) if ”7 *kr, kel
and v’ is even and multiple of 7 (u”, % +q) if & = Kr, k eZ

Let (o, 8,7) # (1,1,1). Then by [8, Lemma 4.3], v(I') = 12. Indeed D; =
{(0,0),(0,2),(0,4),(1,1),(1,3),(1,5)}and D2 = {(0,1), (0, 3), (0,5),(1,0),(1,2),(1,4)}

are minimal dominating sets for I';, T's, respectively.

Vertex (1,1) is adjacent

to vertices (0,0), (0,2) and vertex (0,4) is adjacent to vertices (1,3),(1,5). Thus

D, becomes a -set for I'y.

Similarly Ds becomes a ~¢-set for I's.

Therefore

Proposition 4.1. LetI' = Cay(ZyxZgops,~, ®), where a, 3,7 > 1. Then diam(T') = 3.
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Table 4.2: Shortest path between (u,v), (ul, v/) in I' = Cay(Za X Zgays,~, P)

UFu,vFv

shortest path between (u,v), (u ,v )

Comments

v =2kqr.k € Z,v € Poagpyv

(u,v)(u,v)

(), (w0)) = 1

v is multiple of 2¢r and
v’ is odd and multiple of ¢

(u,v)(u”,l)(um (1 +U) )(ul v/)

v is multiple of 2¢gr and
v’ is odd and multiple of r

777

(w,0) (", 1)(u”, (1 + 0 )g) (', 0)

v is multiple of 2¢r and
v’ is odd and multiple of gr

(w,v)(u, D(w (1 +0)2)(u,v)

v=2krk € Z,v € Pgags,n

(w,v)(u @), (g+v)r)(u,v)

v is multiple of 2r and

v’ is odd and multiple of r

(u, v) (@) (0", L) )

(u,0)(u", q)(u”, L ot + qr)(

’

v)

7
if HT” be even

if HT” be odd

v is multiple of 2r and
v’ is odd and multiple of ¢

(u,v)(w ", q)(u 27‘)( )

v is multiple of 2r and

v’ is odd and multiple of gr

"

)W v’)

e o) (')

(u, ) (u”, q)(u

if £ o kg, k€ Z
if 8 — kg k €7

v=2kq,keZv € Poaghpy

(u,0) (W, q)(u”,
(u,v)(u”,T)(u " (T +v ) )(u U )

v is multiple of 2¢ and

v’ is odd and multiple of ¢

(u, v)(u”,r) (", H5=) (', 0)
(w, o) (", r)(u”, 5 4 qr) ()

if ’""‘T” be even
if £ be odd

v is multiple of 2¢ and
v’ is odd and multiple of r

(u,v)(uw ,7r)(u ,2q)(u ,v)

v is multiple of 2¢ and
v’ is odd and multiple of gr

1"

(u,v)(u”,r)(u ,%)(ul,v,)

(u, v)(u”, T)(um, —Tt” + 2q)(ul, 11,)

if S £ kr ke 2
if = — fr ke

v=2kk €LV € Prags,

(u, v)(u_,gr)(u_, (gr+v)2)(u,v)

v is multiple of 2 and

(u,0)(u", qr)(u”, e ), v’)

"

if%;ﬁkq,kez

v" is odd and multiple of ¢ | (u,v)(u, qr)(u”, qTJ”’ +2r)(u' ) | if % =kqk eZ
v is multiple of 2 and (u,v)(u”, qr)(u W, @)(ul, v/) if Y £ kr k€ Z

v' is odd and multiple of r | (u,v)(u’,qr)(u", ), (u',v") | if e — Erk ez
v is multiple of 2 and (u,v)(u ,qr)(u ,2)(u',v")

v’ is odd and multiple of gr

Proof. We proceed along the lines of Theorem 4.1, and ¢ := p. Let (u,v), (ul, v/)

are arbitrary vertices of I'. Then we have following three possibilities:

Du=u,v#v. We know that d((u,v), (u',v")) > 2. Assume that v and v" are
both even or odd. Thus by case i) of Theorem 4.1, we have d((u,v), (u ,v)) = 2.
Suppose that one of either v or v is odd. Hence we have no path of length 2 between
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(u,v), (u',v"). Now we show that d((u,v), (u',v")) = 3. Without loss of generality
assume that v is even and v is odd. If v be multiple of 2pr and v be multiple of
pr, then (u,v)(u”,pr—2)(u",pr—1)(u',v") is a path of length 3 between (u,v) and
(u/m/), where u = u’ # u’ # u . If v be multiple of 2pr and v € Poapsyy, DOtE
that v and v" are adjacent, then (u,v)(u”,v)(v”,v)(u’,v") is a shortest path. For
other cases of v and v we are using of Table 4.2, where u = u #+ u’ * u”

i) u#u ,v=0. In this case vertex (u" ,v — 1) is a common neighbor between
(u,v) and (u',v"), where " # u,u’. Thus d((u,v), (u ,v")) = 2.

1) u # u',v#v". Let v and v be both even or odd. Then by Table 4.1, where
u' # u,u’, we see that d((u,v),(u,v")) = 2. Let one of either v or v be even
and other be odd. Then by Table 4.2, where u = v and v = u”7 we see that
d((u,v), (u',v")) = 3. Therefore diam(T') = 3. [0

Proposition 4.2. Let I' = Cay(Zy, X Zgaps,~, ®), where o, 3,7 > 1. Then (')
and ~.(T") is given by Table 4.3.

Table 4.3: v;(Cay(Zy X Lo psy~, P)) and ve(Cay(Zy X Zoapsy, P))

r () | 7.(T) Comments
Cay(Zy X Ligopsy, P) 10 12 one of the prime factors is 3
p=3
Cay(Zy X Lgopsy, P) 10 10 | one of the prime factors is 3
p=>5
Cay(Zyp X Lgopsr~, P) 8 8 p,r>5

Proof. Assume first that one of the prime factors is 3. In this case if («, 3,7) =
(1,1,1) then by [8, Lemma 4.2], v(I') = 8 and

D ={(0,0),(0,1),(0,2),(0,3), (1, 2), (1, z3), (1, x5), (1, z5)}

is a y-set for I". Vertices of D are not adjacent to each other. Hence ~(I') >
8. Note that D is not dominated by one vertex, since every vertex (u,v) € V,
where v is an odd (even) integer, is not adjacent to the vertex (u',v'), where
v is an odd (even) integer. This implies that v () > 9. Now we take an-
other dominating set with cardinality 10. By [8, Proposition 4.4], we have D =
{(0,0),(0,1),(0,2),(0,3),(1,4),(1,5),(2,6),(2,7),(2,8),(2,9)} is a dominating set
of I'. If the other prime factor is 5, then vertices (0,0),(0,1),(0,2),(0,3),(1,5)
are adjacent to vertices (2,7),(2,8),(2,9),(1,4),(2,6), respectively. Also let other
prime factor be > 7 then vertices (0, 0), (0,1), (0, 2), (0, 3), Ql, 4) are adjacent to ver-
tices (1,5),(2,6),(2,7),(2,8),(2,9), respectively. Hence D becomes a ~y;-set for T'.
Therefore ~.(I') = 10.

Let (o, B8,7) # (1,1,1). By [8, Proposition 4.4], v(I') = 10. By previous para-
graph, (") = 10.
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Now we find the connected domination number of I' where one of the prime
factors is 3. By above discussion 7.(I') > 9. We use again from D’.

Let p = 3. Without loss of generality assume that » = 5. Then the subgraph
generated by D’ has exactly five connected components which are induced the sub-
graphs generated by sets {(0,0), (2,7)}, {(0,1),(2,8)}, {(0,2),(2,9)}, {(0,3),(1,4)}
and {(1,5),(2,6)}. Hence v.(I") > 10. Let a vertex say (u,v) € V(T'), where v is
an odd integer, dominates all vertices (0, 0), (2, 8), (0, 2), (1,4), (2,6). Since u € Zs,
it is impossible. This implies that 7.(I') > 11. Next consider another dominating
with cardinality 12.

Let
A=1{(1,1),(2,2),(1,4),(2,5),(1,7),(2,8), (1,10),(2,11)},

B = {(0,0),(2,2),(0,3),(2,5),(0,6),(2,8),(0,9), (2,11)}

and
C ={(0,0),(1,1),(0,3),(1,4),(0,6),(1,7),(0,9), (1,10)}.

Then A, B and C dominate {(0,v)[v € Zgazs, }, {(1,0)|v € Zgags,~ } and {(2,v)]v €
Zyass .~} respectively. Thus

D’ = {(0,0),(1,1),(2,2),(0,3),(1,4),(2,5),(0,6),(1,7),(2,8),(0,9), (1,10), (2,11) }

is a dominating set for I'. Both vertices next to each other in D" are adjacent.
Hence the subgraph generated by D is connected. Therefore ~.(I') = 12.

Letp > 5. Then D" = {(0,0),(1,1),(2,2), (3,3), (4,4), (0,5),(1,6), (2,7),(3,8),

(4,9)} is a dominating set for I'. Both vertices next to each other in D are adja-
cent. Thus the subgraph generated by D is connected. Therefore ~.(I") = 10.
Finally assume that p,r > 5. By [8, Lemma 4.2, Proposition 4.4], v(I') = 8 and
by using a proof of proposition 4.4, we know that D = {(0,0), (1,1),(2,2), (3, 3),
(4,4),(2,5), (176) (0,7)} is a -set for I', where a, 8,7 > 1. Both vertices next to

)
1"

each other in D" are adjacent. Hence D" is a y-set and ~.-set for I'. Therefore
7t(l) =7e(T) =8. O

Proposition 4.3. LetI' = Cay(Zy X Zyags,~, ®), where p,q,r > 3 and o, 3,y > 1.
Then diam(T") = 2.

Proof. Let (u,v), (u/7 v/) are arbitrary vertices of I'. Then we have following three
possibilities:

i)u=u',v#v . By Table 4.5, we show that d((u,v), (u',v")) = 2. In this table
U # u.

i) u+#u and v =" In this case the vertex (u",v — 1) where v # u,u’, is a
common neighbor of (u,v) and (v ,v ). Thus d((u,v), (u,v)) = 2.

iii) u#u and v # v . Hence by (i) and (i7), d((u,v), (u',v")) = 2.

Therefore diam(T') = 2. O
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Table 4.4: Common neighbor between (u,v), (u',v') in T = Cay(Z, x Lo gy s @)

U=u,vFv

common neighbor

Comments

’07’0 E Sopaqﬂr'y

(u_,pgr)

v,v are multiples of pgr

(u”,pgr — 1)

v,v are multiples of pg

(u,7)

v,v are multiples of pr (u ,q)
v,v are multiples of gr (u,,7p)
v,v are multiples of p (u”, qr)
v # v and each of them is (u”, MTU) ifv—v € PpecgBr

multiple of one of the prime factor
and both of them are even or odd

(u",2(0+v)

. !
if v —v & ppagsr

v is multiple of p
and v’ is multiple of pq

s v
if P S PpagBry

if % be multiple of p

v is multiple of p
and v’ is multiple of pr

s v
if P S PpagBry

if % be multiple of p

v is multiple of p
and v is multiple of gr

’

W)
(W 20+ )

if v, v’ be both even or odd

if one of them be odd and other

be even

v is multiple of p
and v’ is multiple of pgr

(u”, 2 +pgr)
(w2 +qr)

if % be non-multiple of p
if % be multiple of p

v is multiple of p
and v € Ppor gB

(u ,”(11 7&— v )qr)

if v,v be both even or odd

if one of them be odd and other

be even

v,v are multiples of ¢

v is multiple of ¢
and v’ is multiple of pq

s U
if 7 S PpagBry

if 15) be multiole of ¢

v is multiple of ¢
and v’ is multiple of gr

s v
if 7 S PpagBry

if g be multiole of ¢

v is multiple of ¢
and v is multiple of pr

(u v gr)

7T (u 7p/,1)
(w, (2)r +pgr)
(u , ()r +pr)
(w, (2)p+par)
(u,(2)p+pr)

(u”’ v—;v )

(u",2(0+v')

if v,v" be both even or odd

if one of them be odd and other

be even

v is multiple of ¢
and v’ is multiple of pqr

(u", 2 +pgr)

if % be non-multiple of ¢

if 15) be multiple of ¢

v is multiple of ¢
and v € Ppor B

(u', % +pr)
(u”, (v+0")pr)
(u”,v'pr)

if v, be both even or odd

if one of them be odd and other

be even
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Table 4.5: Shortest path between (u,v), (ul, v/) in I' = Cay(Za X Zgays,~, P)

U=u,v#v

common neighbor

Comments

v,v are multiple of r

v is multiple of r
and v’ is multiple of pr

if ;—) S Ppagbry
if 2 be multiole of r

v is multiple of r
and v’ is multiple of gr

if % S Ppagbry
if 7 be multiole of r

v is multiple of r
and v is multiple of pg

"

o
(u ,2(v+v))

if v,v" be both even or odd
if one of them be odd

v is multiple of r
and v’ is multiple of pgr

(u”, 2+ par)
(u, 2+ pq)

if 2 be non-multiple of r
if 2 be multiple of r

v is multiple of r
and v € Ypa s,

(" {0+ 0 )pa)

(u”,v'pg)

if v,9" be both even or odd
if one of them be odd

v is multiple of pg

and v’ is multiple of pr

"

(u 711-;11 )

(u”7 —"';” +gr)

f v+v E@p qﬂr“f
if ”‘"“ be multiple of p

v is multiple of pg

and v’ is multiple of rq

(u” v+v, )
1" 7/ q

(', 222" 4 pr)

lf v+v E@p qﬂr“f
if ""'T” be multiple of ¢

v is multiple of pr

and v is multiple of r¢

"

7
(w, =)

(u”, ”*” +pq)

if HTU S PpagBry
if HTU be multiple of r

v=kpq,k €Z, v € Ppagsry and
v, v’ are both even or odd
one of the v or v is odd

/(’U,”, v+v )
v—1)
1" ’

(u ,vr)

(u,

. ’
if v—wv € Y oo
. , @p qrr
ifv—v & ppags
. ’
ifv—v & ppags

v=kpr ke Zm/ € Ppag8yrvand
v, v’ are both even or odd
one of the v or v is odd

) )

if v—v €
if v—1 & Ppaghry
if v—1 & Ppagsry

v=kqr,k €Z, v € Ppagsry and
v, v’ are both even or odd
one of the v or v is odd

if v—2v € Ppoghr
ifvo—0v & Ppaghry
ifvo—0v & Ppaghry

v = kpgr,k € Z and v
is multiple of pq or pr or gr

by Proposition 4.5[8], A = 4
then pqr is adjacent by +4
and pq, pr, qr are
adjacent by +4 or —4

v is multiple of pqr
and v’ € Ppeghr

" v—‘,-v,
(v, *5)

(u',2(v+v"))

if v,v" be both even or odd
if one of them be odd

Proposition 4.4. LetI' = Cay(Zy X Zyege,+, ), where p,q,r > 3 and o, 8,7 > 1.
Then v:(T) and ~.(T) is given by Table 4.6.
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Table 4.6: v¢(Cay(Zy X Zyo gs,~, P)) and v.(Cay(Zy X Zyo 4o,+, P)) where p,q,7 > 3

r (I, ve(T) Comments
Cay(Zy X Lyogsrr, ®) | 6 < 7(I),7.(I') <8 | one of the prime factors is 3
Cay(Zp X Zpaqﬁrw, (I)) 5 p:q,r =95

Proof. By using the [8, Proposition 4.5], D,D/7D//,D/// are minimal dominating
sets for various cases in this graph. Clearly the subgraphs generated by D, D', D"
and D" are all connected. Therefore 4(T') = 7, (I') = v.([). O

As an immediate consequence of Lemma 4.2 and Propositions 4.2, 4.4, we have
the following theorem.

Theorem 4.1. Let I' = Cay(Zy, X Zyogs,+,P), where p,q,r > 2 and o, 3,7 > 1.
Then (L) and 7.(T) is given by Table 4.7.

Table 4.7: v;(Cay(Zp X Zpegs v, ®)) and v.(Cay(Zy X Zyo o+, P)) where o, 5,7 > 1

r 7(T) () Comments

Cay(Zy X Lgozp,,P) 12 does not exist

Cay(Zp X Lgapsy~, P) 10 12 one of the prime factors is 3
p=23

Cay(Zp X Lgapsy~, P) 10 10 one of the prime factors is 3
p=5

Cay(Zp X ZQap,’iT'y7‘I)) 8 8 p,T>5

Cay(Zp X Zyogsrr, ®) | 6 < 7(I) <8 | 6 <v.(I') <8 | one of the prime factors is 3

Cay(Zy X Lyogsr, P) 5 5 D, g, T >5

As an immediate consequence of Lemmas 3.1, 4.1 and Propositions 3.1, 3.3, 4.1, 4.3,
we have the following theorem.

Theorem 4.2. Let I' = Cay(Z, X Z, ®), where m € {p“q®, p*¢°r7'}. Then

1) diam(T") = 3 where one of the prime factors is 2.

2) diam(T") = 2 where p,q,r > 3.

Remark 4.1.

are positive integers, a > 2, and ® = @2 X Poapo
1

have v(Cay(Z2 szap;xl

p

Let p1,p2, ...

,Pr be consecutive prime numbers, p1 = 3, o, a1, a2, ...
o2 p0k - Then by [8, Theorem 4.7], we

w2 o, @) > 4k+4. Therefore 7, (Cay (ZoX Zgayor o2 ok, ®)) >

P

) Ok

4k + 4. Since T is a disconnected graph, the ~y.-set does not exist for I'.
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1. Introduction

It is well known that in case the induced metric on the submanifold of semi-
Riemannian manifold is degenerate, the study becomes more different from the
study of non-degenerate submanifolds. The primary difference between the lightlike
submanifolds and non-degenerate submanifolds arises due to the fact that in the first
case the normal vector bundle has non-trivial intersection with the tangent vector
bundle and also in a lightlike hypersurface the normal vector bundle is contained
in the tangent vector bundle. Lightlike submanifolds is developed by Duggal and
Bejancu [5] and Duggal and Sahin [8]. The lightlike submanifolds have been studied
by many authors in various spaces for example [1, 4, 13, 15, 17, 18, 19, 24, 27].
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Duggal and Bejancu [5] introduced CR-lightlike submanifolds of indefinite Kae-
hler manifolds. Similar to CR-lightlike submanifolds, Atceken and Kili¢ introduced
semi-invariant lightlike submanifolds of a semi-Riemannian product manifold [2].
Since CR-lightlike submanifolds exclude the complex and totally real submani-
folds as subcases, Duggal and Sahin introduced Screen Cauchy-Riemann (SCR)-
lightlike submanifolds of indefinite Kaehler manifolds [7]. As a generalization of real
null curves of indefinite Kaehler manifolds, Sahin introduced the notion of screen
transversal lightlike submanifolds and obtained many interesting results [22]. In
[25], Yildirim and Sahin introduced screen transversal lightlike submanifolds of in-
definite almost contact manifolds and show that such submanifolds contain lightlike
real curves. Yildirim and Erdogan studied screen transversal lightlike submani-
folds of semi-Riemannian product manifolds [26]. Khursheed Haider, Advin and
Thakur studied totally umbilical screen transversal lightlike submanifolds of semi-
Riemannian product manifolds [16].

Manifolds which are considered as differential geometric structures (such as al-
most complex manifolds, almost contact manifolds and almost product manifolds)
are convenient when it comes to studying submanifold theory. One of the most
studied manifold types are Riemannian manifolds with golden structures. Golden
structures on Riemannian manifolds allow many geometric results. Hretcanu in-
troduced golden structure on manifolds [14]. Crasmareanu and Hretcanu investi-
gated the geometry of the golden structure on a manifold by using the correspond-
ing almost product structure [3]. The integrability of golden structures has been
investigated in [11]. In [23], Sahin and Akyol introduced golden maps between
golden Riemannian manifolds, give an example and show that such map is har-
monic. Erdogan and Yildirim studied totally umbilical semi-invariant submanifolds
of golden Riemannian manifolds [10]. Gok, Keleg and Kili¢ studied Schouten and
Vrénceanu connections on golden manifolds [12]. Poyraz and Yagar introduced light-
like submanifolds of a golden semi-Riemannian manifold [21]. Erdogan studied the
geometry of screen transversal lightlike submanifolds and radical screen transversal
lightlike submanifolds and screen transversal anti-invariant lightlike submanifolds
of golden semi-Riemannian manifolds [9].

In this paper, we study radical screen transversal lightlike submanifolds and
screen transversal anti-invariant lightlike submanifolds of golden semi-Riemannian
manifolds. We investigate several properties of such submanifolds and obtain neces-
sary and sufficient conditions for the induced connection on these submanifolds to be
metric connection. Moreover, we study totally umbilical radical screen transversal
lightlike submanifolds and screen transversal anti-invariant lightlike submanifolds of
golden semi-Riemannian manifolds and give examples. We also give different form
of some theorems given in [9)].

2. Preliminaries

Let M be a C>—differentiable manifold. If a tensor field P of type (1,1) satisfies
the following equation ~
(2.1) P =P+1
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then P is named a golden structure on M, where I is the identity transformation
[14].

Let (M ,§) be a semi-Riemannian manifold and P be a golden structure on M.
If P holds the following equation

(2.2) G(PX,Y) = §(X, PY)

then (M, g, P) is named a golden semi-Riemannian manifold [20].
If Pisa golden structure, then the equation (2.2) is equivalent with

(2.3) G(PX,PY)=g(PX,Y)+g(X,Y)

for any X,Y € T(TM).

Let (M, §) be areal (m-+n)—dimensional semi-Riemannian manifold with index
q, such that myn > 1, 1 < ¢ < m+n —1 and (M,g) be an m—dimensional
submanifold of M, where g is the induced metric of § on M. If § is degenerate on
the tangent bundle TM of M, then M is named a lightlike submanifold of M. For
a degenerate metric g on M

(2.4) TMY = U {u € T, : §(u,v) = 0,%0 € Ty M,z € M}

is a degenerate n—dimensional subspace of Tx]\;[ . Thus, both T, M and T, M+ are
degenerate orthogonal subspaces but no longer complementary. In this case, there
exists a subspace Rad(T, M) = T, MNT, M~ which is known as radical (null) space.
If the mapping Rad(TM) : x € M — Rad(T,M), defines a smooth distribution,
called radical distribution on M of rank r > 0 then the submanifold M of M is
called an r—lightlike submanifold.

Let S (T'M) be a screen distribution which is a semi-Riemannian complementary
distribution of Rad(TM) in TM. This means that

(2.5) TM = S (I'M) LRad (TM)

and S (TM J-) is a complementary vector subbundle to Rad(TM) in TM=*. Let
tr (TM)) and ltr (T M) be complementary (but not orthogonal) vector bundles to

TM in TM‘M and Rad(TM) in S (TML)L, respectively. Then we have

(2.6) tr (TM) ltr (TM) LS (TM*),
(2.7) TM |y = TM®tr(TM)
= {Rad(TM)®ltr (TM)} LS (TM) LS(TM™").

Theorem 2.1. Let (M,g,S(TM),S (TMJ-)) be an r—lightlike submanifold of a

semi-Riemannian manifold (]\ZL?]). Suppose U is a coordinate neighbourhood of
M and &, i € {1,..,r} is a basis of I'(Rad(TM),,). Then, there exist a comple-

mentary vector subbundle itr (TM) of Rad(TM) in S (TMJ-)lJ;] and a basis {N;},
i €{1,..,r} of U(itr (TM),,) such that

(28) g(ngJ):(Sl]a g(NmNj):()a
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for any i,j € {1,..,r} [5].

We say that a submanifold (M, g, S(TM),S (TM*)) of M is
Case 1: r—lightlike if r < min {m,n},

Case 2: Coisotropic if r =n <m, S (TM*) = {0},

Case 3: Isotropic if r =m < n, S(TM) = {0},

Case 4: Totally lightlike if r =m =n, S(TM) = {0} = S (TM*).

Let V be the Levi-Civita connection on M. Then, using (2.7), the Gauss and
Weingarten formulas are given by

(2.9) VxY = VxY +h(X,Y),
(2.10) VxU = —ApX + ViU,

where {VxY, Ay X} and {h(X,Y), V4 U} belong to T(T'M) and T'(tr (TM)), re-
spectively. V and V! are linear connections on M and on the vector bundle ¢r (T'M),
respectively. According to (2.7), considering the projection morphisms L and S of
tr (T'M) on ltr (TM) and S (TM™), respectively, (2.9) and (2.10) become

(2.11) VxY = VxY +Rr(X,Y)+h%X,Y),
(2.12) VxN = —AxX+ VYN +D*(X,N),
(2.13) VxW = —AwX +V5W + D'(X, W),

where h/(X,Y) = Lh(X,Y), h*(X,Y) = Sh(X,Y), {VxY, AxX, Aw X} € T(TM),
{VYN, DX, W)} € T(itr (TM)) and {V5W,D*(X,N)} € I'(S(TM~)). Thus
taking account of (2.11)-(2.13) and the Levi-Civita connection V is a metric, we
derive

(2.14) g(h*(X,Y), W) +g(Y,D'(X,W)) = g(AwX,Y),
(2.15) g(D*(X,N),W) = g(AwX,N).

Let J be a projection of TM on S(T'M). Thus using (2.5) we obtain

(2.16) VxJY = ViJY +h*(X,JY)E,
(2.17) Vx€ = —A{X - V¥,

for any X,Y € T(TM) and ¢ € T(Rad(TM)), where {V}JY, AgX} and
{h*(X,JY), Vi) belong to T'(S (T'M)) and I'(Rad (T'M)), respectively.

Using the equations given above, we derive
(2.18) g(h(X,JY),6) = g(A4;X.JY),
(2.19) g(h*(X,JY),N) g(AnX,JY),
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Generally, the induced connection V on M is not metric connection. Since V is
a metric connection, from (2.11) we obtain

(2:21) (Vxg)(¥, 2) = g(h'(X,Y), Z) + §(h'(X, 2),Y).
But, V* is a metric connection on S(TM).

Theorem 2.2. [5] Let M be an r-lightlike submanifold of a semi- Riemannian man-
ifold (M, g). Then the induced connection V is a metric connection iff Rad(TM)
s a parallel distribution with respect to V.

A lightlike submanifold M of a semi-Riemannian manifold (M, §) is named to-
tally umbilical in M, if there is a smooth transversal vector field H € T'(ltr (TM))
of M which is named the transversal curvature vector of M, such that

(2.22) h(X,Y) = Hg(X,Y),

for any X, Y € I'(TM).
It is known that M is totally umbilical if on each coordinate neighborhood U,

there exists smooth vector fields H' € T'(itr (TM)) and H* € I'(S (T'M™)) such
that

(2.23) W(X,Y)=g(X,Y)H' h*(X,Y) = g(X,Y)H?® and D'(X,W) =0,
for any X,Y € I(TM) and W € I'(S (TM*)) [6].

3. Radical Screen Transversal Lightlike Submanifolds of Golden
Semi-Riemannian Manifolds

Definition 3.1. Let M be a lightlike submanifold of a golden semi-Riemannian
manifold (M, g, P). Then we say that M is a screen transversal lightlike submanifold
of M if there exists a screen transversal bundle S(T'M~) such that

(3.1) P(Rad(TM)) c S(TM*1).

Definition 3.2. Let M be a screen transversal lightlike submanifold of a golden

semi-Riemannian manifold (M, g, P). Then M is said to be a radical screen transver-
sal lightlike submanifold if S(TM) is invariant with respect to P.

Let M be a radical screen transversal lightlike submanifold of a golden semi-
Riemannian manifold (M, g, P). Thus, for any X € I'(TM) we derive

(3.2) PX = PX + wX,

where PX and wX are tangential and transversal parts of PX.
For any V € T'(tr(TM)) we write

(3.3) PV =BV +CV,

where BV and C'V are tangential and transversal parts of PV.
Throughout this paper, we assume that VP = 0.
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Lemma 3.1. Let M be a radical screen transversal lightlike submanifold of a
golden semi-Riemannian manifold (M, g, P). Then we have

(3.4) P?X = PX + X — BwX,

(3.5) wPX =wX — CwX,

(3.6) PBV = BV — BCV,

(3.7) C?*=CV +V —wBY,

(3.8) 9g(PX)Y) — g(X,PY) = g(X,wY) — g(wX,Y),
g(PX,PY) = g(PX.Y)+g(X,Y)+gwX,Y)—g(PX,wY)

(3.9) —g(wX, PY) — g(wX,wY).

for any X, Y e T(TM).

Proof. Applying P in (3.2) and using (2.1), we obtain
(3.10) P?X +wPX + BwX + CwX = PX + wX + X,

for any X € I'(T'M). From (3.10) we obtain (3.4) and (3.5). Using (2.1) and (3.3)
we get
(3.11) PBV +wBV + BCOV + C?*V = BV +CV + V.

From (3.11) we get (3.6) and (3.7). From (2.2) and (3.2) we obtain
(3.12) g(PX +wX,Y) = g(X, PY +wY),

for any X,Y € T'(T'M) and from this we obtain (3.8). Also, from (2.3) and (3.2)
we derive
(3.13) g(PX +wX, PY +wY) = g(PX +wX,Y) + ¢g(X,Y),

for any X, Y € T'(TM) and we get (3.9). O

Proposition 3.1. Let M be a radical screen transversal lightlike submanifold of
a golden semi-Riemannian manifold (M,g,P). Then P is golden structure on
S(TM).

Proof. By the definition of radical screen transversal lightlike submanifold we have
wX =0, for any X € ['(S(TM)). Then from (3.4) we have P2X = PX + X. Thus
P is golden structure on S(TM). O

Proposition 3.2. Let M be a radical screen transversal lightlike submanifold of
a golden semi-Riemannian manifold (M, g, P). Then C is golden structure on
ltr(TM).
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Proof. By the definition of radical screen transversal lightlike submanifold we have
BN =0, for any N € T'(itr(TM)) From (3.7) we have C>?N = CN + N. Thus C is
golden structure on ltr(TM). O

Example 3.1. Let (M = R3, g) be a T—dimensional semi-Euclidean space with signature
(=y+,—+,—+,+) and (z1, w2, 3, T4, Ts5,T6,27) be the standard coordinate system of
R%. If we set P(wl,xz,xg,x4,m5,m6,m7) = ((1 = @)z1, (1 — ¢)z2, pz3, pTa, (1 — B) 75, (1 -
@)z, (1 — ¢)x7), then P2 = P+ I and P is a golden structure on M. Suppose M is a
submanifold of M defined by

1 = ¢ui + cosuz, T2 = pui — u3, T3 = \/iul,am = \/§u1,

s = @ui — CoSu2,Te = Pui + \/§U3,{E7 = cosuz — us,

where u;, 1 < i < 3, are real parameters. Thus TM = Span{Ui,Usz,Us}, where

0 o 0 0 0
Ui = o b+ Vg VIt o5 o
R B )
2 - 8231 (91'5 8$77
o 0 o
U3 - _aixz'i‘\/iai%—aix?

Then M is a 1-lightlike submanifold. We have Rad(TM) = Span{Ui} and S(TM) =
Span{Us,Us}. Moreover, PUs = ¢Us, PUs = ¢Us implies that P(S(T'M)) = S(TM).
Lightlike transversal bundle ltr(TM ) is spanned by

Also, screen transversal bundle S(TM L) is spanned by
0 0 0
W, = %+\/§87336+87$7
1o} 0 0
1 19} 0 19}
Ws = _4(2+¢)( da1 +7+f¢7_‘[¢7_875+876)'

Then it is easy to see that f’§ = Wa, PN = W3 and ﬁWl = ¢Wi. Thus M is a radical
screen transversal lightlike submanifold of M.

Theorem 3.1. Let M be a radical screen transversal lightlike submanifold of a
golden semi-Riemannian manifold (M,g, 15) Then the screen distribution is inte-
grable iff

(3.14) h*(X,PY) = h*(Y, PX),

for any X, Y € T'(S(TM)) [9].
Theorem 3.2. Let M be a totally umbilicial radical screen transversal lightlike

submanifold of a golden semi-Riemannian manifold (M,g,ﬁ’). Then the screen
distribution is always integrable.
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Proof. Using the definition of a radical screen transversal lightlike submanifold,
S(TM) is integrable iff g([X,Y],N) = 0, for any X,Y € I'(S(TM)) and N €
T'(ltr(TM)). Using (2.3) and (2.11) and taking into account that M is a totally
umbilicial, we obtain

(VxY —Vy X, N)

(VxPY —VyPX,PN)—j§(VxY — Vy X, PN)
(h

g(h®

K=}

(X, Y], N) =

S=t

(X, PY) — h*(Y, PX),PN) — §(h*(X,Y) — h*(Y, X), PN)
(X,PY) — h*(Y,PX), PN)

= ( (X7PY) _g(YaPX))g(HS’PN)

S=Y

which completes the proof. [

Theorem 3.3. Let M be a radical screen transversal lightlike submanifold of a
golden semi-Riemannian manifold (M,Q,P). Then the radical distribution is inte-
grable iff

(3.15) Ape 0 — Ape 1 = AL, 6 — ALE,

€1,62 € T(Rad(TM)) [9].

Theorem 3.4. Let M be a totally umbilical radical screen transversal lightlike
submanifold of a golden semi-Riemannian manifold (M,g, P). Then the radical
distribution is always integrable.

Proof. Using the definition of a radical screen transversal lightlike submanifold,
Rad(TM) is integrable iff §([¢1,8&2],X) = 0, for any X € I'(S(T'M)) and &,& €
['(Rad(TM)). Using (2.3), (2.11), and (2.23) and taking into account that V is a
metric connection, we get

3([61,&],X) = §(Ve o — V&1, X) = §(Ve, &2, X) — §(Ve, &1, X)
—§(£2, Ve, X) + §(61, Ve, X)
—§(P&, Ve, PX) + §(P&, Ve, X)
§(P&,Ve,PX) — §(P&, Ve, X)
= —§(P&, h*(&, PX)) + §(Pé, h* (&1, X))
§(P&, h* (&, PX)) — §(Pé1, h* (62, X))
( )g
(& )g

+

(P&, H*)

1, h*(
= —9(&, PX)g(P&, H) + g(61, X
, PX)g (P&, HY).

X)§(Pé, H®) — g(&, X

+9(&

This completes the proof. [

Theorem 3.5. Let M be a radical screen transversal lightlike submanifold of a
golden semi-Riemannian manifold (]\ZI,Q,I:’). Then the screen distribution defines
a totally geodesic foliation iff h*(X, PY) — h%(X,Y) has no compenents in
P(Rad(TM)), for any X,Y € I'(S(TM)) [9].
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Now, we give different form of theorem given in [9].

Theorem 3.6. Let M be a radical screen transversal lightlike submanifold of a
golden semi-Riemannian manifold (M,g, }5) Then the radical distribution defines
a totally geodesic foliation iff h®(&1, X) has no compenents in P(ltr(TM)), for any
X eT(S(TM)) and & € T'(Rad(TM)).

Proof. Since S(T'M) is invariant, if X € I'(S(T'M)) then PX € T'(S(T'M)). Using
the definition of radical screen transversal lightlike submanifold, Rad(T'M) defines
a totally geodesic foliation iff g(Ve, &, PX) = 0, for any X € T'(S(TM)) and
€1,& € I'(Rad(TM)). Since V is a metric connection, from (2.2) and (2.11), we
derive

g(V§1§27PX) = g(@&g%PX) = g(ﬁﬁlpf%X)
= —§(P&, Ve, X) = —§(P&, h* (61, X)).

Therefore we derive our theorem. [J

Taking into account that M is a totally umbilicial in Theorem 3.6 we get following
theorem.

Theorem 3.7. Let M be a totally umbilicial radical screen transversal lightlike
submanifold of a golden semi-Riemannian manifold (M, g, P). Then the radical
distribution always defines a totally geodesic foliation.

Theorem 3.8. Let M be a radical screen transversal lightlike submanifold of a
golden semi-Riemannian manifold (M,g,ﬁ). Then the induced connection ¥V on
M is a metric connection iff there is no component of h*(X,Y) in P(ltr(TM)) or
ApeX in S(TM) for any X,Y € I(S(T'M)) and § € I'(Rad(TM)) [9].

Theorem 3.9. Let M be a totally umbilicial radical screen transversal lightlike
submanifold of a golden semi-Riemannian manifold (M, g, P). Then the induced
connection V on M is a metric connection iff H® has no compenents in P(ltr(TM)).

Proof. Considering Theorem 2.2, using (2.2), (2.11), (2.23) and taking into account
that V is a metric connection, we obtain

9(Vx& PY) = §(Vx&PY) = §(VxPEY) = =5(PE VxY)
(316> = _g(P£7 hs(X7Y ) = _g(Xa Y)Q(HS7P§)a

for any X, Y € T'(S(TM)) and £ € T'(Rad(TM)), which completes the proof. [J

4. Screen Transversal Anti-invariant Lightlike Submanifolds of Golden
Semi-Riemannian Manifolds
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Definition 4.1. Let M be a screen transversal lightlike submanifold of a golden
semi-Riemannian manifold (M, g, P). Then M is said to be a screen transversal
anti-invariant lightlike submanifold if S(7'M) is screen transversal with respect to
P, ie.

P(S(TM)) c S(TM™).
Let M be a screen transversal anti-invariant lightlike submanifold. Thus we have
S(TM*) = P(Rad(TM)) @ P(itr(TM)) L P(S(TM)) L Dy,
where Dy is a non-degenerate orthogonal complementary distribution to
P(Rad(TM)) @ P(ltr(TM)) L P(S(TM)).

Proposition 4.1.  The distribution Dy is an invariant distribution with respect to
P [9].

Let M be a screen transversal anti-invariant lightlike submanifold of a golden
semi-Riemannian manifold (M, §, P). Then we have

(4.1) PX = wX.

_ Let Ty, Ty, T and T} be the projection morphisms on P(Rad(TM)), P(S(TM)),
P(ltr(TM)) and Dy, respectively. Thus, for any V € T'(S(TM~)) we obtain

(4.2) V=T\V+TV + T3V + T,V.

On the other hand, for any V € T'(S(TM1)) we write
(4.3) PV = BV +CV,

where BV and C'V are tangential and transversal parts of PV. Then applying P
to (4.2), we derive

(4.4) PV = PT\V + PTLV + PT3V + PT,V.

_ If we put PT\V = BiV +C,V, PT,V = ByV 4+ C,V, PT3V = C:lI,V +C3V and
PT,V = C4V, we can rewrite (4.4) as follows:

(4.5) PV = BV + BoV + CV + GV + CLV + O3V + Cy V.

BV €T(S(TM)), BoV € I(Rad(TM)), C1V € T(PS(TM)), CoV € I'(PRad(TM)),
CLV e T(ltr(TM)), C5V € T'(Pltr(TM)) and C4V € T'(Dy). From (4.3) and (4.5),
we can write

(4.6) BV = BV + BoV,OV = O,V + CoV + CLV + C5V + C4 V.

Similar to the proof of Lemma 3.1, we have the following lemma.
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M be a screen transversal anti-invariant lightlike submanifold of

a golden semi-Riemannian manifold (M,g, 15) Then we have

(4.7) BwX =X,

(4.8) CwX =wX,

(4.9) BCV = BV — PBV,

(4.10) C?V =CV +V —wBV,
(4.11) g(X,wY) = g(wX,Y),
(4.12) gwX,wY) =g(wX,Y)+ g(X,Y),

for any X, Y € T'(TM).

Example 4.1. Let (M =RJ, g) be a T—dimensional semi-Euclidean space with signature
(=, —+,+,—,+,+,+,+) and (z1, 22, 3, T4, T5, T, T7, Ts, Tg) be the standard coordinate
system of RS. If we set P(x1, 2, &3, T4, Ts, T, L7, Ts, To) = (dx1, P2, dxs, (1 — ¢)za, (1 —
d)xs, (1 — ¢)xs, (1 — )7, (1 — ¢)xs, dpxo), then P2 = P+ and P is a golden structure
on M. Suppose M is a submanifold of M defined by

U1 + U2, T2 = U1 — U2, T3 = UL, T4 = PUI,

V2¢ur, t6 = —us, T7 = Pus, T8 = Puz, T = u3

x1

x5

where u;, 1 <17 < 3, are real parameters. Thus T'M = Span{Ul, Us, Ug}7 where

0 d 0 0 ad
Ui = 5 0 0 T %8m0
0 3] 0 0
V2T Gu 0w Bae %0
0 0
Vs = %50 T 52y

Then M is a 1-lightlike submanifold. We have Rad(T'M) = Span{U:} and S(TM) =
Span{Us,Us}. Lightlike transversal bundle ltr(T'M) is spanned by

R N

o 0
567D 5o T 5mr " 5wy~ Yo T V0505

Also, screen transversal bundle S(T'M J‘) is spanned by

0 0 0 o 0 0
i os "0 2T %0 " %oms T Bwg  Owr’
0 0 0 0 o 0 o
Ws "oz %0V T % 0 0 amn Y ioms
1 0 0 0 0 0
W = 3579 %am %80  om T om0

It is easy to see that PU; = Wa, PUy = Wy, PUs = Ws, PN = W5 and PW; = ¢Wy. Thus
we have P(S(TM)) C S(TM™"), P(Rad(TM)) C S(TM*) and P(itr(TM)) C S(TM™).
Then M is a screen transversal anti-invariant lightlike submanifold of M.
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Proposition 4.2. Let M be a screen transversal anti-invariant lightlike subman-
ifold of a golden semi-Riemannian manifold (M, g, P). Then w is golden structure
on TM.

Proof. From (4.12), we have
g(wX,wY) = g(wX,Y) 4+ g(X,Y),

for any X,Y € I'(T'M), which completes the proof. [

Proposition 4.3. Let M be a screen transversal anti-invariant lightlike subman-
ifold of a golden semi-Riemannian manifold (M, g, P). Then C is golden structure
on ltr(TM).

Proof. By the definition of screen transversal anti-invariant lightlike submanifold
we have BN = 0, for any N € I'(Itr(TM)). From (4.10) we have C?°N = CN + N.
Thus C is golden structure on ltr(TM). O

In the similar way, we have the following.

Proposition 4.4. Let M be a screen transversal anti-invariant lightlike subman-
ifold of a golden semi-Riemannian manifold (M, g, P). Then C is golden structure
on Dy.

Theorem 4.1. Let M be a screen transversal anti-invariant lightlike submanifold
of a golden semi-Riemannian manifold (M, g, P). Then the screen distribution is
integrable iff

(4.13) % PY = V3§ PX,
for any X, Y € T(S(TM)) [9].

Theorem 4.2. Let M be a screen transversal anti-invariant lightlike submanifold
of a golden semi-Riemannian manifold (M, g, P). Then the radical distribution is
integrable iff

(4.14) Vi P& = Vi Péy,
for any &1,& € T'(Rad(TM)) [9].
Theorem 4.3. Let M be a screen transversal anti-invariant lightlike submanifold

of a golden semi-Riemannian manifold (M,g,ﬁ). Then the screen distribution is
parallel iff

(4.15) G(V%PY,PN) = §(h*(X,Y), PN),
for any X, Y € T'(S(TM)) and N € T'(Iltr(TM)).
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Proof. Using the definition of screen transversal anti-invariant lightlike submani-
fold, S(T'M) is parallel iff g(VxY,N) = 0, for any X,Y € I'(S(TM)) and N €
T(ltr(TM)). From (2.3), (2.11) and (2.13), we obtain

9(VxY,N) = §(VxY,N)=§(VxPY,PN) - §(VxY,PN)
(4.16) = §(V%PY,PN)—g(h*(X,Y),PN),

which completes the proof. O

Theorem 4.4. Let M be a screen transversal anti-invariant lightlike submanifold
of a golden semi-Riemannian manifold (M, g, P). Then the radical distribution is
parallel iff

(4.17) 3(VE, P&, PX) = j(h*(&1,&), PX),
for any X e T(S(TM)) and &1, &2 € T'(Rad(TM)).

Proof. Using the definition of screen transversal anti-invariant lightlike submanifold
Rad(T'M) is parallel iff (V¢ &, X) = 0 for any X € I'(S(TM)) and &,& €
I'(Rad(T'M)). From (2.3), (2.11) and (2.13), we get

9(Vei62,X) = §(Ve62, X) = §(Ve, P&, PX) = §(Ve, &2, PX)
(4.18) = 9(VE P&, PX) = g(h*(&1,&2), PX),
which completes the proof. [

Taking into account that M is a totally umbilicial in Theorem 4.4 we get fol-
lowing theorem.

Theorem 4.5. Let M be a totally umbilical screen transversal anti-invariant light-
like submanifold of a golden semi-Riemannian manifold (]\~/[7§],]5). Then the rad-
ical distribution is parallel iff Vg, P&, has no compenents in P(S(TM)), for any
1,65 € F(Rad(TM))

Now, we give different form of theorem given in [9].

Theorem 4.6. Let M be a screen transversal anti-invariant lightlike submanifold
of a golden semi-Riemannian manifold (M,g, }3) Then the induced connection V
on M is a metric connection iff 31V§(155 = B1h*(X, }55), for any X e (T M) and
¢ € T(Rad(TM)).

Proof. Since VP = 0, we have
(4.19) VxP¢ = PVx¢,

for any X € T'(T'M) and & € I'(Rad(TM)). Applying P in this equation and using
(2.1), we get o - .
(4.20) PV xP¢=PVxé+ VxE.
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From (2.11), (2.13), (4.5) and (4.20), we have
—PAp X + BiV% P¢ + BoVS P&+ C1 VS PE+ Co V5 PE

(4.21) +CLV5 P + C3V% PE + C4 V5 PE + Phl(X, P¢)

= PVx&+ PRI(X,€) + Bih*(X,€) + Boh®(X,€) + C1h*(X, ) + Coh* (X, €)

+C5R° (X, €) + C5h° (X, €) + Cah® (X, €) + Vx& + W' (X, €) + h°(X, €).

Then, taking the tangential parts of (4.21), we derive

(4.22) Vxé = BIVY PE + BoVY PE — Bih*(X,€) — Boh®(X, €).

Considering Theorem 2.2, the equation (4.22) completes the proof. [

Taking into account that M is a totally umbilicial in Theorem 4.6 we get following
theorem.

Theorem 4.7. Let M be a totally umbilicial screen transversal anti-invariant
lightlike submanifold of a golden semi-Riemannian manifold (M,@P). Then the
induced connection V on M is a metric connection iff V}Pf has no component in
P(S(TM)), for any X € T(TM) and & € T'(Rad(TM)).

Theorem 4.8. Let M be a totally umbilicial screen transversal anti-invariant
lzghtlzke submanifold of a golden semi-Riemannian manifold (M g, ) Then H' =
0 iff V% PX has no component in P(itr(TM)), for any X € T'(S(TM)).

Proof. Using (2.3) and (2.11) and taking into account that M is a totally umbilicial
screen transversal anti-invariant lightlike submanifold of M, we get

q(
= g((x, PX) €) +g(h' (X, X),¢)
= §(X,PX)g(H', &) +§(X, X) (H',€)
= 9(X, X)g(H",9),

g(VxPX,P) = G§(VxPX,P¢) = §g(VxPX, &) +§(VxX,§)

for any X € I'(S(TM)) and & € T'(Rad(T'M)), which completes the proof. [

Theorem 4.9. Let M be a totally umbilicial screen transversal anti-invariant
lightlike submanifold of a golden semi-Riemannian manifold (M,g, P). Then H®
has no component in P(S(TM)) or dim(S(TM)) = 1.

Proof. Using (2.2) and (2.11) and taking into account that V is a metric connection,
we derive

(4.23) §(VxPX)Y)= §(VxX,PY)= §(h'(X,X),PY),
(4.24) §(VxPX,Y)=— §(PX,VxY)=— §(PX,h*(X,Y)),
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for any X,Y € I'(S(TM)). Combining (4.23) and (4.24), we obtain

(4.25) §(h*(X,X),PY) = — §(PX,h*(X,Y)).

Using (2.23) in equation (4.25), we get

(4.26) 9(X, X)g(H*, PY) = —g(X,Y) §(H"*, PX).

Interchanging X and Y in (4.26) and rearranging the terms, we derive

(4.27) g(H®, PX) = —m G(H®, PY).

From (4.26) and (4.27), we conclude that

9(X,Y)?

SO, X)g(v. 1) I PX),

(4.28) g(H®, PX) =
This completes the proof. [

Theorem 4.10. Let M be a totally umbilicial screen transversal anti-invariant
lightlike submanifold of a golden semi-Riemannian manifold (M,g, P). Then H®
has no component in P(ltr(TM)).

Proof. From (2.2), (2.11) and (2.23), we get

JD'(X.PY).§) = §(VxPY,§) = g(VxV.PE)
G(h*(X,Y), P§) = g(X,Y) g(H*, Pg),

for any X, Y € T'(S(TM)), which completes the proof. [
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Abstract. The aim of this work is to study a class of boundary value problem includ-
ing a fractional order differential equation involving the Caputo-Hadamard fractional
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1. Introduction

Fractional differential equations is a subject of the domain of mathematics, which
are basically used to describe the comportment of several complex and nonlocal
systems with memory. Due to the effective memory function of fractional derivative,
they have been widely used to describe many physical phenomena such as flow in
porous media and in fluid dynamic traffic model. Moreover, fractional differential
equations been widely used in engineering, physics, chemistry, biology, and other
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fields; see the monographs of Kilbas et al. [24], F. Jarad et al. [22], Miller and
Ross [26], Samko et al. [28] and the papers of Delbosco and Rodino [17], Hazarika
et al. [16], Diethelm et al. [18], El-Sayed [19], Kilbas and Marzan [23], Mainardi
[25], H.M. Srivastava [29] and Podlubny et al. [27]. Moreover, several papers have
been devoted to the study of the existence, stability, existence and uniqueness of
solutions for fractional differential equations, among others we refer to the papers
[2,3,4,5,7,9, 10, 15, 16, 30, 31].

In 2008, Benchohra et al. [10] studied the existence and uniqueness of solutions
of the following nonlinear fractional differential equations:

Dey(t) = f(t,y(1)),

ay(0) + by(T) = c,

ted,

where J := [0,T], D% is the caputo fractional derivative of order «, (0 < o < 1),
f:[0,7] x R — R is a given continuous function, and a, b, ¢ are real constants with
a+b#0.

In 2017, Asghar Ahmadkhanlu [6] studied the existence and uniqueness of solu-
tions of the following boundary value problem of fractional differential equation is
considered:

Dey(t) = f(t,y(1)),
teJ,

y(0) = nIPy(1),0 < 7 < 1.

Where J := [0,1], D* is the caputo fractional derivative of order a, (0 < v < 1),
f:]0,1] x R — R is a given continuous function, n € R, I?, 0 < 8 < 1, is the
Riemman-Liouville fractional integral of order .

In 2018, Benhamida et al. [12, 13], studied the existence and uniqueness of
solutions of the following nonlinear fractional differential equations:

Dey(t) = f(t,y(1)),
ted
ay(1) + by(T) =c,

where J := [1,T], D® is the caputo-Hadamard fractional derivative of order «,
(0<a<l), f:[1,T] x R — R is a given continuous function and a, b, ¢ are real
constants with a + b # 0.

In 2018, Benhamida et al. [11], studied the existence of solutions to the boundary
value problem for fractional order differential equations

Dey(t) = f(t,y(1)),
ted,

y(0) + y(T) = b [} y(s)ds,bT # 2,
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where J := [0,T],T > 0, D* is the Caputo fractional derivative of order a,
(0<a<l),f:[0,7] xR — R is a given continuous function, and b are real
constants .

In 2018, Abdo et al. [1] discussed the existence and uniqueness of positive
solutions of the following nonlinear fractional differential equation with integral
boundary conditions:

Doy(t) = f(t,y(t)),
teJ,
y(0) = b [ y(s)ds + d.

Where J :=[0,1], 0 < o < 1, A > 0,d > 0, D* is the standard Caputo
fractional operator and f : [0, 1] x [0,00) — [0, 00) is a given continuous function .

In 2019, A. Ardjouni et al. [8] discussed the existence and uniqueness of positive
solutions of the following nonlinear fractional differential equation with integral
boundary conditions:

Dey(t) = f(t,y(1)),

y(1) =b [ y(s)ds + d,

ted

where J := [1,e], D¢ is the Caputo-Hadamard fractional derivative of order
0<a<1l,A>0,d>0and f:Jx[0,00) = [0,00) is a given continuous function.

Motivated by the studies above, among others, in this paper, we concentrate on
the following boundary value problem, of nonlinear fractional differential equation
with fractional integral as well as integer and fractional derivative:

(1.1) GDT x(t) = f(t,x(t), t€J:=[1,T]), 0<r<1,
with fractional boundary conditions:
(1.2) azx(1) + Bz(T) = M\z(n) + 6, qe€ (0,1]

where gD{+ denote the Caputo-Hadamard fractional derivative and I? denotes the
standard Hadamard fractional integral. Throughout this paper, we always assume
that 0 <r,q¢ <1, f:[1,T] x R — R is continuous. a, §, A\, d are real constants, and
ne(1,7).

The rest of the paper is organized as follows. We recall some basic concepts
of fractional calculus and introduce the integral operator associated to the given
problem in Sect.2. Existence results, which rely on Schauder’s fixed point theorem
nonlinear alternative for single valued maps, and Scheafer’s fixed point theorem are
given. Also, In Sect.3, we obtain uniqueness results by means of Boyd and Wong’s
and Banach’s fixed point theorems. Example illustrating the obtained results are
presented in Sect.4, and the paper concludes with some interesting observations in
Sect.5.
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2. Preliminaries and lemmas

At first, we recall some concepts on fractional calculus and present some addi-
tional properties that will be used later. For more details, we refer to [20, 22, 24, 32].
We present some basic definitions and results from fractional calculus theory.

Let E = C([1,T],R) be the Banach space of all continuous functions from [1, T
into R with the norm
= t
Jull = s, )
Let bet the space

ACE([a,b],R) = {h : [a,b] = R: 6" h(z) € AC([a,b],R)}.

where § = t% is the Hadamard derivative and AC([a, b], R) is the space of absolutely
continuous functions on [a, b].

Definition 2.1. (Hadamard fractional integral [24]) The Hadamard fractional in-
tegral of order o > 0 for a function h: [1,400) = R is defined as

(2.1) 2oht) = e [ 0w D) i)

where T' is the Gamma function.

Definition 2.2. (Hadamard fractional derivative [24]) For a function h given on
the interval [1,4+00), and n — 1 < a < n, the Hadamard derivative of order « is
defined by

(2.2)

DS h(t) = gy ()™ [, (log )= h(s) 4

= 67T h(t).

where n = [a]+1, and [o] denotes the integer part of the real number o and § =t
provided the right integral converges.

There is a recent generalization introduced by Jarad and al in [22], where the
authors define the generalization of the Hadamard fractional derivatives and present
properties of such derivatives. This new generalization is now known as the Caputo-
Hadamard fractional derivatives and is given by the following definition:

Definition 2.3. (Caputo-Hadamard fractional derivative [22]) Let « =0, andn =
[a] + 1. If h(z) € AC}a,b], where 0 < a < b < 0o and

AC?a,b) = {h :[a,b] = C : 6" *h(z) € AC|a,bl}.

The left-sided Caputo-type modification of left-Hadamard fractional derivatives of
order o is given by

n—1 cp a
(23) GD2. h(t) = D2 <h<t>—252f><logt>k)

S
=0

e
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Theorem 2.4. (See [22]) Let o > 0, and n = [a] + 1. If y(t) € AC}[a,b], where
0 <a<b<oo. Then GD%, f(t) exist everywhere on |a,b] and
(i) if o ¢ N— {0}, §D%, f(t) can be represented by

(2.4) GD2 h(t) = F,g”;‘) [i(log tyr—a—15mp(s)ds
= I h(t).

(i1) if « € N— {0}, then
(2.5) 1D h(t) = 6"h(t)

In particular
(2.6) 5D+ h(t) = h(t)

Caputo-Hadamard fractional derivatives can also be defined on the positive half axis
R* by replacing a by 0 in formula (2.4) provided that h(t) € ACF(R™). Thus one
has

(2.7) ¢ D, h(t) = L ds

! t n—a—1¢n b
7F(n_a)/a(log;) d"h(s) .

Proposition 2.5. (See [24]) Let a > 0,6 > 0,n = [a] + 1, and a > 0, then

1o (log 1)~ Ha) = {iik;(log 2)P et
(2.8) gD (log L) () = wahs(log 2)Po71, 8 > m,
CD;;(loga) 0k=0,1, n—1.

Theorem 2.6. (See [20]) Let u(t) € AC}a,b],0 <a <b < oo and a > 0,5 > 0,

Then
¢, (I2,u) (1) 1570 (1),
Go2, (G0lu) (1) = (GD57%) @),

(2.9)

Lemma 2.7. (See [22]) Let o > 0, and n = [a] + 1. If u(t) € AC{[a,b], then the

Caputo-Hadamard fractional differential equation
(2.10) GD% u(t) =0,

has a solution:

(2.11) u(t) = ”Z_lck (log Dk

n—1 k
(2.12) o (GD%0) (1) = ult) + 3 e <10g t) ,

where c, e Rok=1,2,...,n— 1.
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3. Main Results

First, we prove a preparatory lemma for boundary value problem of linear frac-
tional differential equations with Caputo-Hadamard derivative.

Definition 3.1. A function x(t) € AC}(J,R) is said to be a solution of (1.1),(1.2)
if x satisfies the equation G D" x(t) = f(t,x(t)) on J , and the conditions (1.2).

For the existence of solutions for the problem (1.1), (1.2), we need the following
auxiliary lemma.

Lemma 3.2. Let h : [1,+00) = R be a continuous function. A function x is a
solution of the fractional integral equation

1
(3.1) x(t) = I"h(t) + n {AI"h(n) — BI"W(T) + 6}
if and only if x is a solution of the fractional BVP

(3.2) GD"x(t) = h(t),t € J,r € (0,1]
az(1l) + Bz(T) = Mz(n) + §,q € (0,1]

Proof. Assume z satisfies (3.2). Then Lemma 2.7 (2.12) implies that

(3.4) z(t) =I"h(t) + 1.
By applying the boundary conditions (3.3) in (3.4), we obtain
A(logn)?
T _ r+q
acy + BI"h(T) + Bey = M"T9h(n)) + ¢ T(g+1)
Thus,
/\(log 77)q +
— == ) = A""1 — BI"h(T .
cr (08— JoBIE) AT Ih(y) ~ BIH(T) +
Consequently,
1
= {AI"*n(n)) — BI"W(T) + 6},
where,
A(log n)q>
A= e I
(a 0 I'(g+1)

Finally, we obtain the solution (3.1)
1
x(t) = I"h(t) + i {AI"%n(n) — BI"K(T) + 6} .
|

In the following subsections we prove existence, as well as existence and unique-
ness results, for the boundary value problem (1.1), (1.2) by using a variety of fixed
point theorems.
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3.1. Existence and uniqueness result via Banach’s fixed point theorem

Theorem 3.3. Assume the following hypothesis:
(H1) There exists a constant L > 0 such that

[f(tx) = f(ty)| < Llz —yl.

If
(3.5) LM <1,

with

~{ (logT)" |A\|(log )" *4 |3(log T)"
M'_{r(r+1) AT+ g+ 1) A|F(r+1)}’

then the problem (1.1) has a unique solution on J.

Proof. Transform the problem 1.1), (1.2) into a fixed point problem for the operator
§ defined by

(3.6) Salt) = I"h(t) + % [AI™h(n) — BITK(T) + 6.

Applying the Banach contraction mapping principle, we shall show that § is a
contraction.

Now let x,y € C(J,R). Then, for t € J, we have
(3.7)
Thus
[(F2) () = (FY) (D)oo < LM ||z = ylloo

We deduce that § is a contraction mapping. As a consequence of Banach contraction
principle. the problem (1.1)-(1.2) has a unique solution on J. This completes the
proof. O

3.2. Existence result via Schaefer’s fixed point theorem

Theorem 3.4. Assume the hypotheses:
(H2): The function f:[1,T] x R — R is continuous.
(H3) There exists a constant K > 0, such that

|f(t,0)] < K, for a.e. teJ

Then, the problem (1.1)-(1.2) has a least one solution in J.

Proof. We shall use Schaefer’s fixed point theorem to prove that § defined by (3.6)
has a fixed point. The proof will be given in several steps.

Step 1: § is continuous Let x,, be a sequence such that z, — x in C(J,R). Then
for each t € J ,
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1Fn)(t) — (F2)(1)]] TI JiQog 1)1 f (s, 20 () = f(s,2(5))]| %

<

= T(r)

+rpﬁ+q) J7(Qog 1YY\ f(s,20(5)) — f(s,2(s))]|
+

<

e Sy (Qog T)r =t £(s,wa(s) = f(s,a(s))]| £

AT
(log T)" \/\|(10g77)r+q |8|(log T)"
{F(r+1) t AT terD T ATC+D } X

1f (s, 2n(5)) = f(s,2(s)).

Since f is continuous, we have ||(Fz,)(t) — (Fz)(t)]cc — 0 as n — 0.

Step 2: § maps bounded sets into bounded sets in C(J,R)
Indeed, it is enough to show that for any r > 0, we take

u € B, ={x € C(J,R), ||z]loc <1}
From (H1) and (H3), Then we have
[f(s,2(s))] < |f(s,2(s)) = f(£0)[ + [f(£,0)] < Lr + K.

For z € B, and for each ¢ € [1,T], we have

|(§)(1)|< 1y [y (log ) 1|f($ ()| % + iy Ji'(log 2)7 07 £(s, a(s))| L
r s 6
g hier g
< HEF [f(og 1) 5**]’1 (log 2)r+a—1ds

Iﬁ\ L +K) d IA‘F(ITJqu
r 'r 1ds
TIAT) L[ o 1Al

<logT>T Allogn)™ | 8ldog )" |, |5
= <L7“+K){ Tt T AT T D T AT D } +1al
< (Lr+ K)M + 2.

5’

Thus,
o]

I@z)) < (Lr+ K)M + 77

Step 3: § maps bounded sets into equicontinuous sets of C(J,R).
Let t1,to € J, t1 < ta, B, be a bounded set of C(J,R) as in Step 2, and let « € B,..

Then

I (t2) — S (t1)] 1 [(log 2)™=1 — (log )11 || f (s, 2(s)) | &
+r(r) ftl (log tj)r 1Hf(s z(s))[| &
< Llr(-i;)K 11‘/1 [(log ) (log i1 )r 1] ds + I‘(r) f logt?z)rfl%
< A [(logta)” — (logty)],

which implies ||Fx(t2) — Fx(t1)||co — 0 as t; — ta, as consequence of Stepl to Step
3, together with the Arzela-Ascoli theorem, we can conclude that § is continuous
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and completely continuous.

Step 4: A priori bounds.
Now it remains to show that the set

A={z e C(J,R):x = pF(x) for some 0 < p < 1}
is bounded.

For such a x € A. Thus, for each t € J, we have

2(t) < p{ s [V (og 1) (s, 0(3) L + prdelisy S (log 1) +a (s, a(s) &
-I-‘A'ﬁl I log Tyr=1 f (s, 2(s)) +%}

For p € [0,1], let  be such that for each t € J

ds
s

ds
s

Bz < w7 J1 (log £) | f (s, 2(5))|% + rxpogy Ji' (log 2)7 971 £ (s, 2(s))| £
1oy i (log D) =L (s, 2(s))| L + {3
< (Lr+K)M + 3.

Thus

[B2(t)] < o0

This implies that the set A is bounded. As a consequence of Schaefer’s fixed
point theorem, we deduce that § has a fixed point which is a solution on J of the
problem (1.1)-(1.2). O

3.3. Existence via the Leray-Schauder nonlinear alternative

Theorem 3.5. Assume the following hypotheses:
(Hj) There exist w € L'(J,R") and v : [0,00) — (0,00) continuous and nonde-
creasing such that

lf (¢t )| <w@®v(||z|), for a.e. t € J and each x € R.

(H5) There exists a constant € > 0 such that
> 1
ol M + 3

Then the boundary value problem (1.1)-(1.2) has at least one solution on J.

Proof. We shall use the Leray-Schauder theorem to prove that § defined by (3.6) has
a fixed point. As shown in Theorem 3.4, we see that the operator § is continuous,
uniformly bounded, and maps bounded sets into equicontinuous sets. So by the



744 A. Boutiara, M. Benbachir and K. Guerbati

Arzela-Ascoli theorem § is completely continuous.
Let x be such that for each t € J, we take the equation = AImax for A € (0,1)
and let x be a solution. After that, the following is obtained.

lz(t)] < p(l,) [ 08 Lt (al) 2 + bl [7(log 1+ tw(typ(loll) L
+ iy i (log L)ty ([l ]) % + 4
< Ilelw(llxll)M+ -

and consequently
[1]loo

lwoll(ll]l) M + J5h

Then by condition (H5), there exists € such that ||z|o # €. Let us set
k={zx e C(J,R): ||z|| < €}.

Obviously, the operator Im : ® — C'(J, R) is completely continuous. From the choice
of k , there is no x € Jx such that £ = AIm(z) for some A € (0,1) . As a result,
by the Leray-Schauder’s nonlinear alternative theorem, § has a fixed point z € &
which is a solution of the (1.1)-(1.2).

The proof is completed. O

Now we present another variant of existence-uniqueness result.

3.4. Existence and uniqueness result via Boyd-Wong nonlinear
contraction

Definition 3.6. Assume that E is a Banach space and T : E — E is a mapping.
If there exists a continuous nondecreasing function 1) : RT™ — R such that 1(0) = 0
and Y (e) < e for all € > 0 with the property: |Tx — Tyl < ¥(||lx — yl),Vz,y € E.
then, we say that T is a nonlinear contraction.

Theorem 3.7. (Boyd-Wong Contraction Principle)[14]
Suppose that B is a Banach space and T : B — B is a nonlinear contraction. Then
T has a unique fixed point in B.

Theorem 3.8. Assume that f : [1,T] x R — R are continuous functions and
H > 0 satisfying the condition

|z -y

(38) |f(tax)7f(tay)|SMa fOT’th,.%,yG]R.

Then the fractional BVP (1.1)-(1.2) has a unique solution on J .
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Proof. We define an operator § : x — X as in (3.6) and a continuous nondecreasing
function 1 : RT™ — RT by

He
P(e) = TH,VE >0,

where M < H . We notice that the function ¢ satisfies 1(0) = 0 and ¢(g) < ¢ for
all e > 0. For any =,y € x , and for each ¢t € J , we obtain

|(F)(t) — (3y)(¢)] {(log £)" 1| f (s, 2(s)) = f(s,y(s)) ]| £

+m'?l+q> ST (log Ty + a1 f(s,2(s)) — f(s,y(s))| 4
+ iy i (Gog Dy =11 f (s, 2(s)) — f(s. ()|

< |z—y| {(10gT)T+\AI(logn)T” Iﬁl(logT)"}

- H+\w‘—y| | L'(r+1) AT (r+g+1) [AIT(r+1)

e rT—y

'*MH+|x—y|

< (e —yl).

Then, we get |Fz — Fy|| < ¥(||x — y||). Hence, § is a nonlinear contraction. Thus,
by Theorem 3.9 (Boyd-Wong Contraction Principle) the operator § has a unique
fixed point which is the unique solution of the fractional BVP (1.1)-(1.2). The proof
is completed. [

4. Example

We consider the problem for Caputo-Hadamard fractional differential equations
of the form:

%D%x<t) = f(t,.%‘(t)), (tvx) € ([17 e]’R+)7
(4.1)
w(1) +a(e) = 4 (Ia(2)) +
Here
r _§a q:%7 szl, /8:17
5 = 1 A= 5 n= 2, T=e¢e
With
= —-— 1
Jty(0) = r—cose,  t€ [1,¢
Clearly, the function f is continuous.
For each z € RT and ¢ € [1, ¢, we have
1
|f(tx(®)) = [t y()] < 7lo —y]
Hence, the hypothesis (H1) is satisfied with L = i
Further,
_ (logTy | D(logm)tt  IBl(osT)y L

S T(r+1)  JAIT(r+q+1)  |AT(r+1)
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and
LM ~ 0.5071 < 1.

Therefore, by the conclusion of Theorem 3.3, It follows that the problem (4.1) has
a unique solution defined on [1, e].

5. Conclusion

In this paper, we have obtained some existence results for nonlinear Caputo-
Hadamard type fractional differential equations with Hadamard integral boundary
conditions by means of some standard fixed point theorems and nonlinear alterna-
tive of Leray-Schauder type. Though the technique applied to establish the existence
results for the problem at hand is a standard one, yet its exposition in the present
framework is new. An illustration to the present work is also given by presenting
some examples. Our results are new and generalize some available results on the
topic. For instance,

v" We remark that when o = =1, A = 0, problem (1.1)-(1.2) reduces to the case
considered in [12, 13].

v If we take « = ¢ =1, 8 =0, in (1.2), then our results correspond to the case
integral boundary conditions considered in [8].

v By fixing 5 = A =0, in (1.2), our results correspond to the ones for initial value
problem take the form:z(1) =46 .

v In case we choose a = =1, A = ¢ = 0, in (1.2), our results correspond to
anti-periodic type boundary conditions take the form: (1) = —z (7).

v' When, a = 8 =1, § =0, the (1.2), our results correspond to Fractional integral
and anti-periodic type boundary conditions.

v If we take a =1, 8 =9 =0, in (1.2), then our results correspond to the case
Fractional integral boundary conditions.

In the nutshell, the boundary value problem studied in this paper is of fairly general
nature and covers a variety of special cases.

REFERENCES

1. M. A. ABpO, H. A. WaHASH and S. K. PANCHAT: Positive solutions of a fractional
differential equation with integral boundary conditions. Journal of Applied Mathematics
and Computational Mechanics 17(3) (2018), 5-15.

2. R. P. AGARwWAL, M. MEEHAN and D. O’REGAN: Fized Point Theory and Applications,
Cambridge Tracts in Mathematics, 141, Cambridge University Press, Cambridge, 2001.



3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Boundary Value Problem 747

B. AuMAD, M. ALcHANMI, H. M. SRIVASTAVA and S. K. NTOUYAS: The Langevin
equation in terms of generalized Liouville-Caputo derivatives with nonlocal boundary
conditions involving a generalized fractional integral, Mathematics 7 (2019), Article ID
533,1-10.

B. AHMAD and S. K. NTouvas: On Hadamard fractional integro-differential boundary
value problems, J. Appl. Math. Comput 47 (2015).

B. AuMAD and S. K. NTOUYAS: Initial value problems of fractional order Hadamard-
type functional differential equations, Electron. J. Differ. Equ. 77 (2015).

A. AHMADKHANLU: FEzistence and Uniqueness Results for a Class of Fractional Differ-
ential Equations with an Integral Fractional Boundary Condition, Filomat 31:5 (2017),
1241-1249.

A. ALsAeDI, M. ArLsuLAaMi, H. M. SrivasTAavAa, B. AHMAD and S. K. NTOUYAS:
Ezistence theory for nonlinear third-order ordinary differential equations with nonlocal
multi-point and multi-strip boundary conditions, Symmetry 11(2019), Article ID 281,1-
18.

. A. ARDJOUNI and A. DJouDI: Positive solutions for nonlinear Caputo-Hadamard

fractional differential equations with integral boundary conditions, Open J. Math. Anal.
2019, 3(1), 62-69.
Z. BAITICHE, M. BENBACHIR and K. GUERBATIL: Solvability for multi-point bvp of

nonlinear fractional differential equations at resonance with three dimensional kernels,
Kragujevac Journal of Mathematics Volume 45(5) (2021), pp: 761-780.

M. BENCHOHRA, S. HAMANI and S. K. NTOUYAS: Boundary value problems for dif-
ferential equations with fractional order, Surveys in Mathematics and its Applications
vol, 3 (2008), 1-12.

W. BENHAMIDA, J. R. GRAEF and S. HAMANI: Boundary Value Problems for Frac-
tional Differential Equations with Integral and Anti-Periodic Conditions in a Banach
Space, Progr. Fract. Differ. Appl. 4, No. 2, 65-70 (2018)

W. BENHAMIDA and S. HAMANIL: Measure of Noncompactness and Caputo-Hadamard
Fractional Differential Equations in Banach Spaces, Eurasian Bulletin Of Mathematics
EBM (2018), Vol. 1, No. 3, 98-106

W. BENHAMIDA, S. HAMANI and J. HENDERSON: Boundary Value Problems For

Caputo-Hadamard Fractional Differential Equations, Advances in the Theory of Non-
linear Analysis and its Applications2 (2018) No. 3, 138-145.

D. W. Boyp and J. S. W. WonNG: On nonlinear contractions. Proc. Am. Math. Soc.
20, 458-464 (1969).

D. BoutiarA, K. GUERBATI and M. BENBACHIR: Caputo-Hadamard fractional dif-
ferential equation with three-point boundary conditions in Banach spaces; AIMS Math-
ematics, 5(1): 259-272., (2019).

B. HazARIKA, H. M. SRIVASTAVA, R. ARAB and M. RABBANI: Euxistence of solution
for an infinite system of nonlinear integral equations via measure of noncompactness
and homotopy perturbation method to solve it, J. Comput. Appl. Math. 343 (2018),
341-352.

D. DELBOSCO and L. RODINO: FExistence and uniqueness for a monlinear fractional
differential equation, J. Math. Anal. Appl. 204 (1996), 609-625.

K. DIETHELM and A. D. FREED: On the solution of nonlinear fractional order differen-
tial equations used in the modeling of viscoplasticity, Scientific Computing in Chemical



748 A. Boutiara, M. Benbachir and K. Guerbati

19.

20.

21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Engineering II. Computational Fluid Dynamics, Reaction Engineering and Molecular
Properties (F. Keil, W. Mackens, H. Voss and J. Werther, eds.), Springer-Verlag,
Heidelberg, 1999, pp. 217-224.

A. M. A. EL-SAYED and E. O. BIN-TAHER: Positive solutions for a nonlocal multi-
point boundary-value problem of fractional and second order, Electron. J. Differential
Equations, Number 64, (2013), 1-8.

Y. GAMBO ET AL: On Caputo modification of the Hadamard fractional derivatives,
Adv. Difference Equ. 2014 (2014), Paper No. 10, 12 p.

A. GrANAS and J. DUGUNDJL: Fized Point Theory, Springer-Verlag, New York, 2003.

F. JArAaD, D. BALEANU and A. ABDELJAWAD: Caputo-type modification of the
Hadamard fractional derivatives, Adv. Differ. Equ. 2012 (2012).

A. A. KiLBAs and S. A. MARZAN: Nonlinear differential equations with the Caputo
fractional derivative in the space of continuously differentiable functions, Differential
Equations 41 (2005), 84-89.

A. A. KiLBas, H. M. SRIVASTAVA and J. J. TRUJILLO: Theory and Applications of
Fractional Differential Equations, Elsevier Science B.V. Amsterdam, 2006.

F. MAINARDI: Fractional calculus: some basic problems in continuum and statistical
mechanics, Fractals and Fractional Calculus in Continuum Mechanics (A. Carpinteri
and F. Mainardi, eds.), Springer-Verlag, Wien, 1997, pp. 291-348.

K. S. MILLER and B. R0ss: An Introduction to the Fractional Calculus and Differ-
ential Equations, John Wiley, New York, 1993.

I. PoDLUBNY, I. PETRAS and B. M. VINAGRE and P. O’LEARY and L. DORCAK:
Analogue realizations of fractional-order controllers. Fractional order calculus and its
applications, Nonlinear Dynam. 29 (2002), 281-296.

S. G. SAMKO, A. A. KiLBAS and O. I. MARICHEV: Fractional Integrals and Deriva-
tives, Theory and Applications, Gordon and Breach, Yverdon 1993.

H.M. SRIVASTAVA, Fractional-order derivatives and integrals: Introductory overview
and recent developments, Kyungpook Math. J. 60 (2020), 73-116

H.M. SRIVASTAVA, Diabetes and its resulting complications: Mathematical modeling
via fractional calculus, Public Health Open Access 4 (3) (2020), Article ID 2, 1-5.

P. THIRAMANUS and S. K. NTouvAs and J. TARIBOON: FExistence and uniqueness
results for Hadamard-type fractional differential equations with nonlocal fractional in-
tegral boundary conditions, Abstr. Appl. Anal. (2014).

A. Yacine and B. Nouredine: boundary value problem for Caputo-Hadamard fractional
differential equations, Surveys in Mathematics and its Applications, Volume 12 (2017),
103-115.

H. ZuANG: Nonlocal boundary value problems of fractional order at resonance with
integral conditions. Adv. Differ. Equ.2017, 326 (2017)



FACTA UNIVERSITATIS (NIS)

SER. MATH. INFORM. Vol. 36, No 4 (2021), 749-759
https://doi.org/10.22190/FUMI200118055A
Original Scientific Paper

THE STRUCTURE OF UNIT GRUOP OF Fs5:T59

Ali Ashja’ and Ali Iranmanesh

Tarbiat Modares University, Faculty of Mathematical Sciences
Department of Pure Mathematics, P.O. Box 14115-111, 021 Tehran, Iran

Abstract. Let RG be the group ring of a group G over ring R and let % (RG) be its
unit group. In this paper, we study the structure of the unit group of Fs:T3g.
Key words: Group ring, unit group, group modules

1. Introduction

Let FG be the group ring of a group G over a field F and let % (FG) be its unit
group, which is the multiplicative subgroup containing all invertible elements. The
study of a unit group is one of the classical topics in ring theory that started in
1940 with a famous paper written by G. Higman [11]. In recent years many new
results have been achived; however, only few group rings have been computed. Unit
groups are useful, for instance, in the investigation of Lie properties of group rings
(for example see [3]) and isomorphism problems (for example see [4]).

Up to now, the structure of unit groups of some group rings has been found.
For instance, on an integral group ring [12], on a permutation group ring [18], on a
commutative group ring [16], on a linear group ring [13], on a quaternion group ring
[6], on a modular group ring [17] and on a pauli group ring [9]. In [7], the authors
proved which groups can be unit groups as well as properties of unit elements
themselves [2] and also we studied the structure of % (Fa:D14) in [1].

In this paper we will study the unit group of Fs3:T39. So far, some cases, in
characteristic 3, have been studied. For instance, in [5], the authors obtained
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the structure of unit group of FsDg, in [8], Gildea determined the structure of
unit group of Fs(Cs x Dg) and in [10] Gildea and Monaghan studied groups of
order 12 and recently in [15], Monaghan studied groups of order 24. In this paper
we characterize the unit group structure of group T3¢9 over any finite field with
characteristic 3.

2. Preliminaries and Notations

In this section, we collect some notations and lemma which we need for the proofs
of our main results. We denote the order of an element g in the group G by Ords(g),
the sum of all elements of subset X in ring R by )?7 which is ) .y 7. Notice there is
no need for X to be a subring or subgroup; it defines for any arbitrary subset. In
group ring RG, when X is the subset of all different powers of g, an element of group
G, we may simply write g instead of X. Also when X is the right coset (g)h, we may
write gh for X. In group, ¥’ denotes the conjugate of x by y, that is, ¥ = y~!xy. Let
f X — Y be an arbitrary function. Define Suppx(f) = {x € X |f(x) # 0}. Also,
we use the following notations: Anng(a) = {r € R|ra = ar = 0}, we denote a finite
field of characteristic p with order p" by .. If E is a vector space over F, then
Dimp(E) is the dimension of E over F. Let % (R) be the unit group of ring R, which
is Z(R) = {u € R|u=! € R} and let J(R) be the Jacobson radical of ring R. Now
we state a useful definition and recall a lemma.

Definition 2.1. Let RG be group ring of ring R over the group G, let p be a prime
number and let S, be subset of all p—elements including identity element of G, which
is S, = {g € G|3n € Z7° Ordg(g) = p" }. We define a binary map T : G — R as

follows:
1 If ges,
I(e) = { 0 If g¢ Sp

As we know that T on G is the base of RG, so we can linearly extend it to whole
RG, of course no more remains binary. Also if see elements of RG as functions from
G to R, that map every group element (g) to its coefficient (r,), then their supports
will be feasible. Now we can define Krn(T) := {a € RG|Vg € G; ag € Kergs(T)}
and Spr(a@) := Suppg(@). Also Anh(a) := Anngg(a) and Dmn(S) := Dimp(S).

Lemma 2.1. Let F be a finite field of characteristic p, let G be a finite group, let
T be a function defined as above and s = §p. Then:

(1) J(FG) C Krn(T) .

(2)  Krn(T) = Anh(s) .

(3)  J(FG) C Anh(s) .

Proof. [19, Lemma 2.2 on p. 151]. O

In the next section we present our main results.
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3. Unit Group of [F5: T3

Let T39 = (x,y|x!3 = y3 =1, ¥’ = x3), let C, be the cyclic group of order n and
let GL,(R) be the general linear group of degree n on ring R. Our main result is:

Theorem 3.1. Let G = Tyg and F = F3.. Then the structure of % (FG) can be
obtained as follows:

U (FG) = C2" x C3n_1 x GL3(F)*.

Let p = 3, let s be defined as in Lemma 2.1, let (x) be the cyclic subgroup
generated by x and let (x)y be a right coset of (x), that is, (x)y = {x'y| —6 < i < +6},
or equivalently, (x)y = {x= %y, x™%y, x4y, x73y, x72y, x 71y, y, xy, x%y, x3y, xy*, x%y, x6y}.
By definition, we have

T o= x 0 xS P Pl 2+ 0 S

o= xSy xSy Ty by b ay Hady Hay
—|—x4y + x5y + xGy.

Now we show:

Proposition 3.1. Let p =3 and G = Tsg9. Then the structure of annihilator will
be as follows:

Anh(s) = {axy ' +ax +a*xy | a” +a+at =0}

Proof. Tt is easy to find that the conjugacy classes of G are as below:
%o = {1}

€1 ={x1 x3 M

Cr1={x, 3, x71}

(3.1) € o={x2 x5 x5}
Cro = {x*, x°, 1%}
Gy = (x)y”!
Chs = (x)y

It is clear that T3g has three types of elements: Identity, elements of the form
x'y*! with order 3 and elements of the form x' # 1 with order 13. Therefore,
S3=%_3U%) UG, 3, 5083 =%C_3+%+Cy3=2xy""+1+Xxy, sum of 3—elements
including identity. Let o = ;373 o; € Anh(s) where, Spr(e;) C 6; and s = §3.
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Then we have

(O—g + Ol + 01 + Ol + Q1 + Oy + Og) (B + 1+ 3y)
(3.2) = (03 + (@ o+ 014 0+ Cy1 + 0a) + 043) (X + 1 +5y)
= (0_3+ (@2 + 01 + Og + Cy1 + Q2)Xy " + oty 3%y)
+ (0 3xy + (g + 01 + &g + 0y + Q) + gy )
+(@gxy 4 (Ao + 0 + O+ Oy + )Ry + Oy 3)

Notice that for every j, we know:

Xy Xy =x x»ylt=x7!
(3.3) ¥y txy =xyxyl=x
My txyTl=x Xy =3

So the conjugacy classes of three last parentheses of (3.2) are different and since
the left hand side is zero, every parentheses should be zero separately. Hence,

(034 (0 g+ a1+ 0+ 0y + )Ry 4 aysxy) =0
(03X + (09 + 01 + G + Oy + Qya) + 0ty3xy ) =0
(06,356\)7_1 + (0672 +0_1+ 0y + 041 + (X+2)5C\y + OC+3) =0.

Similarly, using (3.3) we can conclude that:

Og+ (O + -+ Cyo) + aya) DL =

0
(3.4) (_g+ -+ a42)+elag+o3)x =0
o3+ e(0_g+ (0tg+-+042))xy =0

As mentioned above o = ;;3_3 O =0_3+0 o+ 0_1+0+ 041+ 042+ 03
where Spr(a;) C %; and by definition of ;’s from (3.1), we can write:

Oy = Aqo

o_1 = a,lx_l + a,gx_?’ + a4x4

Oy = aix+ a3x3 + a_4x74

0_o = cz,gx_2 + a,5x_5 + a,gx_6

Olpo = a2x2 + a5x5 + a6x6

6
o_3 = Z a; x'y™?

i=—6

6
03 = E aix'y
i=—6
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By substitution of each ;s in (3.4), we can calculate the coefficients of each
element of the group in the left hand sides of equations and since the right hand
sides are zero, so each coefficient must be zero too. Thus for every h, i and j we
have

+2 +2
a, = —¢( Z a, + 0y 3) aj = —¢e(0ty3+ 0_3) ajr =—¢g(o_3+ Z a)
r=—2 r=—2
6 6 6
@, =— (a+a) a=—Y (af +a) af == (¢ +a)
r=—6 r=—6 r=—6
0:6:“':‘16_ a_g¢g ="+ =ag ai—6:‘..:ag_

So by knowing a; , ap and aar, all coefficients can be computed. Also since we
deal with a field of characteristic 3, so 13 = 1, therefore, we have a;, +ao + aa' =0,
thus:

Anh(s) = {agxy~ + apX +afxy | ay +ao +ag =0}.
0

Let s be as in Proposition 3.1, that is s = §3, then we have
Proposition 3.2. Anh(s) is a nilpotent ideal.

Proof. Let a, B,y € Anh(s). According to Proposition 3.1, we have
a=axy ' +ax+atxy
(3.5) B=b"xy'+bx+btxy
Yy =c 3y L ex 4 TRy
So their production is:
aBy=(axy ' +ax+atxy).(b Xy +bx+bTRY).(cTxy T 4 x4 ¢ Try)
(3.6) =(aT —a )bt —=b7)G.(cTX 4+ X+ TR
= (a* —a )(bT —b7)(c™ +c+ )G
By Proposition 3.1, a.f.y = 0, thus Anh3(s) = 0, therefore, Anh(s) is a nilpotent
ideal. O

Let s be as in Proposition 3.2, that is s = §3, then we have

Proposition 3.3. Anh(s) C J(FG).
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Proof. Since every nilpotent ideal is a nil ideal, so Proposition 3.2 shows Anh(s) is
a nil ideal. On the other hand, by [14, Lemma 2.7.13 on p. 109], Jacobson radical
contains all of the nil ideals, so,

Anh(s) C J(FG).
O
In the next corollary, we will show that the equality hold:
Corollary 3.1. J(FG) = Anh(s).

Proof. By Proposition 3.3, Anh(s) C J(FG) and we know from Lemma 2.1 part (3)
that J(FG) C Anh(s), so the equality is hold:

J(FG) = Anh(s).
O
We will need the following proposition in the next steps:
Proposition 3.4. Dmn(J/(FG)) = Dmn(Anh(s)) = 2.
Proof. By Proposition 3.1 and Corollary 3.1 we have
(3.7)  J(FG) = Anh(s) = {ag Xy " + aoX +axy | ag +ao +aj = 0}.

That means, J(FG) and Anh(s) are generated by three elements, with one
restriction. Hence,

Dmn(J(FG)) = Dmn(Anh(s)) =3—-1=2.
0
Let H = (x) = {x 6, x7% x4 x72 x7 2 x7 1, 1,x,x%,x3,x*,x5,2°} < G, a normal
subgroup of G. Also we recall augmentation ideals A(G,H) := (h — 1| h € H), that

in special case H = G, we denote A(G) := A(G, G). Now it is obvious that, by using
[14, Proposition 3.3.3 on p. 135], we have

Dmn(A(G,H)) =|G|—[G:H]=39—-3=36
Dmn(A(G,G)) = |G| - [G:G] =39 —1=38.
Therefore we obtain the following remark:

Remark 3.1. Dimensions of A(G,H) and A(G) can be computed as follows:

Dmn(A(G,H)) = 36
Dmn(A(G, G)) = 38.
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We want to represent a decomposition for A(G) over J(FG) and A(G,H). As
both of them are included in A(G), first we show that they are disjoint:

Proposition 3.5. J(FG)NA(G,H) =0.

Proof. Let a € J(FG)NA(G,H). By (3.7), J(FG) = (é) Now we compute ¢.X in
two different ways, in order to see o as an element of J(FG) or A(G, H) separately:

-~

o € J(FG) = (G) a e AGH) = (x—1)
o=aG a=PBx-1)
ox = aGx = aG|{x)] ox=B(x—1)x=B(x—1x)
=aGn=aG=a =B.x-x)=B.0=0
So we conclude that:
(3.8) o=oax=0.

And therefore we have
J(FG)NA(G,H) = 0.
O
Now the decomposition can be achieved:
Proposition 3.6. A(G) =J(FG) ® A(G,H).
Proof. By Proposition 3.4 and Remark 3.1, we have
Dmn(J(FG)) + Dmn(A(G,H)) = 2+ 36 = 38 = Dmn(A(G))
Now Proposition 3.5 together with above equality shows that:
A(G) =J(FG)® A(G,H).
O
In the next Proposition, we prove that A(G, H) is a semisimple ring:
Proposition 3.7. A(G,H) is a semisimple ring.

Proof. By Proposition 3.6, we have A(G,H) = A(G)/J(FG) C FG/J(FG). From
[14, Theorem 6.6.1 on p. 214], the group ring of a field over a finite group is Artinian,
so FG is an Artinian ring, and [14, Lemma 2.4.9 on p. 87], implies its quotient ring,
FG/J(FG), is an Artinian ring too. Also from [14, Lemma 2.7.5 on p. 107] we
know that J(FG/J(FG)) = 0. Now by using [14, Theorem 2.7.16 on p. 111] we can
conclude that FG/J(FG) is semisimple, and by [14, Proposition 2.5.2 on p. 91], all
of its subrings are semisimple too. So A(G, H) is semisimple. []



756 A. Ashja’ and A. Iranmanesh

By the Artin-Wedderburn Theorem, semisimple ring A(G, H), decomposes to
its simple components that are division rings of matrices over extensions of F. Now
we need to know their numbers and dimensions. First we show that the center of
A(G,H) is included in the center of FG:

Proposition 3.8. Z(A(G,H)) C Z(FG).

Proof. For the proof of this proposition, we need show that each element of Z(FG)
must commute with all of elements of FG. Since F is commutative and G is
generated by x and y, so it suffices to show they commute with x and y. Let
o € Z(A(G,H)), so it commutes with x — 1 as it is in A(G, H):

oax—1)=(x-1).a
ax—o=x0—0o
ax=x.a

So oo commutes with x. Now we show that o also commutes with y. First we show
that oy —ya is in Anh(x—1). Notice we know that (x—1)y = y(x ' —1) € A(G, H),
S0,

(x—1)y € A(G,H) y(x—1) € A(G,H)
a.(x—1y=x—-1)ya ay(x—1)=y(x—-1)a
x—1.ay=(x—1).ya oy.(x —1) =yo.(x — 1)

(x = 1)(ay —yar) =0 (ay —ya)(x—1) =0

So (oy — yot) € Anh(x — 1) and by [14, Lemma 3.4.3 on p. 139] we know that
Anh(x — 1) = Anh(A(G,H)) = FGx. Now we compute (ay — ya).x in two different
ways, directly itself or consider (ay — yo) as an element of FG.X separately. Note
that @ € Z(A(G,H)) € A(G,H), so by (3.8), a.x = 0, and although x does not
commute with y, but X does, also |(x)| = Ordg(x) =7 = 1. So we have

(ay —ya)x=a.yx—yox= (ay —ya)x=Bxx=
oxy—y.ax=0y—y0=0 Bx|(x) = Bx = (ay —ya)

Hence oy —yor = (ory—yet).x = 0. Thus ay = ya, which means o also commutes
with y and therefore
Z(A(G,H)) C Z(FG).

O

In the next proposition, we obtain the exact structure of Z(A(G, H)):
Proposition 3.9. Z(A(G,H)) = (€1, 6, %5).

), from [14 Theorem 3.6.2 on p. 151] we know that

~

Proof. Let a € Z(A(G,
Z(FG) = (¥_s % 2,61

H)
, 60, €11, %Jrz, ‘5+3> so for center of augmentation ideal we
have Z(A(G,H)) C (€_-5,%-2

, 6 1‘50,(5+1,‘5+2,‘5+3> by using Proposition 3.8. So
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o= ,+_3_3 foz = V—3(g—3 + r_ch_Q +r_1<5?_1 + rocé(\) +V+165A+1 + r+26g+2 +F+3Cg+3-
By (3.8), a.x = 0 and notice that x'x = X, so for i € {—2,—1,+1,+2} we have

‘%)?: 3x = 0. Hence,

(3.9)
+3 N N -1 N . +2 N N
O=af= Y nCx=r_sC si+ (Y rn6x) +nbi+ (D nCI)+risChst
i=—3 i=—2 i=+1

=7 3y X0+ 0.1 X+ 0+ rysyx¥ = r_sxy" ' 4 rg.1.X + ry3xy

Since the left hand side of (3.9) is zero, so the right hand side coefficients
must be Z€ro too, hence we have r_s =rg=rq3 =0, terefore we conclude that
o=r_ 2(5 2 +r_ 1‘6 1+ rH(KH + r+2<5+2 As o was an arbitrary element in center
of A(G,H), thus Z(A(G,H)) C (€_2,%_ 1,(5+17<€+2> Now it suffices to show that
all of these types of elements are included in A(G,H). We must show that there is
a f such that oo = B(x — 1). Tt is straightforward to find B’s coefficients by solving
a system of linear equations. So o € A(G,H), and therefore

Z(A(GH)) = (€ 2,%1,€11,%2).
0
Now the dimension of the center of A(G,H) can be computed:

Corollary 3.2. Dmn(Z(A(G,H))) = 4.

~

Proof. By Proposition 3.9,we know that Z(A(G,H)) = (‘522,‘5,1,‘511,%22) So,
Dmn(Z(A(G,H))) = 4.
O

Let M,(R) be the ring of the square matrices of order n on the ring R and let
GL,(R) be its unit group. Also R" be the direct sum of n copy of the ring R, which
is R" = @_R and let F, be the extension of the finite field F of the order n that is
[Fy : F] = n. Now we are ready to prove Theorem 3.1:

Proof. [Proof of Theorem 3.1] Let a € Z(A(G H)) From Proposition 3.9, we
know that a can be written as o = r_ 2‘5 o+ r_ 1‘5 1+ ’"+1%ﬂ+1 + r+2%+2 Since
char(F) = 3, we have

o =r oG o+r G+ r+1‘€11 + r+2<512
o =r,6% + %65 + rilﬁl + ”3—2@2
ol = r?jjg,g + ril‘ézl + ril‘gﬂ + riQ‘fjrg
o’ = ri"jﬁzg + ri”l%zl + ri"l%jrl + ri"zﬁg
O =r G ot 1C 1+ r+1<€:_1 + r+2<5,\+2-
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Since |F| = 3", we know r?" = r;, so &% = a. Therefore we have
A(G,H) = M3(F)*.

By [14, Proposition 3.6.7 on p. 153], FG = F(G/H) ® A(G,H), therefore,

U (FG) =% (F(Cs)) x % (A(G,H)). So we have

the

U (FG) = Ci x C3._1 x GL3(F)*.
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1. Introduction
Let (An) be a given real valued sequence such that
0< <A< A<.. <A, >0

and [A\,] denote the integer part of A,. The set of such sequences will be denoted
A. Consider the mean

1 [An]
= — , =1,2,3,..
o W ];)xk n 3

of a given sequence (xy) of real or complex numbers. If

lim o, =/,
n—oo
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762 E. N. Yildirim

then we say that (xy) is Cx-summable to ¢. In the particular case when A, = n we
see that o, is the (C,1) mean of (xy).Therefore, C\-method yields a submethod of
the Cesaro method (C, 1), and hence it is regular for any A. C-matrix is obtained by
deleting a set of rows from Cesaro matrix. (C, 1) and C) are equivalent for bounded

sequences if and only if lim,, s Antl — 1 The basic properties of C\-method can

be found in ([1],[24]). .

Summability of matrix submethods was studied in [12] and [28]. The authors of
[12] and [28] presented results showing when C) is equivalent to the Cesaro method
C1 for bounded sequences. Armitage and Maddox proved inclusion and Tauberian
results for the C) method in [1]. In [24], inclusion properties of the C method for
bounded sequences and its relationship to statistical convergence are studied also a
condensation test presented for statistical convergence.

In this study, firstly we will introduce C\-almost convergent sequence and prove
some inclusion relations. Later we will give definition of C- almost statistically
convergent sequence and examine the relationship between C'x-almost convergence
and Cj-almost statistically convergence. Finally, we will generalize the spaces [C)]
and [Cy] to spaces [Cy(f)] and [Cx(f)] by using a modulus function f. Thus, it will
fill a gap in the literature.

2. Almost Convergence

Let ¢+ be the Banach space of real valued bounded sequences (zj) with the
usual norm ||z|| := supg|xg|. There exists continuous linear functional ¢ : {oc — R
called Banach limit if the following conditions hold:

(i) plazk +byx) = ag(xr) + bd(yr), a,bER

(15) ¢(rr) >0 if x>0, k=1,23...

(“’7’) QZ/)(SI) :d)(I), Sz = ($2,I3,I4,...)

(iv) ¢(e) =1 where e=(1,1,1,...).
A sequence () in £ is said to be almost convergent if all of its Banach limits are
equal. It is well known that any Banach limit of (xj) lies between liminf 2 and
lim sup xy, [13].
Note that a convergent sequence is almost convergent, and its limit and its general-

ized limit are identical, but an almost convergent sequence need not be convergent.
The sequence (xy) defined as

/1, ifnisodd
Tr = 0, ifnis even

is almost convergent to 1/2 but not convergent.

Lorentz [13] gave the following characterization for almost convergence: A se-
quence (z,,) is said to be almost convergent to ¢ if and only if

1 n
lim — E L+i =/
n—oo N
k=0
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uniformly in 4.
Maddox[15] has defined strongly almost convergent sequence as follows:

A bounded sequence (xy) is said to be strongly almost convergent to ¢ if and only
if

li Ly

o n Z |Tk4i — €] =0

k=0

uniformly in 4.
Readers can refer to recently published articles ([2],[3],[14],[18],[19],[20],[22]) for
more information.
Consider the mean

[An]
A 1
Chzr = m kz_owkﬂ‘

of a given sequence (xy) of real numbers and ¢ = 1,2,3, ...

Definition 2.1. A bounded sequence (z) is said to be Cy-almost convergent to

¢ if and only if .
[An]

li i =1
i W L

uniformly in 3.

In this case we write x — E(CAB\). In the particular case when A, = n we get the
definition of almost convergent sequence.

Theorem 2.1. Let {\,},{vn} € A. If lim,, K—: =1, then C- almost conver-

gence is equivalent to C),- almost convergence on {.

Proof. Let © € £y and consider M, := max{\,,v,} and m,, := min{\,,v,}. Since
lim,, 00 K—Z =1, we can write lim,, ., J\an =1, then for each n and 7

Vn]

1 ( 1 An]
|— Z$k+i -3 Z$k+z|
v A
™ gp=1 ™ =1
1 M, 1 Moy
Y T
M, Z m
" k=1 " k=1
My,

o=, 1 1 1
= |;(m—m7n)$k+i+ﬁ Z T

n k=m,+1

\C'Vx — CA',\x|

M, —m,

IN

< M, —m
sup o] 35 ME T
k,i =1 Mnmn ki

— sup |xk+,|w 4 sup |z
ki ’ Mnmn ki ! Mn

My
= 2sup |zp4|(1 - i )—0

k,i n
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as n — oo uniformly in 7. Hence, if x — L(CAS\)7
1 & A A A
0<|— i — L <|Chx—C Chr—L| =0
_|z/nz:1$k+ | <[Cvx = Cxz| + |Chz — L

as n — oo uniformly in i. Similarly, if z — L(C,),

An
1
0<|—Zxk+l—L|<|C>\m— Core| +|Cox — L =0
" k=1

as n — oo uniformly in ¢. Thus, the proof is completed. O
By using similar techniques to Theorem 1 of [1] we can prove following theorem:

Theorem 2.2. Let {\,}, {vn} € A
(1) Cx implies C,, if and only if D(u) \ D(A) is o finite set, where

D) ={[MA]: n=12,..}
(ii) CA'M is equivalent éu if and only if D(A)AD(u) is a finite set.

Also by using similar techniques to Theorem 2.2 of [24] we can prove following
theorem:

Theorem 2.3. Let {)\,} € A. If lim, )‘K“ =1, then Cy- almost convergence
s equivalent to almost convergence on £

Definition 2.2. A bounded sequence (zy) is said to be strongly Cx-almost con-
vergent to ¢ if and only if

lim o Z'“ﬂ -
uniformly in 7.

In this case we write 2 — £([Cx]). In the particular case when A, = n we get the
definition of strongly almost convergent sequence.

Definition 2.3. A bounded sequence () is said to be p-strongly Cx-almost con-
vergent to ¢ if and only if

TL—>OO]_+)\ Z"rk+l_é|p

uniformly in i where 0 < p < oc.

In this case we write z — £([C)],). In the particular case when A, = n we get the
strongly p-almost convergent sequence definition.
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3. Almost Statistical Convergence

The natural density of a set A of positive integers is defined if limit exists by

0(A) := lim l|{k <n:keA},
n

n—oo

where |k < n:k € A| denotes the number of elements of A not exceeding n.

Statistical convergence, as it has recently been investigated, was defined by Fast

[7]. Schoenberg [27] established some fundamental properties of the concept and
studied as a summability method. The more recent times interest in statistical
convergence arose after Fridy published his paper [8], and since then there have
been many generalizations of the original concept(see [4]-[6],[9]-[11],[16],[21]).
A sequence x = () is said to be statistically convergent to the number ¢ if for
every € > 0,

lim l|{/<: <n:lxg—¥ >e€}| =0,

n—oo N
holds. In this case, we write st — limx; = ¢. Statistical convergence is a natural
generalization of ordinary convergence. If limz, = /¢, then st — limx, = £. The
converse does not hold, in general. If a sequence x = (xy) is strongly Cesaro
convergent to ¢, then x = (xj) is statistically convergent to ¢ and the converse is
also true when z = (zy) is a bounded sequence.

Definition 3.1. [24] A sequence z = (z},) is said to be C-statistically convergent
to the number / if for every € > 0,

i

0 <k < [l lan— £ 2 €} =0,
holds.

In the particular case when A, = n, C\- statistically convergence coincide with
statistically convergence.

Definition 3.2. A sequence z = (x1) is said to be Cy- almost statistically con-
vergent to the number ¢ if for every € > 0,

1

lim
n—o0

T HO Sk <[An]:fonsi — € 2 e} =0

n

holds uniformly in i.

In the particular case when A, = n we get the definition of almost statistically
convergent sequences was defined in [26].

Theorem 3.1. If x; — £([C)]) then x, — €(S)). The converse is true if (xy) is
bounded.
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Proof. Let x;, — ¢([C,]). For an arbitrary e > 0, we get

An] An] [An]
1 Z 1 Z 1 Z
1+ )\n k=0 |xk | 1+ >\" k=0 ‘mk | i 1+ )\n k=0 |xk |
- |z, —b]>e | —0)<e

An]
1
—/
1+ M\, > lae—tl

k=0
|z —2]>€

Y

1
14+,

Y

{0 <k <[Aa]: |2k —£] > €e}e.
Hence, we have

i

{O<k<[A]:|ox — €] =€} =0

that is, z; — £(Sy).
Now suppose that zr — £(Sy) and z, is bounded, since zj, is bounded, say |z —£| <
M for all k. Given € > 0, we get

|z — € = |z — 4] + |3, — £
L+ An k=0 1+ A k=0 k=0
|z —2|>€ |z —2]<e
1 [An] [An]
< M 1+4€ 1
o [ M2 2
|z —0|>€ |z —£]<e
1
< M <k <A,z -l >
S MpEHOSES )i fo—d 2 6
<k< : —
+ e Mok ) le—fl <

hence we have,

(An]
1
li -4 =0.
A e

O

The proofs of the following theorems are similar to that of Theorem 3.1, so we
state them without of proof.

Theorem 3.2. Let 0 < p < co. If x — £([Ch]p) then xy — £(S)). The converse
is true if (zy) is bounded.
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Theorem 3.3. Let 0 < p < co. If ), — £([Ch],) then i, — €(Sy). The converse
is true if (xy) is bounded.

Theorem 3.4. Let (\,) € A with limsup,,_, . A;\:l < oo. If x, — U(Sy) then

Proof. Assume (xy) is 2, — £(S\) and limsup,, )‘XII < oo. Consider I' =
N\A := {v,}. If T is finite , then S is equivalent to S\. Now assume that T' is
infinite. Then there exists an K such that n > K,v, > A;. Since I' and A are
disjoint, for n > K, there exists an integer m such that \,, < v, < A\j41. We write
Vp = Am4; Where 0 < j < Appq1 — Ay Then, for n > K,

1
— (k< v s — €] > €]

n

1
= o HISES A fmgi— 02l
m—+7j

1
At j

|{)\m+1 S k S )\erj : |$k+i — €| Z 6}‘

1
< RISk <An: fopp — € 2 €}
Am

T S S P s
m+j
1
= s HISk<SAm: foen =€ 2 €}
m
A1 1
T R Y £ WP Py Pst)
Am+j Amt1
Since, 0 < mf < )‘;\"“ and ’\m“ is bounded, then Amf is bounded too. Thus,
; ™
we see that 2[{1 <k <n: |$;€H — /4| > €}| may be partitioned into two disjoint

subsequences each having the common limit zero uniformly in :. Hence, we get
xp — £(S). O

4. Convergence with respect to a modulus function

The notion of a modulus function was introduced by [23]. Ruckle [25] used the
idea of a modulus function to construct the sequence space

L(f) ={(zn) = Y f(lawl) < oo},

This space is an FK-space, and Ruckle proved that the intersection of all such L(f)
space is ¢, the space of finite sequences, thereby answering negatively a question
of A. Wilansky: ”Is there a smallest FK-space in which the set {ej, e, ...} of unit
vectors is bounded?” [17].



768 E. N. Yildirim

A real valued function f defined on [0, c0) is called a modulus function if it has
following properties:

1. f(x) > 0 for each z,

2. f(z) =0if and only if z = 0,

3. fle+y) < fx)+ f(y) for all 2,y >0,
4. f is increasing,

5. lim, o+ f(z) =0.

Since |f(z) — f(y)| < f(z —y),(see [17]), it follows from conditions (3) and (5) that
f is continuous on [0, c0).

Many new sequence spaces are defined by using the modulus function in the
summability theory. Sequence spaces defined in this way generalize known sequence
spaces. By using a modulus function f firstly Ruckle [25] defined the sequence space

L(f) =A{(z) = Y fllax]) < oo},
k=1

which generalization of the space
oo
Go={(xr): Y |aw| < oo}
k=1

and later Maddox [17] introduced following sequence spaces which are generaliza-
tions of the classical spaces of strongly summable sequences

wolf) = () + S fllaal) = 0%
k=1

n

w(f) = {(zg) : %Zf(\xk —/{|) =0 for real number ¢},

k=1
waelf) =) s s 3" Fllanl) < o).
T k=1

If we take f(x) = 2P (0 < p < 1) then the space L(f) is the familiar space [,,.
It is known that,

6 CL(f), wo Cwoe(f), wCw(f), and we C wel(f).

Apart from these spaces, there are many sequence spaces defined using the modulus
function in the literature. For example, Connor [5] introduced strongly A-summable
sequences with respect to a modulus function.
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In this section, by using a modulus function f, we will introduce the sequence
spaces [Cx(f)] and [Cy(f)] which are generalization of the sequence spaces [C] and
[Cy] and we are going to show that

[C\] C [CA(f)] and [6)\] - [a,\(f)]
holds.
Definition 4.1. Let (xy) be a sequence of real or complex numbers, f be a modulus

function and (A,) € A be a sequence. If

li 1
1m

(An]
S Flla — ) =0,
k=0

then we say that (xy) is [Cx]-summable to ¢ with respect to f and A = (\y).

The space of all sequences [Cy]-summable to ¢ with respect to f and A = (),,) will
be denoted by [Cx(f)].

Theorem 4.1. For any modulus function f we have [C)\] C [Cx(f)] holds for
A= (An) € A, that is, (x) is [Cr]-summable to £ then () is [C]-summable to ¢
with respect to the modulus function f.

Proof. If (z1) is [Cx]-summable to ¢, then we have

An

]
. 1
A, =

Let € > 0 and choose § with 0 < § < 1 such that f(¢) < e holds for 0 < ¢ < §. Now
since for |zy — £] > 6,

s, — £ |z — |

N E )

<14]

and
|l‘k —E‘ ‘ij —€|

Flaw =) = A+ [=—DfQ) <2f (1) —5—,

we can write

(An] (An] [An]
o fla—t) = > Flae =€)+ f(|zre —2))
k=0 k=0|z, —¢|<0 k=0|z) —¢|>6

An

]
< Dt GO+ UGy D et

Hence, (x1) is [Cx]-summable to ¢ with respect to the modulus function f. O
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Definition 4.2. Let (zx) be a sequence of real or complex numbers, f be a mod-
ulus function and A = (\,,) € A. If

[An]
JgrgolH Zf |Thgs — 1) =

holds uniformly in ¢, then we say that (xy) is [GA]—summable to ¢ with respect to
the modulus function f.

The space of sequences [CA’,\]—summable to ¢ with respect to the modulus function f
will be denoted by [Ci(f)].

Theorem 4.2. If (z1) — E[@A(f)] and (xg) — K’[ék(f)] then £ ={('.

Proof. Let (z1) — ([Cx(f)] and (zx) — ¢/[Cx(f)]. Then given € > 0, for all i € N
there exists n > ng such that

- €
- f@rss = €]) < 5
and
1 ] €
) i - ) < 5.
" k=0

From these and the following inequality
FAe=00) = fllansi + €= 0 = 2ppsl) < f(l@prs — €) + @ — )

we can write

[An [An
fe=rep) < f@rss — flzrss =)
14+ )\
™ k=0
€
< 2 + 5 =

for all ¢ € N. Since € > 0 is arbitrary, we have ¢ = ¢’ by the properties (2) and (5)
of modulus function. O

Theorem 4.3. For any modulus function f we have [Cy] C [CA(f)], that is, (1)
is [Cx]-summable to £ then (xy) is [C\]-summable to £ with respect to the modulus

Sfunction f.

The proof of the theorem similar to the Theorem 4.1, so we omit it.
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Abstract. In this article, by using the same Fibonacci difference matrix F' and the no-
tion of ideal convergence of sequences in random 2—normed space in the same technique,
we have introduced new spaces of Fibonacci difference ideal convergent sequences with
respect to random 2 —norm and studied some inclusion relations, as well as topological
and algebraic properties of these spaces.
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1. Introduction

Let R and N denote the sets of real and natural numbers respectively. By w
we denote the linear space of sequence of real numbers. ¢y, ¢ and £, represent
sequence spaces of null convergent, convergent and bounded sequences respectively.
The approach to statistical convergence was done by Fast [6] and Steinhaus [19]
in 1951 independently. In 1999, Kostryko et al. [14] generalised the notion of
statistical convergence to ideal convergence and some properties of this interesting
generalization have been studied by Salat et al. [17]. Anideal is a non—empty subset
of the set of natural numbers N which satisfies hereditary and additivity property,
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ie., I C 2N such that A € I with B C A implies B € I and AU B € I whenever
A,B € 1. A non-empty family of sets F C 2V is said to be a filter on N if only if
o ¢ F,ANB € F for A,B € F and any superset of an element of F' is in F. An
ideal I is non-trivial if I # 2. A non-trivial ideal I is admissible if it contains all
singletons. A sequence x = (x,) € w is said to be I— convergent to L € R if the
set {n € N: |x,, — L| > €} € I for every € > 0. If L = 0, then we say the sequence
is I— null. The concept of ideal convergence was studied from the sequence point
of view and linked with the summability theory by Hazarika and Savag [11, 10].
The approach to construct sequence spaces by means of the domain of an infinite
matrix and with the help of the notion of ideal convergence was firstly used by
Salat et. al [18] to introduce the sequence spaces (¢!)4 and (m!)4. The theory of
random 2-normed space was introduced by Golet and studied some properties of
convergence and Cauchy sequence with respect to random 2-norm as well. Recently,
the notion of ideal convergence of sequences in the framework of random 2-normed
spaces defined by Mursaleen and Alotaibi [15].

In 2013, Kara defined the double band matrix matrix F = ( fnk) by:

~ln i =n—1

fnk: Lz k=n

frnt1?
0, 0<k<n—-1lork>n

for all n,k € N, where {f,}72, is the Fibonacci sequence defined by the recur-
rence relation fo = f; = 1 and f, = fn—1 + fn_2 satisfying some basic properties
and addressed the approach to construct sequence spaces by means of an infinite
matrix of particular limitation methods to introduced the Fibonacci difference se-
quence space

N _ s fn fn+1
lo(F) = {J: =(z,) Ew: Zlél;l fn+1xn o xn_1‘ < oo}.

The domains co(AF), c(AF) and I, (AF) of the forward difference matrix A¥ in
the spaces cp, ¢ and I are introduced by Kizmaz [13]. Aftermore, the domain bv,, of
the backward difference matrix AZ in the space l, have recently been investigated
for 0 < p < 1 by Altay and Bagar [1], and for 1 < p < co by Basar and Altay [2].
Quite recently, by combining the definitions of ideal convergence and the Fibonacci
difference matrix F, Khan et al. [12] have introduced some new Fibonacci difference
sequence spaces

MF) ={z = (z,) cw: Fz = ((Fz),) € \},

for A = cé,AcI and ééo, the spaces of all I-null and I-convergent sequences,where the
sequence Fz = ((Fz),) is the F'-transform of the sequence x = (x,) € w defined
as follows:
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For more work on difference sequence spaces and Fibonacci difference sequence
space please see the references [16, 4, 5].

In this article, by using Fibonacci difference matrix F' and the notion of ideal
convergence in random 2-normed space, we introduce new sequence spaces and
study their topological and algebraic properties.

We recall some definitions which will be used throughout this article.

Definition 1.1. [7] A sequence x = (z,,) € w is said to be statistically convergent
to L € R if for every e > 0, the natural density of the set {n € N: |z, — L| > €} is
zero. We write st—limx, = L.

Definition 1.2. [12] An ideal is a subset of the set of natural numbers N which
satisfies hereditary and additivity property, i.e., I C 2N such that A € I with B C A
implies B € I and AUB € I whenever A, B € I. A non—empty family of sets I C 2N
is said to be a filter on N if only if § ¢ F,ANB € F for A, B € F and any superset
of an element of F is in F. An ideal I is non-trivial if I # 2~. A non-trivial ideal
I is admissible if it contains all singletons. A sequence x = (x,) € w is said to be
I-convergent to L€ R ifne€N: |z, —L| >e €I for every e >0. If L =0, then
we say that the sequence is I-null.

Definition 1.3. [15] A function f : R — R{ is said to be a distribution function if
it is non—decreasing and left continuous such that znﬂgf(t) =0 and sup f(t) = 1. By
€ teR

D, we denote the set of all distribution functions with f(0) = 0. Fora € R{, H, €
D+

Ha(t)z{l’ t>a

0, t<a

Definition 1.4. [15] A triangular norm is a continuous map * : [0,1] x [0,1] —
[0,1], ([0,1], ) is an abelian monoid with unit one and a b > c¢* d whenever a > ¢
and b > d for all a,b,c,d € [0,1]. A triangle T is a binary operation on DT which
is commutative, associative and T(f, Ho) = f for every f € DT.

Definition 1.5. [8] Let X be a vector space with dimension more than 1. A func-

tion ||, .|| : X x X — R with the following properties:

(1) ||z1,22]| =0 if and only if x1,xo are linearly dependent,
(2) o1, 22l = llzz, 24,

(3) llawy, ol = |eff|z1, w2l a € R,

(4) [|z1 + m2, 23] < [lo1, 23] + |22, 23]

Then (X, ||.,.1|) is called a 2—normed space.
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Definition 1.6. [9] Let X be a linear space of dimension greater than 1, * denote
atnorm. F: X xX — D7 is said to be random 2-norm if the following conditions
are satisfied:

(1) F(z1,z2;t) = Ho(t) if x1,x2 are linearly dependent,

(
(2) F(xq t) # Ho(t) if 1,22 are linearly independent,
(
(

s L23
(3) F(z1,z2;t) = F(xo,x1;t) for all z1,29 € X,
(4) Flazy,ze;t) = ]:(9017962;‘%0 fort>0a#0,

(5) F(z1,x2,23;t1 +t2) > F(x1,23;t1) * F(2,23;t2) for all x1,x9,23 € X and
ti,ts € RY.

Then (X, F,*) is called a random 2-normed space (R2NS).

Definition 1.7. [15] A sequence x = (z,,) € X is F— convergent to L in (X, F, x)
if there exists ng > 0 such that F(x, — L, z;¢) > 1 — 0 whenever n > ng for every
€>0,0 €(0,1) and non—zero z € X. We denote it as F-limz, = L.

Definition 1.8. [15] Let (X, F,*) be a R2NS. A sequence x = (zy,) € X is I-
convergent to L in (X, F, ) if for every e > 0,0 € (0,1) and non—zero z € X if the
set {n € N: F(w, — L,z;¢) <1 -0} € I. We write I"™N-lim x = L.

Definition 1.9. [17] A sequence space E is said to be solid if (anx,) € E for
(zn) € E where (ay,) is a sequence of scalars such that |a,| < 1.

Definition 1.10. [17] Let K = {k1 < k2 < ---} C N and E be a sequence space.
A K step space of E is a sequence space \F = {(zy, € w: (z,) € E}. A canonical
pre-image of a sequence (zy,) € \E is a sequence (y,) € w defined as follows:

_Jxn, ifneKk,
Yn 0, otherwise.

A canonical preimage of a step space AF is a set of canonical preimages of all
elements in \Z, i.e., y is in canonical preimage of \E if and only if y is canonical
preimage of some x € \F.

Definition 1.11. [17] A sequence space E is said to be monotone if it contains the
canonical preimage of all its step spaces i.e., if for all infinite K C N and (z,) € E
the sequence (anxy), where

{1, ifnek
o, =

0, otherwise.

Lemma 1.1. FEvery solid sequence space is monotone.
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2. Main Results

2.1. Some New Fibonacci Difference Ideal Convergent Sequence
Spaces

In the present section, we define Fibonacci difference spaces of I-convergent and
I-null sequences in a random 2-normed space. Also, we discuss some inclusion
relations topological and algebraic properties of these spaces. Throughout this
paper, ideal I is admissible ideal. For € > 0, 0 < # < 1 and non zero z in X, define

N (FY = {z = (2,) € X : {n € N: F(((Fz),),z€) <1— 80} €I},
clrev (By .= {x = (z,) € X : {ne N: F((Fz),) — L,z;¢) <1—0} € I}.

Remark 2.1. We introduce an open ball with respect to R2N by means of the do-
main of the Fibonacci matriz, as follows:

B(((Fx)p),re) :=={y € X : F(Fz)n) — (Fy)n),z;€) > 1—1 fore > 0,0 <r < 1}.
Theorem 2.1. The spaces ;2N (F) and !>~ (F) are vector spaces over R.

Proof. We shall prove the result for clren (F), Let ¢ = (z,) and y = (y,) €
c'r2N (F), then there exist Ly, Ly € X such that for € > 0,6 € (0,1) and non-zero
z € X, we have

A={neN:F((Fz),)— L1,z y<1-06}el,

€
" 2|al

B={neN;,F((Fy)n) — Lg, = )<1-60}el,

_E
"2|B]
where « and 8 are non—zero scalars in R. Choose n € (0,1) such that (1—6)x(1—6) >
1 —n. Consider

C = {n € N: F((a(Fa)n) + (B(Fy)n)) — (aLy + BLa)) < 1— 1},
We show C C AU B or equivalently A°N B¢ C C°. Since A°N B¢ € F(I) so is
non—empty. Let m € A°N B¢ € F(I), then
'F((O‘(Fx)n) + (/B(Fy)n) — (aLy + BLz), z; €)
F(@lPa)m) = L), 5) * F(BEY)w) - La), =

€

2|al

3)

)

Y

= F((Fx)m)— L1,z )« F(Fy)m) — Lz, 2

G
"2|g]
> (1-0)x(1-9)
> 1—-m.
Thus m € C¢ and therefore A°N B¢ C C°. Hence C € I. The proof for iV (F)
can be given in the same manner. [
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Theorem 2.2. Let (X, F,*) be a random 2—space. Every open ball B((F:L‘)n), T, €)
18 an open Sset.

Proof.
B((Fx)p,r€) :={y e X : F((Fx)n) — (Fy)n),z;€) > 1 —7r,e>0,0<r <1}

Let y € B((Fx)p,r,€) then by definition F(((Fx),) — ((Fy)n), z;€) > 1 — r, there
exists ¢y € (0,¢€) such that F(((Fz), — (Fy)n), z;€0) > 1 —r. Put F(((Fz),) —
((Fy)n), 2 €0) = 7o, then for rg > 1 —7r there exists s € (0,1) such that ro > 1—s5 >
L —7. For rg > 1— s, there exists 1 € (0,1) with 79 xr; > 1 —s. We show
B((Fy)n),1 —r1,€ =€) C B((Fx)n),1€). )

Let w € B(((Fy)n),1 —7r1,6—¢€9). Then F(((F'y)n) — (Fw)n), z;¢—¢€g) > 1. Now,

F(Fo)) = (Fw)),ze) A

F((Fz)n) = (FY)n), 25 €0) * F(FY)n) = (Fw)n), 2, € — €o)
ro *7T1

1-3s

1—7r

VoIV IV

V

Thus we have, w € B(((Fz)y),r, €) so that
B(((Fy)n), 1 —r1,€ —€0) C B((F)n),m€). O

Remark 2.2. Let (X, F,*) be a random 2-normed space. Define TE(F 7Y = {A C

IR2N( 2+ for given x € A, we can find € >0 and 0 <r <1 such that
B((Fz),),r,¢€) C A}. Then TE(F) is a topology on c'm2~ (F).

Remark 2.3. Since {B,(2, %)(F) :n € N} is a local base at x, the topology TE(F)
1s first countable.

Theorem 2.3. Let (X, F,*) be a random 2-normed space. ci®N (F) and ¢'72N (F)
are Hausdorff spaces.

Proof. Let x Ly € elmaN (F) with © # y. For e >0 and z # 0 € X, = F(((Fz),) —
((Fy)n), z,€) € (0,1). Given ro € (r,1) there exists 71 such that 71 71 > ro. We
show the open balls B(((Fz)n),1 — r1, 5) and B(((Fy)n),1 — 71, 5) are disjoint.

Suppose on contrary w € B(((Fx),), 1 —r1, )N B(((Fy)n),1 =71, 5), then

F((Fa)n) — (Fw)n), 2 =

2) > rq, and ]-'(((Fy)n) — ((Fw)n),z, 5) >y

F((Fa)n) = (Fy)a), z5€)

> F((Po)a) = (Fu)n), 2 5) * F(Pw)a) = (Fy)a).23)
> ryxnr

> 7o

> r
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which is a contradiction. Hence ¢/72~ (F ) is Hausdorff. Similarly we can prove for
N (F). O

Theorem 2.4. Let (X, F,*) be a random 2-normed space. Then cB2N(F) <
cIr2n (F) ) where by ¢V (F) we denote the space of all Fibonacci convergent differ-
ence sequences defined as

{=(z,) € X : F(Fz)n) — L,z;¢) > 1 — 6}

where € > 0,0 € (0,1) and z is non—zero element in X.

and non-zero
) ,z7€) > 1—6.
1,2,3- -} and since [ is

~ o

The set K() = {k € N: F(((Fz)p) — L,z;¢) <1 -0} C
admissible, we have K (¢) € I. Hence "N -lim [}, (z) =

To show the strictness of the inclusion let us consider X = R? with 2-norm
lz, yl| = |lz1y2 — z2y1|, 2 = (z1,22),y = (y1,y2) and a x b = ab for all a,b € [0, 1].
Define F(x, z;€) = for all z,z € X. Define a sequence z = (z,) € X such
that

€
etllz,z])

(v/n,0) if n is square,
(0,0) otherwise.

For every 0 < 6 < 1 and € > 0, write

A(0,€) = {neN: F((Fzx),) — L,z ¢) <1—0}, L =(0,0)

]:(((Fx)n) - L,Z;e) _ ) etv/nz? if n is square,
L, otherwise.

Hence

. T
lim F(((Fx),) — L, z;€) = {0, if n is square,

1, otherwise.

Therefore = (z,,) is not convergent in (X, F,x). If we take I = Iy = {M C
N : §(M) = 0}, then since A(0,¢) C {1,4,9,16,- - -}, 6(A(0,¢)) = 0. Thus
IF2N _lim((Fz),) = L. O

Theorem 2.5. The inclusion c®N (F) C ¢!m2N (F) is strict.
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Proof. The inclusion ¢}~ (F)  ¢'72~ (F) is obvious. To show the strictness of the
inclusion, consider X = R? with 2- norm ||z, 2| = |v122 — 2221| and a *x b = ab.

D

efine F(x, z) = for € > 0. Define z = (x,,) € X such that ((Fz),) = (1,1).

€
etllz,z]]

Then I'™N - lim((Fz),) =1, so & = (x,) € /2N (F)\ i (F). O

T

heorem 2.6. The space ci"*N (F) is solid and monotone.

Proof. Let x € chr~ (F). For 0 € (0,1),e > 0 and non—zero z € X, we have

€

A={neN: F(Fz),),z o]

where o = () is a sequence of scalars with |a| < 1, then A¢ € F(I). Consider

If

B={neN:F((Fax),),z¢e) <1-6}.

we show A°¢ C B¢, then we are done.

Let m € A, then F(((Fx)m),z;€) > 1 — 6. Now

F(Fa@)m),z6) = FlF2)m), z6) = F(Fx)m), 2 |§|>
> F((Fx)m), z€) * F(0, 2 E —9)
> 1—-60x1=1-46

Thus B € I so that (a z) € ¢i#V (F). Therefore ¢[72¥ (F) is solid. By Lemma 1.1,
com>N (F) is monotone. [J

o
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Abstract. In this paper, we consider some new classes of log-preinvex functions. Sev-
eral properties of the log-preinvex functions are studied. We also discuss their relations
with convex functions. Several interesting results characterizing the log-convex func-
tions are obtained. Optimality conditions of differentiable strongly log-preinvex are
characterized by a class of variational-like inequalities. Results obtained in this paper
can be viewed as significant improvement of previously known results.
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1. Introduction

Convex functions and convex sets have played an important and fundamental
part in the development of various fields of pure and applied sciences. Convex-
ity theory describes a broad spectrum of very interesting developments involving
a link among various fields of mathematics, physics, economics and engineering
sciences. In recent years, various extensions and generalizations of convex func-
tions and convex sets have been considered and studied using innovative ideas and
techniques. Hanson [5] introduced the notion of invex functions in mathematical
programming, which inspired a great interest. Invex sets and preinvex functions
were introduced by Ben-Israel and Mond [3]. They proved that the differentiable
preinvex functions are invex functions and the converse is also true under certain
conditions. Noor [15] proved that the minimum of the differentiable preinvex func-
tions are characterized by variational-like inequalities. For the applications, numer-
ical methods, variational-like inequalities and other aspects of preinvex functions,
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see [1, 2, 3,5, 8, 14, 15, 18, 19, 20, 21, 23, 26, 24, 25, 30] and the references therein. It
is known that more accurate and inequalities can be obtained using the log-convex
functions than the convex functions. Closely related to the log-convex functions, we
have the concept of exponentially convex(concave), the origin of exponentially con-
vex functions can be traced back to Bernstein [4]. Noor and Noor [20, 21] introduced
and discussed various aspects of exponentially preinvex functions and their variant
forms. The exponentially convex functions have important applications in infor-
mation theory, big data analysis, machine learning and statistic. See, for example,
[1,2, 3,4, 5,6, 13, 14, 20, 21, 22, 23, 26, 25] and the references therein.

Recently, Noor et al [23]considered the equivalent formulation of log-convex
functions and proved that the log-convex functions have similar properties as the
convex functions enjoy. For example. the function e® is a log-convex function,
but not convex. Hypergeometric functions including Gamma and Beta functions
are log-convex functions, which have important applications in several branches of
pure and applied sciences. Noor and Noor [22] introduced the concept of strongly
log-biconvex functions and studied their characterization. It is shown that the
optimality conditions of the biconvex functions can be characterized by the bivari-
ational inequalities, which can be viewed as novel generalization of the variational
inequalities.

Inspired and motivated by the ongoing research in this interesting, applicable
and dynamic field, we reconsider the concept of strongly log-preinvex functions. We
discuss the basic properties of the log-preinvex functions. It is has been shown that
the log-preinvex(preincave) have nice properties. Several new concepts of strongly
log-preinvex functions have been introduced and investigated. We show that the
local minimum of the log-convex functions is the global minimum. The difference
(sum) of the strongly log-preinvex function and affine strongly log-preinvex func-
tion is again a log-preinvex function. The optimal conditions of the differentiable
strongly log-preinvex functions can be characterized by a class of variational-like in-
equalities, which is itself an interesting outcome of our main results. The ideas and
techniques of this paper may be a starting point for further research in these differ-
ent areas of mathematical programming, machine learning and related optimization
problems.

2. Preliminary Results

Let K be a nonempty closed set in a real Hilbert space H. We denote by (-, )
and || - || be the inner product and norm, respectively. Let F' : K — R be a
continuous function.

Definition 2.1. [10] The set K in H is said to be convex set, if
utt(v—u) €K, Vu,v € K,t € [0,1].
Definition 2.2. [7, 8, 9] A function F is said to be convex, if

F((1l-tu+tv) <(1—-0)F(u)+tF(v), Yu,ve K, te€][0,1].



Strongly log-preinvex functions 785

Polyak [27] introduced the concept of strongly convex functions in optimization
and mathematical programming.

Definition 2.3. A function F is said to be a strongly convex, if there exists a
constant p > 0 such that

F((1—tu+tv) < (1 —t)F(u) + tF(v) — pt(l —t)|jv —ul|?, Yu,v € K, t € [0,1].

Clearly every strongly convex function is a convex function, but the converse is
not true. For the applications of strongly convex functions in variational inequali-
ties, differential equations and equilibrium problems, see [6, 7, 9, 10, 11, 17, 18, 19,
21, 27, 31] and the references therein.

In many problems, the underlying set may not a convex set. To overcome this
deficiency, Ben-Israel and Mond [3] introduced the invex and preinvex functions
with respect to an arbitrary bifunction, which can be viewed as important gener-
alization of the convexity and inspired a great interest in nonlinear mathematical
programming.

Definition 2.4. [3] The set K, in H is said to be invex set with respect to an
arbitrary bifunction 7n(.,.), if
u+tn(v,u) € K, Vu,v e K,,tel0,1].

Note that, if n(v,u) = v — u, then the invex set becomes convex set. In particular,
it follows that the set K, C K.

Definition 2.5. A strictly positive function F is said to be preinvex with respect
to an arbitrary bifunction 7(.,.), if

Fu+tn(v,uw) < (1 —¢)F(u) +tF(v), Yu,veK,, tel0,1].
It is known that the differentiable preinvex functions is an invex function, that is

Definition 2.6. A function F' is said to be an invex with respect to an arbitrary
bifunction 7(.,.), if

F(v) — F(u) > (F'(u),n(v,u)), Yu,veK,, te]l0,1].

The converse is also true under certain conditions, see [8].

Noor [15] has proved that v € K, is a minimum of a differentiable preinvex
functions F), if and only if, u € K, satisfies the inequality

(F'(u),n(v,u)) >0, Vu,vekK,, telo01].

which is known as the variational-like inequality. For the formulation, applications,
numerical methods and other aspects of variational-like inequalities and related
optimization problems, see [2, 3, 5, 8, 15, 16, 28, 29] and the references therein.
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Noor [14] has also proved that a function F' is a preinvex function, if and only
if, I satisfies the inequality

2a + (b, a) 2 atn(b,a) F(a) + F(b)

which is known as the Hermite-Hadamard-Noor inequality. Such type of inequalities
are used to find the upper and lower estimates of the integrals and have important
applications in physical and material sciences.

Definition 2.7. A strictly positive function F is said to be log-preinvex with
respect to an arbitrary bifunction 7(.,.), if

(2.1)  Flu+tn(v,u) < (Fu) " (F@)™, VYuvekK,, tel0,1].
We can rewrite the Definition 2.7 in the following equivalent form as

Definition 2.8. [14] A strictly positive function F' is said to be log-preinvex with
respect to an arbitrary bifunction 7(.,.), if

(2.2) log F(u+tn(v —u)) < (1 —t)log F(u) + tlog F(v),
Vu,v e K,,te|0,1].

We use this equivalent Definition 2.8 to discuss some new aspects of log-preinvex
functions.

If logFF = e/, then we recover the concepts of the exponentially preinvex
function, which are mainly due to Noor and Noor [19, 21] as:

Definition 2.9. [19, 21] A positive function f is said to be exponentially preinvex
function, if

ef ) < (1 — )el W 44l W)y v e K,, te[0,1].

We remark that Definition 2.9 can be rewritten in the following equivalent way,
which is mainly due to Antczak [2].

Definition 2.10. A function f is said to be exponentially preinvex function, if
(2.3) f(u+tn(v,u)) <log[(1 —t)e!™ +tef ] vu,v e K,,t € [0,1].

A function is called the exponentially preincave function f, if —f is exponentially
preinvex function. For the applications and properties of exponentially preinvex
functions, see [1, 2, 3, 17, 18].

We now introduce the concept of strongly log-preinvex functions and study their
basic properties.
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Definition 2.11. A strictly positive function F' is said to be strongly log-preinvex
with respect to an arbitrary bifunction 7(.,.), if there exists a constant u > 0, such
that

log Flu+tn(v—u)) < (1-t)logF(u)+tlogF(v)
(2.4) (1= O)llg(o,w) |2, Vuv € Ky te 1]

Definition 2.12. A strictly positive function F' on the invex set K, is said to be
strongly log-quasi preinvex with respect to an arbitrary bifunction (., .), if

log F(u+ tn(v,u)) < max{log F(u),log F(v)} — pt(1 = t)|n(v, )|,
Vu,v e K,,tel0,1].

Definition 2.13. A strictly positive function F' on the invex set K is said to be
first kind of strongly log-preinvex with respect to an arbitrary bifunction 7(.,.), if

log F(u+tn(v,u))) < (log(F(u)' ™" (log F(v))" — ut(1 = t)||n(v,u)|,
Vu,v € K,,t € [0,1],

where F(-) > 0.

From the above definitions, we have
(log(F(u))' ™" (log F(v))" — pt(1 — )|l (v, w)||”

<
< (- t)log F(u) + tlog F(v) — ut(1 - )[[n(v, u)|]
< max{log F(u),log F(v)} — ut(1 - )|[n(v, u)[|*

log F(u + tn(v,u))

This shows that every fist kind of strongly log-preinvex function is a strongly log-
preinvex function and strongly log-preinvex function is a strongly log-quasip reinvex
function. However, the converse is not true.

If ¢ = 1, then Definitions 2.13 and 2.14, we have:
Condition A. log F(u+n(v,u) < F(v)), Yu,v e K.

Condition A plays an important part in the derivation of the main results.

Definition 2.14. A strictly positive function F' is said to be strongly affine
log-preinvex function with respect to an arbitrary bifunction 7(.,.), if

log F(u+tn(v,u)) = (1 —1t)logF(u) + tlog F(v) — ut(1 —t)[ln(v, u)[|?,
Yu,v € K,,t € [0,1].

Let K, = I, = [a,a + 1(b,a)] be the interval. We now define the log-preinvex
functions on the interval I,,.
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Definition 2.15. Let I, = [a,a + n(b,a)]. Then F is log-convex function,
if and only if,

1 1 1
a T a+n(ba) | >0 a<z<b.
log F(a) logF(z) logF(b)

One can easily show that the following are equivalent:

1. F is a log-preinvex function.

2. log F(x) < log F'(a) + M( —a).

n(b,a)
3. log F(zgz Log F(a) < log F(b)( 7lao)g F(a)
4. (a+n(b,a) — z)log F(a) + n(a,b)log F(x) + (z — a) log F(b)) > 0.
log F'(a) log F'(z) log F'(b)
O a2 T Tma—nGaNaa) T atae— =0

where z = a + tn(b,a) € [0,1].
We also need the following assumption regarding the bifunction 7(-,-), which
played a crucial part in the field of variational and integral inequalities,

Condition C [8]. Let n(-,-) : K,, x K, — H satisfy assumptions
(w4 An(v, w)) = =An(v, u)
n(v,u+ An(v,u)) = (1 = XN)n(v,u), VYu,ve K, Ael0,1].

Clearly for A = 0, we have n(u,v) = 0, if and only if u = v,Vu,v € K,,. One can
easily show that n(u + An(v,u),uw) = An(v,u),Vu,v € K.

3. Properties of log-preinvex functions

In this section, we consider some basic properties of log-preinvex functions.

Theorem 3.1. Let F be a strictly log-preinvex function. Then any local minimum
of F is a global minimum.

Proof. Let the log-preinvex function F' have a local minimum at u € K,,. Assume
the contrary, that is, F'(v) < F(u) for some v € K. Since F' is a log-preinvex
function, so

log F(u+tn(v,u)) < tlog F(v) + (1 —t)log F(u), for 0<¢<1.

Thus
log F(u + tn(v,u)) — log F(u) < t[log F(v) — log F(u)] < 0,

from which it follows that
log F(u + tn(v,u)) < log F(u),

for arbitrary small ¢ > 0, contradicting the local minimum. O
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Theorem 3.2. If the function F' on the invex set K, is log-preinvez, then the level
set
Lo={ue K:logF(u) <a, «o€R}

1S an 1nvex set.

Proof. Let u,v € L,. Then log F(u) < a and log F(v) < a.
Now, Vt € (0,1), w =v+tn(u,v) € K,, since K, is an invex set. Thus, by the
log-preinvexity of F, we have

log F'(v + tn(u,v)) (1 —t)log F(v) + tlog F(u)

<

< (1-ta+ta=aq,

from which, it follows that v + tn(u,v) € L, Hence L, is an invex set. [

Theorem 3.3. A positive function F is a log-preinvex, if and only if
epi(F) = {(u,0) u € K :log F(u) < a, € R}

18 an inver set.

Proof. Assume thatF is log-preinvex function. Let (u, @), (v,3) € epi(F). Then it
follows that log F'(u) < « and log F'(v) < 8. Thus, Vt € [0,1], u,v € K, we have

log F'(u + tn(v,u)) (1 —t)log F(u) + tlog F(v)

<
< (1-ta+ts,
which implies that
(u+ tn(v,u), (1 — t)a + t5) € epi(F).

Thus epi(F) is an invex set. Conversely, let epi(F) be an invex set. Let u,v € K,,.
Then (u,log F'(u)) € epi(F) and (v,log F(v)) € epi(F). Since epi(F') is an invex
set, we must have

(u+tn(v,u), (1 —t)log F(u) + tlog F(v)) € epi(F),
which implies that

log F(u + tn(v,u)) < (1 —t)log F(u) + tlog F(u).

This shows that F is a log-preinvex function. []

Theorem 3.4. A positive function F is quasi log-preinvex, if and only if, the level
set
Ly={ue K,,a € R:logF(u) <a}

1S an tnvex set.
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Proof. Let u,v € Lo. Then u,v € K, and max(log F(u),log F'(v)) < a.
Now for t € (0,1),w = u+tn(v—u) € K,, We have to prove that u+tn(v,u) € Lq.
By the quasi log-preinvexity of F, we have

log F(u+ t(v — u)) < max (log F(u),log F(v)) < «,

which implies that u + tn(v,u) € L, showing that the level set L, is indeed an
invex set.

Conversely, assume that L, is an invex set. Then Vu,v € Lq,t € [0,1], u+t(v—u) €
L. Let u,v € L, for

a = maz(log F(u),log F(v) and log F(v) < log F(u).
From the definition of the level set L, it follows that
log F(u+t (v,u)) < max (log F'(u),log F'(v)) < a.
Thus F' is a quasi log-preinvex function. This completes the proof. [

Theorem 3.5. Let F' be a log-preinver function.. Let p = inf,cx F(u). Then the
set E={u € K :log F(u) = pu} is an invex set of K,. If F' is strictly log-preinvex,
then E is a singleton.

Proof. Let u,v € E. For 0 <t < 1, let w = u+ tn(v,u). Since F is a log-preinvex
function,

F(w)=log F(u+tn(v,u)) < (1 —t)log F(u) + tlog F(v) =tu+ (1 —t)u = p,

which implies that to w € E. and hence F is an invex set. For the second part,
assume to the contrary that F(u) = F(v) = p. Since K is an invex set, for 0 < ¢t <
1,4+ tn(v,u) € K,,. Further, since F is strictly log-preinvex,

logF(u+tlv—u)) < (1—1t)logF(u)-+tlogF(v)

= (1-Op+tp=p.
This contradicts the fact that u = inf,ex F'(u) and hence the result follows. [
Theorem 3.6. If F is a log-preinver function such that

log F(v) < log F'(u),Vu,v € K,
then F' is a strictly quasi log-preinvex function.
Proof. By the log-convexity of the function F, Vu,v € K,t € [0, 1], we have
log Fl(u + tn(v,u)) < (1 —t)log F(u) + tlog F'(v) < log F'(u),

since log F'(v) < log F'(u), which shows that the function F is strictly quasi log-
preinvex. [
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4. Strongly log-preinvex functions
In this section, we now discuss some properties of the strongly log-preinvex

functions.

Theorem 4.1. Let F be a differentiable function on the invex set K, and Condi-
tion C hold. Then the function F is log-preinvex function, if and only if,

F(w)
Flu)

(4.1) log F(v) — log F(u) > (=2 y(v,u)) + plln(v, w) |2, Vo,u € K.

Proof. Let F be a strongly log-preinvex function. Then, Vu,v € K,
log F(u + tn(v,u)) < (1 —t)log F(u) + tlog F(v) — ut(1 — t)[[n(v,u)|,

which can be written as

log F(u + tn(v,u)) — log F(u)
t
+p(1 = ) m(v, )]

log F'(v) —log F(u) > {

}

Taking the limit in the above inequality as t — 0, we have

F'(u) 2
log F(v) —log F'(u) > (===, n(v,u)) + pln(v,u)|",
F(u)
which is (4.1), the required result.
Conversely, let (4.1) hold. Then Vu,v € K,,t € [0,1], v; = u+ tn(v,u) € K, and
using Condition C, we have

logF(v) ~log F(u) = (o (v, + (o) P
(1.2 — (- O e, w) + (= 0Pl )P
In a similar way, we have
log Fu) ~ og F(u) 2 () + ) P
(4.3 = et v, w) + o )

Multiplying (4.2) by ¢ and (4.3) by (1 — t) and adding the resultant, we have

log F(u+ t(v — u)) < (1 — ) og F(u) + tlog F(v) — it (1 — H)ln(u, u)|
Vu,v € K,,t € [0.1],

showing that F'is a strongly log-preinvex function. O



792 M. A. Noor and K. I. Noor

Remark 4.1. From (4.1), we have

/

u
) n(o,w) + ulln,w)?}, Vv € K,

F() 2 Fuerp{{ g

Changing the role of u and v in the above inequality, we also have

F(0) 2 Fjeapl G nu, o) + il ), Voo € K,

Thus, we can obtain the following inequality

PO+ F0) 2 FOo)eap{ (Gl n( ) + sl )17}
+Peep{( 8 n(w0) + e ). Vuro € K

Theorem 4.1 enables us to introduce the concept of the log-monotone operators,
which appears to be new ones.

Definition 4.1. The differential F’(.) is said to be strongly log-monotone, if

<F'(U)

(v, u)) + <F(U)),77(u,v)> < —p{lln(w, w1 + In(u, )|}, Vu,v e H.

Definition 4.2. The differential F’(.) is said to be log-monotone, if

Cre o) + (2w, ) <0, vuve

Definition 4.3. The differential F’(.) is said to be log-pseudo-monotone, if

i (w)
F(u)

,Nu—v)) >0, Yu,veH.

From these definitions, it follows that strongly log-monotonicity implies log-monotonicity
implies log-pseudo-monotonicity, but the converse is not true.

Theorem 4.2. Let F be differentiable strongly log-preinvex function on the invex
set K. Let Condition C and Condition A hold. Then (4.1) holds, if and only if,
F'(.) satisfies

Gt} + (o)

(4.4) < — (v w)|* + In(u,v)[*}, - Vu,v € K.
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Proof. Let F' be a strongly log-preinvex function on the invex set K,. Then, from
Theorem 4.1, we have

(45) log F(o) ~ log Flu) > (= no.) + o ) P Yo € Ky

Changing the role of u and v in (4.5), we have

F(v)
Flv)’

(4.6) log F(u) — log F(v) > { n(u,v)) + |In(u,)||*, Vu,ve K,.

Adding (4.5) and (4.6), we have

F'(u)

( F'(v)
F(u)

F) 0w, 0)) < —p{lln(o, W) | + In(u, 0)IP}, Vu,v € K.

(v, u)) +

which shows that F”’ is a strongly log-monotone.
Conversely, from (4.4) and Condition C, we have

47 CGpentu o) < <ulln(e )l + o)l = (G n(o.0),
Vu,v € K.

Since K is an invex set, Vu,v € K,,, t€[0,1] vy =u+tn(v,u) € K,,.
Taking v = v, in (4.7), we have

F'(vt)

( F'(u)
F(vt)

F(U) an(vt7u)>a
Yu,v € K.

s, v)) < —pdlln(ve w)l* + lln(u, v I} = ¢

Using Condition C, we obtain

o P o 0,00) + 20t o, 0) ).

(4.8) { o

(v, u) =
Consider the auxiliary function
§(t) = log F(u + tn(v, u)),
from which, we have
§(1) =log F(u+n(v,u)), £(0) = log F(u).

Then, from (4.8), we have

@9 €0 = () > () + 2t
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Integrating (4.9) between 0 and 1, we have

) - €0 = [ €= (Gt} + ulato. 0

Thus it follows, using Condition A, that

F'(u)

log F (1) ~log F(u) > (. 2

(v, w)) + plln(v, w)
which is the required (4.1). O
We now give a necessary condition for log-pseudoconvex function.

Theorem 4.3. Let F'(.) be a log-pseudomonotone and let Condition C and
Condition A hold. Then F is a log-pseudo preinvex function.

Proof. Let F'(.) be a log-pseudomonotone. Then,

<1;:((5>),17(v,u)> >0, Yu,velk,,
implies that
(4.10) —<1;((;})),77(v,u)> > 0.

Since K, is an invex set, Vu,v € K,, t € [0,1], v, = u + tn(v,u) € K,,.
Taking v = v; in(4.10) and using Condition C, we have

(4.11) ("I F' (vy),m(v,u)) > 0.
Consider the auxiliary function

£(t) =log F(u+tn(v,u)) =log F(v), Yu,ve Ky, tel0,1],
which is differentiable. Then, using (4.11), we have

€)= (G

Integrating the above relation between 0 to 1, we have

1
€0 -0) = [ €0
Using Condition A, we have
log F(v) — log F'(u) > 0,

showing that F' is a log-pseudo preinvex function. [
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Definition 4.4. The function F' is said to be sharply log-pseudo preinvex, if there
exists a constant p > 0 such that
<F "(u)

>
=
> log F(u+tn(v,u)), Vu,ve K,,tel0,1].

Theorem 4.4. Let F' be a sharply log-pseudo preinvex function on K,. Then

\j

—~
<

—

an(vau» > 0, VU,’U c Kﬁ'

Proof. Let F' be a sharply log-pseudo preinvex function on K. Then
log F(v) > log F(v +tn(u,v)), Yu,ve Ky,tel0,1].

from which we have

log Fv + tnu,v)) —log Flv)y _ F'(v) |\ )
Fv) 77"

0 < lim{
t—0 t

the required result. [J

Definition 4.5. A function F is said to be a log-pseudo preinvex function with
respect to a strictly positive bifunction B(.,.), such that

log F(v) < logF(u)
=
log F(u+tn(v,u)) < logF(u)+t(t—1)B(v,u),Vu,v € K,,t €0,1].

Theorem 4.5. If the function F is strongly log-preinvez function such that
log F(v) < log F(u), then the function F is strongly log-pseudo preinvez.

Proof. Since log F(v) < log F(u) and F is strongly log-preinvex function, then
Vu,v € K,,t € [0,1], we have

log F(u + tn(v,u))
< log F(u) + t(log F(v) —log F(u)) — ut(1 = t)|[n(v, u)|*
< log F(u) 4 (1 — t)(log F(v) —log F(u)) — pt(1 — t)[[n(v, w)|?
= log F(u) +t(t —1)(log F(u) — log F(v)) — put(1 = t) [ n(v, u)]|?
< log F(u) + t(t — 1)B(u,v) — pt(1 = t)|[n(v, w)|?,

where B(u,v) = log F'(u) —log F'(v) > 0. This shows that the function F is strongly
log-preinvex function. [
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We now show that the difference of strongly log-preinvex function and affine strongly
log-preinvex function is again a log-preinvex function.

Theorem 4.6. Let f be a affine strongly log-preinvex function. Then F is a
strongly log-preinvex function, if and only if, g = F — f is a log-preinvexr func-
tion.

Proof. Let f be an affine strongly log-preinvex function. Then

(4.12) log f((u +tn(v,u)) = (1—t)log f(u) +tlog f(v) — pt(l —t)|In(v,u)|?,
Vu,v e K,,te0,1].

From the strongly log-preinvexity of F, we have
(4.13) log Fu+tn(v,u)) < (1—1t)log F(u) + tlog F(v) — ut(1 — t)||n(v, u)|,
Vu,v e K,,te0,1].
From (4.12 ) and (4.13), we have

log F'((u +tn(v,u)) —log f((u +tn(v,u)) < (1 —t)(log F(u) —log f(u))
(4.14) +t(log F(v) —log f(v)),

from which it follows that

log g((u+tn(v,u)) = log F((u+tn(v,u) —log f((u+tn(v,u))
< (1 —1t)(log F(u) — log f(u)) + t(log F'(v) — log f(v)),

which shows that ¢ = F' — f is a log-preinvex function.
The inverse implication is obvious. [

We now discuss the optimality condition for the differentiable strongly log-
preinvex functions, which is the main motivation of our next result.

Theorem 4.7. Let F be a differentiable strongly log-preinvex function. Then u €
K, is a minimum of the function F, if and only if, u € K, satisfies the inequality

F'(u
W) 0, w) + ulln(, w2 20, Yu, € K,

(4.15) Fra

Proof. Let v € K, be a minimum of the log-preinvex function F. Then
F(u) < F(v),Yv € K,,.
from which, we have

(4.16) log F(u) < log F(v),Vv € K.
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Since K is an invex set, so, Yu,v € K,, t¢€[0,1],
v =u+tn(v,u) € K,.
Taking v = v; in (4.16), we have

F'(u

417 0< lim{logF(u +tn(v,u)) — logF(u)} y F(u))’n(v,u».

t—0 t

Since F' is differentiable strongly log-preinvex function, so

log F(u+ tn(v,u)) < log F(u) + t(log F(v) — log F(u)) — pt(1 — t)[In(v, u)|%,
Vu,v e K,,tel0,1].

Using (4.17), we have

log F(u + tn(v,u)) — log F(u)

log F(v) ~log F(u) > lim{ t } 4 (o, ) 2
- %mw + lln(v, )2 > .

Thus, it follows that
log F(v) —log F(u) > pl|n(v, )%,
which is the required result(4.15). O

Remark 4.2. We note that, if u € K, satisfies the

F'(u)
Flu)'"

(4.18) ( (v,w)) + plln(o, w)l* = 0,Yv € Koy,
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then u € K, is a minimum of a strongly log-preinvex function F. The inequality of the type
(4.18) is called the log-variational-like inequality and appears to be a new one. For the
applications, formulations, numerical methods and other aspects of variational inequalities,

see Noor [12, 13, 15, 16, 31].

We remark that, if a strictly positive function F is a strongly log-preinvex function,

then, we have

log F(u+tn(v,u)) + logF(v+tn(u,v)) <logF(u)

(4.19) + log F(v) — 2p2t(1 = )ln(v,w) |2, Vu,0 € Kyt € [0,1],

which is called the Wright strongly log-preinvex function.
From (4.19), we have

log F(u + tn(v,u))F(v + tn(u,v)) = logF(u+tn(v,u))+logF(v+ tn(u,v))

< log F(u) + log F'(v)
= log F(u)F(v), Yu,ve K,,tel0,1].
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This implies that
F((u+tn(v,u)F(tu+ (1 —t)v) < F(u)F(v), Yu,ve K,,tel0,1],

which shows that a strictly positive function F' is a multiplicative Wright strongly
log-preinvex function. It is an interesting problem to study the properties and
applications of the Wright log-preinvex functions.

Conclusion

In this paper, we have studied some new aspects of log-preinvex functions. It
has been shown that log-preinvex functions enjoy several properties which convex
functions have. Several new classes of strongly log-preinvex functions have been
introduced and their properties are investigated. We have shown that the minimum
of the differentiable strongly log-preinvex functions can be characterized by a new
class of variational inequalities, which is called the log-variational inequality. Using
the technique of auxiliary principle technique [13, 15, 25, 31], one can discuss the
existence of a solution and suggest iterative methods for solving the log variational-
like inequalities. One can explore the applications of the log-variational inequalities
in pure and applied sciences. This may stimulate further research.
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Abstract. The differential equation characterizing a spherical curve in R® expresses
the radius of curvature of the curve in terms of its torsion. In this paper, we have
given a generalization of this equation for a curve lying in an arbitrary surface in R3.
Moreover, we have established the analogue of the Frenet equations for a curve lying
in a surface of R®. We have also revisited some formulas for the geodesic torsion of a
curve lying in a surface of R3.
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1. Introduction

The curves to be considered here are curves in the Euclidean space R? of the
form o = a(s), s € [0, L], where s is the arc length which is of class C®. For such a
curve, the following facts are well known.

There exists two functions x, 7 defined on [0, L] that determine completely the
shape of the curve in R3. The functions x and 7 are respectively the curvature
and the torsion of the curve. Such a curve « : [0, L] — R3 have a Frenet frame
(T, N, B) which is a map on [0, L], s — (T'(s), N(s), B(s)) that satisfies the Frenet
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equations
T = kN

(1.1) N = —xkT-7B ,
B = TN

where the prime (') denotes the differentiation with respect to arc length. For more
information see [1, 3].

The condition for a curve to be a spherical curve, (i.e) it lies on a sphere, is
usually given in form

(1.2) li (i)} | +o=0.

One can ask what the analogous of the equation (1.2) is when the curve is
assumed to be in an arbitrary surface in R3. One of the aims is to give an answer
to this question.

When a curve such as the above mentioned is assumed to lie in a given surface
¥ C R3, then there exists two other invariants k,, and 7, defined on [0, L] which are
unique except for the sign (depending on the orientation of ). The functions k.,
and 7, defined on [0, L] are the normal curvature and the geodesic curvature of the
curve.

Let ¥ be a surface on R3. We will assume that X is oriented by choice of a unit
normal field

(1.3) £:% — §2

For a curve « : [0, L] — R3 given as above, and lying in ¥, there are two naturel
frames along « (see [1]). The first is Frenet frame (T, N, B) given above. For the
second, let denoted by & = £(s) be the restriction of £ on «a; and we consider the
second frame (T,& x T,€) where x is the vector product in R3. These two frames
(T,N,B) and (T,¢ x T,€) are the positively oriented in R? as we will see later.

In [2] it is shown that the differential equation characterizing a spherical curve
can be solved explicitly to express the radius of curvature of the curve in terms of its
torsion. The author of [6] gives a necessary condition for a curve to be a spherical
curve. In Minkowski space the characterization of curve lying on pseudohyperbolical
space and Lorentzian hypersphere are stated both depending on curvature functions
and character of Serret-Frenet frame of the curve, respectively. For detail see [4, 5,
7). The main results of this paper is to prove the following results.

Theorem 1.1. Under the assumptions and notations above, we have the following

i) the trihedron (T, &, T <€) and the functions Kk, T, k, and T4 satisfy the following

equation
T = Kp€+ /K2 —KI(EXT)
(1.4) & = —kn T+ 14(§ X T) ,

(T'x§&) = —\/Kr2—RKT —14((xT)
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En\' N
(1.5) () =~ = ry/1 - (%)

K K
iii)

(1.6) 78 = —(K —2Hky + k7))

where K and H are respectively the restriction of mean curvature and the
Gauss curvature of 2 to .

Corollary 1.1. If the curve a lying in a sphere with T and k' are nowhere zero in
[0, L], then equation (1.5) implies (1.2).

The paper is organized as follows: in Section 2, we recall some results and definitions
which we use for the proof of our main results. In Section 3, we prove the main
results of this paper.

2. Preliminaries

Let a = a(s) , s € [0,L] be a regular curve of classe C® lying on an oriented
surface ¥ in R?. An orientation of ¥ is determined by a choice of a unit normal
£:% — 52

If p e ¥, a basis (u,v) of T,X is positively oriented if (u,v,{(p)) is a positive
basis of R3. A basis of R? of the form (u,v,u x v) is positively oriented. So the
Frenet frame (T'(s), N(s), B(s)) on « is positively oriented at every s € [0, L]. The
second frame (T'(s),&(s) x T(s),£&(s)), s € [0, L] considered above have the same
orientation that the basis (£(s),T(s),&(s) x T(s)), s € [0,T]. Therefore, on « the
"trihedron” (T, N, B) and (T,& x T, ) are positively oriented.

For each s € [0, L], we define the angle 6 = 6(s) between N(s) and &(s) by
(2.1) (N(s),(s)) = cosb(s).

And we have the following relation
(2.2) N(s) = cos0(s)&(s) + sin(s)(€(s) x T(s), s € [0,T).

Now let us recall some basic facts for a curve o = «(s) given as above and lying
on a surface ¥ C R3.

If p is a point of ¥, the Gauss map ¢ : ¥ — S? is a differential map and its
differential d,& at p is a self-adjoint endomorphism of 7,,3. The fact that d,§ :
T,YX — T,X is a self-adjoint map allows to associate a quadratic form IL, in T},S.
The quadratic form II, is defined on 7, by

(2.3) I, (v) = —(dp(v),v)

is called the second fundamental form of ¥ at p.
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Definition 2.1. A curve « in ¥ passing through p, x the curvature of « at p and
cosf = (N, &), where N is the normal vector of « at p; the number

(2.4) Kp = K cosf
is called the normal curvature of a € ¥ at p.

If p = p(s) € £, the following interpretation of I, is well known:

0 (/(s)) = —(dp&(a'(s)) 0/ (s))
- )
)

In the other words, the value of the second fundamental form II,, at a unit vector
v € T,X is equal to the normal curvature of a regular curve passing through p and
tangent to v.

Now let us come back to the linear map dp€. It is known that for each p € X there
exists an orthonormal basis {e1,e2} of 7,3 such that d,&(e1) = —kie1, dpé(e2) =
—koea. Moreover, ki and ko (k1 > ko) are the maximum and the minimum of the
second fundamental form II, restricted to the unit circle of T),X. That is, they are
the extreme values of the normal curvature at p.

The point p € 3 is called an umbilic point if k1 (p) = ka2(p).

Definition 2.2. In terms of the principal curvatures ki, k2, the Gauss curvature
K and the mean curvature H are given by:

ki + ko

(2.7) K=hk H==2

3. Proof of the main results

3.1. Proof of the theorem
For three vectors u,v,w € R3, the following formulas will be used:
(3.1) ux (vxw)= {u,wh — (u,v)w.
And for an orthonormal positive oriented basis (u, v, w) in R3, the following relations
(3.2) uXv=w, WXu=0,

will be also used.
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Now assume that for s € [0, L], a(s) lies in a surface X. For the geodesic torsion
T4 of av at p = a(s), s €]0, L] we have the well known two formulas:

(3.3) Te(s) =T — Z—f = cos ¢sin p(ky — k2),

where 7 is the torsion of «, 0 is the angle between £(s) and N(s), ¢ is the angle
that 7" makes with the principal direction e; and ki, ks are principal curvatures
associated with the orthonormal basis {e1,es} (assumed to be positively oriented
in T,,%).

Here we will use another formulas for 7, with is given in the lemma below.

Lemma 3.1. In the notations given above, we have

(3.4) T4(s) = (€'(s), € x T), s€]0,L][.

Proof. Let {e1, ez} be an orthonormal basis of T),% such that
dp€(er) = —kier,  dp€(e2) = —kaeo.

where p = a(s). We can assume that e; X ea = £(s); thus (e1, e2,£(s)) is a positively
oriented orthonormal basis of R3. We put T = cos pe; + sin pes and we have

(€ (s),6xT) = (dp&(T),£xT)
= (—cospkie; — sin pkaes, & X (cos ey + sinpes))
= (—cosypkie; — sin pkoeq, — sin pe; + cos pes))
= cospsing(k; — k2).
This show (3.4) by (3.3). O
Let us show (i) in Theorem 1.1.

For convenience, we will drop the point p = a(s) € ¥ in the formulas.
- From 0 defined by cos = (£, N) the normal N which is normal to 7" becomes

N = cos O +sin 6T x &,
and
T = &N
= KkcosOf+ ksinbE x T
— k4 rV1—cos?06 x T
= kné+ VK2 —R2EXT,

- Since (&,&) =1, then & = aT + bT x £ for some numbers a and b.
We have

a = (.7T)
<€7 T>/ - <§7 T/>

_H<€7 N>
—Kcosf

= —Kp
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and by (3.4) we get
b= (. &xT) =1,

Thus we get &' = —k, T + 75¢ x T
- We have (£ x T')' = ¢T + d¢ for some constants ¢ and d. We get

c = ((£xT). 1)
= (T, TY —{(£xT,T)
= —k({ExT,N)
= —k{ExT,cos6¢ +sinfT x &)
= —ksinf
2

- _ 2
= K2 — KZ.

and by (3.4), we get
d= <(€ X T)/a£> = <(£ X T)7£>/ - <€ X Ta£/> =
Thus (§ X T) = —\/Kk? — k2T — 14€.

This show the ( ) of the theorem.
Let us show (ii) in Theorem 1.1.

We have “= = cosf). Differentiating this relation, we get

(%)l —%sm@

= —(T—Tg)m
PN
= —(1—-1y) 1—( ") )

K

This show (ii).

Let us show (iii) in Theorem 1.1.

Let {e1,e2} be the unit orthonormal basis of T,X such that dy&(e1) = —kieq and
dyé(e2) = —kaes as the recalls in section 2. And let ¢ be defined by cos = (e, T);
and then we can write T = cos e +sin peq, under the assumption that e; X ey = &,
i.e (e1,e2,&) is a positive oriented basis of R? = T,,R3.

We have ¢’ = —kcosT + 1,6 x T by (i). Also we have

¢ = dy&(T)
(3.5) = —cospkie; — sin pkaes.
Thus
¢ = —kcosOT +7,T x ¢

—k cos B(cos ey + sin pes) + 74(— cos pes + sin pe;)
(3.6) = (—kcosfcosyp +sinpty)e; + (kcosbsinp — 7, cosp)es



A note for a generalization of the differential equation of spherical curves
By the computation given in (3.5) and (3.6) above one gets easily that
(k1 — Kkcosf) cosp + T4sinp =0
(ko —Kkcos)sing +714cos0 =0 "

By writing the last relation in matrix form:

k1 — Kk cosf —Tg cosp \ (0
Tq ko — Kkcos@ simnp /) \ 0 )’

one gets the determinant

k1 — kcosf —7, .
Ty ko —kcosf |
= kiky — kcosO(k1 + ka) + K% cos® 0 + 72 =0
iK—2’inH+H%+T3:O,
Thus we have

78 = —(K —2Hky + k7).

This shows (iii). So the theorem is proved.

3.2. Proof of the corollary

807

We assume that « lies in a sphere in R? of radius R. We consider the equation (ii):

(%) = —r=mn1- ()"

It is well known that, on a sphere every point is an umbilic point. This fact is
important in the proof that on the sphere the second fundamental form is a constant
(see [8]). That is, for any unit tangent vector v at p = a(s) belong to this sphere we
have IT,(v) = j:% and the Gauss curvature K and mean curvature H are constants

(K = gz, H =+). This shows that the geodesic curvature 74 of a is zero.

Thus the equation (ii) becomes

1 /1y 1
*m7\) TV e

Q)+ ()=

that implies

By differentiating this equation and by using ' # 0, one gets easily (ii). This shows

the corollary.
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Abstract. In this paper, we investigate generalized helices in the sense of Hayden in
(2n + 1)-dimensional Euclidean space E>" ™!, We obtain some results for such curves in
E?"T!. Thereafter, we obtain two families of generalized helices which are hyperspher-
ical and hypercylindrical generalized helices in the sense of Hayden. In addition, we
give examples of hyperspherical and hypercylindrical generalized helices in the sense of
Hayden in E°. Finally, we give examples of hyperspherical and hypercylindrical gener-
alized helices in the sense of Hayden in E* and plot the graphics of these curves with
Mathematica 10.0.

Keywords: generalized helices, global submanifolds, Euclidean space
1. Introduction

Helical structures have many applications to the various branches of science
such as biology, architecture, engineering, etc. [1]. One of the important research
problem for differential geometry is helices. The notion of helix is stated in 3-
dimensional Euclidean space by M. A. Lancret in 1802. Helix is a curve whose
tangent vector field makes a constant angle with a fixed direction called the axis of
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the helix. The necessary and sufficient condition for a curve to be a general helix
is that the ratio of curvature to torsion should be constant, which is given by B. de
Saint Venant in 1845 [2, 4]. If both curvature and torsion are non-zero constants,
then the curve is called circular helix [2]. Also, in the n-dimensional Euclidean
space, a general helix is defined similarly i.e., whose tangent vector field makes a
constant angle with a fixed direction [9)].

In [6], generalized helix notion is more restrictive in the n-dimensional Euclidean
space for n > 3; a fixed direction makes a constant angle with all Frenet vector fields
of the curve. This type of curves are called the generalized helix in the sense of
Hayden [4]. In [6], the generalized helix in the sense of Hayden has the property that

the ratios £, %8 fn—d Fn-2 are constants if n is odd, where x; (1 <4< n—1)

K2? Kg? " ") Kp—3? Kp—1
denote ith curvature function of the curve. In this work, we study generalized
helices in the sense of Hayden. For the sake of brevity, we call them generalized

helices.

Notice that, a curve (3 is called a W-curve, if the curve has constant curvatures.
Also, W-curves in E?"*1 are generalized helices [4].

This study is organized as follows: In section 2, we review differential geometry
of regular curves in E™. In Section 3, we give a theorem for generalized helix. Af-
ter that, we obtain some results for generalized helices based on angles which are
between the Frenet vector fields of the curve and a fixed direction. In Section 4, we
show that the family of curves in [2] are hyperspherical generalized helices. There-
after, we obtain hypercylindrical generalized helices in E?**! by using a different
method from [2]. Finally we give examples for such curves in E> and E3.

2. Preliminary

In this section, we give the basic theory of local differential geometry of curves in
the n-dimensional Euclidean space. For more detail and background about this
space, see [3, 5.

Let a: I C R — E™ be an arbitrary curve in the n-dimensional Euclidean space
denoted by E™. Recall that (,) denotes the standard inner product of R™ given by

(21) <x,y> = Zl'iyi
i=1

for each © = (x1,22,23,...2n), ¥ = (Y1,Y2,Y3,---Yn) € R™. The norm of a vector
x € R™ is defined by ||z|| = /(z,z). Let {V1,V,V3,...V,} be the moving Frenet
frame along the arbitrary curve «, where V; (1 < i < n) is Frenet vector field. Then,
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the matrix form of Frenet formulas are given by

1% 0  wki 0 0 0 Vi

%4 —VK1 0 VKo 0 0 1%

74 0 —vky O 0 0 Vs
(2.2) ) = . ) . .

. 0 0 o --- 0 —VKp—1 Vo1

4 0 0 0 - —vkp1 O Vi,
where v = (o/,a’) and k; (1 < i< n—1) denote the ith curvature function of
the curve a [1]. To obtain Vi, Vs, Va,...V, it is sufficient to apply the Gramm-
Schmidt orthogonalization process to o (t),a” (t),...,a™ (t). More precisely,

Vi(l <i<n)and k; (1 <i<n—1) are determined by the following formulas [8]:

Fi(t) = o),
. < (ai (), F; (1))
Fi(t) = o'(t)=Yy —2 L2 p(t) for 2<i<m,
SR ), F(#)
[ Fi1 (@)l .
ki (t) = ———+——forl<i<n,
[1Ey (O 1F5 @)l
Vi = i for1<i<n
' IEill T
where o/, a”, ..., o™ are linearly independent. Let 8 : I — S™ be a unit speed

hyperspherical curve in E"*1 where I is an open interval in R. In [10], Izumiya and
Nagai defined generalized Sabban frame {8, t,n;,ns,...,n,_1} of the unit speed
curve 8 which is determined by the following formulas:

n, = +8
[t"+ B
ko= (lt'+ 8,
ny — ny + k5 7
[n} + k8|
ke = [n}+kf,
ki = ||n;_1 + ki—lni—2|| )
n, — n,_; +ki—1n;_o

Hn§_1 +ki71ni72H’

for3<i<n—2and#k; # 0 for all ¢ and

Bxt xngx- - Xn,_ s
IBxt xng X Xn, o’

kn—l = <nln_2ann—1>

n,_i1 =
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where k; (1 < i < n— 1) denote ith curvature function of the curve 5. Also, in the
same paper, Izumiya and Nagai gave the following Frenet-Serret type formula for
the generalized Sabban frame of the spherical curve 3.

B’ 0 1 0o -- 0 0 Ié]
t’ -1 0 Kk - 0 0 t
(2 3) n’l 0 —]411 0 s 0 0 n;
Ilfn,Q 0 0 0 cee 0 kn,1 n,_ o
n;kl 0 0 0 s kn—l 0 n, 1
Definition 2.1. A Frenet curve of rank r for which x1, ko, ..., K, are constants is

called W-curve [7].

A unit speed W-curve of rank 2n has the parameterization of the form

(2.4) B(s)=ao+ Z (a; cos pis + b; sin p;s)

i=1

and a unit speed W-curve of rank 2n + 1 has the parameterization of the form

(2.5) B (s) = a0+ bos + Z (a; cos wis + b; sin p;s)
i=1

where ag, bg, a1, ...,ax, b1, ..., b, are constant vectors in R™ and p1 < po < ... < i
are positive real numbers. So, a W-curve of rank 1 is a straight line, a W-curve of
rank 2 is a circle, a W-curve of rank 3 is a right circular helix [8].

3. Generalized Helix in E2t1

Hayden gave the following theorems in [6].

Theorem 3.1. Let a be a curve in a Riemannian (2n + 1)-space, the Frenet vector
fields V3, Vs, ..., Vapt1 of the curve make constant angle with a parallel vector-field
along the curve, then the curve « is generalized helix; moreover, V1 also make a
constant angle with the given vector-field, and Vo, Vy, ..., Vo, are each perpendicular
to the given vector-field [6].

Theorem 3.2. Let « be a curve in a Riemannian (2n + 1)-space, the Frenet vector
fields V1, Vs, ... Von_1 of the curve make constant angle with a parallel vector-field
along the curve, then the curve a is generalized helix; moreover, Vo, 41 also make a
constant angle with the given vector-field, and Vo, Vy, ..., Vo, are each perpendicular
to the given vector-field [6].

In the light of the theorems mentioned above, we can give the following theorem.
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Theorem 3.3. Let o be a curve in E?" 1. If the Frenet vector fields

Vi,Va, Vs, ..., Vaj—1, Vajys, ..., Vant1, (1 < j < n) of the curve o make constant an-
gle with a unit vector U, then the curve a is generalized helix; moreover, the vector
field Vaj 11 makes a constant angle with the given vector U, and Va,Vy, ..., Vay are
each perpendicular to the given vector U.

Proof. Assume that the Frenet vector fields Vi, Vs, Vs, ..., Vaj_1, Vajqa, ..., Vanta,
(1 <7< n) of the curve o make constant angle with a unit vector U. Then, we
have

(3.1) (V;,U) =cosb;, i=1,3,5,...,2j—1,2j4+1,...,2n+ 1.

If we take the derivative of 3.1 for ¢ = 1 by using Frenet formulas in 2.2, we obtain
that V5 is perpendicular to U.

If we take the derivative of 3.1 for i = 3 by using Frenet formulas in 2.2 and the
fact that V5 LU, we obtain that Vj is perpendicular to U.

Similarly, we take the derivative of 3.1 for 7 = 5,7, ...,2j — 1 we obtain Vg, Vg, ... Vaj
each are perpendicular to U.

If we take the derivative of 3.1 for ¢ = 2n + 1 by using Frenet formulas in 2.2, we
get Vb, is perpendicular to U.

If we take the derivative of 3.1 for ¢ = 2n — 1 by using Frenet formulas in 2.2 and
the fact that V5, LU, we obtain that V5, _o is perpendicular to U.

Similarly, we take the derivative of 3.1 for ¢« = 2n — 3,2n — 5, ...,2j + 3 we obtain
Von—4, Van—s, - . . Vaj12 each are perpendicular to U.

Finally, for i = 2§ + 1 from 2.2 we have
(3.2) (Voj1,U)' = kajr (Vajra, U) — kizj (Vaj,U) = 0

since (Vaj12,U) = 0 and (Va;,U) = 0. So, (Vz;41,U) is a constant. Therefore, Va;
makes a constant angle with U. O

The vector U is called the axes of generalized helix. It is obvious; if we take the
derivative of 3.1 for ¢ = 2,4,...2n by using 2.2 we have

(3.3) K2 _ COS 01 K4 _ COS 03 Kon  €OSla, 1
k1 cosfs’ ks  cosfs’ ’ Kon—1  €0S0o,41

From 3.3, we give the following corollary.

Corollary 3.1. Let o be a generalized heliz with curvatures Ki,Ka,...,Kop i
E2n+1. Then,

KoK4...Kapn  costh

- )
K1KR3...Ran—1 COS 92n+1
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Fj+1

cosf; = cosOjio for j=1,3,5,...,2n -1

J

and the axis of a generalized helix has the form

U =cost Vi +cosOsVs + - - - 4 cos o, 4-1Vor41.

Theorem 3.4. Let « be a generalized helix with curvatures K1, Ko, - . . Kop, in E2ntl,
Then,

n
R1KR3...K2;—1
U = coséy (Vl +2 7“)
2K4 ...

i=1 %

and
- R1K3 R2i—1 2
tan0- — e K2i—
ano ;(Hzf@;...ﬁlgi)
where 01 is the angle between Vi and U.
Proof. 1t is clear from equation 3.3 and Corollary 3.1. O

Similarly, we have the following theorem.

Theorem 3.5. Leta be a generalized heliz with curvatures K1, Ko, . . . Koy, n B2,

Then,

(3.4) U =cosbapii | Vont1 + Z MV%%
=1 K1KR3...K2;—1

and

n 2
(3.5) tanZfo,1 = Z (M)

— R1R3 ... R2i—1
i=1

where 02,41 is the angle between Von11 and U.

Proof. 1t is clear from equation 3.3 and Corollary 3.1. O

4. Families of Generalized Hypercylindrical and Hyperspherical
Generalized Helices in E?"*!

In this section, we show that the curve in [2] is a hyperspherical generalized helix.
Also, we used a W-curve to obtain a hypercylindrical generalized helix.

Lemma 4.1. 8:I CR — 5?7,

B(t) = (61(1), B2(t), - -, Ban41 (1))
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s given by
(1 —¢;?) sin (¢; At)
Boi—1(t) = - 73
()
k=1
(1 — ¢;%) cos (c;At)
Bai(t) = - 73
(o)
k=1
fori=1,2,...n and
n 3
Set—n
Bonsa(t) = | A=
S et — 2
k=1
. 1
> Ck4—ck2 ?
where \ = | -222— —— s a constant. Then, B is a W-curve of rank 2n.
2_90,440,6
kgl Ck 2¢cit4ck

Proof. 1t is clear from equation 2.4. [
Theorem 4.1. Leta:I C R — E*H!
a(t) = (on(t), az(t), - . ., d2nta(t))

be a regular curve given by

agi—1(t) = ———— = (¢;cos(t) cos (¢;t) + sin (¢) sin (¢;t)) ,

" 1/2
(Z]:l CJ2>

agi(t) = —n (cos (¢;t) sin (t) — ¢; cos (¢) sin (¢;t)) ,

(Z?:l Cj2>

fori=1,2,...n and

1/2
n .
aopt1 (B) = 1— — sin (t)
2. ¢?
j=1
where c1,¢2,...,¢n > 1 with ¢; # ¢, 1 <4 < j < n. Then, o is a general heliz

which lies on S*™ [2].

By means of the Teorem 4.1, we can give the following theorem.
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Theorem 4.2. Let a:I C R — E*"+!

a(t) = (al(t)7 ag(t)7 N 7a2n+1(t))

be a regular curve given by

1 . .
agi—1(t) = 1z (c; cos (At) cos (¢;At) + sin (At) sin (¢;At))
<Z ¢
j=1
1 . .
ag;(t) = 1z (cos (¢;At) sin (At) — ¢; cos (At) sin (¢;At))
<Z ¢
j=1
fori=1,2,...n and
1/2
n .
Qopy1 (B) = 1— — sin (\t)
2. ¢?
j=1
1
i entecp? 2
where ci,¢2,...,cn > 1 withc; #c¢j, 1 <i<j<nand A= k=1

n
> cr?—2cit+cyS
k=1

Then, the curve a: I C R — E?>**1 45 a hyperspherical generalized heliz on S*".

Proof. After straightforward calculations, we obtain

le@®l =1, o (t) =wcost B(t),

L 2

Y
ck4fck2
k=1

where w = and (3 is the W-curve in Lemma 4.1. Since ||a(t)|| =1

> er?

k=1
the curve « lies on S2". If we apply the Gramm-Schmidt orthogonalization process
to the curve «

Fi(t) = wecostp(t),
Fy(t) = wcostt(t),
Fl(t) = WCOStkl(t)kz(t) . ki_g(t)ni_g(t) for 3 S ) S n

where k; (1 <i<n—1) is the curvature functions of the curve 5. Now, we can
calculate the curvature functions ;, (1 <7 < n — 1) of the curve a.

K = M =w Lsec
O = RoPE "
ki(t) = 2210 =w k1 (t)sect

[EL @) F ()]
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for 2 < i < 2n. Since the curvature functions k; are constants for 1 < i < 2n—1, the

ratios ﬂ m e % are constants. Therefore, « is a hyperbpherlcal generahzed
n

Kg’ K4

helix on 52”. O

Corollary 4.1. From Theorem 4.2, the Frenet vector fields of the curve o are

(4.1) Vi=8, Vo =1t, Vs=mn1, ..., Vopy1=n2,1
where {B,t,n1,09,..., 09,1} is the generalized Sabban frame of the unit speed
curve 3.

Example 4.1. If we choose ¢c1 = 2 and c2 = 4 in Theorem 4.2, then

cos(At) cos(2At) + sin(2Xt) sin(At) cos(2At) sin(\t) cos(At) bm(2)\t)
& (t) - < 2 COb()\t)5C0§(4>\t) + 51n(4)}é)751n(>\t) Cos(4>t/t;51n()\t) 2 COE&;) blﬂ(4>\t) 3sin(At) )
V5 2V5 ’ 2v5 V5 » V10

where A\ = ,/%.

After straightforward calculations, we obtain the Frenet vector fields of the curve

( sin (2)\25) _cos (2M\t)  5sin(4At)  Scos(4At) 1 )

n® T e ayi Vil

cos(2>\t sin (2X\t)  10cos (4A\t) 10sin (4At) O)

) y )

101 101 101 101
_73sin(20t) _ T3cos (A1) 55sin (4\t) S5cos(4ht) 101 )

2V7189 27189 = 2/7189 27189 /14378
_ 10cos (2At) 10sin (2)t) cos(4)\t) _sin (4At) )

I ’

V101 101 101 101

&
—~
~
=
Il
/\/_\/_\

Vs(t) = / 007 (20 sin (2At) , 20 cos (2At) , —sin (4At) , — cos (4A¢) ,

It is clear that the Frenet vector fields Vi, V3 and Vs of the curve @ make constant angles

0, = arccosr, 05 = arccos\/% and 65 = arccos \/137 with vector U = (0,0,0,0,1),

respectively.

2)

Also, after straightforward calculations, we have the curvatures of the curve «

1 1 /5135 5
k1(t) = 51 —Vb05sec (At), ko(t) = o1V To1 €° (At), ks(t) =404/ 103727 5¢° (At)

4 /1010
:‘i4(t) = 3 % sec ()\t) .

5
Since, « lies on hypersphere S* = {(x1,x2,x3,x4,x5) € ]E5‘ Saf= 1}, then « is a hy-
=1

perspherical generalized helix in E5.

Now, we have the following theorem for a curve v which is integration of the curve
S in Lemma 4.1.
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Theorem 4.3. Let~y:1 C R — E*!

(@) = () 72(8); -+ v2n41(1))

be a regular curve given by

[

Yoio1(t) = — cos (¢ At) ,
il S ept— c;ﬁ)
k=1
1
n 2
(1 — 612) ( 2 — 20t + ck6>
Yoi(t) = k:nl sin (¢;At)
ci| D et — ck2>
k=1
fori=1,2,...n and
n 2
Soex?—n
k=1
72n+1(t) = n t
S ot — ep2
k=1
. 1
S entocy? 2
where \ = | 2= — and c1,¢2,...,¢p, > 1 with¢; #¢j, 1 <i<j<n.
> en?—2cpt+cyS
k=1
Then, ~v is a generalized helix which lies on hypercylinder

n 21\ 2 N2 + 21\ 2
nAQ E c 4 —c 2 a—- C— Cn—
he1 k k C1 c2 Cn

Proof. After straightforward calculations, we have v’ (t) = B (¢) where 3 is a W-
curve in Lemma 4.1. If we apply the Gramm-Schmidt orthogonalization process to
the curve 7, we have

Rt) = B(@),
E(t) = t(),
Fi(t) = kl(t)kg(t) e ki,Q(t)ni,Q(t) for 3 < ) < 2n — ].,

where k; (1 <i<n—1) is the curvature functions of the curve 5. Now, we can
calculate the curvature functions x;, (1 <4 < n — 1) of the curve ~.
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IRl
R1 = 2 — b
£l
il
e o= ol g
' IEAfE
for 2 < i < 2n. Since the curvature functions k; are constants for 1 < i < 2n—1, the
ratios 7%, %, ..., 2221 are constants. Therefore, v is a hypercyhndrlcal generahzed
helix. 2D ! o

Corollary 4.2. From Theorem 4.3, the Frenet vector fields of the curve v are

(4.2) Vi =8, Vo =1t, Va=mn1, ..., Vopy1=mn2,1
where {B,t,n1,n9,..., 02,1} is the generalized Sabban frame of the unit speed
curve 3.

Example 4.2. If we choose ¢c1 = 3 and c2 = 4 in Theorem 4.3, then

4429 Vv 4\/ V39
() = =55~ cos (\/—t) 9 sin (—\/—St)
v 1529 cos 2v2 _ 1529 SlIl 2\/26t V2 t
104 «/87 ) 104 /87 7 2./78

After straightforward calculations, we obtain the Frenet vector fields of the curve ~y

\i;[ sin %t) , ’j—f cos (%t)
vit) = 5v3 zmt) —5v3 cos(zmt) V3

2ves S0 (AR t) 0 3vs VaT ') avis
-2 V39 2 V39
V. (t) . \/—2—9 COS ﬁt) 5 \/—2—9 Sin (ﬁt)
: B =5 cos 2‘/%75) —2_sin (2\/%t o/’
V29 /87 ? V29 \/87 ’
—19v2 _: V39 —19v2 V39
Va(t) = 043 Ol (Et » Vaoas °O8 (Et) )
85 _ <in 2‘/%26 85 os 2‘/%26 2923 ’
21/8086 V87 ? 21/8086 V87 ? 2/8086
5 V39 5 V39
V4(t) _ —% COS (Et) 5 % Sin (Rt) 5
—2_cos 2‘/%15) ——2Z_sin (2\/%t) 0 ’
29 /87 ) 29 /87 ’
5v23 o V39 523 V39
Vs(t) = 933 ! (Rt) » Vo3 €08 | 5st)
=69 gin (@t) —V69 (g ( ‘/_6t)
24/311 V87 ’ 24/311 /87 ’ 2\/93

It is clear that the Frenet vector fields Vi, V3 and V5 of the curve v make constant angles

01 = 2‘/\/27%, 03 = 223% and , 05 = —35_ with vector U = (0,0,0,0, 1), respectively.

Also, after straightforward calculatlons, we have the curvatures of the curve

©
w
w

. L s V311 . 455 . 299

=1, =Yoo =2 k=42,

' T 293 7T 204033 622
2 2 2 2

Since, v lies on the hypercylinder {(x1,x2,x3,x4,x5) € ]E5‘ nter 4 Zated 1}, then ~y
351 1664

is a hypercylindrical generalized helix in 5.
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Remark 4.1. Even if the curve a and  have different curvatures, they have same Frenet
vectors.

Example 4.3. If we choose ¢; = 2 and in Theorem 4.2, then

2t 2t t 2t
alt) = <2cos\fcos\f—l—sm\/gsm\/3 cos\/gsm\/3 2cos\/§sm\/g 3 t)

N 2 2 Va7 3
After straightforward calculations, we obtain the Frenet vector fields of the curve

@ﬁ 1)
7 \/572

- (4
o (eheny

2t 1 2t
Ba(t) = ( s 22 i) :
V2B 2
It is clear that the Frenet vector fields T, and B, of the curve o make constant angles
61 = arccos 3 and 03 = arccos % with vector U = (0,0, 1), respectively. Also, after
straightforward calculating, we have the curvatures of the curve «

t 1 t

—, K2 = ——=sec—.
3 TR B

K1 = sec

3
Since, « lies on S? = {(xl,xg,xg) € IE3‘ Sl = 1}, then « is a spherical generalized
=1

helix in E3.

Example 4.4. If we choose ¢1 = 2 and in Theorem 4.3, then
(t) = (§ cos 2t 3 sin 2t E)
v 13 T A2
After straightforward calculations, we obtain the Frenet vector fields of the curve ~

SRR IR Y

T,(t) = 3 51n\/§,—7c05ﬁ,§

1
2 B2 B 2

It is clear that the Frenet vector fields T, and B, of the curve makes constant angles

0, = arccos% and 63 = arccos @ with vector U = (0,0, 1), respectively. Also, after
straightforward calculating, we have the curvatures of ~

€
7

=1, then « is a circular helix in E3.

:‘61:1, K2 =

1+Z2 _

(%)

Since, v lies on
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F1G. 4.1: Frenet vectors of the curves o and «y for t = & in Example 4.3 and 4.4.
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Abstract. In this paper, a summation theorem for the Clausen series is derived. Fur-
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function. Some special cases are given as applications. A generalization of the reduc-
tion and linear transformation formulas is also given in the form of the general double
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1. Introduction and preliminaries

A natural generalization of the Gaussian hypergeometric series o F) [av, 8; 7; 2], is
accomplished by introducing any arbitrary number of numerator and denominator
parameters. Thus, the resulting series

(1.1)
(avp); 01,00, ..., Qp; 00 (
F, = F = -z
o (ﬁq)v ’ o 615/627"'7611; ’ 7;) (ﬁl)n(ﬁQ)n(Bq)n n'

is known as the generalized hypergeometric series, or simply, the generalized hy-
pergeometric function. Here p and ¢ are positive integers or zero and we assume
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that the variable z, the numerator parameters oy, as,...,a, and the denominator
parameters 31, 2, ..., 3 take on complex values, provided that
B; #0,-1,-2,...; j=1,2,...,q.
In contracted notation, the sequence of p numerator parameters aq, g, ..., 0y

is denoted by () with similar interpretation for others throughout this paper.

Supposing that none of the numerator and denominator parameters is zero or a
negative integer, we note that the ,F, series defined by equation (1.1):

(i) converges for |z] < o0, if p < ¢,
(ii) converges for |z| < 1,if p=g¢g+1

(iii) diverges for all z, z # 0, if p > g+ 1.

Chu-Vandermonde theorem [5, p.69, Q.No. 4]:

_M7 A ; _
(1.2) Py |2 B D,
B : (B)m

)

M:051727"'7

such that ratio of Pochhammer symbols in r.h.s. is well defined and A, B € C\ Z; .

Just as the Gaussian o F; function was generalized to ,F; by increasing the num-
ber of the numerator and denominator parameters, the four Appell functions were
unified and generalized by Kampé de Fériet [2, 1] who defined a general hypergeo-
metric function of two variables.

We recall here the definition of a more general double hypergeometric function
(than the one defined by Kampé de Fériet) in a slightly modified notation [6, p.423,
Eq.(26)]:

(1.3)
P q k
(ap) : (by); (ck); o0 Jl;[l(ay)r+ jl;[( )rjl;ll(cg')s oy
Fg) 7?17 n Yyl = Z L m n F§7
(@) = (Bm) 5 ()5 =0 1 (@g)res I13) 11 03)s

where, for convergence,

(14) () pH+ag<fl+m+1l, p+k<l+n+1l, |z]<oco, |yl <oo, or
(1.5) (15) p+gq=L+m+1, p+k={+n+1and

V=0 4 1[0 < 1. ifp> ¢

max {|z|, ly|} < 1, if p<¢.
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An important development has been made by various authors in generalizations
of the summation and transformation theorems, see [7, 4, 3]. In this work, our main
motive is to find the summation theorem for the Clausen series gFy[—m, o, A +
3; 8, ;1] and to find its applications.

We shall use the following definition in proving our results in Sections 2 to 5:

Definition 1.1. For A € C\ Z; and r € Z* U {0}, the following identity holds
true:

(A+3)r 14 3r 3r(r—1) r(r—1r-2)

(1.7) o, T Ta0E) Aoy

The proof of the above identity can be obtained smoothly.

2. Summation theorem

Theorem 2.1. If~, §, o are the roots of the cubic equation Cm?> + Dm? + Em +
G=0and a, B8, A, =y, =6, —0 € C\ Z; ; m € Ny, then the following summation
theorem holds true:

(2.1)

-m, a, A\+3 ; (=Y + D (=6 + 1D (=0 4+ 1) (B—a —3)m
3Fy L=

B, A . (=)m (=) m (=0)m (B)m ’

b

where the coefficients C', D, E and G are the polynomials in o, B, A given as follows:

(22) C = —2a+3a% —a®+2)\ — 6a) + 302X + 372 — 3a)\? + N3,
D = 12a—9a? —3a® — 6af + 6026 — 12\ + 27a) + 3o\
=303\ + 68X — 158\ + 3028\ — 1822 4 6a)? + 6a2)\?
(2.3) +982% — 6aBA% — 613 — 3a\® + 383,
E = —22a—120% — 20° + 2408 + 6028 — 6a8% + 22\ — 21a\

—2702 )\ — 603\ — 248X\ + 308X\ + 15028\ + 632\ — 9a B2\
+33X2 + 18aA? — 602)\% — 303X\ — 368)2% — 3aB8\? + 602 B2
+96%X2 — 308207 4+ 11X3 + 12003 + 302 )3 — 128\3
(2.4) —6aBA3 + 332\3
G = —12) —22a) — 1202\ — 203\ + 228\ + 2408\ + 6028\
—128%X\ — 6082\ + 283X\ — 1822 — 33aA\? — 18a2\? — 3a3\?
+336A2 + 360822 + 902 BA2 — 183202 — 9032 A% + 33202 — 6)°
—11aX3 — 60222 — a3\% + 118X 4+ 120823 + 3a26X3 — 682\3
(2.5) —3a32X\3 4+ 33\3
= —Cvéo
= MA+DA+2) (f-a—-1)(B-—a—-2) (B—a—3).
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Proof. Suppose the Lh.s. of equation (2.1) is denoted by A, then we have

- (=m)r (a)r (A +3),

SR R R YR
B " (=m), (@), 3r 3r(r—1) rir—1)(r—2)
- ; @), r! {”A*A(AH)*A(AH)(HQJ
_ e 35 (Em)ra (0)rn
= o |: 5 . 1 ] + \ 2 (B)rir 1
3 %= (=M (@)rpo (S Hgarw
NFD & (B ! )\()\+1 YO+ 2) Z 8)es 11
-m, a ; —(m 71) a+1 ;
. | dCmen g, [+
B B B+1 ;
3 —-2), a+2 .
)\()\—1—1 542
(m-3), a+3 ;
1 3 (a)
(26) +A(A+1>(A+2> <> K { 6+3 | 1]'

Using Chu-Vandermonde theorem (1.2) in r.h.s. of equation (2.6), we obtain

(B . 3 (@h By . 3 (=) (a)s (B s
B0 TN Bh B e TAGED (B2 (BiDma
R SR Py S Y C R
N AD0T2 (B (Bt Bms
(B=a)m | 3(=m)1 (@)1 (B—a)m—1 | 3(=m)2 ()2 (B—)m 2

T e A B AGHD B
L Cmls (@ (B a)ns
AMA+DA+2)  (B)m
_ B=a)m [, 3m a 3(—m)a (@),
B (B)m { )\(5—04+m—1)+)\()\+1)(6—a+m—2)2+
n (=m)3 (a)3
AA+D)(A+2) (B—a+m—3)s
_ (B—a)m
(B)m
Qa, 8, \,m)
(27) - [A()\+1)()\+2) B-—a+m—-1)B-a+m-2)(B—a+m—-3)]’
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where

Ua, B, A,m) = AA+1D)A+2)B-—a+m—-1)(B—-—a+m—-2)(—a+m—23)
—3ma(A+1)(A+2)(B—a+m—2)(8—a+m—3)
+3(—m)(=m + 1)(a) (e + 1)(A+2)(8 — a+m — 3)
+(—m)(—m + 1)(—m + 2)(a)(a + 1)(a + 2).
Equation (2.7) can be written as
A —
(8 = @)m Cm?®+ Dm? + Em+ G ]

(B)m [A(/\+1)(/\+2) B—a+m-1)B—-a+m—-2)(—a+m—23)
(2.8)

Since v, §, o are the roots of the cubic equation Cm? + Dm? + Em + G = 0,
therefore equation (2.8) can be written as:

A =
(ﬁ—wm[ C(m —7)(m —d)(m — o) }
Bm  IMA+FDOA+2) (B—a+m—1) (f—a+m—2) (B—a+m—3)]"
(2.9)

On simplification, we get assertion (2.1). O

3. Application in reducibility of the Kampé de Fériet function

The application of summation Theorem 2.1 is given by proving the following
reduction formula:

Theorem 3.1. For by,--- ,bp, o, B, A\, —v, =9, —o0 € C\ Z;, the following
reduction formula holds true:

(aq) oo, A3
A:0;2
Fpoj I
(bp) B A
Ay, ,04, _’Y+17 _6+17 —U+1,6—O[—3 )
(3.1) A+4FB+4 z ,

blv"'7bBy -7, 75a 7Uaﬂ 5

subject to the convergence conditions:

|zl <%, ifA=B+1
|z| < o0, if A< B,

where v, 8, o are the roots of the cubic equation Cm> 4+ Dm? + Em + G = 0 and
C,D,E,G are given by equations (2.2)-(2.5).
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Proof. Suppose Lh.s. of equation (3.1) is denoted by @, then we have

oo o0 H(ai)ern (@) (A + 3),(—1)mzmtn

i=1

(]
M

3
=}
3
I
<

B
[T (0i)mtn (B)n (A)n m! n!

i=1

=
8
El
3

3

- i=1 z ~ (=m)n (@)n (A+3)
= Z B ml Z

m=0 me n=0 (ﬁ)n (A)n n!
il;ll(bt)m
A

00 H(ai)mzm -m, a, A+3 ;

(3.2) = >y = - 3F) 1
m=0 T (bi)m m B, A :

Using Theorem 2.1 in r.h.s. of above equation, it follows that

S UWW( 1+ Don (=04 D (=0 + Do (B= =B 2"

(=Vm (=0)m (=0)m (B)m m!’

In view of equation (3.3), reduction formula (3.1) follows. O

4. Applications in linear transformations

If , 6, o are the roots of the cubic equation Cm3 + Dm? + Em 4+ G = 0 and
C,D, E,G are given by equations (2.2)-(2.5), we prove the following consequences
of Theorem 3.1:

I. Taking A = B = 0 in equation (3.1), we get the following transformation

formula:
—v+1, —0+4+1, —o+1, f—a—-3 ;
4Fy z | =
-, _67 — 0, ﬁ ;
a, A+3
(4.1) exp(z) o F> -z |,
By A

where |z| < oo and «, 8, A, =y, =6, —0 € C\ Z; .

II. Taking A =1, a3 = a, B =0 in equation (3.1) and using binomial theorem,
we get the following transformation formula:
a, —v+1, —6+1, —o+1, f—a—3 ;
5F4 z
-, — 57 -0, ﬁ ;
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a, a, A\ +3

B, A ;

where

ﬁ7>‘ = 6,_06«:\26'

5. General double series identity

Theorem 5.1. Let {©(¢)}72, is bounded sequence of arbitrary complex numbers,
©(0) #0 and o, B, \, =, =0, —0 € C\ Z;. Then

oo

O(m+n) (a)y, A+ 3), (=1)" zmtn
m,n=0 (ﬁ)“ ()‘> m! n!
(5.1) - Z ( )m (=) m (=0)m B)m ml’

3
=}

where v, §, o are the roots of cubic equation Cm?> + Dm? + Em + G = 0 and
C,D, E,G are given by equations (2.2)-(2.5) with each of the multiple series involved
1s absolutely convergent.

1_[ (ai)e
Remark 5.1. ForO(¢) =

= , the above series identity reduces to the reduction
l;[l(bft)e
formula (3.1).

Appendix
The roots v, 6, o of the cubic equation Cm? + Dm? + Em + G = 0 are calculated

by using Wolfram Mathematica 9.0 Software. The values of v, § and o are given as
follows:

__D
7T T3

21/3 (-D? 4+ 3CE)

1/3
3C (72D3 +9CDE — 27C2G + \/4 (=D? +3CE)® 4 (—2D3 + 9CDE — 27020)2)

i 1/3
(—2D3 +9CDE — 27C%G + \/4(~D? + 3CE)* + (~2D3 + 9CDE — 2702(;)2)
+

3 x 21/3C
D

3C

N (1+v3) (-D? + 3CE)

1/3
3 x 22/3¢C (—2D3 +9CDE — 27C2G + \/4 (=D? + 3CE)® + (—2D3 + 9CDE — 27020)2)
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1/3
(1 - z\/ﬁ) (—2D3 +9CDE — 27C%G + /4 (~D? + 3CE)* + (~2D3 + 9CDE — 2702(;)2)

6 x 21/3C
. D

3C

N (1-v3) (-D% + 3CE)

1/3
3 x 22/3C (—2D3 +9CDE — 27C2G + \/4 (=D2? + 3CE)® + (—2D3 + 9CDE — 27020)2)

1/3
(1+iv3) (72D3 +9CDE — 27C2G + \/4(~D? 4 3CE)? + (~2D3 + 9CDE — 27020)2)

6 x 21/3C
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Wimmer in [15] gave a necessary and sufficient condition for the existence of a
simultaneous solution of

(1.1) { X+ VB =0,

AsX + Y By = Co.

Kégstrom in [7] obtained a solution of (1.1) by using generalized Schur methods.
Recently, some mixed Sylvester matrix equations have been investigated in some
papers (see [12]). Lee and Vu [8] gave some solvability conditions to mixed Sylvester
matrix equations

o (Ao,

AsZ +Y By = Cs.

The general solution of systems of coupled generalized Sylvester matrix equations
to (1.2) was established by He and Wang in [1, 2, 3, 4, 5, 13, 14].

In this paper, by using the block operator matrix decomposition, we present
a new approach to find the necessary and sufficient conditions for the solvability
of mixed generalized coupled Sylvester operator equations. We obtain an arbitrary
solutions of these systems that it is expressed in terms of the Moore—Penrose inverses
of the coefficient operators.

Throughout this paper, we use H and H; for denote Hilbert spaces. Also,
L(H;,H;) instate the set of all bounded Linear operators from ; to ;. For any
A € L(H;,H;), the null and the range space of A are denoted by ker(A) and ran(A),
respectively. In the case H; = H;, L(H;, H;) which is abbreviated to £(#;). The
identity operator on H is denoted by 14 or 1 if there is no ambiguity.

Definition 1.1. Let H be Hilbert space and A € L(H). The Moore-Penrose
inverse A of A is an element X € £(H) which satisfies

(DAXA=A, 2)XAX =X, (3) (AX)* = AX, (4) (XA)" = XA.

From the definition of Moore-Penrose inverse, it can be proved that the Moore-
Penrose inverse of an operator (if it exists) is unique and AT A and AAT are orthog-
onal projections, in the sense that they are self adjoint and idempotent operators.
More precisely A € L(H;,H;) have a closed range. Then AA' is the orthogonal
projection from H; onto ran(A) and AT A is the orthogonal projection from H; onto
ran(A*).

Clearly, A is Moore-Penrose invertible if and only if A* is Moore-Penrose invert-
ible, and in this case (A*)" = (A")*. By Definition 1.1, it is concluded ran(A) =
ran(AA"), ran(Af) = ran(ATA) = ran(A*), ker(A) = ker(ATA) and ker(AT)
ker(AAT) = ker(A*). For more related results, we refer the interested readers to [6]
and [9] and references therein.

2. Solutions for the mixed Sylvester operator equations

In this section, by using some block matrix technique we find the conditions for
solvability of the linear system equations (1.2) where A;, B; (i € {1,2}) are given
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matrices, X, Y and Z be arbiterary. First, we establish necessary and sufficient
conditions for the solvability of (1.2) and the expression of the general solutions to
the system when it is solvable.

When A;, B; (i € {1,2}) are invertible operators. It can straightforward be
seen that the proof of the following Theorem is valid in rings with involution.

So let A;, B; (i € {1,2}) be Moore-Penrose invertible operators.

Theorem 2.1. Suppose that {H;}}_, are Hilbert spaces and B; € B(H1,H2) and
A; € B(Ha,H3); i € {1,2} are invertible operators and C1,Cy € B(H1,Hs). Then
the following statements are equivalent:

(a) There exists solutions X,Z € B(Hi,H4) and Y € B(Hza,Hs) of the system
(1.2),

(b) C, = CoBy ' By.

In which case, the general solutions X,Y, Z to the system (1.2) are of the form

1

(2.1) X = SA'Ci+ 4B,
1

(2.2) Yy = 5(0213;1+AQZZ;‘),
1

(2.3) Z = 5(A;lcrngg),

where Zy € B(Ha, Ha), Zo € B(Ha, Ha) satisfy Zo = —Z7 A5(A5) L

Proof. (a) = (b) It is clear.
(b) = (a): By matrix representations, the system (1.2) become into the following
form

A 0 0 X L 0 Y A5 0 | _ | 0 Oy

0 B ||y o z= 0|l o B |T|c ol
Let X,Z € B(H1,Ha4) and Y € B(Hz,H3) be the general solutions to the system
(1.2). Then

c G e la ST ]
e ][ 0))
) [‘? élH[Aé_l (B;?)lHCOs Ool}
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N 1/ A7! 0 0 v] [0 X (45~ 0
2 0 (B3 AR Y* 0 0 B!
[ AT 0 0 Y A3 0
0 (B! AR 0 B
11 aAr! 0 0 ¢
T2 0 (By? Cy 0
Lo L(fo X @)T o J_At 0 0 Y
2\ Y* 0 0 B! 0 (By™! zZ* 0
A5 0
<L s
11 oArt 0 0 Ci] 1[0 Zi|[4; 0
T2 0 (B! C; 0 21 Z2 0 0 B
1 0 AT'C + 21 By
2| (B3)TICs + 2243 0 '
Where, Z1, Z> take in the following matrix
0 Z1] 0 X (A5~ 0 1 [ A 0 0 Y
Zy 0| — YY" 0 0 B! 0 (B3t X* 0
B 0 XB;' - ATy
YA T - (By) X 0 '
Then,
1
(2.4) X = 5(A;lclJerBl),
1 — *
(2.5) = 5(023214“4222).
Also,
0o v] _ 0 ¢ (45710
zZ2 0| — |C5 o0 0 B!
[ A 0 0 X[ 477 0
0 Bs||Y* 0 0 (B3|’
and
0 X (A5~ 0
LY 0 0 B!
At 0 0 O (A5)71 0
L0 B! Cy; 0 0 B!
At 0 0 VY
0 (B3 X* 0|
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We have,
[0 Y
| ZF 0
_ 1o G (4571 0
T o20C5 0 0 B!
N (A 0 17 ATt 0 0 (A5~ 0
L 0 By |\2[ 0 (B! Cy 0 0 B!
(A0 0 X (A5~ 0
| 0 Bj Y 0 0 B!
_ oG (A5~ 0 LA 0
20 C5 0 0 B! 0 B;
Ao X (25 R I N I P 0 v
2\ Y* 0 0 Byt 0 (By ! AR
B 0 X (A5~ 0 )
Y* 0 0 B!
B 1_ 0 Cl_ _(Az)il 0 n Ay 0
2|16 o0 || o B! 0 Bj
1/ A7t 0 0 Y] [0 X (A~ 0
2 0 (By! Z* 0 Y* 0 0 B!
N 1 0 Cl- (A;)_l 0 _1 A 0 0 Al
2165 0 0 Byt 21 0 By || Z 0
_ 17 0 CiBy' — A7,
2| C3(A3)t = BsZ 0
Therefore,
1 -1 *
(2.6) Z = (A'Co = Z3By),
1
(2.7) Y = §(Cle1—A121).

Since Cq = CQB;lBl and Zo = —Z7A3(A5)~1 imply that Eqgs. (1.2) and (2.7)
coincide with other. This completes the proof. [J

Theorem 2.2. Let {H;}}_, be Hilbert spaces and B; € B(Hi,Hz) and A; €
B(Ha,Hs); i € {1,2} be invertible operators and C1,Cy € B(H1,Hs). Then the
following statements are equivalent:

(a) There ezists solutions X € B(H1,Ha) andY € B(Ha, Hs3) of the system (1.1),

(b) C1 = CoB;y ' By, and Cy = A3 A7 'Cy.
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If (a) or (b) is satisfied, then any solutions of the system (1.1) has the form
(2.8) X = %(A;lol + ZuBy),

(2.9) Y = %(0232—1 + A2 Z3),

where Zy € B(Ha, Hy),Zo € B(Ha,H2) satisfy Zo = —Z7A3(A5)™ and Z; =
~7Z3ByByt.

Proof. The proof is quite similar to the proof of the previous theorem. [

Theorem 2.3. Let {H;}}, be Hilbert spaces and A; € B(Ha,H3) and B; €
B(H1,H2) (i € {1,2}) have closed range operators such that ran(B}) = ran(B3),
ran(B;) = ran(Bs) and ran(A;) = ran(Ag). If Cy,Cy € B(H1,Hs) such that
(1 - BIBy)C1 Bl = (1 — BIB,)C,B}, then the following statements are equivalent:

(a) There exists solutions X,Z € B(H1,H4) and Y € B(Ha, Hs) of the system
(1.2)

(b) (1 —A;ANC;(1 —BIB;) =0 (i € {1,2}) and BIB,C1 A, Al = BIB,C,BIB,
If (a) or (b) is satisfied, then the general solutions to the system (1.2) has the form
X = —fale\BIB, + tala, 7B, + AlC +(1-AlANZ
2111121111 1v1 1411)43,
Y = —1A,A1CBl+ 4,23 Bl + Bl + Z,(1— B, B)
2112222211 209 T 44 1P1)s
7z = —raic,BiB, - Laia,zsB, + AlC +(1— AlAy)Z
922222 T 5 24202 22 2412) 45,
where Z1 € B(Ha,Ha), Zo € B(Ha, Ha) salisfy
By1B]Z,AT A, = —B, B Z; Aj (A3)T,
and Zs3, Zs € B(H1,Hs) and Zy € B(Ha,H3) are arbitrary.
Proof. (a) = (b) It is clear.

(b) = (a) In view of [10, Corollary 1.2.] we can consider the matrix forms of the
operators as follows

= [ o[- i)
s [ o) [ - [
x oo (R e[ [ ],
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7= [0 el [mE ] [ ]
mo= (B 0] (G ] e |
o= [T 0] G ] e |
vo= [ v e - ey ]

where Aj1, As1, Bi1 and By are invertible. In addition, conditions (1 —
A;ANCi(1 = BIB;) =0, (i € {1,2}) in (b) implies that Cy4 = Cyy = 0. Therefore,

o =[G ] (B ]~ [ ]
e =[G G [ [mtan ],

Hence, the mixed Sylvester operator equations (1.2) obtain as follow.

AnXn AnXie _i__YuBu 0]_| Cu Cu
0 0 _Y13B11 0 Ci3 0 ’

AnZin AanZio +_Y11B21 0] _| Ca O
0 0 | Yi3Ba1 0O Coz 0 |7

Then, the following relations hold.

(2.10) { A1 X11 + Y11 Bi = Chy,
A1 Zy + Y11 By = Cy.

(2.11) A1 X2 = Cia,

(2.12) A1 Zy3 = Caa,

(2.13) Y1381 = Cis,

(2.14) Yi3Bay = Cas.

[10, Corollary 1.2.] implies that A;1, B; for ¢ € {1,2} are invertible and also
condition BIBlClAlA]; = BIBngB;Bl and their matrix representations on the
following forms

BIB,C1 A1 Al = BIB,C,BI B .

Namely,
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which is implies that Ci; = C’ng;llBll.

Now, by applying Theorem 2.1, general solutions of the system (2.10) can be
stated as

1,

Xll = 5(14111011 + (Z1)11B11)7
1 - X

Yll = 5(0218211 + AZI(ZQ)ll)?
1, *

Z11 = 5(‘4211021 —(Z3)11B21),

Where, (Zl)ll and (Z2)11 satisfy (Z2)11 = —(Zf)llAil(Asl)_l.
Condition ByB] Z,ATA; = —ByB] Z3 A1(A3)! is equal to
(Za)n = —(Z1)nAi(A5) 7,
where Z1 € B(Hz,Ha), Z2 € B(Ha, Ha).

Since with rewrite their matrix representations on the following forms

B1BIZ, AT Ay = —B Bl Z7 At (A1

In fact,
o]l @allev] = Lo o JLG0: G
A3 0 (A5)7t 0
SR I R A
Thus,
{(Z%)n 8} _ _[(Zi‘)nA%(A%)l 8}

Egs. (2.11) and (2.12) imply that X7 = Al_llClg and Z19 = Az_lngg.

Also, the condition (1 — B By)C1 B} = (1— Bl B,)CyB] ensures that Cy3By;* =
Ca3B5;'. Therefore, Eqs. (2.13) and (2.14) are solvable and Yi3 = Ci3B;,' =

Ca3 By
Hence,
Y - [ %(Af11011+(z1)11311) AT Cho }
i X3 X4 ’
v - [ 3(CuBy' + A21(Z3)11) Yio }
Ca3 B3 Yig |’
and
7 — | 3(A50Car = (Z5)1Ba) Ay O }
i Z13 Z14 ’
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X13, X14, Y]_Q, Yi4, Zlg and Zl4 can be taken arbitrary.

By using the matrix forms, we get

1/ 4—1
%(AJ{C1BIB1 +AIA1Z1Bl) = §(A11 C £ (Z)nBu) 8 :| )

e
-1
AIC’l(l _BIBl) = { 8 A110012 } )

By taking Z5 = [ Z31 Zso } : [ ran(gl) } — [ ran(Af) ] we conclude (1 —

X13 X14 ker( 1) ker(Al)
; [ o o0
AlAl)Zg, = l: X13 X14 :| Then

1
= 5(141013131 + AlA1Z:By) + A[C1(1 = B{B1) + (1 — Al 41) 24
Also,

1 . H(Co Byt + A1 (Z3 0
5(MALCoBY + A2Z3B1B) = P(”” MZM)Oy

_ T T _
(1 - A, AD)C,B] [0233211 0]
B

Zy Yip | | ran(By) ran(A;) . B
Z43 Y14 :| |: i« — keI'(A{) , We derlve Z4(1

By taking Z, = [
0 Yio

BBl = [ 0 v } Then

1 .
= 3(MACoBL + 4,238, B]) + (1 = AL A)CoBY + Za(1 — By B]).
By using the matrix forms, we get
1
ﬂgggaf@@@&>:

AlC,(1 - BiB,) = [ 8 21 'Co } )

By taking Zy = { g?; gi)z } : [ ran( 1) ] N {ran( i

0 0

A} Az)Zs = { Z13 Zia

] . Then

1
= 5(A;(,*QBgB2 — AV A3 ZEBy) 4+ ALCo(1 — BIBy) + (1 — AL Ay) Zs
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In the following theorem, consider the solvability and the expressions of the
general solutions to the following systems of four coupled one sided Sylvester-type
operator equations.

Theorem 2.4. Suppose that H is Hilbert space and where A;, B;,C; € B(H)
(i€ {1,2,3,4}) are given operators such that C5 = AgC’ng_l and X1,..., X5 €
B(H) are unknowns operator A;, B; (i € {1,2,3,4}) are invertible operators. Then
the following statements are equivalent:

(a) The system

A X+ XoBy = Ch,
A X3+ XoBy = Cy,
A3 X4+ X3B3 = Cs,
AyXy+ X5By = Cy,

(2.15)

1s solvable,
(b) Cy = C3By ' By and Cf = C5(A5) 1A}

In which case, the general solution to the system (2.15) are of the form

X, = %(Aflcﬁ-l-ZlBl),
X, = %(03351+A221),
X3 = %(A;lc?,—ngg),
X, = %(A3_1C2+ZgB§),

X5 = —(CyB;'+ AZ3),

1
2
where Zy, Zo, Z3, Zy € B(H) satisfy Zs = —Z5BaBy ", Zy = —ZFAj(A3)~" and
Zy = A Z; By.

. A O | A4 O A1 O _
Proof. By taking T} = 0 B | T, = 0 B }, S = [ 0 B | Sy =
A 0 _ 0 ¢ _ 0 Cs .
{ 0 B, }, U, = { croo ] and Uy = cro0 that are given operators
_ 0 X1 _ 0 X2 _ 0 X3 .
and X = [ X: 0 }, Y = { X: 0 ], Z = [ X: 0 are unknowns opera-

tors. Hence system (2.15) get into

(2.16)

"X +YS =U,
T2 +Y Sy =Us,
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Condition (b) is equal to

0o N 0 (5 (A§)71 0 AZ 0 .
{ i 0 ] = { ;o0 } { 0 (Bs)~! 0 B | By applying Theo-

rem 2.1, implies that system 2.15 are solvable, then any solutions have the following

form
o0 x| 1 At 0 0 C A; 0
s 0| =30 0 @y |lep o T 0 B |
0 X5 | . 1 0 Cs (A;)_l 0 As 0 %
x; 0| ~ 3l o } { 0 By |t o B M)
0 X5 | _ 1('A;1 0 0 Cs] _pe[45 0],
X3 0| T o2° 0 (Bypt]lcs oo 21 0 By |V
o oz Zs
where Wy = { Zy 0 } and Wy = [ 7 }

Which is satisfy that Wy = —W;T5 (Ty)~* that is,

[ 34 3 } - [ ZO{‘ o } [ o 5(3)4 } [ (A%)_l (Bf)_l } that

Zy = —Z3B4B3 ' and Zy = —Z;Aj(A3)"t. Since, C3 = AyCoB3' and Zs, Z4
satisfy Z3 = A;le[Bg. Therefore,

X; = %(AIIC1+Z131),
Xy = %(03B2_1+AQZI),
Xy = (A7'Cs - ZiBy)
Xi o= (BTG5 - 7343,
Xi = (547 + BsZ),
X5 = LUB)TCL+ 24,

3. Conclusion

We have used the block operator matrix decomposition to find the general solutions
of mixed Sylvester operator equations with three unknowns (1.2) and five unknowns
(2.15) . We have provided some necessary and sufficient conditions for the existence
of a solution to this system based on matrix representation. We have also derived
the general solution to this system when it is solvable.
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Abstract. In the paper, we obtain the complete classification of Translation-Factorable
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1. Introduction

In the study of the differential geometries of surfaces in 3-spaces, it is the most
popular to examine curvature properties or the relationships between the corre-
sponding curvatures of them. Let M be a surface in 3-spaces and (z,y, z) rectan-
gular coordinates. It is well known that M is called as translation or factorable
(homothetical) surface if it is locally described as the graph of z = f(x) + g(y)
or z = f(xz)g(y), respectively. Translation surfaces having constant mean curva-
ture (CMC) or constant Gaussian curvature (CGC) in 3-spaces have been studied
in [1, 4, 15, 16, 22, 23]. Furthermore, translation surfaces in 3-spaces satisfying
Weingarten condition have been studied by Dillen et. all in [10], by Sipus in [22]
and also by Sipus and Dijvak in [23]. On the other hand, factorable (homoth-
etical) surfaces whose curvatures satisfy certain conditions have been investigated
in [2, 3, 17]. As an exception, surfaces with vanishing curvature have been also
very much focused. It is well known that M is called as flat or minimal surface
if the Gaussian curvature or the mean curvature vanishes, respectively. The study
of flat or minimal surfaces have found many applications in differential geometry
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and also physics, (see in [5, 11, 24, 25]). Very recently, as a generalization of these
surfaces, Difi, Ali and Zoubir described a new type surfaces called with translation-
factorable (TF) surfaces in Euclidean 3-space in [9]. Moreover, author investigated
these surfaces in Galilean 3-spaces, in [14]. In that paper, authors studied on the
position vector of this new type surface in the 3-dimensional Euclidean space and
Lorentzian-Minkowski space satisfying the special condition Ar; = \;r;, where A
denotes the Laplace operator.

The main interest of this paper is to obtain the complete classification of Transla-
tion-Factorable (TF-) surfaces with vanishing Gaussian curvatures in 3-spaces, start-
ing from this new type of surface, called as Translation-Factorable (TF-) surfaces,
defined in [9]. In Sect. 2, we introduce the notations that we are going to use and
give a brief summary of basic definitions in theory of surfaces in Euclidean and
Minkowski 3-spaces. In Sect. 3 and 4, we give the complete classification of TF-flat
surfaces in the Euclidean 3-space and Minkowski 3-space, respectively.

2. Preliminiaries

Let Euclidean and Minkowski 3-spaces denote with E? and E3, respectively. One
may introduce an euclidean and Lorentzian inner products between u = (uy, us, u3)
and v = (v1, va,v3) as

(u,v) = (d€o)* + (d€1)” + (d&2)* and  (u,v)p = (d&o)* + (d&1)* — (d&2)*.

Here (&p,&1,&2) is rectangular coordinate system of 3-spaces. These inner products
induce in E? and E} a norm in a natural way:

ull = VI{uw,wl and flul, =/ [{u, w)|L,

respectively. In addition, the corresponding cross products in E* and E shall be
showed here by A and Ay, respectively: notice that Ay, should be computed as

Uz U3
Vo V3

Uy u3
(%1 V3

Uy U2

uNpv=e o1 s

— €2 — €3

Let M? be a surface in E3 or E$. If M? is parameterized by an immersion
z(ut,u?) = (ml(ul,uz),xQ(ul,u2),x3(u1,u2)),

then M? is a regular surface if and only if the corresponding cross products of x;
and x5 don’t vanish anywhere. Here, x3, = dz/0u”, k = 1,2. So, the normal vector
field N of a regular surface M? in E? or Ef is given by

2.1) No ATz N, o TLALT
|21 A 22l lz1 AL x2|

The first fundamental form of z : U — M? C E? (or E?) is defined as:

(2.2) I = gl-jduiduj, gij = (xi,xj)  or gi; = (@i, x5), -
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The second fundamental form I7 in simply and pseudo-isotropic spaces is with
differentiable coefficients

(23) Il = hijduiduj, hij = <N7xij> or hij = <N, 131;]'>L .

Therefore, the Gaussian curvature K and the mean curvature H of surface ¥ are
defined by, respectively,

hi1has — hio®
(2.4) K = w2
_ g1thes — 2g12h12 + ga2hia
(2.5) H = b ,

where W = \/|g11922 — 912%|. Note that if gi11ga2 — g12> < 0 or g11g22 — g12° > 0,
then the surface M? in E3 is called as time-like or space-like surface, respectively.

Now, first we would like to give the definition of the translation-factorable (TF-)
surfaces in E? defined in [9]. And then we would like to complete the definition of
translation-factorable (TF-) surfaces in E given in same paper as follows:

Definition 2.1. Let M? be a surface in Euclidean 3-space. Then M is called a
translation-factorable (TF-) surface if it can be locally written as following:

(2.6) z(s,t) = (5,1, B(f(s)g(t)) + A(f(s) + 9(1))) ,

where f and g are some real functions and A, B are non-zero constants.

Definition 2.2. Let M? be a surface in Minkowski 3-space, E. Then M is called
a translation-factorable (TF-) surface if it can be locally written as one of the
followings:

(2.7) z(s,t) = (5,8, B(f(s)g(t)) + A(f(s) + 9(1))),
(2.8) z(s,t) = (A(f(s) + 9(t) + B(f(s)g(t)), s, 1)) ,

which are called as first and second type and where f and g are some real functions
and A, B are non-zero constants.

Remark 2.1. From Definition 2.2, one can be directly seen when taking A = 0 and
B # 0, then surface becomes a factorable surface studied in [17]. On the other hand, if
one can take B = 0 and A # 0, then surface is a translation surface studied in [15].
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3. Classification of Translation-Factorable surfaces with vanishing
Gaussian curvature in E3
As mentioned in the previous section, the TF-surfaces can be parametrized as in
(2.6) in Euclidean 3-spaces. In this section, we calculate the Gaussian curvature for
the TF-surfaces in E3. And then, we examine when it vanishes. Finally, we give the
complete classification of of the TF-surfaces with vanishing Gaussian curvatures.
Let M? be a TF-surface in Euclidean 3-space, E3. Hence it can be parametrized
as

(3.1) z(s,t) = (s, 8, B(f(s)g(t)) + A(f(s) + 9(1))) -

Thus, the partial derivatives and N, the unit normal vector field defined by (2.1)
of this type surface are obtained by

(32) re = (LO.(Bolt) + A)f(s),
o= 0.Lg B+ A),
(3.0 N = (= F)(Bolt) + A),~g ((BS(s) + A), 1)

Here W = \/1 + g ()2 (Bf(s) + A)* + f(s)*(Bg(t) + A)* and by 7, we have de-
noted derivatives with respect to corresponding parameters. For readability, here
and in the rest of the paper, we will lower the parameters of the f(s) and g(t)
functions. Now, by considering the above into the second equalities in (2.2) and
(2.3), respectively, we get

g1 =1+ f*(Bg + A)%,
(3.5) g2 =7 f(Bf + A)(Bg + A),
922 = 1+ ¢°(Bf + A)?,
and

f"(Bg+A)
w

Bf'g'
174

(3.6) hii = , hip= y hog =TT

where W2 =1+ g’z(Bf + A)2 + f’Q(Bg + A)2. Hence, by substituting of the last
two statements into (2.4) gives

- 179" (Bf + A)(Bg + A) - B*(f")*(¢)’

7
(8.7) 1+ g%(Bf +A)® + f*(Bg + A)?

where f and g are some real functions and A, B are non-zero constants.

Now, we would like to investigate the vanishing Gaussian curvature problem for
TF-surfaces in E2. As well known, the surfaces with vanishing Gaussian curvature
are called flat. Now, we examine TF- flat surface in Euclidean 3-space, whose
Gaussian curvature is identically zero. Then the following classification theorem is
valid.
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Theorem 3.1. Let M? be a TF-surface defined by (3.1) in the Buclidean 3-space.
Then, M? is a flat surface if and only if it can be parametrized as one of the
followings:

1. M? is a part of a plane,

2. M? is a regular surface in E3 parametrized by
(3.8) x(s,t) = (s,t,9(t)(Bc+ A) + Ac),
where f = ¢ is a constant function or
(3.9) x(s,t) = (s,t, f(s)(Bec+ A) + Ac)
where g = ¢ is a constant function.

3. f and g are given by

_ 1 Blaster é _ 1 Bitren é
(3.10) f(s) = 7€ + i g(t) = 7€ + 5

4. f and g are given by

A _c_ =
f(s)=—=+Bc-T1((C—-1)(c1s+ c2 ,
- ()= -7 ((c -1 ))

g(t) = —% + BT ((C 1) (et + 02)) e

Proof. Let M? be the TF- flat surface. Thus, from (3.7), it is clear that is sufficient
that

(3.12) f'9"(Bf + A)(Bg + A) — B*(f")*(¢')* = 0.

Let us consider on the following possibilities:

Case (1): f' =0 and ¢’ = 0. Then, the equation (3.12) is trivially satisfied. By
considering these assumptions in (3.1), respectively, we obtain M? is an open part
of plane. Thus, we have Case (1) of Theorem 3.1.

Case (2): f' =0 or ¢ = 0. First, assume that f* = 0, i.e., f be constant. In
case, the equation (3.12) is trivially satisfied. But, in case g is a arbitrary smooth
function. Thus, we get (3.8). Similarly, by considering the assumption of ¢ as
g =0, we can get (3.9) in Theorem 3.1.

Case (3): Let f” =0 or g¢” = 0, but not both. First, assume that f” =0, i.e.,
f be a linear function. In this case, one get ¢’ = 0 to provide the equation (3.12).
Second, let ¢” = 0. Then by the similar way, f/ = 0 must be. Note that one can
easily see that these cases are covered by Case (2).

Case (4): Let f', ¢', f” and ¢’ be non-zero. Then, the equation (3.12) can be
rewritten as

/"(A+Bf) B

(3.13) B?  g(AtBg O
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for non-zero constant C'. We are going to consider the following cases seperately:
Case (4a): C = 1. In this case (3.13) implies that

(3.14) f"(A+Bf)=B(f")* and B(g")* = g"(A+ By),

from which, we get (3.10) in Case (3) in Theorem 3.1.
Case (4b): C # 1. In this case we solve (3.13) to obtain (3.11).

Conversely, a direct computation yields that the Gaussian curvature of each of
surfaces given in Theorem 3.1 vanishes identically. O

4. Classification of Translation-Factorable surfaces with vanishing
Gaussian curvature in E3

In this section, we study two types of TF-surfaces in the 3-dimensional Minkowski
space. Let M? be a TF-surface parametrized in (2.7) or (2.8) in Minkowski 3-spaces.
Namely, M? can be parametrized as

(4.1) z(s,t) = (s, 1, A(f(s) +g(t)) + Bf(s)g(t)),
(4.2) z(s,t) = (A(f(s) +9(t)) + Bf(s)g(t),s,1)),

which are called as first and second type TF-surfaces .
First, we would like to consider on the type I TF-surface parametrized as in
(4.1). Thus, we have,
(43) Tg = (1305f/(A+Bg))7
(4.4) z = (0,1,¢'(A+ Bf)).

Also, Nz the unit normal vector field of M? defined by (2.1) is given by

(45) Ny = o (F(A+ Bg).~g/(A+ Bf),1).

Here with 7, we have denoted derivatives with respect to corresponding parameters
and

(4.6) W = \/‘1—9’2(A+Bf)2—f’2(A+Bg)2.

By considering (4.3), (4.4) and (4.5) into the third equalities in (2.2) and (2.3),
respectively, we obtain
(4.7)

g11 = 1—f/2(14+ 39)27 g12=—f'9'(A+Bf)(A+Bg), go2= 1—9/2(14‘*‘ Bf)*,
and

f"(Bg + A) g"(Bf +4)
", hip= hog = =————.

4. =
(4.8) hi1 W ; W W
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Thus, by substituting of these above statements into (2.4) gives
_ ["9"(Bf +A)(Bg + A) — B*(f')*(¢)?
= T

where f and g are some real functions, A, B are non-zero constants and W is given
as in (4.6).

Now, we would like to give the following theorem being the classification of type
I TF-surfaces with vanishing Gaussian curvature in E3.

(4.9) Kr

Theorem 4.1. Let M? be a type I TF-surface defined by (4.1) in the Minkowski
3-space. Then,

1. M? is a type I space-like flat surface if and only if it can be parametrized as
one of the followings:

(a) M? is a part of a plane,

(b) M? is a space-like surface in E3 parametrized by
(4.10) x(s,t) = (s,t,9(t)(A+ Be) + Ac),
where f = ¢ is a constant function and ﬁ}gc <g < ﬁ or
(4.11) x(s,t) = (s,t, f(s)(A+ Bc) + Ac)

where g = ¢ is a constant function and ——

/ 1
arse < < 138

(¢) [ and g are given by

)

_ 1 B(cis+e2) A _ 1 B(cit+e2) A
(112)  f(s)= e b gty = - LBt
such that satisfy the condition (4.18).
(d) f and g are given by

F(s) = —% 4 B ((c — 1)(e1s + cQ)) 1’10,

g(t) = —% 4 BT ((C 1) (ert + cQ)) e

such that satisfy the condition (4.18).

(4.13)

2. M? is a type I time-like flat surface if and only if it can be parametrized as
one of the followings:

(a) M? is a time-like surface in B} parametrized by

(4.14) 2(s,8) = (5,4, g(t)(Be + A) + Ac)
where f = c is a constant function or
(4.15) x(s,t) = (s,t, f(s)(Bec+ A) + Ac)

where g = ¢ is a constant function.
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(b) f and g are given by

_ 1 Blaste) é _ 1 Bt é
(4.16) fls) = B¢ + 5 g(t) = ik + 5

(c) f and g are given by

f@y:f%+gé%@cfn@w+@gkk,

mo:-%+3%%@c_n@¢+@0k9

(4.17)

Proof. Let M? be a type I TF- flat surface. First, let M? be a type I space-like
surface. Then from (4.6), we have

(4.18) g (A+ Bf)* + f*(A+ Bg)® < 1.
Since M? is a flat surface, then from (4.9), it is clear that is sufficient that
(4.19) f"g"(A+ Bf)(A+ Bg) - B*(f')*(¢')* = 0.

Let us consider on the following possibilities:

Case (1): f' =0 and ¢’ = 0. Then, the equation (4.18) and (4.19) are trivially
satisfied. By considering these assumptions in (4.1), respectively, we obtain M? is
an open part of plane. Thus, we have Case (1a) of Theorem 4.1.

Case (2): f' =0 or ¢’ = 0. First, assume that f' =0, i.e., f be a constant. In
case, the equation (4.19) is trivially satisfied and also from (4.18) yields g is satisfied
ﬁ}sc <g < A-s-ch' Thus, we get (4.10). Similarly, by considering the assumption
of g as ¢’ = 0, we can get (4.11) in Theorem 4.1.

Case (3): Let f”" =0 or ¢ = 0, but not both. First, assume that f” =0, i.e.,
f'=c1 and f = c15 + c2 be a linear function. In this case, one get ¢’ = 0, namely
g = (1, to provide the equation (4.19). Thus, from (4.18), we get the condition
1 < c3C3?. Second, let g” = 0. Then by the similar way, f’ = 0 must be. Note that
one can easily see that these cases are covered by Case (1b).

Case (4): Let f', ¢', f” and ¢g” be non-zero. Then, the equation (4.19) can be
rewritten as

f"(A+Bf) _ Bl¢)?* _
“20) B(?  g(A+Bg) O

for non-zero constant C'. We are going to consider the following cases seperately:
Case (4a): C' = 1. In this case (4.20) implies that

(4.21) f"(A+Bf)=B(f")* and B(¢')* = g"(A+ By),

from which, we get (4.12) in Case (1c) in Theorem 4.1.
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Case (4b): C' # 1. In this case we solve (4.20) to obtain (4.13).
Secondly, let M? be a type I time-like surface in Ef. Then from (4.6), we have
(4.22) g*(A+ Bf)? + f*(A+ Bg)* > 1.

In view of this condition, the proof of the second case can be made similar to the
previous case.

Conversely, a direct computation yields that the Gaussian curvature of each of
surfaces given in Theorem 4.1 vanishes identically. O

Now, secondly let M? be a type I TF-surfaces given as in (4.2). Thus, we have,

(4.23) zs = (f'(A+ Byg),1,0),

(4.24) = (¢'(A+ Bf),0,1).

Also, N the unit normal vector field of M? defined by (2.1) is given by
1

(4.25) Ny = (L~ //(A + Bg),g/(A+ BY)).

Here with 7, we have denoted derivatives with respect to corresponding parameters
and

(4.26) LV:VM+WRA+&ﬁ_y%A+Bﬁ?

By considering (4.23), (4.24) and (4.25) into the third equalities in (2.2) and (2.3),
respectively, we obtain
(4.27)

gu =1+ [(A+Bg)", g =g (A+Bf)(A+Bg), gz =g"(A+Bf)* -1,
and

_S"Bg+4) By, ¢"(Bf+A)

= W ) 125 s 2 = W .

Thus, by substituting of these above statements into (2.4) gives

_ f"g"(Bf + A)(Bg + A) — B*(f')*(¢')?

= e

where f and g are some real functions, A, B are non-zero constants and W is given
as in (4.26). As well knowing that if M? is a space-like surface then, from (4.26)
yields

(4.30) g*(A+Bf)* — f?(A+ Bg)* < 1.

On the other hand, if M? is a time-like surface then, from (4.26) yields

(4.28) hii

(4.29) K

(4.31) g*(A+ Bf)? — f*(A+ Bg)* > 1.

Now we would like to give the following theorem being the classification of type II
TF-flat surfaces in E3.
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Theorem 4.2. Let M? be a type II TF-surface defined by (4.2) in the Minkowski
3-space. Then,

1. M? is a type II space-like flat surface if and only if it can be parametrized as
one of the followings:
(a) M? is a part of a plane,

(b) M? is a space-like surface in E3 parametrized by

(4.32) 2(s,1) = (s, g(D)(A + Be) + Ac)

_ : . 1 / 1
where f = c is a constant function and z75; < 9 < z7g; or

(4.33) x(s,t) = (s,t, f(s)(A+ Be) + Ac)

where g = ¢ is a constant function and 0 < f>(A+ Bc)? + 1.
(c) f and g are given by
1 A 1 A
4.34 — _ _eBlaster) 4 2 1) = — —eBlattes) 4
(434)  fls)=—pe +5 9(t)=—ge + 5

such that satisfy the condition (4.30).
(d) f and g are given by

f(s) = —% + BToT ((0 —1)(crs + CQ)) “1",

(4.35) )

A
9(t) = =% + BE((C = (ert + )
such that satisfy the condition (4.30).

2. M? is a type I time-like flat surface if and only if it can be parametrized as
one of the followings:

(a) M? is a time-like surface in B3 parametrized by
(4.36) x(s,t) = (s,t,9(t)(Bc+ A) + Ac),
where f = ¢ is a constant function or
(4.37) x(s,t) = (s,t, f(s)(Bc+ A) + Ac)
where g = ¢ is a constant function.

(b) f and g are given by

1 A 1 A
4. — _ — ,B(eis+ter) a — _ —  B(eitter) a
(438)  fls)=—5e +5 9(t)=—pe + 5

such that satisfy the condition (4.31).
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(c) [ and g are given by

1

fls) = —% + B% ((C —1)(c1s+ cz)) ! C,

9 = _% + BT ((C = (et +e)) " C

(4.39)

-

such that satisfy the condition (4.31).

Proof. In view of the condition (4.6), the proof of this theorem can be made similar
to the previous Theorem 4.1. [
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Abstract. The differential geometry of the tangent bundle is an effective domain of dif-
ferential geometry which reveals many new problems in the study of modern differential
geometry. The generalization of connection on any manifold to its tangent bundle is an
application of differential geometry. Recently a new type of semi-symmetric non-metric
connection on a Riemannian manifold has been studied and a relationship between Levi-
Civita connection and semi-symmetric non-metric connection has been established. The
various properties of a Riemannian manifold with relation to such connection have also
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semi-symmetric non-metric connection on a Riemannian manifold. The necessary and
sufficient conditions for projectively invariant curvature tensors corresponding to such
connection are proved and show many basic results on the Riemannian manifold in the
tangent bundle. Furthermore, the properties of group manifolds of the Riemannian
manifolds with respect to the semi-symmetric non-metric connection in the tangent
bundle have been studied. Moreover, theorems on the symmetry property of Ricci ten-
sor and Ricci soliton in the tangent bundle are established.
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1. Introduction

The concept of semi-symmetric linear connection on a differential manifold was
introduced by Friedman and Schouten [8] in 1924. Hayden introduced the notion
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of metric connection on a Riemannian manifold in 1932 and known as Hayden
connection [10].

Let M™ be a Riemannian manifold of n-dimensional with Riemannian metric g
and V be Levi-Civita connection on it. A linear connection V on M™ is said to be
symmetric connection if its torsion tensor T' of V is of the form

(1.1) T(X,Y)=VxY - VyX — [X,Y]

is zero for all X and Y on M™; otherwise it is non-symmetric . A linear connection
V is said to be semi-symmetric connection if

(1.2) T(X,)Y)=n(V)X —n(X)Y
where
(1.3) m(X) = g(P, X)

for all X and Y on M™ and 7 is 1-form and P is a vector field.

In 1969, Pak [18] studied the Hayden connection V and proved that it is a
semi-symmetric metric and a linear connection V is said to be metric on M™ if
Vg = 0 otherwise it is non-metric. In 1970, Yano [23] studied some curvature
and derivational conditions for semi-symmetric connection in Riemannian man-
ifolds. Agashe et al define a linear connection on a Riemannian manifold M™
which is semi-symmetric but non-metric in 1992 and studied some properties of
the curvature tensor with respect to semi-symmetric non-metric connection [1]. In
1994, Liang [16] studied a type of semi-symmetric non-metric connection V which
satiesfies (Vxg)(Y, Z) = 2u(X)g(Y, Z), u is 1-form and such connection called a
semi-symmetric recurrent metric connection. In 2019, Chaubey at el [3] defined
and studied a new type of semi-symmetric non-metric connection on a Riemannian
manifold. Studies of various types of semi-symmetric non-metric connection and
their properties include [2, 4, 5, 6, 9, 12, 15, 17, 19] and others.

In a Riemannian manifold of dimension n, the curvature tensor R corresponding
to V is defined by

(1.4) R(X,Y)=VxVyZ-VyVxZ-VxyZ

for all X,Y,Z om M,.

The Ricci tensor S with respect to semi-symmetric non-metric connection V is
given by [3]

n

3(v.2) = S(2)+5 > (gl de, 2)g(Y.e)) = 0V, Z)gleiren)
(1.5) — (9(Ae;, Y)g(Z, ei)) + (9(AY, €1)g(Z, i)}

where S is a Ricci tensor with respect to V.
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The projective curvature P with respect to the semi-symmetric non-metric con-
nection V is defined as [7]

(1.6) P(X,Y)Z = R(X,Y)Z — %{5()& Z)X - 8(X,2)Y}

for all vector fields X,Y and Z on M,,.
The conformal curvature tensor C' [22] with respect to V is defined by

CX,Y)Z = Runqz_;éﬁaxzmz4m&mY+yxzmx

(L.7) - 9(X,2)QY} + {9(Y,2)X —g(X, Z2)Y}

.~
(n—=1)(n—2)
for arbitrary vector fields X,Y, Z on M,,.

The concircular curvature tensor C' [3] on (M,,, g) with respect to V is defined
by

'C(X,Y, Z,U)
(1.8)

'R(X,Y,Z,U)
r

(n=1)(n—2)

{9(Y,2)9(X,U) — g(X, Z)g(Y,U)}

The conharmonic curvature tensor 'L of type (0,4) [3] is defined by

'"L(X,Y,Z,U) = 'R(X,Y,Z,U) - ni2{S’(Y,Z)g(X, U)-5S(X,2)9(Y,U)

(1.9) + 9, 2)S(X,U) —g(X, 2)S(Y,U)}

On the other hand, the differential geometry of tangent bundles is an important
domain of the differential geometry because the theory provides many new problems
in the study of modern differential geometry. The theory of vertical, complete and
horizontal lifts of geometrical structures and connections from a manifold to its
tangent bundles was developed by Yano and Ishihara [24]. They defined and studied
prolongations called vertical, complete and horizontal lifts and connections. Tani
[21] developed the theory of surfaces prolonged to tangent bundle with respect to
the metric tensor of the original manifold.

Most recently, the author [13, 14] studied tangent bundle endowed with respect
to semy-symmetric non-metric connection on Kéhler manifold and tangent bundle
of an almost Hermitian manifold and an almost Kéahler manifold with respect to
quarter symmetric non-metric connection. Motivated by the previously mentioned
studies, we study the tangent bundles of a new type of semi-symmetric non-metric
connection on a Riemannian manifold.

The main contributions are summarized as follows:

e A new type of semi-symmetric non-metric connection is defined and studied
on a Riemannian manifold to the tangent bundle.
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e To prove the existence of such a connection on the tangent bundle and some
theorems on it.

e Various curvature tensors such as projective, conformal and concircular cur-
vature tensors corresponding to semi-symmetric non-metric connection on the
tangent bundle are calculated.

e Symmetric property of Ricci tensor are established.

e To define Ricci soliton on the tangent bundle and discuss shrinking, steady
and expanding properties of it.

The paper is organized as follows: Section 2 deals with a brief account of tangent
bundle, vertical lift, complete lift and a new class of semi-symmetric non-metric
connection. Section 3 presents semi-symmetric non-metric connection in the tangent
bundle T'M,, over a Riemannian manifold M, and proves some basic results. Section
4 discusses the relation between curvature tensors of the Levi-Civita and semi-
symmetric non-metric connections in the tangent bundle and some basic properties
of the curvature tensor of V. It is proved that such connection on a Riemannian
manifold is projectively invariant curvature tensors under certain conditions and
also proves some results on the curvature, concircular curvature, and conharmonic
curvature tensors in the tangent bundle. Finally, Section 5 devotes the study of
a group manifold with respect to a semi-symmetric non-metric connection in the
tangent bundle. The symmetric property of Ricci tensor and Ricci soliton in the
tangent bundle are established.

2. Preliminaries

Let M,, be an n-dimensional differentiable manifold and 7'M, its tangent bun-
dle. The projection bundle 7y, : T'M, — M, which denotes the natural bundle
structure of T'M,, over M,,. Let {U;z'} be coordinate neighborhood in M,, where
{z'} is a system of local coordinates in neighborhood U. Let {z?, 4’} be a system of
local coordinates in 7@[1" (U) C TM, i.e. {z%,y'} the induced coordinate in 7@11” 0).
Let o (M,,) be the set of all tensor fields of type (r, s) in M,,, namely contravariant
of degree r and covariant of degree s. If we denote by p(M,,) the tensor algebra as-
sociated with M, i.e. p(M,) = o5 (M,). The set of tensor fields in tangent bundle
represented by % (T'M,,) and tensor algebra in the tangent bundle by p(T'M,,). The
set of functions, vector fields, 1-forms and tensor fields of type (1,1) are denoted by
e (TM,), p8(TM,,), (T M,) and pi(TM,,) respectively.

2.1. Vertical and complete lifts
The vertical and complete lifts of a function, a vector field, 1-form, tensor field of

type (1,1) and affine connection V are given by f¥, XV, WV, FV, V" and f¢, X,
wY, FY, V¢ respectively [14, 24].
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The following properties of complete and vertical lifts are given by

(2.1) (FX)Y =YXV (1 X)° = FOXV + fV X,

(2.2) XV =0XVC=X0V = (XY, X = (XN,

(2.3) WY () =0,0"(X9) = w(XY) = w(X)",w(X) = w(X)C,
(2.4) FVX® = (FX)V,FCX® = (FX)°,

(2.5) X, Y]V =[x° vV =[xV, Y], [X,Y]° = [X°,YY].

(2.6) VoYY = (VxY)©, ViV = (VY)Y

We extend the vertical and complete lifts to a linear isomorphism of tensor
algebra p(M,,) into p(TM,,) concerning constant coefficient. Let PV and QY be
vertical lift and P¢ and Q€ be complete lift of arbitrary tensor fields P and Q of
©(M,,). Then by definition

(PeQ)Y =P 2Q",P2Q)’=P2Q" +P"2Q°

(P+Q)V =PV +Q",(P+Q)° =P°+QC.

2.2. Semi-symmetric non-metric connection

Let M, be a Riemannian manifold of dimension n with Riemannian metric g. A
linear connection V on M,, given by [3]

(2.7) VxY =VxY + %{W(Y)X —n(X)Y}

where V is a Levi-Civita connection, X,Y vector fields and 7 1-form on M,,. The
metric g have the relation

(2.8) (Vxg)(Y. Z) = %{%(X)Q(Y, Z) =m(Y)g(X, Z) —m(2)9(X,Y)}

The connection V satisfying equations (1.2), (1.3), (2.7) and (2.8) is called a semi-
symmetric non-metric connection.

3. Semi-symmetric non-metric connection of a Riemannian manifold
in the tangent bundle

Let (M,,g) be an n-dimensional Riemannian manifold with the Riemannian
metric g and T'M,, its tangent bundle. Then ¢¢ is a Riemannian metric in T'M,,.
Taking complete lifts of equations (1.2), (1.3), (2.7) and (2.8), then obtained equa-
tions are [21]

TC(X“,Y°) O Y)XY + 7V (Y9)xe
(3.1) - XYV —2V(x%Y“
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(X9 = g9 (X9 P
A linear connection V¢ defined by

N 1
VeV =v5eY? + 5{wC(YC)XV + V(Y9 x¢
(3.2) - XYV - xV(XY°}

is said to be a semi-symmetric non-metric connection if the torsion tensor TC of
TM,, with respect to V¢ satisfies equations (3.1) and (3.2) and the Riemannian
metric g¢ holds the relation

- 1
(V5o V0, 29) = {am0(XO)gC (v, 29) + 2n¥ (XO)g% (v, 7)
(3.3) - Y )C(XY, 29 -7V (Y9) g (X, Z29)
— 792 (XY, YY) — V(2999 (X, YO))
where V¢ is Levi-Civita connection on TM,,.

In order to prove the existence of such connection on tangent bundle TM,,, it
suffices to prove the following theorem:

Theorem 3.1. Let (M,,g) be an n-dimensional Riemannian manifold and T M,
its tangent bundle with Riemannian metric ¢¢ endowed with the Levi-Civita con-
nection VC. Then there exists a unique linear connection VC on TM,, called a
semi-symmetric non-metric connection, given by (8.2), and it satisfies equations

(3.1) and (3.3).

Proof. Let M, be a Riemannian manifold of dimension n equipped with a linear
connection V. Then the relation between the linear connection V and the Levi-
Civita connection V are are given by

(3.4) VxY =VxY +U(X,Y)

Operating complete lifts of both sides of equation (3.4), we get

(3.5) V$eYC =vSeY? 4+ U%X, YY)

for arbitrary vector fields X¢ and Y¢ on TM,,, where U¢ is complete lift of a
tensor field U of type (1, 2). Using equations (1.1) and (3.5), the obtained equation
is

(3.6) T9(X°,v9) =U0%Xx° Y% -U°(Y"Y X°)

which gives

(3.7 ¢C(T(X YY), 29 =g (U° (X, Y)Z°) - g9 (U° (Y9, X9)Z°)
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In the view of equations (3.1) and (3.7), then
g (UKD Y),29) = S UV, X), 2
= m(Y9)g (X, 29 + a7 (v ) (X7, 2
(3.8) VX9, 29) — 1O(XC)gC (v, 26)
Making use of (3.1), the obtained equation is
VSeg? (Y9, 29 = —g9(VieYC - V5V Y, 29
- g Ve ZC - V5 Z9)
(3.9) = —U9(x% v 29,
where U'“(XC,YC, 29) = g¢(U°(XC, YY), 2°) + ¢¢ (U (X, zO)YO).
Using equations (3.6), (3.7), and (3.9), the obtained equation is
g (TO(XY ), 29+ g9(T929, X ), Y ) +g%(T(27,Y7), X)
= 2°(U°(x%,Y%), 29) - U'9(x°, Y9, 2)
— U9x°,y°, 2%+ U9 (2%, x°,v°)
- U°we, x°, 29
From equations (3.3) and (3.9), the above equation becomes

29°(U°(X°, YY), Z°)

Q

(TCXC,Y9), 29) + g (17 (2°,X€), ¥ ©)

(
+ g9 (2°,Y9), x%) — 7V (X)g° (Y, 2°)
— 7OX)CYY, 29 — 7V (YO)eC (X, 2°)
o WC(Yc)gC(XV,ZC)+27rV(ZC)gC(XC,YC)

(3.10) + 79(z%g% XV, YY)

where

g (X, v9), 2 = ¢°(T92°,X°),YC) = 7V (X4 (2°,YC)

+ WC(XC)gC(ZV,YC)77TV(ZC)gC(XC,YC)

(3.11) — 79296 (xV,Y°)

for all vector fields X, Y% and Z% on TM,,.
Making use of equation (3.11), then equation (3.10) becomes
(XYY = @@YNXY)+ @V (V)X
(3.12) - (@CXDEY) + (7 (X))
and thus equations (3.5) and (3.12) give (3.1).

Conversely, it is easy to show that if the affine connection V< satisfies (3.2) then
it will also satisfy equations (3.1) and (3.3). Hence, the theorem is proved. O
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The covariant derivative of equation (3.2) with respect to the semi-symmetric
non-metric connection V¢ on TM,, , then the obtained equation is

(V§er)(Y ) = (Vgcgcﬂc)(Yc)+WC(PC)QC(XV,YC)
+ 7 (P9)gY (X, YY) — Y (Y)r(X)
(3.13) - 7T( ¥ (X9)

for arbitrary vector fields X¢ and Y¢ on T'M,,. Using equation (3.13), then

(VEem)E) = (Vyer)(XY) = (Vien)(Y)
(3.14) — (V§en)(Xe).

Hence, the following theorem is obtained:

Theorem 3.2. Let (M,,g) be an n-dimensional Riemannian manifold and T M,
its tangent bundle with Riemannian metric g© endowed with a semi-symmetric non-
metric connection VC, and then the necessary and sufficient condition for the 1-
form 7€ to be closed with respect to VC is that it is also closed corresponding to
the Levi-Civita connection V.

Theorem 3.3. Let (M,,g) be an n-dimensional Riemannian manifold and T M,
its tangent bundle with Riemannian metric g endowed with a semi-symmetric non-
metric connection VC, then

’TC(XC,YC,ZC) 4 TC(YC’XC’ 7€) =0,
"TC(XC,YC, 2C) + TC(YC, €, XC) +' T€(2°, X, Y°) = 0.
Proof: Let T be the torsion tensor on T'M,, and define
"TXC,YY, 29 = g% (T9(XC, YY), Z°) on TM,,.
In the view of equation (3.1), then obtained equation is

/TC(XC, YC’ ZC) WV(Yc)gC(XC, ZC) + ﬂ'C(YC)gC(XV, ZC)
WV(XC) C(YC,ZC)
WC(XC)gC(YV, ZC’)

Q

(3.15) -
Making use of equation (3.15), it can easily prove theorem.

Theorem 3.4. Let (M,,g) be an n-dimensional Riemannian manifold and T M,
its tangent bundle with Riemannian metric g% equipped with a semi-symmetric non-
metric connection VC, then TC is cyclic parallel if and only if the 1-form € is

closed.

Proof. Operating the covariant derivative of (3.1) with respect to the semi-symmetric
non-metric connection V¢, the obtained equation is

(VGeTONYC, 29 = (Vxm)C(ZO)YY + (Vxn)V (29)Y°
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(3.16) — (Vxm)CYzY — (Vxm)V(Y©9)zC
The cyclic sum of (3.16) for vector fields X, Y and Z¢ gives

(V4eTO)(¥C, 29 +

and

(VST (YC, 29 + (VST (29, X)) + (VST (XC, Y E)

+ o+ + ++
e N

(3.17)
From equation (3.17) and Theorem 3.3, it can easily show that
(VST Z9) + (Ve T) (2, X) + (V5 T)X, Y) =0

if and only if the 1-form 7€

is closed. Hence, the theorem is proved. [
Theorem 3.5. Let M,,g be an n-dimensional Riemannian manifold and T M, its
tangent bundle with Riemannian metric g€ admits a semi-symmetric non-metric
connection VC, then for any arbitrary vector fields X, Y and the vector field P¢
defined as (3.2), the following relation holds:

(Lpg)“ (X, YY) = (£pg)9(X9, YY) +2{n"(P9)g (X", YT)
+ 7 (P9)gY(X YY) =V (Y)r(XE)
(3.18) - Y9V (X))

where fg and £$ denote the Lie derivatives along the vector field P corresponding
to V€ and V, respectively.

Proof. The Lie derivative along P [3],

(3.19) £Lpg(X,Y)=g(VxPY)+ g(X,VyP)
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Taking complete lifts on both sides, then
(320)  (£pg)7 (X YT) =g (Vie PO YY) + 4% (X, Ve PO)

holds for arbitrary vector fields X¢ and Y¢ on T'M,,. From equations (2.7) and
(3.18) and the definition of the Lie derivative, the obtained equation is

(£p9)° (X9, YY) = (P9 (XY, V) + (PV)g“ (X, Y)
9° (Ve X = g% (VS PO, YY)
_ gC(Yc,@gcYc _ gc(@chC)
= (£pg) (X, YY) +2{n(P9)g“(XV,Y)
+ 7 (P9 (X YY) =7V (Y)r(XC)
(3.21) — 79y HrV(X)}

Hence, the theorem is proved. [

If the vector field P¢ is Killing on (T'M,,g%), then (£pg)¢ = 0. From theorem
3.5, the following corollary is obtained:

Corollary 3.1. If the vector field P¢ defined as in (3.2) is Killing on TM,
equipped with a semi-symmetric non-metric connection VC, then

(£pg)°(XC, YY) = 2P g% (XV, V) + 7V (P%)g% (XY, V)
(3.22) — /(Y OrYXY) -2 YV (X))}

where X© and Y© are vector fields and ©€ 1-form on TM,,.

4. Curvature tensor with respect to the semi-symmetric non-metric
connection in the tangent bundle

Let M, be an n—dimeqsional Riemannian manifqld admitting a semi-symmetric
non-metric connection V. If the curvature tensor R corresponding to V then there
exists the curvature tensor R® corresponding to V¢ in T'M,, is defined by

ROX,YNZC =VGeVTeZC = VTeVSaZC = Ve yoi Z2¢

for arbitrary vector fields X¢, Y% and Z¢ on (TMmgC), then the Riemannian
curvature tensor R® of the Levi-Civita connection V¢ is defined by

RYUXYYNZC = VR VY ZC = V§eVSeZC = Ve yo 2¢

for arbitrary vector fields X¢, Y and Z¢ on (T M,, g“).

Making use of equation (3.2), we have

RO(XCY9) 20 = T5e(VezC + (020 Y) + 7V (29)(vO)
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— YOz~ ONZO)
— Ve V§eZC+ %(WC(ZC)(XV) +7V(29)(x9)
— AOXONZY) ~ Y (XO)(20))
— (Vewe 2%+ 5@ @K YY) + 7Y (20)(X, V)
— RO YIONZY) — 7Y (X, YIO)(2))
= Ve V§e 20 + (2O ) + 1 (29)(r )
— ACYO)ZY) Y (YO) (2O
— VEeAV§eZC 4 (O (ZO)XY) + 7 (29)(XC)
— AOXO)ZY) — Y (XO)(2))
%(wc(vgc ZNXY) + 7V (VEe 29)(X)
- XN (Vy2)Y —r (X (Vv 2)}
— LV (XORE(ZO)Y ) 4+ 7O (XO) (20)¥ )

— V[CXc’yc]ZC +

4
+ 79X (Z2)YY) -V (Y9)nC(29)X°)
- 7YV (29X°) - x(Y ) (29)X")
- 72X, Y)) - 7TV( (X, Y]9)
- (X Y])(ZY) - 7YX, Y])(Z9)
= RYX% Y929+ - {490()(C ZOY° —9¢(v°, 29 x¢
(4.1) - (09(X°, YY) - HC(YC,XC))ZC}

for arbitrary vector fields X¢, V¢ and Z¢ on TM,,, where ¢ is a complete lift of
a tensor field 6 of type (0, 2) and is defined by

0°(X° YY) = ¢g9AX, Y)Y = (V§en) (YY)
(4.2) — (XYY - 79XV (YO
and
(4.3) (AX)C = (VxP)° %{WV(XC)(PC) - 79X (PY)}

for arbitrary vector fields X¢ and Y on TM,,.

From equation (4.2), it is obvious that the tensor field #¢ is symmetric if and
only if the 1-form 7 is closed. Taking the inner product of (4.1) with W¢ and then
setting X© = WY = e 1 <i < n, where € is complete lift of {e;,i = 1,2,3,....,n}
which is an orthonormal basis of the tangent space at each point of the Riemannian
manifold M,,, then obtained equation is
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59, z9 = 59°, z9 +%Zn:{(g(Aei7Z)g(Y, ei))C =09 (Y, 296 (ei, e1)
= (9(Ae;,Y)g(Z, ei)) + (9(AY, €:)g(Z,€:))°}
= S°Y°, z% + Z{ (Ae;, 2)Cg(Y, e:))"

+ (9(Ae;, 2)Vg(Ye )) —09(Y9, 29 (ei, e0)
— (9(Aes,Y))(9(Z,e1))" — (9(Aei, Y))" (9(Z, 1))
+ (9(AY ) (9(Z,e0))" + (9(AY. €))" (9(Z, )}

— 59ve, 29 - L Lge(ve, 20)

+ 5 2Alglden ) g(Ze)) glY.e)”

+ (g(AeZ,ez))Cg(Z,eZ))Vg(Y,ei))c

+ (9(4ei, ) g(Z,e:) g(Y,e:)¢

- (g(AeZ,el))Cg(Z,ez))cg(Y,ei))v

— (9(4ei,e)9(Z,ei)V gV, e:))

— (9(Aes, )" 9(Z,€:))g(Y, €)'}
which is equivalent to

SC(ve, z% = SC(YC,ZC)—”T_lec(YC,ZC)
(1.49) & QOO =Qoe) - (ar)e

for all vector fields Y and Z€ on TM,,. Here Q€ and QC are the complete lift
of Ricci operators corresponding to the Ricci tensors Q¢ and Q€ complete lifts S¢
and 5S¢ Ricci tensors S and S of the connections V¢ and V, respectively; that is,
SE(Ye, 29) = °(QYC, 2€) and 5°(vC, 7€) = 4°(Q°YC, 2°)

Again contracting eqution (4.4) along the vector field Y'¢, then

(4.5) F=r—(n—1a,

where 7 and r denote the scalar curvatures corresponding to the semi-symmetric
non-metric connection V¢ and the Levi-Civita connection V¢, respectively, and

el
a % StrA

Here tr A represents the trace of A. From equation (4.5), the following Theorem is
obtained:
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Theorem 4.1. Let (M,,g) be n-dimensional Riemannian manifold and T M,, its
tangent bundle with Riemannian metric ¢¢ endowed with a semi-symmetric non-
metric connection VC. Then the necessary and sufficient condition for the scalar
curvatures T and r to coincide is that a be zero; that is, trA = 0.

Interchanging Y¢ and Z¢ in equation (4.4), the obtained equation is

. —1
(4.6) §°(2°,Y%) = §9(2°,Y€) = =5=6°(2°,Y°).

Subtracting equation (4.6) from equation (4.4) and then using equation (4.2) and
the symmetric property of the Ricci tensor in it, the obtained equation is

§9(ve, 29 - 8920, v) = "0z, v) — 60 (v, 200

1
(4.7) - —anwC(YC,ZC),

where d denotes the exterior derivative. In view of equation (4.7) and Theorem 3.2,
the following theorem is obtained:

Theorem 4.2. If an n(> 1)-dimensional Riemannian manifold (M,, g) and T M,
its tangent bundle admits a semi-symmetric non-metric connection VC, then the
Ricci tensor SC€ corresponding to the connection VC is symmetric if and only if the
1-form 7€ is closed.

Theorem 4.3. Let (M,,,g) be an n(> 1)-dimensional Riemannian manifold and
T M, its tangent bundle equipped with a semi-symmetric non-metric connection Ve
defined as in equation (3.1). Then the connection VC is projectively invariant; that
is, the projective curvature tensors with respect to VC and VC coincide if and only
if the 1-form € is closed.

Proof. If the 1-form 7€ is closed and from equation (4.2) #¢ is symmetric. Using
these in equation (4.1), then equation (4.1) becomes

_ 1
(4.8) RY(X°, Y9 z% = RE(X°,v9)z° + 5{9C(XC, ZOY° -9 (v, 2z x¢

Contracting equation (4.8) along the vector field X, then

(4.9) SC(vC, 2¢) = 8°(vC, z°) — %‘100(}/0, 7€)
which gives

n—1

(4.10) QYY) =Q(YY) - (AY)©
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and
(4.11) F=r—(n—1a.
The projective curvature tensor P with respect to semi-symmetric non-metric con-
nection V is given in equation (1.6). Taking complete lift of equation (1.6), then

- - 1 -

PEXC,Y9)Z¢ = ROXY)ZE - —{S9(V, 29)xY

n —
+ SY(v9,z9Xx°-5°(x°, Zz%YY

(4.12) - SV(x¢ z%Y°y
for all vector fields X©,YC and Z€ on TM,,, where P is the complete lift the

projective curvature P with respect to the semi-symmetric non-metric connection
VC. In view of equations (4.8) and (4.9), equation (4.12) becomes

(4.13) PY(XC Y929 = PY(XC YY) 2€,

where PC denotes the complete lift of the projective curvature tensor P with respect
to V¢ and is defined by

1 ~
PEXC,Y9)Z¢ = ROUXYY)ZE - —{S9(V, 29)xY

+ SY(v°, z9xC¢ - 89X, z%yYY
(4.14) - SV(x¢ z%Y°y
for arbitrary vector fields X, Y and Z¢ on TM,, and P is given in (1.6). Con-

versely, suppose that (T'M,, g¢) equipped with VC satisfies (4.13). Thus, use of
equations (4.1), (4.4), (4.10), (4.12), and (4.14) in equation (4.13) gives

{(09(XC, Y% 0% (Y, X129 =0
Contracting the last equation along the vector field X¢, we find
¢ (X°, Y% —0°(Y° X% =0
which shows that §€ (Y, Z¢) = 0°(Z¢, V7).
Hence, the proof is completed. [

Theorem 4.4. Let (M,,g) be an n(> 2)-dimensional Riemannian manifold and
TM,, its tangent bundle endowed with a semi-symmetric non-metric connection VE
whose curvature tensor RS vanishes identically, then (TM,, g©) is projectively flat
if and only if € is a symmetric tensor.

Proof. Suppose that the curvature tensor with respect to the semi-symmetric non-
metric connection V¢ vanishes on (T'M,,, g¢) i.e., R® = 0, and the tensor field ¢
is symmetric. Then equation (4.8) takes the form
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(4.15) RE(XC Y9 Z° = %{oc(yc, Z9XC - 0%(x°, 2%V}

which implies that

-1
nTHC(YC, 79, r=(n—1)a.

(4.16) SC(Y°,z% =
Using of equations (4.14), (4.15) and (4.16), then P¢ = 0. Conversely, if the

projective curvature tensor of V¢ is zero and the curvature tensor RC is also zero,
then equations (4.1) and (4.14) take the form

RY(XC, Y9 z¢ = ﬁ{SC(Yc,ZC)XV+SV(YC,ZC)XC
(4.17) - 89x¢9, z9YV - §V(XY, z°)Y )}
and

RE(XC, Y9 z¢ = %{GC(YC,ZC)XC—GC(XC,ZC)YC
(4.18) — (A°(YY, X)) —0°(X°,Y9)) 2.

Equating equations (4.17) and (4.18) and then using equation (4.4), obtained equa-
tion is
[89(X.¥C) —0°(vC, X9} 2 = 0

Contracting the above equation along the vector field Z¢, then

0°(X°, YY) =09y, X)
Hence, the proof is completed. [

Theorem 4.5. Let (M,,,g) be an n(> 2)-dimensional Riemannian manifold and
TM,, its tangent bundle with Riemannian metric g¢ endowed with a semi-symmetric
non-metric connection VC. If the curvature tensor with respect to VE wvanishes,
then the tensor field 6 is symmetric if and only if

(77,—2){/CC(XC,YC,ZC,UC) + /éC(XC,YC,ZC,UC)gC
= —2RY(X°,Y°, z° U%)
Proof. Let the curvature tensor RC with respect to the semi-symmetric non-metric

connection V€ vanish on TM,,. For necessary part, consider the tensor field #¢
is symmetric i.e., (X, YY) = 09(YY, XY). The conformal curvature tensor C
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given in equation (1.7) with respect to V. Taking complete lift of equation (1.7),
the obtained equation is

1 ~
COUXY)ZE = ROXT,Y)ZT - —{SO(V, 29)XY

V(YC,ZC)XC _ S’C(XC7ZC)YV

Y(X 2O+ g (e, 29 (QX)Y

(Y9, Z29)(Qx)" - ¢¢ (X, 29)(QY)"
)

T
+gvV(Y©,29)XC - g9 (X, €)YV
v

(4.19) - X% z9Yy°}

for arbitrary vector fields X¢, Y%, Z¢ on T M, where C is the complete lift of
the conformal curvature tensor C' with respect to V.

The inner product of equation (4.19) with U¢ gives
/CC(XC,YC,ZC,UC) _ /RC(XC,YC,ZC,UC)
1 -
- {899, 294" (XV.U°)

n—1

(
g
- g
(4.20) - g

where 'C%(X,Y?),Z°,U%) = ¢(CY (X, YY) 2%, U). Using equations (4.15)
and (4.16) in equation (4.20), the obtained equation is

(n—2)

" 9) {g°(v°, 29" (X, U)

+ g"(Y©, 299 (X, U°)
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9
(4.21) - 4v

The concircular curvature tensor C' is given in equation (1.8) with respect to V.
Taking complete lift of equation (1.8), then

’C‘C((XC,YC,ZC,UC) _ /RC((XC YC ZC UC)
- ( )( _9 {g (YC7ZC)QV(XC’UC)
+ g (Y9, 294 (X, U%)
- ¢9(X9, 294" (YO, UY)
(4.22) — gV(X9,Z29¢°(YC,U)}

for arbitrary vector fields X, Y% Z¢ U® on TM,,, where C% is complete lift of
the concircular curvature tensor C' and

/éC(XC,YCZC, UC) _ gc(éC(XC,YC)ZC, UC)
Using equations (4.16) and (4.22) in equation (4.21), the obtained equation is

(n o 2){/CC(XC,YCZC,UC)/éC(XC,YCZC,UC)}
(4.23) = RYXC Y°z° U%).

For the sufficient part, Suppose that the Riemannian manifold (7'M, g%) equi-
pped with a semi-symmetric non-metric connection V¢ satisfies relation (4.23).
Using equations (4.1), (4.20), (4.22), and (4.23), the obtained equation is:

Sy zHXxV + SV(YY z9x° -8%x°, z°%YY
- gv(XC7ZC)YC+gC(YC Z9(@Qx)Y
+ gV(Y9, Z9(QX)" - g9 (X9, Z29)(QY)"
9" (X%, 29)(@Q Y)C}
(n —10{0° (Y%, 2°)X° - 9° (X, z%)YC“
(4.24) 0° (Y9, X% —09(X° YY) 2.

Contracting equation (4.24) along the vector field Z¢, implies that 6¢(X¢,Y¢) =
6¢ (Y, XY). Hence, the proof is completed. [J

Corollary 4.1. Let (M,,g) be an n > 2-dimensional Riemannian manifold and
TM,, its tangent bundle with Riemannian metric g¢. The Riemannian manifold
(TM,, g%) admits a semi-symmetric non-metric connection VC whose curvature
tensor vanishes and whose 1-form 7€ is closed, then

(n—2)L°(X°, Y%, 2% U +nR°(X°,YY, 29U =0
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Proof. The relation among 'C,/ '/ L and 'R on a Riemannian manifold M,, is given
by [3]

'C(X,Y,2,U) + 'C(X,Y,Z,U)
= 'L(X,Y,Z,U)
(4.25) + 'R((X,Y, Z,U).

Taking complete lifts on both sides of above equation , the obtained equation is
/Cc(Xcvyc,ZC’UC) + /C/VC(Xcvyc,ZC’UC)
— /LC(XC,YC,ZC,UC)
(4.26) + 'RE((X°,Y%,z° U").

where ‘LY is the complete lift of a conharmonic curvature tensor 'L of type (0, 4),
which is obtain by taking complete lift of equation (1.9)

/LC(XC,YC,ZC:,UC) — /RC(XC,YC,ZC,UC)

1 ~
- {8, 2" (XY, U)

(4.27) -

From equations (4.23) and (4.26), the statement of Corollary 4.1 is obtained. [

5. Group manifolds with respect to the semi-symmetric non-metric
connection in the tangent bundle

Let (M,,g) be n-dimensional Riemannian manifold and TM,, its tangent bundle
with Riemannian metric g% endowed with a semi-symmetric non-metric connection
V¢ is said to be a group manifold [23] if

(5.1) (VGeTNYC, 29 =0 and RE(XC,Y9)Z% =0
for arbitrary vector fields X<, Y% and Z€ on TM,,.
Making use of equations (3.17) and (5.1), the obtained equation is
(Vxm)“(ZWYY + (Vam)V(Z9)Y — (Vxm)“(Y9)ZY
- (Vxm)V(¥9z%=0
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Using equation (3.13) and n > 1, then above equation gives
(TSmO =0 & (V5er)re) =/ (v¥)n(x)
+ 7YY )rV(X) -7 (P g% (XY, YY)
(5.2) - 7 (P9)Y(X YO,

Using equations (4.1) and (5.1), the curvature tensor R® on T'M,, is given by

RY(XC,Y9Zz¢ = i{wV(Yc)WC(ZC)XC)+WC(YC)7TV(ZC)XC)
Y Or(Z29)XV)} = 7V (X (Z29)Y )
- 79X)T(Z9)YC) - xC(X ) (Z29)YY)

_ @{ C(YC,ZC)XV

+ gV (Y9, 29X — g9 (X9, 27"
- 9" (X9, Z2°Y%)
Vv (P¢
_ (2 ){gC(YC7ZC)XV
+ (YC ZC)XC C(XC,ZC)YV

g
(5.3) — ¢V(x%, z%Y%}

Contracting equation (5.3) along the vector field X, then

SOe, 2% = "RV (rOme (%) + w0 (YO (2°)
- 2r9(P9)g“(YV, Z°)
(5.4) — 27Y(P9)g“(YY, Z©)
Q) = TR (YO)(PC) + O (vO) (P
(55) — V(PO ) — (PO (YY)

Changing Z¢ with P® in equation (5.4) and using equation (3.2) in it, obtained
equation is

n—1
4
21V (P9) g% (Y, PO).

SC(YC,ZC) _ [TFC(PC)gC(YV,PC)

The following theorem is obtained:
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Theorem 5.1. Let (M,,g) be n(> 1)-dimensional group manifold and TM,, its
tangent bundle with Riemannian metric ¢¢ admit a semi-symmetric non-metric
connection V. Then —%WC(PC) is an eigenvalue of SC is the complete lift of
the Ricci tensor S€ corresponding to the eigenvector PC .

Also contracting equation (5.5) along Y'¢, then

(n—1)(2n — 1)w¢ (PY)
4

(5.6) r=—

Using equations (5.3) and (5.4) in equation (4.14), then P¢ = 0. Hence, the
following theorem is obtained:

Theorem 5.2. Let (M,,g) be an n > 1-dimensional Riemannian manifold and
TM,, its tangent bundle with Riemannian metric g©. Every group manifold (M, g)
in TM,, endowed with a semi-symmetric non-metric connection V is projectively

flat.

Theorem 5.3. Let (M,,g) be an n > 2-dimensional Riemannian manifold and
TM,, its tangent bundle with Riemannian metric g% . equipped with a semi-symmetric
non-metric connection VC is PC-conformally flat.

Proof. From equations (5.3), (5.4), (5.5), and (5.6), then equation (4.19) takes the
form

cC(xC,v%zC = WC(PC){QC(YC 7)xV
’ 4(n —2) ’
- " (X%, Z29Y
(P9, ¢
- ——{¢“ (Y, z%x"V
in—2) {g= (Y™, 2%)
+ gV(Yc,ZC)XC—gC(XC,ZC)YV
- gV(XC7ZC)YC}

- g T Rz )
+ 7YXV (Z29)Y ) + (X (Z2)YY)
— Y (YO)rC(29)XC) - nO(r ) (29)X°)
- R OC(z9)xY))

g (Y 2)
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n—1 {
4(n — 2)
+or (V)% (XY, 2
- XY, 2
(57) — V(X 29 P
Let (My,,g) be an n(> 2)-dimensional Riemannian manifold and TM,, its tan-
gent bundle with Riemannian metric ¢¢. Then (T'M,,g®) is said to be P¢-
conformally flat [3] if its nonvanishing conformal curvature tensor C satisfies
CY(XC YY)PY = 0 for all vector fields X¢ and Y on TM,. Replacing Z¢
by P in equation (5.7), it can easily show that C¢(X¢,YY)P® = 0. Hence,
Theorem 5.2 is verified. O

(Y 9)g(xV, Z)

Theorem 5.4. Let (M,,g) be an n(> 2)-dimensional Riemannian manifold and
TM,, its tangent bundle with Riemannian metric g©. Every Ricci-symmetric group
manifold (M, ,g) in TM,, endowed with a semi-symmetric non-metric connection
VC satisfies 7€ (PY) = 0 and 7V (P°) = 0.

Proof. Let (M,,g) be an n-dimensional Riemannian manifold and T'M,, its tangent
bundle with Riemannian metric g€ equipped with a semi-symmetric non-metric
connection V. The covariant derivative of equation (5.4) gives

" (VEer ) () (29)
= (¥€)(V§en®)(2°)
(V5er) (¥ O)r" (2°)
7O (Y O)(V§en)(2°)
= 2090V, Z9)(VEe (PO)
— 29°(YV, 297 (Ve PO)
— 2°(YC, 2°)(VG e (PO)
(59) — 20V, 2 (VS PO)

(V§e SO, Z9)

+ o+

which becomes

(Ve SN, 29)

V(X (Y 9)r%(z2°)
209 (XN TV (YR (29)
29 (XN (Y)Y (29)
— OO (XY, 29)
= (¥©)g° (XC, 2°)
— AO(XO)C(YY, 29
(5.9) - (X (Y, 29

+ +

_|_

where equation (5.2) is used.
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A Riemannian manifold (M,,g) of dimension n and T'M,, its tangent bundle.
Then tangent bundle T'M,, is said to be Ricci symmetric if and only if V¢ S¢=0. If
possible, we suppose that the group manifold (M, n n,9g) in TM,, is Ricci-symmetric,
and then the last equation gives 7¢(P") = 0 and 7 (P®) = 0. Hence, the Theorem
5.3 is proved. [J

Theorem 5.5. Let (M, g) be an n(> 1)-dimensional Riemannian manifold and
TM,, its tangent bundle with Riemannian metric g©. Suppose (M,,g) is a group
manifold in TM,, endowed with a semi-symmetric non-metric connection Ve, A
Ricci soliton (g C7PC,)\) on (TM,,qg ) to be shrinking, steady, and erpanding ac-
cording as 7°(PV) and 7V (P®) are <,=,and > 0, respectively.

Proof. 1f (M,,g) is a group manifold in 7'M, equipped with a semi-symmetric
non-metric connection V¢, then equation (5.2) and Theorem 3.5 give

(£p9)¢ (X YY) = 2{zV(Y9)n9(X°)
+ 79TV (X)) — 9 (P%gC(XV,YO)

(5.10) 7V (P9g% (X%, YY)}

for arbitrary vector fields X¢ and Y on TM,. A triplet (¢¢,P¢,)\) on an n-
dimensional Riemannian manifold (M, g) in T'M,, is said to be a Ricci soliton if it
satisfies the relation

(5.11) (£v9)C +25C +2xgC =

where £y g + 2S5 + 2A\g = 0 and V is a complete vector field on M, and A is a
real constant [11]. A Ricci soliton (g€, P, \) on (T M, g) is said to be shrinking,
steady, and expanding if A is negative, zero, and positive, respectively. Changing
V with P® in equation (5.11) and then using equations (5.4) and (5.10), then the
obtained equation is

(n=3){x" (XNr (V) + 79XV (Y}
= 2(n+ D){r°(P9)g (X", Y)
+ 7 (P9)gY(X Y )}
(5.12) + 4)\g Yx% Y% =0
for arbitrary vector fields X¢ and Y on TM,,.
Setting Y¢ = P in equation (5.12), then

SR (PO (XY) + A - T (PO (X =,

n—1 n—1

{ (m(BP))“}m(XY) +{ (m(BP))"}n%(X) =0,
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which shows that A = 272 (7(BP))“ and A = 231 (7(BP))Y, because 7 (X") # 0

4

and 7¢(X%) # 0 on TM, (in general). In view of the last expression, it can
easily observe that the Ricci soliton (¢¢, P¢,\) on T'M,, is shrinking, steady, and
expanding if 7(BP) <,= and > 0, respectively. Thus, Theorem 5.4 is satisfied. O

10.

11.

12.

13.

14.

15.

16.
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ON THE TRAJECTORIES OF STOCHASTIC FLOW GENERATED
BY THE NATURAL MODEL IN MULTI-DIMENSIONAL CASE
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Abstract. Based on the same model stated in [3], we will study the differentiability
of the stochastic flow generated by the natural model with respect to the initial data,
based on an important idea of H-Kunita, R.M-Dudley and F-Ledrappier. This is the
main motivation of our research.

Keywords: Sample path properties, stochastic flow, stochastic integrals

1. Introduction

The notion of the stochastic flow generated by a stochastic differential equation
has been studied by several authors. For the differentiability of the stochastic flow,
T-Fujiwara and H-Kunita [13] studied the differentiability of stochastic flows for
stochastic differential equations with jumps then H-Kunita [6] demonstrated the
differentiability of the stochastic flows with respect to the initial data for stochastic
differential equations with smooth coefficients. Malliavin [14] demonstrated the
differentiability of the solutions of stochastic differential equations according to the
initial conditions for classical type equations on manifolds.

Recently, studies concerning the differentiability of the stochastic flow gener-
ated by the stochastic differential equations have been developed. A-Y-Pilipenko
[15] demonstrated the differentiability of the solution of stochastic differential equa-
tions with reflection in the Sobolev space and he showed in [16] the same result
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but with Lipschitz continuous coefficients. In another work, he proved in collabo-
ration with O-V-Aryasova [17] the differentiability of stochastic flow for stochastic
differential equations with discontinuous drift in multidimensional case. In [18] K-
Burdzy proved the differentiability of stochastic flow of reflected Brownian motions
with respect to the initial data in a smooth multidimensional domain. A-Stefano
[19] showed the differentiability of the solution for stochastic differential equations
with discontinues drift in one-dimensional case. X-Zhang [20] obtained the dif-
ferentiability of stochastic flow for stochastic differential equations without global
Lipschitz coefficients. E-Fedrizzi and F-Flandoli [21] obtained weakly differentiable
of solutions of stochastic differential equations with Non-regular drift. Qian Lin
[22] studied the differentiability of the solutions of stochastic differential equations
driven by G-Brownian motion with respect to the initial data and the parameter.
S-Mohammed, T-Nilssen and F-Proske [23] demonstrated the differentiability of
stochastic flow for stochastic differential equations with singular coefficients in the
Sobolev sense.

In our paper, we consider a following stochastic differential equation:

—A,

dXﬁ,t = ngf,t <_ <

N X (L Z0) )t € sl
— 4t
Xﬂf,u =z,

() =

where x is the initial condition.

This equation is called f-equation indicated in ([1],[3][5][24]),which is the price-
less system in financial mathematics and it’s one of the best ways to represent the
evolution of a financial market after the default time, it’s considered a prosperous
system of parameters (Z,Y, f). the parameter Z determines the default intensity.
The parameters Y and f describe the evolution of the market after the default time
T.

Let’s move to the multidimensional version of §—equation [3]. On a probability
space (£, (F)¢>0,P), we have:

e

11—z

Xyulz) ==,

dN; + F(Xy(z) — (1 — Zt))dY;> € [u, o0,

where (A, ..., A?) is d-dimensional is continuous increasing process null at the origin,
Ny = (N, ..., N%) is a given d—dimensional continuous non-negative local martin-
gale such that 0 < Z, = Nye ™™ < 1,t > 0 and (Z(t,w) = (Z'(t,w), ..., Z%(t, w))
presents the default intensity. (Y (t,w) = (Y1(¢t,w),...,Y"(t,w)) is a given n—dime-
nsional continuous local martingale and F' = (F7, ..., F,) on R™ is Lipschitz mapping
null at the origin.

This equation has a unique solution X, +(x) such as;

. t oA t d n y ,
X :x+/u X, (1_Zs>st+/u XY N FI(X (1= Z.))dYY, s € [u,1]

i=1 j=1
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where X% = x is the initial condition and F*¥ is i — th component of the vector
function F7.

The aim of this paper is to show the differentiability of the process X;* with
respect to the initial value, this property was studied for several stochastic differ-
ential equations under different conditions like H-Kunita [6], Bismut [14], Malliavin
[14], K.D.Elworthy and Z.Brzezniak [9]. Our paper is based mainly on an idea of
R.M-Dudley, H-Kunita and F-Ledrappier [12], such that:

e We demonstrate the existence of the partial derivative for any s, ¢,  a.s if
our stochastic flow generated by the f-equation in multidimensional case, has
a continuous extension at y = 0 for any s, t, = a.s and this follows from the
estimate given by the proposition of H.Kunita and also the Kolmogorov’s the-
orem. Without forgetting the use of the usual estimation inequalities: Holder
Inequality, BDG inequality, and Gronwall’s lemma. This means that the so-
lution is continuously differentiable and the derivative is Holder continuous.

e We assume the following hypothesis: the coefficients of j—equation are con-
tinuous and the processes represented in this equation take real values.

The rest of the paper is organized as follows: the second section contains generalities
which we will need in what follows, the third section represents the obtained results

about the differentiability of stochastic flow and the last section gives the main
result of this paper.

2. Generalities
Theorem 2.1. (BDG Inequality)[11]. Let T > 0 and { be a continuous local
martingale such that &, = 0. For any 1 < p < oo there exists positive constants
¢p, Cp independent of T and (§;)o<i<r such that,
cEl< € >1*) < E[(€)) < CuEl< € >4
where § = SUPp<i<T |§t|'

1 1
Theorem 2.2. (Hélder Inequality)[11]. Let 1 < p,q < oo so that — 4+ = =1 and
p q

f,g:R* — R are Lebesque measurable. Then
1fglls < W f1lpllgllq

Proposition 2.1. [6] Let 2 < p < oo. There exists a constant R such that, for
any (s,x), (s',z") belonging to [0,T] x R™,

(21) E wpm;—-im}SRQx—fw+w—§ﬁu+xWD
s<t<T
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Theorem 2.3. (Kolmogorov’s theorem)[11]. Let &x(w) be a real valued random
field with parameter A\ = (A1,...,A\q) € [0,1]%. Suppose that there are constants
v>0,0;, >d,i=1,....,d and C > 0 such that

d
(2.2) Efléx — &1 < O A — il ™ VA, p e [0,1]7

i=1
Then &y has a continuous modification {:\

We need also the following importan lemma.

Lemma 2.1. (Gronwall’s lemma)[11]. Let (a,b) € R? with a < b, o, B and
@ : [a,b] = R non-negative continuous functions, such that ¥Vt € [a,b],

t

o(t) < Bt) + / o(5)p(s)ds

a

Then, .
Vit € [a, b, o(t) < B(t) exp </a ¢(s)ds>

Lemma 2.2. [11] Let T > 0 and p be any real number. Then there is a positive
constant Cp 1 such that Vx,y € R? and Vt € [0,T],

E|Ji(z) = T)I" < Cprlz =yl

3. The Found Results on the differentiability of the Solutions of SDE
in multi-dimensional case

3.1. The case studied by Olga.V. Aryasova and Andrey.Yu. Pilipenko

This subsection is borrowed from [10]. We consider an SDE of the form:

{ déi () = a((x))dt + dwy,
CO(I) =T,

Where z € R%,d > 1,(w;)t>0 is a d-dimensional Wiener process, a = (a',...,a?) is
a bounded measurable mapping from R¢ to R?, this equation has a unique strong
solution. The differentiability of this solution with respect to initial data is given
in the following theorem.

Theorem 3.1. Let a:R? — R? be such that for all 1 <i < d, a’ is a function of

?

bounded variation on RY. Put pt = and assume that the measures |u'],1 <

a
7
aZL']‘
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i,j < d, belong to Kato’s class. Let ¢i(x),t > 0, be a solution to the integral
equation

(3.1) bu(z) = E + / dAL(C())6(2),

where E is d x d—identity matriz, the integral on the right-hand side of (3.1) is
the Lebesgue-Stieltjes integral with respect to the continuous function of bounded
variation t — A:(C(x)). Then ¢¢(x) is the derivative of (t(x) in LP—sense, for all
p>0,zeR) heR ¢t >0:

Gz +h) — G(x)

p
—0,e—0,

(3.2) E\ — u(a)h

where ||.|| is a norm in the space RY. Moreover:
P{Vt >0:¢(.) € Wlloc( JRY), V() = ¢o(x) for X — a.ax}y =1,

where X is the Lebesque measure on R?.

3.2. The case studied by Philip E. Protter

This subsection is borrowed from [11]. Consider a following system:

mo ot
di=rtd / fi (- )dZ?
Dllet - 5Z + Z Z/ 8fl DiedZa

a=1 j=1

D:

(1 <i < n) where D denotes an n x n matrix-valued process and §; =1 if i=k
and 0 otherwise (Kronecker’s delta). A convenient convention, sometimes called
the Einstein convention, is to leave the summations implicit. Thus, the system of
equations (D) can be alternatively written as:

t
o=+ / Fi (s )dZe
D : 0 .

) _ Lof )
D;, =9; a VDI dz2
kt 5k + /) ij (4,05 ) ksd s

Theorem 3.2. [11] Let Z be as in (Hy) and let the functions (f.) in (Hz) have
locally Lipschitz first partial derivatives. Then for almost all w there exists a func-
tion o(t, w,x) which is continuously differentiable in the open set {z : p(x,w) > t},
where p is the explosion time. If (fi) are globally Lipschitz then p = oo. Let
Dy(t,w,z) = %gp(t,w,x). Then for each x the process (¢o(.,w,z), D(.,w,x)) is
identically cadlag, and it is the solution of equations (D) on [0, p(x,.)].
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3.3. The case studied by R.M.Dudley, H.Kunita and F.Ledrappier

This subsection is borrowed from [12]. We shall consider an Ité’s stochastic differ-
ential equation:

(3:3) dxe = Eo(t, xe)dt + ng(t xt)dBf
k=1

has a solution x4, t € [s, T] such that for all x € RY

t
Xt=95+/§0(t7Xt dt+z fktXt )dBf
S k=1 S

For the convenience of notations, we will often write dt as dBY and write the last
equation as:

Xt—ﬁH—Z fktXtdBk
k=1"%
where z = x; be initial condition.
The following theorem give the smoothness property of this solution.

Theorem 3.3. [12] suppose that coefficients Eo, ...,Em of an Ito’s stochastic differ-
ential equation, are globally Lipschitz continuous (C’gl’a) functions for some o > 0
and their first derivatives are bounded. Then the solution xs.(x) is a CYP of x for
any B less than « for each s < t a.s.

4. Main result

This section contains the main result which is concerning the differentiability of the
solution of the natural equation with respect to the initial value. But before that
we give a detailed description of the natural equation in multidimensional case, we
have:

,Al
dX},(z) = X}, () ( I ————dN} + FdY,! + ... + FigdY? )
(hu) =
) . e
dXg(x) = X7 (x) ( : deN + Fo1dY + .. + FpqdYy )
Then
e‘A‘
(h ) - qu7t(-'17) = Xt(l') (—1 7 dN; + F(Xt(.’B) — (1 — Zt))d}/t) ,te [U,OO[,
w) — - t

Xuwu(z) =2,
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1 d r e e~ e M !
where X, (z) = (Xu,t('r)r-'aXu,t('r)) "T1-2, = —1_7235---,—1_7@ )
= (z', ..., 29T the initial condition and:

F . . . Fy
F =
F.i . . . Fu

Then we can write the solution X}* for u < s <t in this form:

., t e—Ns t d n . )
X; =x+/u X, (—1_25)st+/“ XD S FI(Xe— (1 Z,))dYY, s € [u,t]

i=1 j=1

1 s
We introduce the stopping time 7,, = inf {t, 1-7, < } on the quantity (— le 7 )
n s

(because we don’t know if it’s finite or not). Therefore, we assume the process X7 ,
instead of X7 ;:

t —A t d n
X} _3;+/u X, (-1_ZM) st+/u XSZZFJ(XS—(I—ZS))dYSJ,se[u,t}

i=1 j=1

In order to prove the differentibility property, it’s enough to apply the idea of
R.M.Dudley, H.Kunita and F.Ledrappier [12]: For y € R\ 0, we define

aXi,t _ l |:)Z—:v+yek o 5(39; :|

63% y u,t u,t

eu,t(xa y) =

where ¢y, is the unit vector (0, ...,0, 1,0, ...,0) for k = 1...d.

So we will demonstrate that 6, :(z,y) has a continuous extension at y = 0 for any
(u,t,x). Depending on the following estimate and Kolmogorov’s theorem, for any
p > 2, there exits a positive constant CP such that:

E|9u,t($, y) - au’,t/(xla y/)‘p
(4.1) < o [\33 — 2P+ ly — |7+ (L + [a] + 2/ )P (Ju — /| F
(4.2) + ot t'ﬁ)}
Proof: Firstly we show the boundedness of E|0,, +(x, y)|", we have:

1r~ ~
gu,t(x7y) = g [Xijyek - va,t:|

we denote
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ﬁz‘j(ftﬂwyek) _ )?f+yekFij (X*tawyek —(1- Zt))

FU(X) = XpF9 (X5 - (1-20))

So
I N
Out(2,9) er+ = [ / Xytves Xstst}
Yy Lu
1 d n t _ _ _
(43) Ly [ e - FoEnays
Yy i=1j=1"Y
Then
1 b ~ P
E[fy(z,y)[F < 1+ -E / XoHver — XM dN,
v
1 d n _ B p
(44) > D E F” (Xztuer) — FU(X2)dy?
Yy =1 j=1

Using BDG’s inequality, we have:

t g
Elfus(e, )P < 1+ CTE [/ |ens<x,y>2|Ms|2ds}

(4.5) + CP- ZZE {/ |Frid (X tver) — FzJ(Xx)|2ds]
Y =1 j=1
Now we apply the hélder inequality, noting ¢ the conjugate of £:
E|0u,(z,y)[”
t
1
< 1= 0ECE | sw Buenl [ Ianpas| 40— 0Eer
u<t<oo u )
(4.6) « ZZ]E |:/ |FzJ XJ?JFyEk sz (X:v)|17d$:|
i=1 n

And as F is Lipschitz, we have:

’sz X:L’+yek) FU(

‘X:L’+yek Xz

Therefore

E [0, (2, y)[" < 1+<t—u>2”q€fﬂf{ SUP  [0ui( \”/IM |”ds}
u<t<oo
t

(4.7) b(t— Wk CTR [ /u |9,.,S(a;,y)|Pds]
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and by following, we have ab < % + % So:

¢ 1
E[ wp_ o) | |M5|Pds] < E[ sup eu,t@c,y)ﬁp}
u<t<oo “ 2 |u<t<oo
17/t 2
(4.8) + 2[ / ]EMS|pds]

Then the proposition(2.1), yields for any 2 € R? and a constant ¢’:

t 1 1 t 2
(4.9) ]E[ Sup (Bt (2, 9)|7 / Ms|pds] <+ [ / IEMS|”ds]

u<t<oo

Furthermore, we have the quantity E [ fi |Ms|pd5} < oo. Next, note that
E [ I \MS|Pds} = R, then:

t
(4.10) IE[ sup |0u,t(x,y)|f'/ |Ms|pds] < C§’+C§E2

u<t<oo

1 p 1 P
where 50’(1& —u)2aCY = CF and §(t —u)2aCY = C%. As a result:

t

(4.11) E |fu4(a )" < CP + cg/ E|6y.. (z, y)[Pds

u

Where C} = C¥ + C’pR and CF = (t — u)% k; C?, therefore by Gronwall’s lemma,
we get:
(4.12) B [0u(z,y)[" < CF exp (CE(t — u))

Consequently E|6,, ;(z,y)|? is bounded. Secondly we prove the estimate (4.1). In
case t = t/, we suppose that u < v/ < t. Other cases will be proven in the same
way. Then we have:

0u t(x y) - gu’ t(m/ y/)

/ Or.s(2,y) — O s(l’ y YMsdNg + — ZZ/ i Xx+yek)

11_;1

(4.13)  — FY(XJ) = FY(XTVe) + FY(XT)dY
Noting
fl = / 97«,5(.13, y) - 9w,s($/,y/)Msts

d n !
~ 1 v o~ SO L, ‘
B= 330 [ Bt - B - FIRE ) ¢ FIRE vy
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So

p

(4.14) B =E / By (1)) — O o (2”3 ) ModN,

The BDG’s inequality leads to:

r

using Hélder’s inequality, noting ¢* the conjugate of g:

)
/ 2

(4.15) E|L|? < CPE

10,.0(,) — ew,s<x’,y'>|2|Ms|2d$]

(4.16)E|T1|p < (u' - u)%i*CgE [ sup |0ui(z,y) — Gugt(x’,y')\p/ Ms|pds]
u<t<oo u

a®? b?
and by following, we have ab < 5 + 5

ELP < <u’—u>25*05ﬂ1[ sup |eu,t<x7y>—eu/,t<z',y’>|2p]

u<t<oo

/ 2
(4.17) oW —wEer / E|Ms|pds]
Then the proposition (2.1), gives:
(4.18) EILP < @ — w2 CF [Raly /| + Ry

1
where C¥ = §Cg .

it remains to study the term fg:

Ll < ZZ / (B (X atver) — FU(X2)

11_;1

(4.19) + | = FOXe) 4 F9(XY)|dY)
Using again the BDG’s inequality, we obtain:

E|L|P
d n

1 p
(4.20) 508 YD E

i=1j=1

IN

B - B
u

wrs

| - FU(XE o) 4 (X)) 2ds



On the trajectories of stochastic flow 889

applying Holder’s inequality, noting ¢* the conjugate of 19, we have:

E|TQ|P < 701’ u —’LL zq ZZ/ ]E'Fl] X.L"I‘Z/Ek) Fz](Xz)l

=1 j=1
(4.21) + E|F9(XT) — Fi(X¥HVer)|Pds

We have always Fis Lipschitz:

- 1 v L - o~
(4.22E| )P < —Cg(u’ —u)%a ky / ]E|Xf+ye"' - XP+E|XY - X¥ +y “|Pds
Yy

u

Thus, by lemma (2.2), we have:

(4.23) BILP < K30 CE (' =0 (ol + 1917
From (4.18)and (4.23), we obtain:

(4.24) E [0u1(2,9) — b o (o) < CF (0 — )

—2
Where Cf = CF(Rily — y'[*P + Ry) + ; K, 7 C5 (u' — wka(JylP + |y' 7).
It remains Kolmogorov’s theorem, we denote G = 6, ¢(z, y)—0, v (¢, y") and simply
applying Ito’s formula to the function f(G) = |G|” for t = t', we obtain

’U/ af . .
P — —_J % ¥
le] _Xj:/u 8Gi( Z/ 8GG G)d < G' G >,

noting
~ o’ af
=3[ ag e
_ 1 u’ 82f o
I=- — d LG >,
22/ seG (1< G0 >
such that
o of 1~ Saive o
2 (G) | GuMLdN, + 2 i (Fetvery _ i (%)
i Y oG Y
Then
_ L o
I = GsMsts *Fl X.qc-‘,—yek —Fz Xx
_ﬁli(jzx/+y’ek)+]’_7V,li(j(:wz)dy;l}
g [GsMst o+ B - FI(R) — B (X + B (X7)ay)
Y
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For f, we denote:

of
e

- vaf
I = Z/u 3 (G)GsM,dN,

(G) = IpllGI"

- v of 1 e~ . o~ .,
L= SR (Xtvery _ FU(XT) - (XY er) 4 Fi (X
2 i /u 6Gi(G)y ( ) (X*) ( )+ (X))

So, we have

o5 -
4.2 —_— s| <d s
(1.25) 5|5 @6 | < apliar-ic.
Then , ,
(1.26) Bl <dpl [ 1GI"dsx [ arav,

noting ¢; = f;/ M;dNj, it’s a local martingale (see [2]):

’

(4.27) Bl <dplec [ 1GITds

u

And we have F'J ()? ) is Lipschitz function, therefore:

2 ‘ aaé <G>§f”'<5< sver) — FU(X) = FY(X*H) 4 FI(XY)| < dba[pl |G

(4.28)
Then

(4.29) L] < dnk |p|/ 1G4 |Pds
From (4.27) and (4.29), we get:

(4.30) 17 < dlpl(gr +nky) / G| Pds

u

For I, we denote

_ vy ) )
(4.31) T, = Z / 5c.¢ ()G (N ax,
_ 1 uop2f o
I, = - G)G M, Fj (X 7Hver
2 y L u aGlGJ ( ) l ( )

(4.32) —F}(X") = F{(X") 4 F(X"™)dN,dY]
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_ 1 u g2 o
Y igmdu v
(433) _ﬁ}z(iw) o ﬁ}{()}ix’-l-y’ek) + ﬁ}jl()’zw’)dNSd}/sh
= 1 w aZf i (Y Ttyer iy i ye'+y'er Fiexe
= Z/u 3GiGj(G)[Fl(X )= FI(E) = (X0 + B

i,5,h,l

X [ﬁ2(§x+y€k) _ ﬁi()}im) _ ﬁ}{()"('x”ry’ek) + ﬁ}]b()?m') dYéldYsh

And note that

Sl (G) = bl = DI
Then for I, we have
(434 S 2L (6)6.2| < i lo - 1116r-2icr
i,4.hl v
So )
(4.35) Tl <dlpllp—1] [ |GPM2aNan,

fs MydN; is always a local martingale, so

’
u

(4.36) T2 < dlplp - 1] 2 / GafPds

u

For I, we have

1 a2f i v e i v i v ‘e i v
3 L b (GIGF (R ve) = Fi(X) ~ F(R ) 4 Fi (X
i5,h,l v

(4.37) < dnkilp||p — 1] |GIP7?|G,?

Therefore we get

’
u

(4.38) Lol < dnkalpl|p — 1] / Gfrds

u

For Is, we have

’
u

(4.39) Ts] < dnkalpl|p - 1] / Gafrds

u

For I,, we have

(4.40) TesdniZpllo-1] [ 1G.pds
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Then we have

-1 - -
(4.41) 1:5[11 + Iy + 13+ 14
Such that )
— 1 w
(4.42) T<;@nhiectdd i) dpllp-1) [ (GPds

From these two inequalities (4.30) and (4.42), we get

1 o
(1.43) GI” < dlpl (3 Ip = 1] @nky o+ & +nkd) + ot k) [ 1Gupds

u

Therefore ,
(4.44) E|G]P < CY, / E|G4|Pds
By Gronwall’s inequality we have
(4.45) E|G|P < O,
where C, is exp (CF(u' — u)).
The proof is completed.
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HORIZONTAL LIFT METRIC ON THE TANGENT BUNDLE OF A
WEYL MANIFOLD

Murat Altunbag

Faculty of Science and Art, Department of Mathematics
24100 Erzincan, Turkey

Abstract. Let (M, [g]) be a Weyl manifold and T'M its tangent bundle equipped with
the horizontal lift of the base metric. The purpose of this paper is to study the tangent
bundle T'M endowed with a Weyl structure, and obtain the ide under which conditions
such bundle is an Einstein-Weyl or a gradient Weyl-Ricci soliton.
Keywords: Riemannian metric, Weyl structure, tangent bundle

1. Introduction

Weyl geometry is, in a sense, midway between Riemannian geometry and affine
geometry. A Weyl manifold is a conformal manifold equipped with an affine connec-
tion preserving the conformal structure, called a Weyl connection. It is said to be
Einstein-Weyl if and only if the symmetric part of Ricci tensor is proportional to a
Riemannian metric in the conformal class (see [5],[6] and [9]). As a generalization,
in [4], the authors introduced a new notion, namely gradient Weyl-Ricci soliton,
involving Hessian of a smooth function.

There exists a wide range of interesting studies on the geometry of tangent bun-
dles with special types of metrics (Sasaki, Cheeger-Gromoll,...) or more generally
g-natural metrics (see [1],[2] and [7]). A pseudo-Riemannian metric on the tangent
bundle is defined by the horizontal lift of the base metric (see [8] and [10]).

Tangent bundle of a Weyl manifold is a very recent topic. In [3], Bejan and Gul
constructed a Weyl structure on the tangent bundle and find conditions under which
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the tangent bundle is an Einstein-Weyl manifold. In [4], Bejan et al. obtained some
conditions such that the Weyl structure on the tangent bundle is a gradient Weyl-
Ricci soliton. In both studies, the tangent bundle is considered with the Sasaki
metric.

In this paper, we introduce a Weyl structure on the tangent bundle of a Weyl
manifold and prove that the tangent bundle cannot be an Einstein-Weyl manifold
or a gradient Weyl-Ricci soliton unless the base manifold is locally flat. Here, the
tangent bundle is endowed with horizontal lift metric.

Unless otherwise stated, throughout the paper, the Einstein summation conven-
tion is used and all geometric objects are considered as smooth.

2. Weyl manifolds

We recall the basic information about Weyl geometry from [3]. Let M be an
m—dimensional manifold endowed with a conformal class of (pseudo) Riemannian
metrics [g]. A torsion-free connection D is said to be a Weyl connection if it preserves
the conformal class [g]. For a metric g € [g], there exists a 1-form w determined by
D as Dg = —2w®g. If V is the Levi-Civita connection of g, then D is expressed as
follows:

(2.1) DxY =VxY +w(Y)X +w(X)Y — g(X,Y)¢, VX, Y € T(TM),

where £ is the dual vector field of w with respect to g. Conversely, if w is given and
if we use the equation (2.1) to define D, then D is a Weyl connection. Note that
we have g(&,€) = ||€]]> = w(€) and the relation (2.1) is invariant under the Weyl
transformation e — €%/ ¢, w' = w — df. The pair (g,w) is called a Weyl structure on
M.

Denote by R, = [V,V] —V|j and Ry, = [D, D] — Dy the curvature tensors of
the Levi-Civita connection V and the Weyl connection D, respectively. Then the
relation between them is given by

(22) Ry(X,Y)Z = Ry(X,Y)Z + dw(X,Y)Z — (Vyw)(2))X + (Vxw)(2))Y
+w(Y)w(Z2)X — g(Y,2)Vx§ — g(Y, Z)w(§) X
+9(Y, Z)w(X)E§ — w(X)w(Z2)Y + g(X, Z)Vy{
+9(X, 2)w()Y — g(X, 2)w(Y)E, VXY, Z e T(TM).

From (2.2), the relation between the Ricci tensor field Ricy, of the Weyl con-
nection D and the Ricci tensor field Ricy of the Levi-Civita connection V is given
by

Ricg)(X,Y) = Ricy(X,Y) +dw(X,Y) + (6w — (m — 2) [€]|*)9(X, Y)
—(m —2)(Vxw)Y + (m — 2)w(X)w(Y), VX,Y € T(TM),

where the co-differential éw of w is defined by dw = —tr {(U, V) = (Vyw)V}.
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The symmetric part Ricf;’]m of Ricyg is given by following formula:

(2.3) Ric™(X,Y) = Ricy(X,Y)+ (6w — (m —2) [€]|*)g(X,Y)
1 (m—2)[(Vxw)Y + (Vyw)X]

+(m 2)w(X)w(Y),VX,Y € I(TM).

3. Tangent bundle

Let M be an m—dimensional manifold. Its tangent bundle is denoted by T'M and
7w :TM — M is natural projection mapping. Recall that TM is a 2m—dimensional
differentiable manifold. Let (U, 27) be a coordinate neighborhood of M, where (27) is
a system of local coordinates defined in the neighborhood U. Let (u’) be the system
of cartesian coordinates in each tangent space of M with respect to the natural frame
{52} Then, in 7~1(U), we can introduce the local coordinates (7~1(U),z7,u’),
which are called the induced coordinates. From now on, we denote the induced
coordinates by (z7) = (z7,27) = (27,u7), j = 1,...,m, j = m +1,...,2m. We also
denote the natural frame in 7= *(U) by (327) = (5%, 52 )-

IfX=X' aii is the local expression of a vector field X in U, then the vertical
lift XV and the horizontal lift X of X are given, with respect to the induced
coordinates, by

O yr_xi 9 _ xipi 9

XV = xt—— :
oul’ 0z I G

where T i are the coefficients of a torsion-free affine connection V.

If f is a function on M, then the vertical lift fV of f is defined by f¥ = for.
The horizontal lift fH of fis fH = 0.

Let w be a I-form on M. Then the horizontal lift w? of w is given by the
relations w (X#) = 0, wH(XV) = (w(X))V. The vertical lift w" of w is given by
the relations w" (XV) =0, w" (X)) = (w(X))V.

From [10], the horizontal lift metric G on the tangent bundle TM over the
Riemannian manifold (M, g) is defined by the equations

(3.1) GxH,vH)y = qxV,YV)=o,
GXV,YH) = G(X"YV)=yg(X,Y),VX,Y € I(TM).

For the Levi-Civita connection V of the metric G, we have

(3.2) Vxu Y = (VxY)? + (R,(u, X)Y)V
VxrYV = (VxY)V,
VyvYH = 0,
VoYV = 0, VX,Y e (TM),
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where R, is the curvature tensor field of the metric g. Non-zero components of the
curvature tensor Rg and the Ricci tensor Ricg are given by

Ra(XT Y™ Z" = (Ry(X,Y)Z)" + ((VuRy)(X,Y)2)",
Ra(X" Y™ zV = Ra(X"YV)Z" = (Ry(X,Y)Z)",
Ricg(XP YH) = 2Ricy(X,Y),vX,Y € T(TM),

where Ric, is the Ricci tensor field of the metric ¢ (see [8] and [10]).

4. A Weyl structure on tangent bundle
In this section, we construct a Weyl structure on (7'M, G) using the vertical lift of

a 1-form on M. Firstly, we write the following proposition from the definition of the
metric G in (3.1).

Proposition 4.1. Let (M, g) be a Riemannian manifold and T M its tangent bun-
dle with the horizontal lift metric G. Any conformal change g — €*fg on M corre-
sponds the change of the metric G — (e2)VG on TM.

Now we can express the proposition below.

Proposition 4.2. Let (M, g) be a Riemannian manifold and T M its tangent bun-
dle with the horizontal lift metric G. If the pair (g,w) is a Weyl structure on M,
then the pair (G, w") is a Weyl structure on TM and its Weyl connection is given

by

(41) DxuY™ = (DxY —g(X,Y)O)" + (Ry(u, X)Y)",
DxnYV = (VxY +w(X)Y)" —g(X,Y)¢",
DY = o)XV —g(X,Y)eH,
DxvYY = o,

where D is the Weyl connection on M, Ry is the curvature tensor field of g and §
1s the dual vector field of w with respect to g.

Proof. Using the relations (3.2) in (2.1) give the result.

Lemma 4.1. Let M be an m—dimensional manifold (m > 2) endowed with the
Weyl structure (g,w) and TM its tangent bundle endowed with the Weyl structure
(G,w"), where G is the horizontal lift metric. The symmetric part Ricf(y;]m of the

Ricci tensor field of the Weyl structure (G,w") satisfies the following relations

(4.2) Ricg) (X7, Y") = 2Ricy(X,Y) — (m - 1)[(Vxw)Y + (Vyw)X]
+2(m — Dw(X)w(Y),

(4.3) Ricg (XV,Y") = swg(X,Y),

(4.4) Rice (XY, YY) = o,

where V is the Levi-Civita connection on M and Ricy is the Ricci tensor field of g.
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Proof. We use the formula (2.3). Since T'M is a 2m—dimensional manifold, we have

—=—sym

Riciey (X", Y") = Rica(X",Y")

H(E(Y) - 20m — DG(ER, €M) GXH, Y H)
(= D)[(Vxnw¥ )WH 4 (Tynw? ) XH]
+2(m — Dw’ (X )V (YH)

= 2(Ric,(X,Y))V
—(m = D[(Txw)V)Y + (Vyw)X)"]
F2(m — (X )w(V)]

= 2Ricy(X,Y)— (m—1)[(Vxw)Y + (Vyw)X]
+2(m — Dw(X)w(Y).

By the same way, we obtain (4.3) and (4.4). O
Now we give the main results.

Theorem 4.1. Let M be an m—dimensional manifold (m > 2) and TM be its
tangent bundle such that M and TM are endowed with the Weyl structures (g,w)
and (G,w"), respectively. If the following conditions are satisfied, then TM is an
Einstein- Weyl manifold:

(i) (M, g) is flat.
(i) (Vxw)Y + (Vyw)X = 2w(X)w(Y),VX,Y € T(TM).

Proof. 1t is known that T'M is an Einstein-Weyl manifold if there exists a function
@ such that Ric[scy;in =aG(X,Y) for all vector fields X, Y on T M.

Assume that (Vxw)Y + (Vyw)X = 2w(X)w(Y), then (2.3) becomes
(45)  RicY™(X,Y) = Ricy(X,Y) + (5w — (m — 2) [ )g(X, ),

VX,Y € T'(TM). If we suppose M is flat, i.e. Ry =0, then the formulas (4.2), (4.3)
and (4.4) reduce to

Rz‘cfgf(XH,YH) = 0,
Ric (XY, YT = dwg(X,Y),
Ricfg]"(XV,YV) = 0,VX,Y e T(TM).

These equations show that if @ = (éw)Y, then TM is an Einstein-Weyl manifold.
This completes the proof. O

Theorem 4.2. Let M be an m—dimensional manifold (m > 2) and TM be its
tangent bundle such that M and TM are endowed with the Weyl structures (g,w)
and (G,w"), respectively. If the following conditions are satisfied, then the triple
(G,w", fV) is a gradient Weyl-Ricci soliton:
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(i) (M,g) is flat.
(ii)

(4.6) (Vxw)Y + (Vyw)X —2w(X)w(Y) = Hess, f(X,Y),VX,Y e I(TM),
where Hessy f denotes the Hessian of the function f on M with respect to the metric
g.

Proof. For (G,w", V) to be a gradient Weyl Ricci soliton, it should satisfy
(4.7) mfg}" + HessqfV = aG,

where @ is a function on TM (see [4]).

For the Hessian of the function fY with respect to G, we get the following
relations by direct computations:
HessqfV (X, yH) (Hess, f(X,Y))V,
HessqfYV (X7, YY) 0,
HessafV(XV,YH) = o,
( ) 0

HessqgfV(XV,YV VXY e T(TM).

Suppose that (4.6) holds, then from (2.3) we have

(48)  RicY™(X,Y) = Ricy(X,Y)+ (0w (m—2) €] )g(X,Y)
—HHessg F(X,Y),VX,Y € I(TM).
If (M, g) flat, then the formulas (4 2), (4.3) and (4.4) turn into
%Fg] (XH YH") = —Hess,f(X,Y)
Ricig)" <XV,YH> = dwg(X,Y),
Riciey (XV, YY) = 0,vX,Y e (TM).

So, for & = (dw)V, TM is a gradient-Weyl Ricci soliton. This completes the
proof. [
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NOTES ON LEFT IDEALS OF SEMIPRIME RINGS WITH
MULTIPLICATIVE GENERALIZED (a,a) — DERIVATIONS
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Abstract. Let R be a 2—torsion free semiprime ring, I a nonzero left ideal of R, a an
automorphism on R and F : R — R a multiplicative (generalized) (a, ) —derivation
of R associated with a multiplicative (o, a) —derivation d. In this note, we will give the
description of commutativity of semiprime rings with help of some identities involving
a multiplicative generalized (o, ) —derivation and a nonzero left ideal of R.
Keywords: Derivations, ideals, semiprime rings.

1. Introduction

Let R will be an associative ring with center Z. For any z,y € R the symbol
[z, y] represents commutator zy — yx and the Jordan product zoy = xy+yx. Recall
that a ring R is prime if for z,y € R, xRy = (0) implies either z = 0 or y = 0 and
R is semiprime if for x € R, xRz = (0) implies z = 0.

An additive mapping d : R — R is called a derivation if d(zy) = d(x)y + zd(y)
holds for all z,y € R. An immediate example of a derivation is the inner derivation
(i.e., a mapping x — [a,x], where a is a fixed element). By the generalized inner
derivation we mean an additive mapping F' : R — R such that for fixed elements
a,b € R, F(z) = ax + xb for all z € R. It observed that F' satisfies the relation
F(zy) = F(z)y + zl_p(y) for all z,y € R, where I_y(y) = [=b,y] is the inner
derivation of R associated with the element (—b). Motivated by these observations,
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M. Bresar [3] introduced the notion of generalized derivation. Accordingly, a gen-
eralized derivation F': R — R is an additive mapping which is uniquely determined
by a derivation d such that F(xy) = F(z)y + zd(y), for all z,y € R. Obviously,
every derivation is a generalized derivation. Thus, generalized derivations cover
both the concept of derivations and left multipliers (i.e., an additive mapping such
that F(xy) = F(x)y, for all z,y € R). Generalized derivations have been primarily
studied on operator algebras.

In [4], the notion of multiplicative derivation was introduced by Daif motivated
by Martindale in [13]. d : R — R is called a multiplicative derivation if d(zy) =
d(x)y+ xd(y) holds for all z,y € R. These maps are not additive. In [10], Goldman
and Semrl gave the complete description of these maps. We have R = C [0,1],
the ring of all continuous (real or complex valued) functions and define a mapping
d: R — R such as

d(f)(x)—{ f@)log|f (@), f(z)#0 }

0, otherwise

It is clear that d is a multiplicative derivation, but d is not additive.

On the other hand, the notion of multiplicative generalized derivation was ex-
tended by Daif and Tamman El-Sayiad in [6]. F : R — R is called a multi-
plicative generalized derivation if there exists a derivation d : R — R such that
F(zy) = F(z)y+xd(y), for all z,y € R. Dhara and Ali gave a slight generalization
of this definition taking d is any mapping (not necessarily an additive mapping or
a derivation) in [7]. Hence, one may observe that the concept of multiplicative gen-
eralized derivations includes the concept of derivations, generalized derivations and
the left multipliers.

Over the last several years, a number of authors studied commutativity theo-
rems for prime rings or semiprime rings admitting automorphisms or derivations on
appropriate subsets of R. Herstein proved that if R is a 2—torsion free prime ring
with a nonzero derivation d of R such that [d(x),d(y)] = 0, for all 2,y € R, then
R is commutative ring. In [5], Daif and Bell proved that R is semiprime ring, I
is a nonzero ideal of R and d is a derivation of R such that d([z,y]) = %[z, y], for
all x,y € I, then R contains a nonzero central ideal. Many authors extended these
classical theorems to the class of derivations. (see [1], [2], [8], [9], [11], [12] for a
partial bibliography).

In the present paper, we generalize the concept of multiplicative generalized
derivations to multiplicative generalized («, @) —derivations. A mapping d: R — R
(not necessarily additive) is called a multiplicative (o, o) —derivation if there exists
a map « : R — R such that d(zy) = d(z)a(y) + a(z)d(y), for all z,y € R. A
mapping F' : R — R (not necessarily additive) is called a multiplicative general-
ized (o, @) —derivation if F(zy) = F(z)a(y) + a(z)d(y), for all z,y € R, where d
is a multiplicative («, @) —derivation of R. Of course a multiplicative generalized
(1,1)—derivation where 1 is the identity map on R is a multiplicative generalized
derivation. So, it would be interesting to extend some results concerning these no-
tions to multiplicative generalized (o, «) —derivations. Our aim is to investigate
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some identities with multiplicative generalized (o, &) —derivations on a nonzero left
ideal of semiprime ring R.

2. Results

Throughout the paper, R be a 2—torsion free semiprime ring, I a nonzero
left ideal of R, « an automorphism on R and F a multiplicative (generalized)
(v, o) —derivation of R associated with a multiplicative («, a)—derivation d. Also,
we will make some extensive use of the basic commutator identities:

i) [z,yz] = ylz, 2] + [z,y]2

i) [zy,2] = [7, 2]y + 2y, 2]

ili) axyoz = (xoz2)y + z[y, 2] = z(yoz) — [z, 2]y

V) 2y, 20 =2y, 2l o + [3,a(2)]y = 2ly, 0(2)] + [7, 2], 0 ¥

Vi) [2,92], 0 = W) [2,2]4 o + [2,9]0,0 2(2)

1)
1)
1)
iv) woyz = y(zoz) + [z,y]z = (voy)z — y[z, 2]
)
1)
vii)

(x zoy)aa = 2(20Y)a,a = [2,a(y)]2

We remind some well known results which will be useful in our proofs:

Fact : Let R be a semiprime ring, then

i) The center of R contains no nonzero nilpotent elements.

ii) If P is a nonzero prime ideal of R and a,b € R such that aRb C P, then either
acPorbeP.

iii) The center of a nonzero one sided ideal is contained in the center of R. In
particular, any commutative one sided ideal is contained in the center of R.

Lemma 2.1. [12, Lemma 5] Let R be a 2—torsion-free semiprime ring and I a
nonzero ideal of R. If [I,I] C Z, then R is a commutative ring.

Theorem 2.1. Let R be a 2—torsion free semiprime ring, I a nonzero left ideal
of R, a an automorphism on R and F : R — R a multiplicative generalized
(o, ) —derivation of R associated with a multiplicative (o, a))—derivation d.

If [d(x), F(y)] = £a ([z,y]) for all z,y € I, then a(I) [d(x),a (x)] = (0) for all
xz el

Proof. By the hypothesis, we have

(2.1) [d(z), F(y)] = £a([z,y]), for all z,y € I.
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Replacing xz by x in (2.1) and using this, we get

(2.2) d(x)[a(z), F(y)] + [a(z), F(y)]d(z) =0, for all x,y,z € I.
Replacing zz by z in (2.2), we have

d(z) (z) [a (2), F(y)] + a () d(@)[a (2),
+a(2) [a (), F(y)ld(z) + o (2),, F(y)la () d(z) = 0.

(2.3)
Left multiplying (2.2) by a (2), we arrive at

(24) a(2)d@)a(z), F)] +a(2)|a @), Fy)dz) =0, for all z,y,z € I.
Subtracting (2.4) from (2.3), we find that

(25)  d(z)a(@)[a(z), FW) +[a(z), F)la (@) d(z) = 0, Va,y,z € I.
That is

(2.6) d(z)a(z) [a(2), F(y)] = —[a(2), F(y)la(z) d(z), Vo,y,z € I.

Replacing z with za~! (d(2))t in this equation, we have

2.7) d(z)a () d(z)a (t) [ (2) , F(y)] = = (2), F(y)]ev () d(z)a (2) d(2),
’ Vr,y,z,t €.

I
[
Q
—
I\
~—
g
=
Q
S
aQ
—~
I}
~—
Q
—
RS
Sl
—~
N
E/\_/
2
)
—
I}
~—
)
<
=

2d(z)a () [or (2) , F(y))ee (t) d(2)a (2) [ (2) , Fy)] = 0, for all z,y, 2, ¢ € I.
Since R is 2—torsion free semiprime ring, we get

d(z)e(z) [a (), F(y)la () d(z)a (z) [a(z), F(y)] = 0, for all z,y,z,t € I.
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Replacing t with rt,r € R in this equation and left multiplying with « (¢) gives that

a(t)d(z)a(z)lo(z), F(y)|Ra(t) d(z)a (z) (o (2), F(y)] = (0),
for all z,y,2,t € I,r € R.

Since R is semiprime ring, we have
a(t)d(z)a(z)[a(z), Fy)] =0

and so
Vd(z)V]a(z),F(y)] = (0), for all y,z € 1.

where a(I) = V is a nonzero left ideal of R.

Let {P,|a € I} be a family of prime ideals of R such that NP, = (0). We can
say
Vd(z) C Py or Vla(2), F(y)] C P,

and so
[a(2), F(y)]Vd(z) C Pa or d(2)V][a(z),F(y)] C Pa.

By (2.6), [a(2), F(y)]Vd(z) C P, implies that d(z)V]a(z), F(y)] C P, and so,
d(z)Via(2), F(y)] € NPa.

That is
d(2)V]a(z),F(y)] = (0), for all y,z € I.

Hence we have d(z)a (z) [a(2), F(y)] = 0 for all z,y,z € I. Replacing y by yz in
this equation and using this, we get

(2.10) d(z)a (z) [a(z),a(y)d(z)] =0, for all x,y,z € I.
Left multiplying with « (zy) this equation, we have
(2.11) a(z)a(y)d(z)a(z)[a(z),a(y)d(z)] =0, for all z,y,z € I.
Replacing x by zz in (2.10) and left multiplying with « (y), we obtain that
(2.12) a(y)d(z)a(z)a (z) [a(z),a(y)d(z)] =0, for all z,y,z € I.
Subtracting (2.11) from (2.12), we find that
[a(2),a(y)d(z)]a (@) [a(z),a(y)d(z)] =0, for all x,y,z € T

and so

a(z)[a(z),a(y)dz)]a(r)a(x) [a(z),a(y)d(z)] =0, for all z,y,z € I,r € R.

Since R is a semiprime ring, it follows that o (z) [« (2) , « (y) d(2)] = 0, for all z,y, 2
€ I. Replacing y with a~! (d(2)) y, we have

(2.13) a(z)a(z),d(z)a(y)d(z)] = 0.
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Replacing y by ya~! (d(z))w in (2.13) and using this, we obtain that
a(z)d(z)a(y) [d(z), a(2)]a(u)d(z) =0, for all z,y,z,u € I.
This implies that
a(2) [d(2), a ()] (y) [d(2), o (2)]a (u) [d(2), @ (2)] = 0, for all z,y,z,u € I.

That is (V[d(z),a (2)])® = (0), for all z € I where «(I) =V is a nonzero left ideal of
R. Since a semiprime ring contains no nonzero nilpotent left ideals, it follows that

and so
a(D)[d(z),a(2)] = (0), for all z € I.

The proof is completed. [

Theorem 2.2. Let R be a 2—torsion free semiprime ring, I a nonzero left ideal
of R, a an automorphism on R and F : R — R a multiplicative generalized
(o, @) —derivation of R associated with a multiplicative (c, ) —derivation d.

If [d(z), F(y)] = £a(zoy) for all x,y € I, then o (I)[d(z),a (z)] = (0) for all
x el

Proof. We assume that

(2.14) [d(z), F(y)] = £a (zoy), for all z,y € I.

Replacing x by zz in (2.14) and using this equation, we get

(215)d(@)[a (), F(y) + o () [d(2), F()] + [a (2) , Fy)}d(z) = +a (a]z,y])
Writing zz by = in (2.15), we find that

d(z)a(x)[a (2), F)] + o () d(@)[a (2) , F(
@16) 4 o(2) [ae), F)ld(z) + [a(2), F(w)]e (&

Left multiplication of (2.15) by «a(2) yields that

a(z)d(@)la(2), F(y)] + a(2) a(z) [d(2), F(y)]
+a(2)la(z), F(y)ld(z) = +a(z) a(z(z,y]).

Subtracting (2.17) from (2.16), we have

\_/@
=
_|_
Q

I —
IS
&
~
—~
~—
3
<
=

(2.17)

(2.18) d(z)a(z)[a(z),F(y)] + [a(z), F(y)]a(x)d(z) =0, for all z,y,z € I.

The last expression is the same as the relation (2.5). Using the similar arguments
as used in the Theorem 2.1, we get the required result. O
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Similarly, following theorem is straightforward.

Theorem 2.3. Let R be a 2—torsion free semiprime ring, I a nonzero left ideal
of R, a an automorphism on R and F : R — R a multiplicative generalized
(o, ) —derivation of R associated with a multiplicative (o, a))—derivation d.

If [d(z), F(y)] = 0 for all z,y € I, then o (I) [d(z),a (z)] = (0) for all x € I.

Theorem 2.4. Let R be a 2—torsion free semiprime ring, I a nonzero left ideal
of R, a an automorphism on R and F : R — R a multiplicative generalized
(o, ) —derivation of R associated with a multiplicative (o, a)— derivation d.

If g : R — R is a multiplicative derivation of R such that F([x,y])£[g(z), g(y)]+
o ([,9]) = 0 for all z,y € I, then a (T) [g(x), a ()] = (0) and  (T) [d(x), o ()] =
0) for allxz € I.

Proof. By the hypothesis, we have

(2.19) F([z,y]) £ [9(x),9(y)] £ a([z,y]) =0, for all x,y € I.

Replacing yx instead of y in (2.19), we get

F(lz,5)a (2) + a ([z,3]) d(z)
(220) Ho(@), gw) ()] + [9(z), @ (4) ()] + o [z, ylz) = 0.

Right multiplying (2.19) by « (x), we obtain

(2.21) F(lz,y))a (z) £ [9(x), 9(y)la (x) £ a([z,y]) a(z) =0, for all z,y € I.

Now subtracting (2.21) from (2.20), for all z,y € I, we arrive at

(2.22) a([z,y]) d(x) + g(y)[g(x), a ()] + [9(z), a (y) g(z)] = 0.

Substituting zy instead of y in (2.22), we obtain

a(z)a(fr,y])d(z) + g(z)a (y) [9(x), o (v)]
(2.23) +a () g(y)lg(x), a ()] + a (z) [g(z), a (y) g(x)]
+g(z),a (2)]a (y) g(x) =0

Left multiplying (2.22) by « (z) and then subtracting from (2.23), we find that

g9(x)a(y) [g(x), o ()] + [9(x), a (x)]a (y) g(x) = 0

and so

(2.24)  g(x)a(y)[g(x), a(z)] = ~[g(z), a (x)]a(y) g(x), for all 2,y € I.

Replacing y with ya~!(g(x))t in this equation, we have

(2.25) g(x)a(y)g(@)a(t)lg(z), a(x)] = -[g(z),a(@)]a(y) g (z)a(t) g(z).
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Now right multiplying (2.24) by « (¢) g(z)a (y) [g(z), a (z)], for all z,y,t € I, we
get

226) 920 3 lpo) (@l (D)o (1) o) o )

Using (2.25), this equation gives that

g(@)e (v) lo(), a (@)]a (¢
(2.27) = g(w)a (y) g () a (£) [g(x),

Again using (2.24), it reduces to

(2.28) g(@)a (y) [%(x),a ())a (t)

That is

29(x)e (y) l9(x), o (z)]a (t) g(z)o (y) [g(z), o ()] = 0, for all z,y,t € I.
Since R is 2—torsion free semiprime ring, we have

g(@)a(y) [g(x), o (@)]a (t) g(z)a (y) [9(x),  (2)] = 0, for all z,y,t € I.
Writing ¢tr,r € R by t in this equation, we get

g9(x)a(y) [g(x), o (@)]a (t) a(r)g(z)ex (y) [9(2), ()] = 0.

This implies that

By the semiprimeness of R, we get

a(t)g(@)a(y) [9(z),a(x)] =0

and so
a(y)g(z), a (z)]Ra(y) [9(z), o (x)] = (0).

Since R is semiprime ring, we arrive at
(2.29) a(l)[g(x),a(x)] = (0), for all z € I.

Now, replacing y with ry,r € R in (2.22) and using (2.29), we obtain

o ) ( 9
(2.30) +a(r) g(y)g(z), a(z
+lg(x)

a(r)a(lz,y]) dx) +a(r) g(y)lg(@), a (@) + a(r) [g(z), a (y) g(z)] = 0.
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Subtracting this equation from (2.30), we arrive at

(2.31)  a([z,r]y) d(z) + [g(x), a (r)]a(y) g(z) =0, for all x,y,€ I,r € R.
Replacing yz by y in (2.31), we get

(2.32) a([z,r]yx) d(z) + [g(x), a (r)]a (yz) g(x) = 0, for all x,y,€ I,r € R.
Right multiplying (2.31) by « (x) and subtracting from (2.32), we obtain

a([z,rly) [d(z), a(z)] + [g(x), a (r)]e(y)[g(z), a(z)] = 0.

Using a () [g(z), @ (x)] = (0) in this equation, we find that
a([z,rly) [d(z), a (2)] = 0.
By (2.31), we get
[a(x),r]a(y) [d(z),a(x)] =0, for all z,y € I,r € R.

In OIl)articulaur, [d(x), a(x)]a(y) [d(z), a(z)] =0,
and so
a(y)[d(z),a(z)]Ra (y) [d(z),a (x)] = (0), for all z,y € I.

By the semiprimeness of R yields that o (1) [d(z),a (z)] = (0) for all € I. This
completes the proof. O

Theorem 2.5. Let R be a 2—torsion free semiprime ring, I a nonzero left ideal
of R, a an automorphism on R and F : R — R a multiplicative generalized
(o, ) —derivation of R associated with a multiplicative (o, a))—derivation d.

If g : R — R is a multiplicative derivation of R such that F(zoy) £+ g(x)og(y) +
a(zoy) =0 forallx,y € I, then a(I) [g(x), o ()] = (0) and o (I) [d(z),  (z)] = (0)
forall xz € 1.

Proof. By our hypothesis, we have
(2.33) F(zoy) + g(x)og(y) £ a (xoy) =0, for all z,y € I.
Replacing yx by y in (2.33), we find that
F(zoy)a (z) + o (zoy) d (y) + g(x)o (9(y)o (x) + a(y) g (x)) £ o (zoy) a (x) = 0
and so

(2.34) F(zoy)a (x) + a(zoy) d(x) + (g9(x)og(y)) o (z)
' —9(¥) g (2),a ()] + (9(x)oaly)) g (z) + a (zoy) o (z) = 0.

Right multiplying (2.33) by a (z) and subtracting from (2.34), for all z,y € I, we
get
(2.35) a(zoy)d(x) —g(y) g (z), o (x)] + (9(z)oaly)) g (z) = 0.
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Substituting zy instead of y in (2.35), we obtain

(2.36) “(@alzoy)d(z) —a(z)g Ey)[ g(x),a(z)] - g(x)a(y)[g(ﬂf),a(w)]

+a(z) (g(x)oa(y)) g (v) — g (z), a (x)la(y) g (v) =

Left multiplying (2.35) by y and subtracting from (2.36), we have

g(x)a(y) [g(x), o ()] + [9(z), a (x)]a (y) g(x) = 0

and so

g9(@)a(y) [9(x), o ()] = =[g(z), a (x)]a (y) g(x), for all z,y € I.

This equation is same as the relation (2.24). Using the similar arguments, we get
the required result. [
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Abstract. In this paper, an (implicative) ideal and a fuzzy ideal of Sheffer stroke
BG-algebra are defined and some properties are presented. Then a fuzzy implicative
and a sub-implicative ideals of a Sheffer stroke BG-algebra are described. Morever,
an implicative Sheffer stroke BG-algebra and a medial Sheffer stroke BG-algebra are
defined, and it is expressed that every medial Sheffer stroke BG-algebra is an implicative
Sheffer stroke BG-algebra. Also, a fuzzy (completely) closed ideal and a fuzzy p-ideal
are determined. Finally, the relationships between these structures are shown.
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1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-algebras
and BCl-algebras ([6], [7]). It is known that the class of BCK-algebras is a proper
subclass of the class of BCl-algebras. J. Neggers and H. S. Kim introduced a new
notion called a B-algebra [12]. C. B. Kim and H. S. Kim [8] introduced a BG-algebra
as a generalization of B-algebra. Then a BG-algebra consists of a non-empty set X
with a binary operation * and a constant 0 satisfying some axioms.
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In 1965, Zadeh introduced the notion of a fuzzy set and fuzzy subset of a set
[22]. As a generalization of this, intuitionistic fuzzy subset was defined by K. T.
Atanassov ([2], [3], [4]) in 1986. In 1971, Rosenfield introduced the concept of
fuzzy sub-group [20]. Ahn and Lee studied fuzzy subalgebra of BG-algebra in [1].
Muthuraj et al. presented fuzzy ideals in BG-algebras in [10]. Also, Muthuraj and
Devi introduced a multi-fuzzy subalgebra of BG-algebras in [11].

Sheffer stroke (or Sheffer operation) was first introduced by H. M. Sheffer [21].
Because any Boolean function or axiom can be expressed by means of only this op-
eration [9], the most important application is to have all diods on the chip forming
processor in a computer, that is, it is enough to produce a single diod for Sheffer
operation. Thus, it is simpler and cheaper than to produce different diods for other
Boolean operations. In addition, it has many algebraic applications in algebraic
structures such as Sheffer stroke BG-algebras [13], interval Sheffer stroke basic al-
gebras [19], Sheffer stroke Hilbert algebras [14] and fuzzy filters [15], filters of strong
Sheffer stroke non-associative MV-algebras [17], (fuzzy) filters of Sheffer stroke BL-
algebras [18], Sheffer stroke UP-algebras [16] and Sheffer operation in ortholattices
[5].

After giving basic definitions and notions about a Sheffer stroke BG-algebra,
an (implicative) ideal of a Sheffer stroke BG-algebra is defined. It is proved that
every implicative ideal of a Sheffer stroke BG-algebra is its ideal. By describ-
ing a fuzzy (implicative) ideal of this algebraic structure, the relationship between
them is shown. After determining a fuzzy sub-implicative ideal of a Sheffer stroke
BG-algebra, it is proved that every fuzzy sub-implicative ideal of a Sheffer stroke
BG-algebra is the fuzzy ideal. An implicative Sheffer stroke BG-algebra is defined
and it is indicated that every fuzzy ideal of a Sheffer stroke BG-algebra is its fuzzy
sub-implicative ideal if the algebraic structure is implicative. Then a medial Shef-
fer stroke BG-algebra is described and it is expressed that every medial Sheffer
stroke BG-algebra is an implicative Sheffer stroke BG-algebra. Morever, a fuzzy
(completely) closed ideal and a fuzzy p-ideal of a Sheffer stroke BG-algebra are
determined and the relationships between them are indicated. It is shown that ev-
ery fuzzy completely closed ideal of an implicative Sheffer stroke BG-algebra is the
fuzzy implicative ideal under one condition. Finally, it is stated that every fuzzy
p-ideal of a Sheffer stroke BG-algebra is the fuzzy implicative ideal if this algebra
equals to the BCA-part.

2. Preliminaries

In this part, we give the basic definitions and notions about a Sheffer stroke and
a BG-algebra.

Definition 2.1. [5] Let A = (A, |) be a groupoid. The operation | is said to be
Sheffer stroke if it satisfies the following conditions:

(Sl) a1|a2 = a2|a1,

(52) (a1]ar)|(a1]az) = a1,



Fuzzy Implicative Ideals of Sheffer Stroke BG-algebras 915

(83) a1|((azlas)|(azlas)) = ((a1|az)|(a1|az))|as,
(54) (a1]((a1]a1)|(azlaz)))l(a1|((a1|a1)|(azlaz))) = a1.

Definition 2.2. [13] A Sheffer stroke BG-algebra is an algebra (A, [,0) of type
(2,0) such that 0 is the constant in A and the following axioms are satisfied:
(sBG.1) (a1(a1]ar))|(a1|(ar]ar)) =0,

(sBG.2) (0](azla2))|(a1] (azlaz))| (a1 (alaz)) = arlas,

for all ay,as € A.

Let A be a Sheffer stroke BG-algebra, unless otherwise is indicated.

Lemma 2.1. [13] Let A be a Sheffer stroke BG-algebra. Then the following fea-
tures hold:

1. (0|0)|(a1la1) = a1,

a1[(00))[(a1(0[0)) = ax,

a1|(az|az))|(a1](azlaz)) = (as|(az|az))|(as|(azlaz)) implies a1 = as,
0[(0[(a1la1))) = a1las,

If (a1|(azlaz))|(a1[(az|az)) = 0 then ay = as,

If (0f(a1a1)) =
(((a1](0(az]a1)))[(a1](0l(a1]a1))))l(a1la1)) = ailas,

(a1l(a1lar))|(a1]ar) = a1,

(
(
(
(

(0|(az]az)) then a1 = aq,

S S T R

for all ay,a9,a3 € A.

3. Some Types Of Fuzzy Ideals

Definition 3.1. Let I be a nonempty subset of a Sheffer stroke BG-algebra. Then
I is called an ideal of A if it satisfies:

(sI1) 0 €I,

(sI2) (a1|(azlaz))|(a1|(az]az)) € I and ag € I imply a; € 1.

Definition 3.2. A nonempty subset I of a Sheffer stroke BG-algebra A is called

an implicative ideal of A if

(i) 0el,

(i) (((a1](azl(a1la1)))|(a1(az[(a1]a1))))l(as|as))|(((a1[(az](ai]a1)))|(a1|(az|(as]
a1))))|(aslaz)) € I and a3 € I imply a1 € I,

for all ay,as,a3 € A
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Proposition 3.1. FEvery implicative ideal of a Sheffer stroke BG-algebra A is an
ideal of A.

Proof. Let I be an implicative ideal of A. Then 0 € I from Definition 3.2 (i).
Assume that (a1|(az]az))|(a1|(az]az)) € I and ay € I. Since
(((e1l(@1|(e1]an))|(a1| (o1 [(ar]ar))))] (azlaz))]

(a1 l(a1](o1]ar))(a1] a1 (as]a1))))(as]az))

= (((a1(0]0))|(a1(0]0))) (az]az))[(((a1](0]0))|(a1|(0[0)))|(az|az2))

= (a1](azlaz))|(a1|(azlaz)) € I,

from (S2), (sBG.1) and Lemma 2.1 (2), we obtain from Definition 3.2 (ii) that
a1 € I. Therefore, I is an ideal of A. [

Definition 3.3. A fuzzy subset p of a Sheffer stroke BG-algebra A is called a
fuzzy ideal of A if it satisfies the following conditions:

(1) 1(0) > p(an),

(11) p(ar) = min{p(az), u((a1](azlaz))(a1l(azlaz)))},

for all ay,as € A.

Lemma 3.1. Let pu be a fuzzy ideal of a Sheffer stroke BG-algebra A. If

a1 < az if and only if (a1|(azlaz))|(a1|(az|az)) =0

holds for all ay,a2 € A, then p(ar) > p(az) if a1 < as.
Proof. Let a1 < as. Then (a1|(az|az2))|(a1](az]az)) = 0. Thus,

plar) = min{p(az), p((a1l(azlaz))l(a1](az|az)))}
= min{u(az), u(0)}
= p(az)

from Definition 3.3 (ii) and (i), respectively. O

Lemma 3.2. Let u be a fuzzy ideal of a Sheffer stroke BG-algebra A. If u((a1|(asq
|laz))|(a1((az|az))) = (0), then p(ar) = plaz), for any ai, az € A.

Proof. 1t is obvious from Definition 3.3. [

Definition 3.4. A fuzzy subset p of a Sheffer stroke BG-algebra A is called a

fuzzy implicative ideal of A if it satisfies:

(1) p(0) = plar),

(11) p(ar) = min{p(as), p((((a1|(azl(ar|a1)))l(ar|(az|(a1a1))))
|(as|as))|(((a1](az|(a1]a1)))l(a1](az|(a1]ar))))l(aslas)))},

for all ay,as,a3 € A.

Proposition 3.2. Fuvery fuzzy implicative ideal of a Sheffer stroke BG-algebra A
is a fuzzy ideal of A.
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Proof. Let p be a fuzzy implicative ideal of a Sheffer stroke BG-algebra A. Then
1(0) > p(aq) from Definition 3.4 (i). Also,

((a1l(a1l(a1]a1)))|(a1l(a1](a1]a1))))l(az
(a1]a1)))|(a1](a1(a1la1))))[(azlaz)))}
((a11(0]0))[(a1((0]0)))[(az
NI(a11(0[0)))[(azlaz2)))}
(a1|(azlaz))[(a1|(az]az2)))}

by Definition 3.4 (ii), (S2), (sBG.1) and Lemma 2.1 (2). Therefore, u is a fuzzy
ideal of A. O

plar) = minfpu(az), p((
|a2))[(((a1 (a1

= min{pu(az), p((
|a2))[(((a1|(0]0

(a2),

1
= min{u(asz),

Theorem 3.1. Let p be a fuzzy subset of a Sheffer stroke BG-algebra A. Then p
is a fuzzy (implicative) ideal of A if and only if a level subset i, ={a € A: u(a) >
x} £ O of A is an (implicative) ideal of A.

Proof. Let p be a fuzzy ideal of A and p, # @. Since it follows from Definition
3.3 (i) that pu(0) > p(a) > =, for a € py, we get that 0 € p,. Assume that

az, (a1|(azlaz))|(a1|(azlaz)) € pa. Since p(az), p((a1|(azlaz))|(a1|(azlaz))) = x, it is
obtained from Definition 3.3 (ii) that

p(a1) > min{u(az), p((al(azlaz))|(a1|(azlaz)))} > z,

which implies that a; € p,. Thus, p, is an ideal of A. Also, let p be a fuzzy implica-
tive ideal of A and py # ©@. Suppose that as, (((a1|(az|(a1la1)))|(a1](az](a1]e1))))]
(as|as))|(((a1](az|(a1]a1)))|(a1](az|(a1]ar))))|(aslas)) € pa. Since

p(az), p((((a1](azl(a1]a1)))l(a1](az](a1]a1)))) (a3 as))
|(((a1](az|(ar|ar)))(ar|(az|(a1|ar))))|(as]as))) = =

we have from Definition 3.4 (ii) that

plar) = min{p(as), p((((a1](az](ar]a1)))[(a1](a2] (ar]a1))))|
(az]az))|(((a1(az|(a1|ar)))|(a1|(az|(a1]ar))))[(aslas)))} = =,

which means that a; € pu,. Hence, p, is an implicative ideal of A.

Conversely, let uy, # O be an ideal of A. Assume that 1(0) < p(a), for some a €
A. Itz = (u(0)+p(a))/2 € (0,1], then p(0) < z < p(a). So,0 ¢ g, which is contra-
diction with (sI1). Thereby, p(0) > w(a), for all a € A. Suppose that 1 = p(a1) <
min{/i(az), u((a1l(azlaz))(a1|(azlaz)))} = 2. I If 29 = (21 + 22)/2 € (0,1], then
1 < o < z2. Thus, ag, (a1]|(az]az))|(a1|(azla)) € pz, but a1 ¢ pg,, which con-
tradicts with (sI2). Then p(a;) > min{u(asz), p((a1|(az]az))|(a1l(az]az)))}, for all
a1,az € A. Hence, i is a fuzzy ideal of A. Moreover, let u, # @ be an implicative
ideal of A. Assume that y; = p(a1) < min{p(as), w((((a1](az](a1lar)))|(a1](az|(a1]
a)))l(aslas))|(((a (a2l (aa]an) (e a2l (o)) (aslas)))} = va. T 2* = (yr +
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y2)/2 € (0,1], then y; <z* <ya. So, a3, (((a1/(azl(a1]a1)))|(a1l(az[(a1]a1))))l(as]
a3))|(((a1](az|(a1]a1)))|(a1|(az|(a1]a1))))|(aslas)) € pz+ but a1 & pig~, which con-
tradicts with Definition 3.2 (ii). Hence,
pla) 2 min{pas), u(((ar ozl el ) oal )
|(as|as))|(((a1](az|(a1]a1)))|(a1](az|(a1]a1))))l(as|as)))},

for all a1, as,as € A. Therefore, i is a fuzzy implicative ideal of A. O

Definition 3.5. A fuzzy subset p of a Sheffer stroke BG-algebra A is called a

fuzzy sub-implicative ideal of A if it satisfies:

(1) p(0) = p(ar),

(11) p((azl(azl(arar)))l(azl(azl(a1la1)))) = min{u((((a1|(a1](azlaz)))l(a1|(as
|(az]az))))|(aslas))|(((a1|(a1[(az]az)))[(a1|(a1[(az]az))))l(as|as))), u(as)},

for all ay,as,a3 € A.

Proposition 3.3. Let A be a Sheffer stroke BG-algebra. Then every fuzzy sub-
implicative ideal of A is a fuzzy ideal of A.

Proof. Let p be a fuzzy sub-implicative ideal of A. Then p©(0) > p(ay) from Defini-
tion 3.5 (i). We get from (sBG.1), Lemma 2.1 (2), Definition 3.5 (ii) that

#((a11(0[0))[(a11(0]0)))
p((axl(arf(ar]ar)))|(arl(ar](ar]ar))))
min{x((((a1|(a1l(a1]a1)))l(a1|(a1l(a1]a1))))|(as|as))]
(((a1(a1l(ar|ar)))|(ar|(ar|(ar|ar))))|(aslas))), u(az)}
min{((((a1/(0[0))|(a1(0]0)))[(as|as))]
(((a1](0[0))(a1[(0[0)))[(as|as))), u(as)}

= min{u((a1|(as|as))|(a1](aslas))), p(as)}-
Therefore, p is a fuzzy ideal of A. O

p(ar)

AV

A~ —

/\/—\

Theorem 3.2. Let A be a Sheffer stroke BG-algebra and p be a fuzzy ideal of A.
Then u is a fuzzy sub-implicative ideal of A if and only if

(3.1) p((az|(az[(a1]ar)))|(az|(az|(a1]a1))))
' > p((ar|(ar|(az|az)))|(ar|(ar|(az|az))))-

Proof. Let u be a fuzzy sub-implicative ideal of A. We have from Lemma 2.1 (2)
and Definition 3.5 (ii) that

plazl(az|(a1lar)))|(az|(az|(a1]a1)))

Y

min{z((((a1|(a1|(azla2)))|(a1|(a1]

(az]a2))))[(0]0))[(((a1[(a1|(az|az2)))

(a1](a1](azla2))))[(0[0))), 1(0)}

= min{yu(ai|(a1l(azla2)))|,
(a1](a1|(azlaz)))u(0)}

= u(ai|(a1](azlaz)))|(a1l(a1|(az]az))).
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Conversely, since p is a fuzzy ideal, it follows that

(1) p(0) = p(ar),

(11)
1((az|(az|(a1]ar)))|(az|(az|(a1]a1)))) n((a1](arl(azlaz)))|(a1](a1|(az]az))))

min{p((((a1|(a1|(az]az)))|(a1|(a1](az

|az))))|(aslaz))|(((a1](a1|(az]az2)))]

(a1/(a1](azlaz))))|(as|as))), n(as)}-

(AVARLYS

—_

Therefore, u is a fuzzy sub-implicative ideal of A. O

Definition 3.6. A Sheffer stroke BG-algebra is said to be implicative if it satisfies
the condition

(3.2) ail(a1|(azlaz)) = az|(az|(a1lar)),

for all ay,as € A.

Theorem 3.3. Let A be an implicative Sheffer stroke BG-algebra. Then every
fuzzy ideal of A is a fuzzy sub-implicative ideal of A.

Proof. Let u be a fuzzy ideal of A. Then
(1) p(0) = p(ar),
(11)
1((az|(az|(a1]ar)))|(az|(az|(a1]a1))))
> min{u((((az|(azl(a1]a1)))|(azl(az[(a1]a1))))|(as|as)
(((az](az|(ar]a1)))|(az|(az|(ar]a1))))(aslas))), ulas
)
)

~—

= min{zu((((a1](a1[(az]az)))(a1|(ar](az]az2))))(as|as)
(((a1l(a1|(az]a2)))|(a1|(a1|(az|az))))|(as|as))), u(a

Thereby, i is a fuzzy sub-implicative ideal of A. O

)|
)}
)|
3)}-

Definition 3.7. A Sheffer stroke BG-algebra A is called medial if
(33) a1|(a1[(azlaz)) = azlas,

for all ay,as € A.

Lemma 3.3. In a Sheffer stroke BG-algebra A, the following property holds:

((a1](a1[(azlaz)))[(a1](a1|(az]az))))l(az|(a1|a1)) = ai1l(a1|(az]az2)),

for all a1,a92 € A.
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Proof. Tt follows from (S1), (S2) and (S3) that
((a1[(a1[(azlaz)))|(a1[(a1|(az]az))))|(az|(a1|a1))
a1))|(az|(a1las
a1 [(az|(a1lar))
az|(a1la1)))|(((
((a1la1)|az))[((

= (((a1](azla2)

= (a1](az]az))|

(a1](azla2))[(

= (a1](azlaz))

= (a1](azlaz))|

= a1|(a1|(az|az
O

a1)|((a1|(az|az

) )
a1|(az|(a1la1))) )

)

)

— —

ailai)|(a1]ar))

|
(arlar)|(a1]ar))

ailar)|(a1]ar)
(a]ar)|(a1]ar
(alar)|(a1]ar))

).

|
(
(
(

—~ o~

(a2|(ar]a1))))
|((a1]a1)[az2)))

I~ N~ N T

~—

Theorem 3.4. FEvery fuzzy ideal of a medial Sheffer stroke BG-algebra A is a fuzzy
sub-implicative ideal of A.

Proof. Let p be a fuzzy ideal of a medial Sheffer stroke BG-algebra A. It is obtained
from (S2), Definition 3.3, Definition 3.7 and Lemma 3.3 that

E?))M(O) > p(a),

p((azl(azl(ailar)))l(az|(azl(a1la1))))

= p(ar)

> min{u((a1|(as|as))|(a1](as|as))), p(as)}

= min{x((((az|(az|(a1]a1)))|(az|(az|(a1]a1))))|(as|as))|
(((azl(azl(a1]a1)))l(az|(az|(a1la1))))|(aslas))), nlas)}

= min{p(((((a1](a1](az]az)))l(a1|(a1](az]az2))))|(az|(a1|a1))
(((a1](a1[(az]az)))l(a1[(a1](az]az))))|(az|(a1|a1)))|(as|as))]
((((a1](a1l(azlaz)))l(a1|(a1[(az]az))))|(az|(a1|a1)))|(((a1](a1
|(azlaz)))|(a1[(a1|(az]az))))|(az|(a1]ar)))|(as|as))), n(as)}

= min{x((((a1|(a1|(azla2)))|(a1|(a1](az]az))))|(as|as))|
(((a1[(a1|(az]az)))(a1|(a1[(az|az))))|(as]as))), plas)}-

Hence, p is a fuzzy sub-implicative ideal of A. J

)l
)

Theorem 3.5. Let A be a Sheffer stroke BG-algebra satisfying

p((az|(aslaz))|(az|(aslaz))) = p((((ar|(a1|(az|az)))|(a1|(ar|(az|
(3-4) az))))|(aslas))[(((a1|(ar|(az|a2)))
|(a1](a1](az2]az2))))|(as]as))),

for all ay,as,a3 € A. Then every fuzzy ideal of A is a fuzzy sub-implicative ideal

of A.
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Proof. 1t is obtained from the inequality (3.3), (S2) and Lemma 3.3 that

p((azl(az|(ar|ar)))|(az|(az|(arlar)))) = p((((ar|(ar|(az|az)))|(ar|(as|(az|az))))
|(a2[(a1]a1)))[(((a1|(a1|(az]az)))]
(a1](a1](az2]az2))))|(az|(a1ar))))
p((ar|(ar|(az|az)))l(arl(arl(az]az))))-

Thus, p is a fuzzy sub-implicative ideal of A by Theorem 3.2. O

Theorem 3.6. FEvery medial Sheffer stroke BG-algebra is an implicative Sheffer
stroke BG-algebra.

Proof. Let A be a medial Sheffer stroke BG-algebra. Then it follows from Lemma
3.3, Definition 3.7 and (S2) that

ail(ai|(azlaz)) = ((a1|(a1](azlaz)))
((az]az)|(az]az2))|

= az|(az2|(a1|a1)).

(a1](a1|(azlaz2))))|(az|(a1|a1))
(azl(a1la1))

Therefore, A is an implicative Sheffer stroke BG-algebra. [

Theorem 3.7. Let u be a fuzzy ideal of a Sheffer stroke BG-algebra A. Then p
is a fuzzy implicative ideal of A if and only if p satisfies the following condition:

(3.5) plar) = p((arl(azl(arlar)))l(arl(azl(a1]a1)))),

for all a1,a92 € A.

Proof. (=) Let p be a fuzzy implicative ideal of A. Then we get from Lemma 2.1
(2) that

—~

0), u((((a1](az|(a1la1)))l(a1](az|(a1]a1))))|(0
a1|(az|(a1la1)))|(a1l(az|(a1la1))))[(0]0)))}

0), u((a1|(azl(a1lar)))|(a1l(az|(a1]a1))))}
az|(alar)))[(a1|(azl(a1]a1)))),

plar) = min{p
JONI((

= min{u

= l(an]

—_ =

for all ay,as € A.

(<) Let p be a fuzzy ideal of A satisfying the inequality (3.4). Then it is clear
that ©(0) > u(aq), for all a3 € A. Since
(a1 l(az|(ar]ar)))l(a1|(az|(a1]a1))))
min{x((((a1](az|(a1]a1)))l(a1](az|(a1]a1))))|(as]as))|
(((a1l(az[(a1la1)))l(a1|(az|(a1]a1))))l(aslas))), nlas)},

for all a1, as,a3 € A, we have that u is a fuzzy implicative ideal of A. O

pn(ar)

AVARNY
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Theorem 3.8. Let A be a medial Sheffer stroke BG-algebra satisfying

(3.6) 1((ar|(a1](azlaz)))|(a1](a1|(azlaz))))
' > p((ail(az|(a1la1)))l(a1|(az|(a1la1)))),

for all a1,a9 € A. Then every fuzzy sub-implicative ideal of A is a fuzzy implicative
ideal of A.

Proof. Let u be a fuzzy sub-implicative ideal of a medial Sheffer stroke BG-algebra A
satisfying the inequality (3.5). Then we obtain from Definition 3.7, (S2), Definition
3.5, Lemma 2.1 (2) and the inequality (3.5) that

wlar) = pl(azl(azl(a1lar)))|(az|(az|(a1la1))))
> min{u((((a1|(a1](az]az)))|(a1|(a1](az]az2))))I(0[0))
|(((a1[(a1](az|az)))|(a1](a1](azlaz2))))[(0]0))), 1(0)}

( 2| 2

= min{p((a1|(a1|(az|az)))|(a1[(a1](az]az)))), u(0)}
= pl(ar(ar(azlaz)))|(a1|(as|(az]az))))
> p((a1](az](a1]ar)))[(ar|(az|(ar]ar))))-

Thus, u is a fuzzy implicative ideal of A by Theorem 3.7. [

Theorem 3.9. Let A be an implicative Sheffer stroke BG-algebra. Then every
fuzzy implicative ideal of A is a fuzzy sub-implicative ideal of A.

Proof. Let p be a fuzzy implicative ideal of an implicative Sheffer stroke BG-algebra
A. Then pu is a fuzzy ideal of A by Proposition 3.2. So, it is obvious that u(0) >
w(ay), for all a; € A. Thus, it follows from Definition 3.6 and Definition 3.3 (ii)
that

p((az|(az|(ar|ar)))|(az|(az|(ai]a1))))

p((ar|(ar|(azlaz)))|(ar|(ar|(az]az))))
min{p((((a1](a1|(az]az)))|(a1|(ar|(az
|a2))))|(asas))|(((a1](a1](az]az)))

|(a1](a1[(azaz))))l(aslas))), m(as)},

for all a1, aq2,as € A. Hence, p is a fuzzy sub-implicative ideal of A. O

v

Corollary 3.1. Let A be a medial Sheffer stroke BG-algebra. Then every fuzzy
implicative ideal of A is a fuzzy sub-implicative ideal of A.

Definition 3.8. A fuzzy ideal p of a Sheffer stroke BG-algebra A is said to be
fuzzy closed if

(3.7) 1((0[(a1|a1))[(0l(a1]a1))) = pla),
for all a1 € A.
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Definition 3.9. Let u be a fuzzy ideal of a Sheffer stroke BG-algebra A. Then
is called a fuzzy completely closed ideal of A if

p((ar|(az|az))|(ar|(azlaz))) = min{pu(ar), plaz)},

for all ay,as € A.

Theorem 3.10. Let A be a Sheffer stroke BG-algebra satisfying

(3.8) ((((a1(azaz))|(a1|(az|az)))|(as|(as|as)))(((a1](az]
' az))|(a1|(azlaz)))l(a1l(aslas))))l(as|(azlaz)) = 00,

for all ay,a0,a3 € A. Then A is implicative if and only if every fuzzy closed ideal
of A is a fuzzy implicative ideal of A.

Proof. Let A be a Sheffer stroke BG-algebra satisfying the equation (3.8).
(=) Assume that A is implicative and p is a fuzzy closed ideal of A. Then u is
a fuzzy ideal of A. Thus,
(1) p(0) = p(ar).
(i1)

plar) = min{pu(as), p((arl(aslas))|(ar](aslas)))}
= min{u(az), u(((((ar]ar)|(ara1))[((a1]a1)]az))|(as
|a3))|((((a1]ar)|(ar]ar))|((a1]ar)laz))[(aslas)))}
= min{u(az), p((((a1l(azl(ar]a1)))l(a1](azl(a1]a1))))l (a3
la3))[(((a1](az|(a1]ar)))|(ar](az[(a1]a1))))|(asas)))},

which means that u is a fuzzy implicative ideal of A.

(<=) Suppose that every fuzzy closed ideal of A is a fuzzy implicative ideal of A.
So, it follows from the equation (3.8), (S1)-(S2) and Lemma 2.1 (5) that az|(az|az) =
(a1](as|as))[((a1](az]az))|(a1](az]az))). Since as|(az|az) = (a1|(as|as))|((a1|(az]az))
[(@1(ala2))) = ((a1](a1|(aslas)))| o1 |(a1](as]as))) (azaz) from (S1) and (3), it i
obtained from (S2) and Lemma 2.1 (3) that as = (a1|(a1|(as|as)))|(a1](a1](as|as))).
Thus, we get from (S1)-(S3) and Lemma 2.1 (8) that

azl(az|(a1la1))))[(((az
az|(alar))))|(azlaz))
(az(az|(a1]a1))))[(az|(((a2
((az]az)|(az|(a1]a1)))))
|(az](az|(a1|a1))))[(az|(az]az))
2|az)|(azlaz)))|((az]
aslaz))|((azlaz)|(azlaz))))|(azl(a1]a1))

= az|(az|(a1]ar)),

ail(a1|(azlaz)) =

for all ai,as € A, which means that A is implicative. [J
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Proposition 3.4. Let A be an implicative Sheffer stroke BG-algebra satisfying the
equation (3.8). Then every fuzzy completely closed ideal of A is a fuzzy implicative
ideal of A.

Proof. Let p be a fuzzy completely closed ideal of an implicative Sheffer stroke
BG-algebra A. Then p is a fuzzy ideal of A. Since u((0|(az|az))|(0|(azlaz))) >

min{u(0), u(az)} = p(az), it is obtained that p is a fuzzy closed ideal of A. There-
fore, p is a fuzzy implicative ideal of A from Theorem 3.10. O

Corollary 3.2. Let A be a medial Sheffer stroke BG-algebra satisfying the equation

(8.8). Then every fuzzy completely closed ideal of A is a fuzzy implicative ideal of
A.

Definition 3.10. A fuzzy set p of a Sheffer stroke BG-algebra A is called a fuzzy
p-ideal of A if it satisfies:

(1) 1(0) = p(a),
(1) par) = min{u((((a1](aslas))|(a1|(aslas)))|(az|(as]

az)))|(((ar|(as|as))l(a1[(as|as)))|(az|(as]as)))), nlaz)},

for all ay,as,a3 € A

Definition 3.11. Let A be a Sheffer stroke BG-algebra. Then the set A1 = {a1 €
A : (0](a1]|a1))|(0](ar|ar)) = 0} is called the BCA-part of A.

Theorem 3.11. Let A = Ay be a Sheffer stroke BG-algebra. Then every fuzzy
p-ideal of A is a fuzzy implicative ideal of A.

Proof. Let u be a fuzzy p-ideal of A. Since

plar) > min{pu((((a1|(az|(a1]ar)))l(a1|(az](a1]a1))))|(0(az|(a1]a1))))]
(((a1](az[(a1]ar)))[(a1](az|(a1|a1))))|(0|(az|(a1]a1))))), #(0)}
= min{u((((a1|(az|(a1]a1)))|(a1|(az|(a1]a1))))[(0]0))]
(((a1l(az|(a1]ar)))l(a1|(az|(a1|a1))))[(0[0))), 1(0)}
= min{u((a1l(az((a1|a1)))|(a1|(az|(a1]a1)))), u(0)}
= p((a1l(az|(a1r|ar)))|(a1|(az|(a1]a1)))),

from Definition 3.10 (i)-(ii), (S2) and Lemma 2.1 (2), it follows from Theorem 3.7
that p is a fuzzy implicative ideal of A. O

4. Conclusion

In this study, we introduce a fuzzy ideal, a fuzzy implicative ideal, a fuzzy sub-
implicative ideal, a fuzzy (completely) closed ideal and a fuzzy p-ideal of a Sheffer
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fuzzy p —ideal fuzzy completely elosed ideal

fuzzy sub — implicative ideal Sfuzzy implicative ideal

\ /

fuzzy ideal fuzzy closed ideal

Fic. 3.1: Diagram of some types of fuzzy ideals

stroke BG-algebra and investigate some properties. After giving basic definitions
and notions about a Sheffer stroke BG-algebra, we define an (implicative) ideal of a
Sheffer stroke BG-algebra and prove that every implicative ideal of a Sheffer stroke
BG-algebra is the ideal. Also, we determine a fuzzy ideal, a fuzzy implicative ideal
and a fuzzy sub-implicative ideal on this algebraic structure. Besides, we construct
an (implicative) ideal of a Sheffer stroke BG-algebra by means of its fuzzy (implica-
tive) ideal and vice versa. It is shown that every fuzzy ((sub-)implicative) ideal of a
Sheffer stroke BG-algebra is its fuzzy ideal. Besides, we examine the cases which the
inverses hold. Morever, we describe an implicative Sheffer stroke BG-algebra and a
medial Sheffer stroke BG-algebra and indicate that every medial Sheffer stroke BG-
algebra is an implicative Sheffer stroke BG-algebra. It is demonstrated that every
fuzzy ideal of an implicative (or medial) Sheffer stroke BG-algebra is the fuzzy sub-
implicative ideal. It is indicated that every fuzzy sub-implicative ideal of a Sheffer
stroke BG-algebra is the fuzzy implicative ideal when the algebra is a medial Sheffer
stroke BG-algebra with a special condition, and every fuzzy implicative ideal of an
implicative (or medial) Sheffer stroke BG-algebra is its fuzzy sub-implicative ideal.
Finally, a fuzzy (completely) closed ideal and a fuzzy p-ideal of this algebraic struc-
ture are determined and the relationship between them are examined. By BCA-part
of a Sheffer stroke BG-algebra, we prove that every fuzzy p-ideal of a Sheffer stroke
BG-algebra is its fuzzy implicative ideal when the algebraic structure equals to the
BCA-part.
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