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Original Scientific Paper

Abstract. In this paper, we discuss various consequences of Hahn-Banach theorem
for bounded b-linear functional in linear n-normed space and describe the notion of
reflexivity of linear n-normed space with respect to bounded b-linear functional. The
concepts of strong convergence and weak convergence of a sequence of vectors with
respect to bounded b-linear functionals in linear n-normed space have been introduced
and some of their properties are being discussed.
Keywords: Hahn-Banach theorem, reflexivity of normed linear space, weak and strong
convergence, linear n-normed space, n-Banach space.

1. Introduction

The dual space of a normed linear space is the set of all bounded linear functionals
on the space. In some cases, the dual of the dual space, i. e., second dual space of
a normed space, under a specific mapping-called the natural embedding, is isomet-
rically isomorphic to the original space. Such normed spaces are known as reflexive
spaces. This concept was introduced by H.Hahn in 1927 and called reflexivity by
E.R Lorch in 1939.Hahn recognized the importance of reflexivity in his study of
linear equations in normed spaces.Weak convergence of sequence of vectors in a
normed space is a certain kind of interplay between a normed space and its dual
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space. This concept demonstrates a fundamental principle of functional analysis
which in turn states that the investigation of normed spaces is generally linked with
that of their dual spaces.Weak convergence has various applications in the calculus
of variations, general theory of differential equations and in fact, plays an important
role in many problems of analysis.

The notion of linear 2-normed space was introduced by S.Gahler [2]. A survey
of the theory of linear 2-normed space can be found in [1]. The concept of 2-Banach
space is briefly discussed in [8]. H.Gunawan and Mashadi [5] developed the gener-
alization of a linear 2-normed space for n ≥ 2. P. Ghosh and T. K. Samanta [3]
developed Uniform Boundedness Principile and Hahn-Banach theorem for bounded
b-linear functionals in linear n-normed space. They also studied slow convergence of
sequences of b-linear functionals in linear n-normed space [4].

In this paper, some important consequences of the Hahn-Banach theorem for
bounded b-linear functionals in case of linearn-normed spaces are discussed.We
shall introduce the notion of b-relexivity of linearn-normed space and see that
a closed subspce of a b-reflexiven-Banach space is also b-reflexive. Finally, b-weak
convergence and b-strong convergence of a sequence of vectors in a linearn-normed
space in terms of bounded b-linear functionals are introduced and characterized.

2. Preliminaries

Theorem 2.1. [6] Let {Tk } be a sequence of bounded linear operators Tk : Y →
Z from a Banach space Y into a normed space Z such that { ∥Tk (x ) ∥ } is
bounded for every x ∈ Y . Then the sequence of the norms { ∥Tk ∥ } is bounded.

Definition 2.1. [5] Let X be a linear space over the field K, where K is the real
or complex numbers field with dimX ≥ n, where n is a positive integer. A real
valued function ∥ ·, · · · , · ∥ : X n → R is called an n-norm on X if

(N1) ∥x 1, x 2, · · · , xn ∥ = 0 if and only if x 1, · · · , xn are linearly dependent,

(N2) ∥x 1, x 2, · · · , xn ∥ is invariant under permutations of x 1, x 2, · · · , xn,

(N3) ∥αx 1, x 2, · · · , xn ∥ = |α | ∥x 1, x 2, · · · , xn ∥ ∀ α ∈ K,

(N4) ∥x + y, x 2, · · · , xn ∥ ≤ ∥x, x 2, · · · , xn ∥ + ∥ y, x 2, · · · , xn ∥

hold for all x, y, x 1, x 2, · · · , xn ∈ X. The pair (X , ∥ ·, · · · , · ∥ ) is then called a
linear n-normed space. For particular value n = 2, the space X is said to be a
linear 2-normed space [2].

Throughout this paper, X will denote linearn-normed space over the field K
( R or C ) associated with the n-norm ∥ ·, · · · , · ∥.
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Definition 2.2. [5] A sequence {x k } ⊆ X is said to converge to x ∈ X if

lim
k→∞

∥x k − x, e 2, · · · , en ∥ = 0

for every e 2, · · · , en ∈ X and it is called a Cauchy sequence if

lim
l , k→∞

∥x l − x k, e 2, · · · , en ∥ = 0

for every e 2, · · · , en ∈ X. The space X is said to be complete or n-Banach space
if every Cauchy sequence in this space is convergent in X. 2-Banach space [8] is a
particular case of n-Banach space for n = 2.

Definition 2.3. [7] We define the following open and closed ball in X:

B { e 2, ···, en } ( a, δ ) = {x ∈ X : ∥x − a, e 2, · · · , en ∥ < δ } and

B { e 2, ···, en } [ a, δ ] = {x ∈ X : ∥x − a, e 2, · · · , en ∥ ≤ δ } ,
where a, e 2, · · · , en ∈ X and δ be a positive number.

Definition 2.4. [7] A subset G of X is said to be open in X if for all a ∈ G,
there exist e 2, · · · , en ∈ X and δ > 0 such that B { e 2, ···, en } ( a, δ ) ⊆ G.

Definition 2.5. [7] Let A ⊆ X. Then the closure of A is defined as

A =

{
x ∈ X | ∃ {x k } ∈ A with lim

k→∞
x k = x

}
.

The set A is said to be closed if A = A.

Definition 2.6. [3] Let W be a subspace of X and b 2, b 3, · · · , bn be fixed
elements in X and ⟨ b i ⟩ denote the subspaces of X generated by b i, for i =
2, 3, · · · , n. Then a map T : W × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩ → K is called a b-linear
functional on W × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩, if for every x, y ∈ W and k ∈ K, the
following conditions hold:

(I) T (x + y , b 2 , · · · , bn ) = T (x, b 2, · · · , bn ) + T ( y, b 2, · · · , bn )

(II) T ( k x, b 2, · · · , bn ) = k T (x, b 2, · · · , bn ).

A b-linear functional is said to be bounded if there exists a real number M > 0
such that

|T (x, b 2, · · · , bn ) | ≤ M ∥x, b 2, · · · , bn ∥ ∀ x ∈ W.

The norm of the bounded b-linear functional T is defined by

∥T ∥ = inf {M > 0 : |T (x, b 2, · · · , bn ) | ≤ M ∥x, b 2, · · · , bn ∥ ∀ x ∈ W } .

The norm of T can be expressed by any one of the following equivalent formula:
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(I) ∥T ∥ = sup { |T (x, b 2, · · · , bn ) | : ∥x, b 2, · · · , bn ∥ ≤ 1 }.

(II) ∥T ∥ = sup { |T (x, b 2, · · · , bn ) | : ∥x, b 2, · · · , bn ∥ = 1 }.

(III) ∥T ∥ = sup
{

|T ( x, b 2, ···, bn ) |
∥ x, b 2, ···, bn ∥ : ∥x, b 2, · · · , bn ∥ ̸= 0

}
.

Also, we have

|T (x, b 2, · · · , bn ) | ≤ ∥T ∥ ∥x, b 2, · · · , bn ∥ ∀ x ∈ W.

Let X ∗
F denote the Banach space of all bounded b-linear functional defined on

X × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩ with respect to the above norm.

Definition 2.7. [3] A set A of bounded b-linear functionals defined on X ×
⟨ b 2 ⟩ × · · · × ⟨ bn ⟩ is said to be pointwise bounded if for each x ∈ X, the set
{T (x, b 2, · · · , bn ) : T ∈ A} is a bounded set in K and uniformly bounded if
there exists K > 0 such that ∥T ∥ ≤ K ∀ T ∈ A.

Theorem 2.2. [3] Let X be a n-Banach space over the field K. If a set A of
bounded b-linear functionals on X × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩ is pointwise bounded, then
it is uniformly bounded.

Theorem 2.3. [3] Let X be a linear n-normed space over the field R and W
be a subspace of X. Then each bounded b-linear functional TW defined on W ×
⟨ b 2 ⟩ × · · · × ⟨ bn ⟩ can be extended onto X × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩ with preservation
of the norm. In other words, there exists a bounded b-linear functional T defined
on X × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩ such that

T (x, b 2, · · · , bn ) = TW (x, b 2, · · · , bn ) ∀ x ∈ W

and ∥TW ∥ = ∥T ∥.

Theorem 2.4. [3] Let X be a linear n-normed space over the field R and x 0 be
an arbitrary non-zero element in X. Then there exists a bounded b-linear functional
T defined on X × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩ such that

∥T ∥ = 1 and T (x 0, b 2, · · · , bn ) = ∥x 0, b 2, · · · , bn ∥ .

Theorem 2.5. [3] Let X be a linear n-normed space over the field R and x ∈
X. Then

∥x, b 2, · · · , bn ∥ = sup

{
|T (x, b 2, · · · , bn ) |

∥T ∥
: T ∈ X ∗

F , T ̸= 0

}
.
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3. Consequences of Hahn-Banach theorem in linear n-normed space

In this section, we shall consider some immediate corollaries and important con-
sequences of the Hahn-Banach extension theorem for bounded b-linear functional
[3] in case of linearn-normed space.

Theorem 3.1. Let X be a linear n-normed space over the field R and let x, y
be two distinct points of X such that the set {x, b 2, · · · , bn } or { y, b 2, · · · , bn }
are linearly independent. Then there exists T ∈ X ∗

F such that

T (x, b 2, · · · , bn ) ̸= T ( y, b 2, · · · , bn ).

Proof. Consider, z = x − y. Then θ ̸= z ∈ X and therefore by Theorem 2.4,
there exists T ∈ X ∗

F such that

T ( z, b 2, · · · , bn ) = ∥ z, b 2, · · · , bn ∥

and ∥T ∥ = 1.Thus

T (x − y, b 2, · · · , bn ) = ∥x − y, b 2, · · · , bn ∥ ̸= 0

⇒ T (x, b 2, · · · , bn ) − T ( y, b 2, · · · , bn ) ̸= 0

⇒ T (x, b 2, · · · , bn ) ̸= T ( y, b 2, · · · , bn ).

Corollary 3.1. If X ̸= { θ } is a linear n-normed space, then there are always
non-trivial bounded b-linear functionals on X × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩, i. e., X ̸=
{ θ } ⇒ X ∗

F ̸= {O }, O being a null operator.

Proof. This is an immediate consequence of Theorem 2.4.

Corollary 3.2. Let X be a linear n-normed space. Then for all T ∈ X ∗
F ,

T (x, b 2, · · · , bn ) = 0 ⇒ x = θ.

Proof. If possible let x ̸= θ. Then by Corollary 3.1, there exists T ∈ X ∗
F such

that T (x, b 2, · · · , bn ) ̸= 0.This is a contradiction to the given hypothesis. Hence
the results follows.

We now proceed to present another implication of the Hahn-Banach theorem for
bounded b-linear functional and establish that there are always sufficient bounded
b-linear functionals on a linear n-normed space which separate points from proper
subspaces.

Theorem 3.2. Let X be a linear n-normed space over the field R and W be a
subspace of X and let x 0 ∈ X such that x 0, b 2, · · · , bn are linearly independent
and suppose d = inf

x∈W
∥x 0 − x, b 2, · · · , bn ∥ > 0. Then there exists T ∈ X ∗

F

such that
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(I) T (x 0, b 2, · · · , bn ) = 1,

(II) T (x, b 2, · · · , bn ) = 0 ∀ x ∈ W and ∥T ∥ = 1
d .

Proof. Let W 0 = W + ⟨x 0 ⟩ be the space spannded by W and x 0. Since d > 0,
we have x 0 ̸∈ W . Therefore, each x ∈ W0 can be expressed uniquely in the form
x = y + αx 0, y ∈ W and α ∈ R.We define a functional as follows:

T 1 : W0 × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩ → R, T 1 ( y + αx 0, b 2, · · · , bn ) = α.

Then clearly T 1 is a b-linear functional on W0 × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩ satisfying

T 1 (x, b 2, · · · , bn ) = 0 ∀ x ∈ W and T 1 (x 0, b 2, · · · , bn ) = 1.

Also, for each x ∈ W0, we have

|T 1 (x, b 2, · · · , bn ) | = |T 1 ( y + αx 0, b 2, · · · , bn ) | = |α |

=
|α | ∥x, b 2, · · · , bn ∥
∥x, b 2, · · · , bn ∥

=
|α | ∥x, b 2, · · · , bn ∥
∥ y + αx 0, b 2, · · · , bn ∥

=
|α | ∥x, b 2, · · · , bn ∥

|α |
∥∥ y

α + x 0, b 2, · · · , bn
∥∥

=
∥x, b 2, · · · , bn ∥∥∥x 0 −
(
− y

α

)
, b 2, · · · , bn

∥∥
≤ ∥x, b 2, · · · , bn ∥

d

[
since − y

α
∈ W

]
.

This shows that T 1 is a bounded b-linear functional with ∥T 1 ∥ ≤ 1
d . To prove

∥T 1 ∥ ≥ 1
d , we consider a sequence {x k } , x k ∈ W such that

lim
k→∞

∥x 0 − x k, b 2, · · · , bn ∥ = d.

Now,

1 = |T 1 (x 0, b 2, · · · , bn ) − T 1 (x k, b 2, · · · , bn ) |
= |T 1 (x 0 − x k, b 2, · · · , bn ) |
≤ ∥T 1 ∥ ∥x 0 − x k, b 2, · · · , bn ∥ .
≤ ∥T 1 ∥ lim

k→∞
∥x 0 − x k, b 2, · · · , bn ∥

= ∥T 1 ∥ d ⇒ ∥T 1 ∥ ≥
1

d
.

Thus, we have established that there exists a bounded b-linear functional T 1 on
W0 × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩ such that

T 1 (x, b 2, · · · , bn ) = 0 ∀ x ∈ W, T 1 (x 0, b 2, · · · , bn ) = 1 and ∥T 1 ∥ =
1

d
.
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Applying the Theorem 2.3, we obtain a b-linear functional T ∈ X ∗
F such that

T (x, b 2, · · · , bn ) = T 1 (x, b 2, · · · , bn ) ∀ x ∈ W0 and ∥T ∥ = ∥T 1 ∥ =
1

d
.

So,

T (x, b 2, · · · , bn ) = T 1 (x, b 2, · · · , bn ) = 0 ∀ x ∈ W and

T (x 0, b 2, · · · , bn ) = T 1 (x 0, b 2, · · · , bn ) = 1.

Hence, the proof of the theorem is complete.

Remark 3.1. Theorem 3.2 is a generalization of Theorem 2.4 and its derivation is as
follows:

Consider W = { 0 } and d = ∥x 0, b 2, · · · , bn ∥, then by Theorem 3.2, there exists
a bounded b-linear functional T 0 ∈ X ∗

F such that

∥T 0 ∥ =
1

d
=

1

∥x 0, b 2, · · · , bn ∥ and T 0 (x 0, b 2, · · · , bn ) = 1.

Now, for all x ∈ X, we define

T (x, b 2, · · · , bn ) = ∥x 0, b 2, · · · , bn ∥ T 0 (x, b 2, · · · , bn ).

Then

T (x 0, b 2, · · · , bn ) = ∥x 0, b 2, · · · , bn ∥ T 0 (x 0, b 2, · · · , bn )

= ∥x 0, b 2, · · · , bn ∥ .

Also,

∥T ∥ = sup

{
|T (x, b 2, · · · , bn ) |
∥x, b 2, · · · , bn ∥ : ∥x, b 2, · · · , bn ∥ ̸= 0

}
= sup

{
| ∥x 0, b 2, · · · , bn ∥ T 0 (x, b 2, · · · , bn ) |

∥x, b 2, · · · , bn ∥ : ∥x, b 2, · · · , bn ∥ ̸= 0

}
= ∥x 0, b 2, · · · , bn ∥ sup

{
|T 0 (x, b 2, · · · , bn ) |
∥x , b 2 , · · · , bn ∥ : ∥x, b 2, · · · , bn ∥ ̸= 0

}
= ∥x 0, b 2, · · · , bn ∥ ∥T 0 ∥ = 1.

Corollary 3.3. Let X be a linear n-normed space over the field R and W be a
subspace of X and let x 0 ∈ X such that x 0, b 2, · · · , bn are linearly independent
and suppose d = inf

x∈W
∥x 0 − x, b 2, · · · , bn ∥ > 0. Then

(I) T (x 0, b 2, · · · , bn ) = d,

(II) T (x, b 2, · · · , bn ) = 0 ∀ x ∈ W and ∥T ∥ = 1, for some T ∈ X ∗
F .
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Proof. By Theorem 3.2, there exists T 1 ∈ X ∗
F such that

T 1 (x 0, b 2, · · · , bn ) = 1, T 1 (x, b 2, · · · , bn ) = 0 ∀ x ∈ W

and ∥T 1 ∥ = 1
d . Define the bounded b-linear functional T on X × ⟨ b 2 ⟩ × · · · ×

⟨ bn ⟩ by T = d T 1. Then

T (x 0, b 2, · · · , bn ) = d T 1 (x 0, b 2, · · · , bn ) = d ,

T (x, b 2, · · · , bn ) = d T 1 (x, b 2, · · · , bn ) = 0 ∀ x ∈ W

with ∥T ∥ = d ∥T 1 ∥ = d
d = 1.This completes the proof.

Corollary 3.4. Let X be a linear n-normed space over the field R and W be
a closed linear subspace of X and let x 0 ∈ X − W such that x 0, b 2, · · · , bn
are linearly independent and suppose d = inf

x∈W
∥x 0 − x, b 2, · · · , bn ∥. Then there

exists T ∈ X ∗
F such that

(I) T (x 0, b 2, · · · , bn ) = 1,

(II) T (x, b 2, · · · , bn ) = 0 ∀ x ∈ W and ∥T ∥ = 1
d .

Proof. It can be easily verified that inf
x∈W

∥x 0 − x, b 2, · · · , bn ∥ = 0 if and only

if x 0 ∈ W . But W = W and it follows that x 0 ̸∈ W . Hence

d = inf
x∈W

∥x 0 − x, b 2, · · · , bn ∥ > 0.

Now, the proof of this corollary follows from Theorem 3.2.

Corollary 3.5. Let X be a linear n-normed space over the field R and W be a
closed linear subspace of X and let x 0 ∈ X − W such that x 0, b 2, · · · , bn are
linearly independent. Then there exists T ∈ X ∗

F such that

T (x 0, b 2, · · · , bn ) ̸= 0 and T (x, b 2, · · · , bn ) = 0 ∀ x ∈ W.

Proof. Proof of this corollary directly follows from that of the corollary 3.4.

The Hahn-Banach Theorem for bounded b-linear functional and its consequences
can be used to revel much among the properties of linearn-normed space and its
dual space.Next theorem relates separability of the dual space to the separability
of its original space.

Theorem 3.3. Let X be a linear n-normed space over the field R and X ∗
F be

the Banach space of all bounded b-linear functionals defined on X × ⟨ b 2 ⟩ × · · · ×
⟨ bn ⟩. Then the space X is separable if X ∗

F is separable.
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Proof. Since X ∗
F is separable, there exists a countable set S = { Tk ∈ X ∗

F : k ∈ N }
such that S is dense in X ∗

F , i. e., S = X ∗
F . For each k ∈ N, choose x k ∈ X

such that ∥x k, b 2, · · · , bn ∥ = 1 and |Tk (x k, b 2, · · · , bn ) | ≥ 1
2 ∥Tk ∥. Let W

be the closed subspace of X generated by the sequence {x k }∞k=1, i. e., W =
span {x k ∈ X : k ∈ N }. Suppose W ̸= X. Let x 0 ∈ X −W such that x 0, b 2,
· · · , bn are linearly independent. By Corollary 3.5, there exists 0 ̸= T ∈ X ∗

F such
that

T (x 0, b 2, · · · , bn ) ̸= 0 and T (x, b 2, · · · , bn ) = 0 ∀ x ∈ W.

Since
{x k }∞k=1 ⊆ W , T (x k, b 2, · · · , bn ) = 0, k ∈ N.

Thus,

1

2
∥Tk ∥ ≤ |Tk (x k, b 2, · · · , bn ) |

= |Tk (x k, b 2, · · · , bn ) − T (x k, b 2, · · · , bn ) |
≤ ∥Tk − T ∥ ∥x k, b 2, · · · , bn ∥
= ∥Tk − T ∥ [ since ∥x k, b 2, · · · , bn ∥ = 1 ].

Again, since S = X ∗
F , for each T ∈ X ∗

F , there exists a sequence {Tk } in S such
that lim

k→∞
Tk = T . Therefore,

∥T ∥ ≤ ∥Tk − T ∥ + ∥Tk ∥ ≤ 3 ∥Tk − T ∥ ∀ k ∈ N.

Taking limit on both sides as k → ∞, it follows that T = 0, which contradicts
the assumption that W ̸= X. Hence, W = X and thus X is separable.

4. Reflexivity of linear n-normed space

Recall that given a linearn-normed space X ̸= { 0 }, the dual space X ∗
F is a

normed space with respect to the norm ∥ · ∥ : X ∗
F → R defined by

∥T ∥ = sup { |T (x, b 2, · · · , bn ) | : x ∈ X, ∥x, b 2, · · · , bn ∥ = 1 } .

Furthermore, X ∗
F is a Banach space.Also, by Corollary 3.1, X ∗

F ̸= {O } and,
therefore, as a normed space X ∗

F has its own dual space (X ∗
F )

∗
, denoted by X ∗ ∗

F

and is called the second dual space of X, which is again a Banach space under the
norm

∥φ ∥ = sup { |φ (T ) | : T ∈ X ∗
F , ∥T ∥ ≤ 1 } , φ ∈ X ∗ ∗

F .

Theorem 4.1. Let X be a real linear n-normed space.Given x ∈ X, let

φ( x, F ) (T ) = T (x, b 2, · · · , bn ) ∀ T ∈ X ∗
F .(4.1)

Then φ( x, F ) is a bounded linear functional on X ∗
F . Furthermore, the mapping

(x, b 2, · · · , bn ) → φ( x, F ) is an isometric isomorphism of X × ⟨ b 2 ⟩ × · · · ×
⟨ bn ⟩ onto the subspace

{
φ( x, F ) : (x, b 2, · · · , bn ) ∈ X × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩

}
of X ∗ ∗

F .
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Proof. Let α, β ∈ R. Then, for all T 1, T 2 ∈ X ∗
F , we have

φ( x, F ) (αT 1 + β T 2 ) = (αT 1 + β T 2 ) (x, b 2, · · · , bn )
= αT 1 (x, b 2, · · · , bn ) + β T 2 (x, b 2, · · · , bn )
= αφ( x, F ) (T 1 ) + β φ( x, F ) (T 2 ).

So, φ( x , F ) is linear functional. Also, for all T ∈ X ∗
F , we have∣∣φ( x, F ) (T )

∣∣ = |T (x, b 2, · · · , bn ) | ≤ ∥x, b 2, · · · , bn ∥ ∥T ∥.

Consequently, φ( x, F ) ∈ X ∗ ∗
F with

∥∥φ( x, F )

∥∥ ≤ ∥x, b 2, · · · , bn ∥.Moreover,
such φ( x, F ) is unique. So, for every fixed x ∈ X there corresponds a unique
bounded linear functional φ( x, F ) ∈ X ∗ ∗

F given by (4.1). This defines a function
J : X × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩ → X ∗ ∗

F given by J (x, b 2, · · · , bn ) = φ( x, F ).We
now verify that J is an isomorphism between X × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩ and the
range of J , which is a subspace of X ∗ ∗

F .

(I) Let x, y ∈ X and α, β ∈ R. Then for all T ∈ X ∗
F , we have

[ J (αx + β y, b 2, · · · , bn ) ] (T ) = φ(αx+ β y, F ) (T )

= T (αx + β y, b 2, · · · , bn )
= α T (x, b 2, · · · , bn ) + β T ( y, b 2, · · · , bn )
= α φ( x, F ) (T ) + β φ( y, F ) (T ) =

(
α φ( x, F ) + β φ( y, F )

)
(T )

= [α J (x, b 2, · · · , bn ) + β J ( y, b 2, · · · , bn ) ] (T ).

⇒ J (αx+ β y, b 2, · · · , bn) = αJ (x, b 2, · · · , bn ) + βJ ( y, b 2, · · · , bn ) .

This shows that J is a b-linear operator.

(II) J preserves the norm:
For each (x, b 2, · · · , bn ) ∈ X × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩, we have

∥ J (x, b 2, · · · , bn ) ∥ =
∥∥φ( x, F )

∥∥
= sup

{ ∣∣φ( x, F ) (T )
∣∣

∥T ∥
: T ∈ X ∗

F , T ̸= 0

}

= sup

{
|T (x, b 2, · · · , bn ) |

∥T ∥
: T ∈ X ∗

F , T ̸= 0

}
= ∥x, b 2, · · · , bn ∥ [ by Theorem 2.5 ].(4.2)

(III) J is injective:
Let x, y ∈ X with x ̸= y such that {x, b 2, · · · , bn } or { y, b 2, · · · , bn }
are linearly independent. Then by (4.2), we get

∥x − y, b 2, · · · , bn ∥ ̸= 0

⇒ ∥ J (x − y, b 2, · · · , bn ) ∥ ̸= 0

⇒ ∥ J (x , b 2 , · · · , bn ) − J ( y , b 2 , · · · , bn ) ∥ ̸= 0

⇒ J (x, b 2, · · · , bn ) ̸= J ( y, b 2, · · · , bn ) .
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We thus conclude that J is an isomeric isomorphism of X × ⟨ b 2 ⟩ ×· · · × ⟨ bn ⟩
onto the subspace of X ∗ ∗

F . This completes the proof.

Definition 4.1. Let X be a linear n-normed space over the field R. The isometric
isomorphism J : X × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩ → X ∗ ∗

F defined by

J (x, b 2, · · · , bn ) = φ( x, F ) ∀ x ∈ X and φ( x, F ) ∈ X ∗ ∗
F

is called the b-natural embedding or the b-canonical mapping of X × ⟨ b 2 ⟩ × · · · ×
⟨ bn ⟩ into the second dual space X ∗ ∗

F .

Definition 4.2. A linear n-normed space X is said to be b-reflexive if the b-
natural embedding J , maps the space X × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩ onto its second
dual space X ∗ ∗

F , i. e., J (X × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩ ) = X ∗ ∗
F .

Theorem 4.2. Let {xk }∞k=1 be a sequence in a linear n-normed space X. Suppose

sup
1≤ k<∞

|T (xk, b 2, · · · , bn ) | < ∞ ∀ T ∈ X ∗
F . Then

sup
1≤ k<∞

∥x k, b 2, · · · , bn ∥ < ∞.

Proof. Consider the b-natural embedding

(x, b 2, · · · , bn ) → φ( x, F ), (x, b 2, · · · , bn ) ∈ X × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩ .

Since {xk }∞k=1 is a sequence of vectors in X,
{
φ( xk, F )

}∞
k=1

is a sequence of
bounded linear functionals in X ∗ ∗

F . Also,∣∣φ( xk, F ) (T )
∣∣ = |T (xk, b 2, · · · , bn ) | ≤ sup

1≤ k<∞
|T (xk, b 2, · · · , bn ) | .

Therefore,
{
φ( xk, F ) (T )

}∞
k=1

is bounded for each T ∈ X ∗
F . Applying the Prin-

ciple of Uniform Boundedness (Theorem 2.1 ), to the family
{
φ( xk, F )

}∞
k=1

, we

conclude that
{∥∥φ( xk, F )

∥∥}∞
k=1

is bounded and hence by (4.2), the sequence

{ ∥xk, b 2, · · · , bn ∥ }∞k=1 is bounded.This proves the theorem.

Theorem 4.3. A closed subspace of a b-reflexive n-Banach space is b-reflexive.

Proof. Let X be a b-reflexive n-Banach space and Y be a closed subspace of
X. Let T : X ∗

F → Y ∗
F be an operator defined by

(T f ) ( y, b 2, · · · , bn ) = f ( y, b 2, · · · , bn ) ∀ y ∈ Y, f ∈ X ∗
F ,

where Y ∗
F denotes the Banach space of all bounded b-linear functionals defined on

Y × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩. Then for f ∈ X ∗
F ,

∥T f ∥ = sup

{
| f ( y, b 2, · · · , bn ) |
∥ y, b 2, · · · , bn ∥

: ∥ y, b 2, · · · , bn ∥ ̸= 0

}
= ∥ f ∥.
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Let JY be the b-natural embedding of Y × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩ into Y ∗ ∗
F . That is,

JY ( y, b 2, · · · , bn ) = ψ( y, F ) ∀ y ∈ Y, ψ( y, F ) ∈ Y ∗ ∗
F . Define

T 1 : Y ∗ ∗
F → X ∗ ∗

F by
(
T 1 ψ( y, F )

)
( f ) = ψ( y, F ) (T f ), f ∈ X ∗

F .We now
verify that T 1 ψ( y, F ) ∈ X ∗ ∗

F .

(I) T 1 ψ( y, F ) is linear functional:
Let α, β ∈ R. Then for every f, g ∈ X ∗

F and y ∈ Y , we have(
T 1 ψ( y, F )

)
(α f + β g ) ( y, b 2, · · · , bn )

= ψ( y , F ) [T (α f + β g ) ] ( y , b 2 , · · · , bn )
= ψ( y , F ) [α T ( f ( y , b 2 , · · · , bn ) ) + β T ( g ( y , b 2 , · · · , bn ) ) ]
= αψ( y , F ) (T f ) ( y, b 2, · · · , bn ) + βψ( y , F ) (T g ) ( y, b 2, · · · , bn )
=

[
α ψ( y , F ) (T f ) + β ψ( y , F ) (T g )

]
( y , b 2 , · · · , bn )

=
[
α
(
T 1 ψ( y , F )

)
( f ) + β

(
T 1 ψ( y , F )

)
( g )

]
( y , b 2 , · · · , bn ) .

⇒
(
T 1ψ( y , F )

)
(α f + β g ) = α

(
T 1ψ( y , F )

)
( f ) + β

(
T 1ψ( y , F )

)
( g ).

(II) T 1 ψ( y , F ) is bounded:
Since ψ( y , F ) preserves the norm,∥∥ (T 1 ψ( y , F )

)
( f )

∥∥ =
∥∥ψ( y , F ) (T f )

∥∥ = ∥T f ∥ = ∥ f ∥.

So, T 1 ψ( y , F ) ∈ X ∗ ∗
F and hence T 1 is well-defined. Since X is b-reflexive, the

b-natural embedding JX : X × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩ → X ∗ ∗
F defined by

JX (x , b 2 , · · · , bn ) = φ( x , F ) , φ( x , F ) ∈ X ∗ ∗
F

is such that JX (X × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩ ) = X ∗ ∗
F . Therefore, T 1ψ( y , F ) ∈ X ∗ ∗

F

implies that J − 1
X

(
T 1 ψ( y , F )

)
∈ X × ⟨ b 2 ⟩ ×· · · × ⟨ bn ⟩.Write (x, b 2, · · · , bn ) =

J − 1
X

(
T 1 ψ( y , F )

)
so that JX (x , b 2 , · · · , bn ) = T 1 ψ( y , F ).We need to prove

that x ∈ Y . Let, if possible, x ∈ X − Y such that x, b 2, · · · , bn are linearly
independent. Then by Corollary 3.5, there exists a bounded b-linear functional
f ∈ X ∗

F such that f (x , b 2 , · · · , bn ) ̸= 0 and f ( y , b 2 , · · · , bn ) = 0 for
all y ∈ Y . Consequently, T f = 0 and as such ψ( y , F ) (T f ) = 0.This leads
to φ( x , F ) ( f ) = 0 and hence f (x , b 2 , · · · , bn ) = 0, which is a contradic-

tion. Thus, we conclude that (x , b 2 , · · · , bn ) = J − 1
X

(
T 1 ψ( y F )

)
∈ Y × ⟨ b 2 ⟩ ×

· · · × ⟨ bn ⟩. This verifies that J − 1
X (T 1 (Y ∗ ∗

F ) ) ⊂ Y × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩. Now,
let ψ ∈ Y ∗ ∗

F . Set (x 0 , b 2 , · · · , bn ) = J − 1
X (T 1 ψ ) so that (x 0 , b 2 , · · · , bn ) ∈

Y × ⟨ b 2 ⟩ ×· · · × ⟨ bn ⟩. Let g ∈ Y ∗
F . Then there exists a b-linear functional f ∈ X ∗

F

such that

f ( y , b 2 , · · · , bn ) = g ( y , b 2 , · · · , bn ) ∀ y ∈ Y and g = T f.
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Therefore,

ψ ( g ) = ψ (T f ) = (T 1 ψ ) ( f ) = [ JX (x 0 , b 2 , · · · , bn ) ] ( f )
= φ( x 0 , F ) ( f ) = f (x 0, b 2, · · · , bn ) = g (x 0, b 2, · · · , bn ) .

This proves that JY (x 0 , b 2 , · · · , bn ) = ψ( x 0 , F ) and hence

JY (Y × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩ ) = Y ∗ ∗
F .

This proves that Y is b-reflexive.

5. b-weak convergence and b-strong convergence in linear n-normed
space

In this section, we shall introduce b-weak convergence and b-strong convergence
relative to bounded b-linear functionals in linearn-normed space and establish that
these two types of convergence are equivalent in case of finite dimensional linearn-
normed space.

Definition 5.1. A sequence {x k } in a linear n-normed space X is said to be
b-weakly convergent if there exists an element x ∈ X such that for every T ∈ X ∗

F ,

lim
k→∞

T (x k , b 2 , · · · , bn ) = T (x , b 2 , · · · , bn ).

The vector x is called the b-weak limit of the sequence {x k } and we say that {x k }
converges b-weakly to x. Note that, for each T ∈ X ∗

F , {T (x k , b 2 , · · · , bn ) } is
a sequence of scalars in K. Therefore, b-weak convergence means convergence of the
sequence of scalars {T (x k , b 2 , · · · , bn ) } for every T ∈ X ∗

F .

Theorem 5.1. Let {x k } be b-weakly convergent sequence in X. Then

(I) the b-weak limit of {x k } is unique.

(II) { ∥x k , b 2 , · · · , bn ∥ } is bounded sequence in K.

Proof. (I) Suppose that {x k } converges b-weakly to x as well as to y. Then for
all T ∈ X ∗

F , we get

T (x , b 2 , · · · , bn ) = lim
k → ∞

T (x k , b 2 , · · · , bn )

= T ( y , b 2 , · · · , bn ).

This shows that

T (x , b 2 , · · · , bn ) − T ( y , b 2 , · · · , bn ) = 0 ∀ T ∈ X ∗
F .

⇒ T (x − y , b 2 , · · · , bn ) = 0 ∀ T ∈ X ∗
F .
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Hence, by Corollary 3.2, x = y.

Proof of (II) Since {x k } converges b-weakly to x, we have

lim
k → ∞

T (x k , b 2 , · · · , bn ) = T (x , b 2 , · · · , bn ) ∀ T ∈ X ∗
F .

Therefore, for each T ∈ X ∗
F , {T (x k , b 2 , · · · , bn ) } is a convergent sequence in

K and so the sequence {T (x k , b 2 , · · · , bn ) } is bounded.Consequently, there
exists a constant KT ( depending on T ) such that |T (x k , b 2 , · · · , bn ) | ≤
KT ∀ k ∈ N. Let (x , b 2 , · · · , bn ) → φ( x , F ) be the b-natural embedding
of X × ⟨ b 2 ⟩ × · · · × ⟨ bn ⟩ into X ∗ ∗

F . Then for each k ∈ N, by (4.2), we have∥∥φ( x k , F )

∥∥ = ∥x k , b 2 , · · · , bn ∥

and ∣∣φ( xk , F ) (T )
∣∣ = |T (x k , b 2 , · · · , bn ) | ≤ KT ∀ k ∈ N.

Thus,
{
φ( xk , F ) (T )

}
is bounded for each T ∈ X ∗

F . But the space X ∗
F be-

ing a Banach space, by the Principle of Uniform Boundedness (Theorem 2.1 ),
it follows that

{∥∥φ( x k , F )

∥∥} is bounded and hence { ∥x k , b 2 , · · · , bn ∥ }∞k=1 is
bounded.

Theorem 5.2. Let {x k } and { y k } be two sequences in a linear n-normed space
X. If {x k } and { y k } converges b-weakly to x and y, respectively then for any
scalar α and β, {αx k + β y k } converges b-weakly to αx + β y.

Proof. Since {x k } and { y k } converges b-weakly to x and y, we have

lim
k → ∞

T (x k , b 2 , · · · , bn ) = T (x , b 2 , · · · , bn ) and

lim
k → ∞

T ( y k , b 2 , · · · , bn ) = T ( y , b 2 , · · · , bn ) ∀ T ∈ X ∗
F .

Now, for all T ∈ X ∗
F , we have

lim
k → ∞

T (αx k + β y k , b 2 , · · · , bn )

= lim
k → ∞

[T (αx k , b 2 , · · · , bn ) + T (β y k , b 2 , · · · , bn ) ]

= lim
k → ∞

αT (x k , b 2 , · · · , bn ) + lim
k → ∞

β T ( y k , b 2 , · · · , bn )

= αT (x , b 2 , · · · , bn ) + β T ( y , b 2 , · · · , bn )
= T (αx + β y , b 2 , · · · , bn ).

This shows that {αx k + β y k } converges b-weakly to αx + β y.

Theorem 5.3. A sequence {x k } in X converges b-weakly to x ∈ X if and only
if

(I) the sequence { ∥x k , b 2 , · · · , bn ∥ } is bounded and
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(II) lim
k → ∞

T (x k , b 2 , · · · , bn ) = T (x , b 2 , · · · , bn ) ∀ T ∈ M , where M is

fundamental or total subset of X ∗
F .

Proof. In the case of b-weak convergence, (I) follows from the Theorem 5.1 and
since M ⊂ X ∗

F , (II) follows from the definition of b-weak convergence of {x k }.
Conversely, suppose that (I) and (II) hold . By (I), there exists a constant L

such that

∥x k , b 2 , · · · , bn ∥ ≤ L ∀ k ∈ N and ∥x , b 2 , · · · , bn ∥ ≤ L.

Since spanM = X ∗
F , for each T ∈ X ∗

F , there exists a sequence {Tm } in spanM
such that lim

m → ∞
Tm = T . Hence, for any given ϵ > 0, there exists Tm ∈ spanM

such that ∥Tm − T ∥ < ϵ
3L . Furthermore, by the hypothesis (II), there exists

K ∈ N such that

|Tm (x k , b 2 , · · · , bn ) − Tm (x , b 2 , · · · , bn ) | <
ϵ

3
∀ m > K.

Now, for m > K, we have

|T (x k , b 2 , · · · , bn ) − T (x , b 2 , · · · , bn ) |
≤ |T (x k , b 2 , · · · , bn ) − Tm (x k , b 2 , · · · , bn ) | +
+ |Tm (x k , b 2 , · · · , bn ) − Tm (x , b 2 , · · · , bn ) |
+ |Tm ( x , b 2 , · · · , bn ) − T ( x , b 2 , · · · , bn ) |

< ∥Tm − T ∥ ∥x k , b 2 , · · · , bn ∥ +
ϵ

3
+ ∥Tm − T ∥ ∥x , b 2 , · · · , bn ∥

<
ϵ

3L
· L +

ϵ

3
+

ϵ

3L
· L =

ϵ

3
+

ϵ

3
+

ϵ

3
= ϵ

⇒ lim
k → ∞

T (x k , b 2 , · · · , bn ) = T (x , b 2 , · · · , bn ) ∀ T ∈ X ∗
F .

Hence, {x k } converges b-weakly to x ∈ X.

Definition 5.2. A sequence {x k } in X is said to be b-strongly convergent if
there exists a vector x ∈ X such that lim

k→∞
∥x k − x , b 2 , · · · , bn ∥ = 0.The

vector x is called b-strong limit and we say that {x k } converges b-strongly to x.

Theorem 5.4. If a sequence {x k } in X converges b-strongly to x, then {x k }
converges b-weakly to x in X.

Proof. Suppose {x k } converges b-strongly to x. Then for every T ∈ X ∗
F , we have

|T (x k , b 2 , · · · , bn ) − T (x , b 2 , · · · , bn ) |
= |T (x k − x , b 2 , · · · , bn ) | ≤ ∥T ∥ ∥x k − x , b 2 , · · · , bn ∥

→ 0 as k → ∞ [ since {x k } converges b-strongly to x ]

⇒ lim
k → ∞

T (x k , b 2 , · · · , bn ) = T (x , b 2 , · · · , bn ) ∀ T ∈ X ∗
F .

Hence, {x k } converges b-weakly to x in X.
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Theorem 5.5. In a finite dimensional linear n-normed space, b-weak convergence
implies b-strong convergence.

Proof. Let X be a linearn-normed space with dimX = d ≥ n. Then there exists
a basis { e 1 , e 2 , · · · , e d } for X. Let {x k } be a sequence in X such that {x k }
converges b-weakly to x. Now, we can write

x k = a k , 1 e 1 + a k , 2 e 2 + · · · + a k , d e d , ( k = 1 , 2 , · · · ) ,
x = a 1 e 1 + a 2 e 2 + · · · · · · + a d e d ,

where a k , 1, a k , 2, · · · , a k , d , a 1, a 2, · · · , a d ∈ R. Consider the b-linear func-
tionals {T 1 , T 2 , · · · , T d } in X ∗

F such that T i ( e j , b 2 , · · · , bn ) = 1 if i = j
and T i ( e j , b 2 , · · · , bn ) = 0 if i ̸= j, 1 ≤ i, j ≤ d. Now, for 1 ≤ i ≤ d, we
have

T i (x k , b 2 , · · · , bn ) = T i

 d∑
j =1

a k , j e j , b 2 , · · · , bn


=

d∑
j =1

a k , j T i ( e j , b 2 , · · · , bn ) = a k , i

and similarly, T i (x , b 2 , · · · , bn ) = a i, ( 1 ≤ i ≤ d ). Since

lim
k → ∞

T (x k , b 2 , · · · , bn ) = T (x , b 2 , · · · , bn ) ∀ T ∈ X ∗
F ,

in particular, we have

lim
k → ∞

T i (x k , b 2 , · · · , bn ) = T i (x , b 2 , · · · , bn ), ( 1 ≤ i ≤ d ).

Thus,
lim

k → ∞
ak , i = a i , ( 1 ≤ i ≤ d ).(5.1)

Therefore,

∥x k − x , b 2 , · · · , bn ∥ =

∥∥∥∥∥
d∑

i=1

( ak , i − a i ) e i , b 2 , · · · , bn

∥∥∥∥∥
≤

d∑
i=1

| ak , i − a i | ∥ e i , b 2 , · · · , bn ∥

→ 0 as k → ∞ [ by ( 5.1 ) ]

⇒ lim
k → ∞

∥x k − x , b 2 , · · · , bn ∥ = 0

and hence {x k } converges b-strongly to x in X.
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1. Introduction

Much progress has been done in recent years in the study of soliton solutions
of the Ricci flow, the mean curvature flow and the Yamabe flow. Soliton solutions
correspond to self-similar solutions of the corresponding flow. The Yamabe flow,

∂

∂t
g(t) = −R(t)g(t),(1.1)
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where R(t) is the scalar curvature of the metric g(t), was introduced by Hamilton
[14], as an approach to solve the Yamabe problem. In dimension n(= 2), the Yamabe
flow is equivalent to the Ricci flow. However, in dimension n > 2 the Yamabe and
Ricci flows do not agree, since the first one preserves the conformal class of the
metric while the Ricci flow does not in general.

A Yamabe soliton on a Riemannian manifold (M, g) of dimension n is a special
solution of the Yamabe flow. A triplet structure (g, κ, λ) satisfies

1

2
Lκg(X,Y ) = (δ̂ − λ)g(X,Y )(1.2)

for allX, Y onM is known as a Yamabe soliton, where Lκ denotes the Lie derivative
of the metric g along the vector field κ, δ̂ is the scalar curvature and λ is a constant.
The beauty of such =soliton depends on the the flavor of λ. The soliton is said to
be expanding, steady or shrinking, according as λ < 0, λ = 0 or λ > 0 respectively.
If λ ∈ C∞(M), then the metric satisfying (1.2) is called almost Yamabe soliton
[2]. Thus the almost Yamabe solitons are the generalization of Yamabe solitons.

Moreover, if κ is the gradient of some function ϕ̃ on M then it is known as gradient
Yamabe soliton. In context of geometry, the Yamabe solitons are special solution
of Yamabe flow under some regulation. There are several geometers that light up
quite extensively on the beauty of Yamabe flow and Yamabe soliton (see,[9], [11],
[12], [16]).

A vector field κ on a Riemannian manifold (M, g) is known as torse-forming
vector field [21] if it satisfies

∇Xκ = ψX + θ(X)κ, ∀ X ∈ χ(M),(1.3)

where ψ ∈ C∞(M) and θ is a 1-form. The beauty of such vector field is as follows:

i) It is concircular if the 1-form θ vanishes identically [20],
ii) For concurrent, ψ = 1 and θ = 0 [22],
iii) It is recurrent if ψ = 0,
iv) For parallel if ψ = θ = 0.

In 2017, Chen [8] initiated a new type vector field known as torqued vector field if
the vector field κ satisfying (1.2) with θ(κ) = 0, where ψ is called torqued function
with the 1-form θ is the torqued form of κ.

Bejancu introduced the concept of CR-sub-manifolds of Kähler manifold as a gen-
eralization of invariant and anti-invariant sub-manifolds [3]. After that, CR-sub-
manifolds of Sasakian manifold was studied by Hsu [15] and Kobayashi [17]. Yano
and Kon [23] studied contact CR-sub-manifolds. As per this motivation, several ge-
ometers studied CR-sub-manifolds of almost contact manifolds (see, [1],[4],[5],[18]).
The almost hyperbolic (f, ξ, η, g)-structure was defined and studied by Upadhyay
and Dube [19]. CR-sub-manifolds of trans-hyperbolic Sasakian manifold studied
by Bhatt and Dube [6]. Apart from that, Golab [13] introduced the idea of semi-
symmetric and quarter symmetric connections. Lovejoy Das et al. [10] studied
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CR-sub-manifolds of LP -Sasakian manifold with semi-symmetric non-metric con-
nection. CR-sub-manifolds of a nearly hyperbolic Sasakian manifold admitting a
semi-symmetric semi-metric connection were studied by Siddiqi and Rizvi [1].

The sections of this paper are organized as follows. After introduction, Section 2
contains some definitions and basic results. In Section 3, we recall the notion of
semi-symmetric metric connection and quarter symmetric non-metric connection on
nearly hyperbolic Sasakian manifold. Section 4 is devoted to CR-sub-manifolds of
nearly hyperbolic Sasakian manifolds with respect to semi-symmetric metric connec-
tion and quarter symmetric non-metric connection. In Section 5, we study Yamabe
soliton whose potential vector field is torse-forming vector field on nearly hyperbolic
Sasakian manifold with respect to such connection. Section 6 is concerned with the
study of Yamabe soliton with a torse-forming vector field on CR-sub-manifolds
of nearly hyperbolic Sasakian manifolds. Furthermore, we study almost Yamabe
soliton with torse-forming vector field taking κt and κn as tangential and normal
components of such vector field on CR-sub-manifolds of nearly hyperbolic Sasakian
manifolds admitting such connection in Section 7.

2. Preliminaries

Let M be an n-dimensional almost hyperbolic contact metric manifold with the
almost hyperbolic contact metric structure (ϕ, ξ, η, g) satisfying

ϕ2 = I + η ⊗ ξ, η(ξ) = −1, ϕξ = 0, η ◦ ϕ = 0, η(X) = g(X, ξ),(2.1)

and
g(ϕX, ϕY ) = −g(X,Y )− η(X)η(Y ),(2.2)

for any vector fields X,Y tangent to M [7]. As per this consequences

g(ϕX, Y ) = −g(X,ϕY ).(2.3)

where I is the identity of the tangent bundle TM, ϕ is a tensor field of (1, 1)-type,
η is a 1-form, ξ is a vector field and g is Riemannian metric tensor of M. An almost
hyperbolic contact metric structure (ϕ, ξ, η, g) on M is called hyperbolic Sasakian
manifold if and only if

(∇Xϕ)Y = g(X,Y )ξ − η(Y )X,(2.4)

∇Xξ = ϕX,(2.5)

for all tangent vectors X,Y and a Riemannian metric g and Riemannian connection
∇ on M. With reference to (2.4), an almost hyperbolic contact metric manifold M
with (ϕ, ξ, η, g)-structure is called a nearly hyperbolic Sasakian manifold if

(∇Xϕ)Y + (∇Y ϕ)X = 2g(X,Y )ξ − η(X)Y − η(Y )X.(2.6)
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Let M̀ be a submanifold immersed in M, the Riemannian metric g induced on M̀ .
Let TM̀ and T⊥M̀ be the Lie algebra of vector fields tangential to M̀ and normal
to M̀ respectively and ∇̀ be the induced Levi-Civita connection on M̀ , then the
Gauss and Weingarten formulae are given respectively by

∇XY = ∇̀XY + h(X,Y ), ∀ X,Y ∈ TM̀,(2.7)

∇XN = −ANX +∇⊥N, ∀ N ∈ T⊥M̀,(2.8)

where ∇XY and {h(X,Y ),∇⊥
XN} belong to TM̀ and T⊥M̀ , respectively. The

second fundamental form h and Weingarten map AN associated with N as

g(h(X,Y ), N) = g(ANX,Y ).(2.9)

For any X ∈ Γ(TM) and N ∈ Γ(T⊥M), we can write

X = PX +QX, PX ∈ Γ(D), QX ∈ Γ(D⊥),(2.10)

ϕN = BN + CN, BN ∈ Γ(D⊥), CN ∈ Γ(µ).(2.11)

3. Semi-symmetric Metric Connection and Quarter symmetric
non-metric connection

Firstly, we define a semi-symmetric metric connection [13]:

∇̃XY = ∇XY + η(Y )X − g(X,Y )ξ,(3.1)

such that
(∇̃Xg)(Y,Z) = 0.(3.2)

With the help of (2.6) and (3.1), we get

(∇̃Xϕ)Y + ϕ(∇̃XY ) = (∇Xϕ)Y + ϕ(∇XY )− g(X,ϕY )ξ.(3.3)

On interchanging X and Y , equation (3.3) reduces to

(∇̃Y ϕ)X + ϕ(∇̃YX) = (∇Y ϕ)X + ϕ(∇YX)− g(Y, ϕX)ξ,(3.4)

Adding (3.3) and (3.4), we obtain

(∇̃Xϕ)Y + (∇̃Y ϕ)X + ϕ(∇̃XY −∇XY ) + ϕ(∇̃YX −∇YX)

= (∇Xϕ)Y + (∇)Y ϕ)X − g(X,ϕY )ξ − g(Y, ϕX)ξ.(3.5)

Keeping in mind (2.1), (2.3), (2.6) and (3.1) above equation turn up

(∇̃Xϕ)Y + (∇̃Y ϕ)X

= 2g(X,Y )ξ − η(X)Y − η(Y )X − η(X)ϕY − η(Y )ϕX.(3.6)
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Also from (2.5) and (3.1), we get

∇̃Xξ = ϕX −X − η(X).(3.7)

An almost hyperbolic contact metric manifold with almost hyperbolic contact struc-
ture (ϕ, ξ, η, g) is called nearly hyperbolic Sasakian manifold with semi-symmetric
metric connection if it bearing (3.5) and (3.6). With the help of (2.7), (2.8) and
(3.1) the Gauss and Weingarten formulae on nearly hyperbolic Sasakian manifold
with semi-symmetric metric connection as follows

∇̃XY = ∇̀XY + h(X,Y ), ∀ X,Y ∈ TM̀,(3.8)

∇̃XN = −ANX +∇⊥N, ∀ N ∈ T⊥M̀,(3.9)

Also we recall the notion of a quarter symmetric non-metric connection [13] by

∇̂XY = ∇XY + η(Y )ϕX,(3.10)

such that
(∇̂Xg)(Y, Z) = η(Y )g(ϕX,Z)− η(Z)g(ϕX, Y ).(3.11)

From (2.6) and (3.9), we have

(∇̂Xϕ)Y + (∇̂Y ϕ)X(3.12)

= 2g(X,Y )ξ − η(X)Y − 2η(Y )X − 2η(X)ϕY − 2η(X)η(Y )ξ.

An almost hyperbolic contact manifold is called nearly hyperbolic Sasakian [7] man-
ifold with quarter symmetric non-metric connection if it satisfies (3.11). Therefore
from (2.5) and (3.9), we obtain

∇̂Xξ = 2ϕX.(3.13)

Therefore Gauss and Weingarten formulae on nearly hyperbolic Sasakian manifold
bearing quarter symmetric non-metric connection are given respectively by

∇̂XY = ∇̀XY + h(X,Y ), ∀ X,Y ∈ TM̀,(3.14)

∇̂XN = −ANX +∇⊥N, ∀ N ∈ T⊥M̀,(3.15)

4. CR-sub-manifolds of a Nearly hyperbolic Sasakian Manifold

Definition 4.1. [4] An m-dimensional Riemannian submanifold (M, g) of an n-
dimensional nearly hyperbolic Sasakian manifold Mn(ϕ, ξ, η, g) is called a CR-sub-
manifold if ξ is tangent to M and there exists on M a differentiable distribution
D : x→ Dx ⊂ Tx(M) such that

i) D is invariant under ϕ, i.e., ϕD ⊂ D.
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ii) The orthogonal complement distribution D⊥ : x→ D⊥
x ⊂ TxM of the distribu-

tion D on M is totally real, i.e., ϕD⊥ ⊂ T⊥M .

If dim D⊥=0 ( resp., dim D=0), then the CR-submanifold is known as an invariant
(resp., anti-invariant) submanifold.

Definition 4.2. [4] If the distribution D (resp.,D⊥) is horizontal (resp., vertical),
then the pair (D,D⊥) is called ξ-horizontal (resp., ξ-vertical) if ξ ∈ Γ(D) (resp.,
ξ ∈ Γ(D⊥)). The CR-submanifold is also called ξ-horizontal (resp., ξ-vertical) if
ξ ∈ Γ(D) (resp., ξ ∈ Γ(D⊥)).

The orthogonal complement ϕD⊥ ∈ T⊥M is given by

TM = D ⊕D⊥, T⊥M = ϕD⊥ ⊕ µ,(4.1)

where ϕµ=µ.

Let M̀ be a CR-submanifold of a nearly hyperbolic Sasakian manifoldMn(ϕ, ξ, η, g)

with semi-symmetric metric connection ∇̃. The Gauss and Weingarten formulas
with respect to ∇̃ are given, respectively,

∇̃XY =
`̃∇XY + h̃(X,Y ),(4.2)

∇̃XN = −ÃNX + ∇̃⊥
XN(4.3)

for any X,Y ∈ Γ(TM), where ∇̃XY , ÃNX ∈ Γ(TM). Here
`̃∇, h̃ and ÃN are called

the induced connection on M , the second fundamental form and the Weingarten
mapping with respect to ∇̃, respectively. In view of (3.7), (3.9) and (4.2), we get

`̃∇XY + h̃(X,Y ) = ∇̀XY + h(X,Y ) + η(Y )X − g(X,Y )ξ.(4.4)

Using (2.10) and (2.11) in the equation (4.4) and comparing the tangential and
normal components on both sides, we obtain

P
`̃∇XY = P ∇̀XY + η(Y )PX − αg(X,Y )Pξ,(4.5)

h̃(X,Y ) = h(X,Y ) + η(Y )ϕQX,(4.6)

Q
`̃∇XY = Q∇̀XY − g(X,Y )Qξ,(4.7)

for any X,Y ∈ (TM).
Let M̀ be a CR-submanifold of a nearly hyperbolic Sasakian manifold Mn(ϕ, ξ, η, g)

with quarter symmetric metric connection ∇̂. Then Gauss and Weingarten formulas
with respect to ∇̂ as follows,

∇̂XY =
`̂∇XY + ĥ(X,Y ),(4.8)
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∇̂XN = −ÂNX + ∇̂⊥
XN(4.9)

for any X,Y ∈ Γ(TM), where ∇̂XY , ÂNX ∈ Γ(TM). Here
`̂∇, ĥ and ÂN are called

the induced connection on M, the second fundamental form and the Weingarten
mapping with respect to ∇̂, respectively. In view of (3.9), (3.13) and (4.8), we get

∇̂XY + h̃(X,Y ) = ∇̀XY + h(X,Y ) + η(Y )ϕX.(4.10)

Using (2.10) and (2.11) in (4.10) and comparing the tangential and normal compo-
nents on both sides, we obtain

P ∇̂XY = P ∇̀XY + η(Y )PϕX,(4.11)

h̃(X,Y ) = h(X,Y ),(4.12)

Q∇̂XY = Q∇̀XY + η(Y )QϕX,(4.13)

for any X,Y ∈ (TM).

In this sequel we state the following result.

Theorem 4.1. Let M̀ be a CR-Submanifold of nearly hyperbolic Sasakian man-
ifold Mn(ϕ, ξ, η, g) with respect to semi-symmetric metric connection ∇̃ then we
have

i) If M̀ ξ-horizontal, X,Y ∈ Γ(D) and D is parallel with respect to ∇̃ then induced

connection
`̃∇ is also a semi-symmetric metric connection.

ii) If M̀ ξ-vertical Γ(D⊥) and D⊥ is parallel with respect to ∇̃ then induced con-

nection
`̃∇ is also a semi-symmetric non-metric connection.

iii) The Gauss formula with respect to semi-symmetric metric connection is of the
form

∇̃XY =
`̃∇XY + h(X,Y ) + η(Y )ϕQX,(4.14)

iv) The weingarten formula with respect to semi-symmetric metric connection is of
the form

∇̃XN = −ANX +∇⊥
XN + η(N)X(4.15)

Proof. With the help of (4.2) and (4.6) we get (iii). Also, from (2.8) and (3.1) we
yield (iv). With reference to (4.5), if M̀ ξ-horizontal, X,Y ∈ Γ(D) and D is parallel

with respect to ∇̃ then result (i) is verifying. On the other hand, with the help of

(4.7) if M̀ is ξ-vertical, X,Y ∈ Γ(D⊥) and D⊥ is parallel with respect to ∇̃, we
obtain our desired result(ii). This tells us that the proof is completed.

Theorem 4.2. Let M̀ be a CR-Submanifold of nearly hyperbolic Sasakian mani-
fold Mn(ϕ, ξ, η, g) with respect to quarter symmetric non-metric connection ∇̂ then
we have
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i) If M̀ ξ-horizontal, X,Y ∈ Γ(D) and D is parallel with respect to ∇̂ then induced

connection
`̂∇ is also a quarter symmetric non metric connection.

ii) If M̀ ξ-vertical, X,Y ∈ Γ(D⊥) and D⊥ is parallel with respect to ∇̂ then induced

connection
`̂∇ is also a quarter symmetric non-metric connection.

iii) The Gauss formula with respect to quarter symmetric non-metric connection is
of the form

∇̂XY = ∇̀XY + h(X,Y ),(4.16)

iv) The weingarten formula with respect to quarter symmetric non-metric connec-
tion is of the form

∇̂XN = −ANX +∇⊥
XN + η(N)ϕX(4.17)

Proof. With the help of (4.8) and (4.12) we get (iii). Also, from (2.8) and (3.9)
we yield (iv). With reference to (4.11), if M̀ ξ-horizontal, X,Y ∈ Γ(D) and D is

parallel with respect to ∇̃ then result (i) is verifying. On the other hand, with the
help of (4.13) if M̀ is ξ-vertical, X,Y ∈ Γ(D⊥) and D⊥ is parallel with respect to

∇̃, we obtain our desired result(ii). We completed the proof.

5. Yamabe solitons with potential vector field is torse-forming

As per this consequence of our analysis in this section we have the following geomet-
ric characterization of nearly hyperbolic Sasakian manifold Mn(ϕ, ξ, η, g) admitting

semi-symmetric metric connection ∇̃ and quarter symmetric non-metric connection
∇̂. Thus, in view of my thought,we can state the following result.

Theorem 5.1. A Yamabe soliton (g, κ, λ) on an n-dimensional nearly hyperbolic
Sasakian manifold Mn(ϕ, ξ, η, g) with respect to semi symmetric metric connection

∇̃ is invariant if and only if

2η(κ)g(X,Y ) = {g(X,κ)η(Y ) + g(Y, κ)η(X)}.

Proof. Let (g, κ, λ) be a Yamabe soliton on Mn(ϕ, ξ, η, g) with respect to a semi

symmetric metric connection∇̂. So from (1.2), we have

1

2
(L̃κg)(X,Y ) = (

˜̂
δ − λ)g(X,Y ).(5.1)

From the definition of Lie derivative, equations (2.3) and (3.1), we obtain

(L̃κg)(X,Y ) = g(∇̃Xκ, Y ) + g(X, ∇̃Y κ)(5.2)

= g(∇Xκ, Y ) + g(X,∇Y κ) + 2η(κ)g(X,Y )− {g(X,κ)η(Y ) + g(Y, κ)η(X)}
= (Lκg)(X,Y ) + 2η(κ)g(X,Y )− {g(X,κ)η(Y ) + g(Y, κ)η(X)}
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for all X,Y ∈ χ(M). With the help of (5.1) and (5.2), we get

1

2
(Lκg)(X,Y ) + η(κ)g(X,Y )− 1

2
{g(X,κ)η(Y ) + g(Y, κ)η(X)}(5.3)

= (
˜̂
δ − λ)g(X,Y ).

This indicate that proof is completed.

Theorem 5.2. Let (g, κ, λ) be a Yamabe soliton on an n-dimensional nearly hy-
perbolic Sasakian manifold Mn(ϕ, ξ, η, g) with respect to semi-symmetric metric con-
nection. If κ is a torse-forming vector field, then the soliton (g, κ, λ) is expanding,

steady and shrinking according as λ =
˜̂
δ−ψ− 1

n{θ(κ)+(n−1)η(κ)} <> =0, unless

λ =
˜̂
δ − ψ − 1

n{θ(κ) + (n− 1)η(κ)} is constant.

Proof. Let (g, κ, λ) be a Yamabe soliton on Mn(ϕ, ξ, η, g) with respect to a semi-

symmetric metric connection∇̃. So from (1.2), we have

1

2
(L̃κg)(X,Y ) = (

˜̂
δ − λ)g(X,Y ).(5.4)

From the definition of Lie derivative, equations (1.3) and (3.1), we obtain

(L̃κg)(X,Y ) = g(∇̃Xκ, Y ) + g(X, ∇̃Y κ)

= 2ψg(X,Y ) + {θ(X)g(κ, Y ) + θ(Y )g(κ,X)}
+2η(κ)g(X,Y )− {η(X)g(κ, Y ) + η(Y )g(κ,X)}(5.5)

for all X,Y ∈ χ(M). With the help of (5.4) and (5.5), we get

(ψ − ˜̂δ + λ)g(X,Y ) =
1

2
{η(Y )g(κ,X) + η(X)g(κ, Y )}

−1

2
{θ(X)g(κ, Y ) + θ(Y )g(κ,X)} − η(κ)g(X,Y )

(5.6)

On contracting (5.6), we have

λ =
˜̂
δ − ψ − 1

n
{θ(κ) + (n− 1)η(κ)}.(5.7)

This leads to the Theorem 5.2

In this sequel, we write the following corollaries.

Corollary 5.1. Let (g, κ, λ) be a Yamabe soliton on an n-dimensional nearly hy-
perbolic Sasakian manifold Mn(ϕ, ξ, η, g), n > 1, with respect to a semi-symmetric
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metric connection ∇̃. Then following relations hold

κ condition of existence condition of shrinking,
steady and expanding

torse- ψ − ˜̂δ ψ − ˜̂δ
forming − 1

n{θ(κ) + (n− 1)η(κ)}=C − 1
n{θ(κ) + (n− 1)η(κ)} <> =0

concircular ψ − ˜̂δ − 1
n{(n− 1)η(κ)}=C ψ − ˜̂δ − 1

n{(n− 1)η(κ)} <> =0

concurrent 1− ˜̂δ − 1
n{(n− 1)η(κ)}=C 1− ˜̂δ − 1

n{(n− 1)η(κ)} <> =0

recurrent
˜̂
δ − 1

n{θ(κ) + (n− 1)η(κ)}=C ˜̂
δ − 1

n{θ(κ) + (n− 1)η(κ)} <> =0

parallel
˜̂
δ − 1

n{(n− 1)η(κ)}=C ˜̂
δ − 1

n{(n− 1)η(κ)} <> =0

torqued ψ − ˜̂δ − 1
n{(n− 1)η(κ)}=C ψ − ˜̂δ − 1

n{(n− 1)η(κ)} <> =0

Theorem 5.3. A Yamabe soliton (g, κ, λ) on an n-dimensional nearly hyperbolic
Sasakian manifold Mn(ϕ, ξ, η, g) with respect to quarter symmetric metric connec-

tion ∇̂ always invariant.

Proof. Let (g, κ, λ) be a Yamabe soliton on Mn(ϕ, ξ, η, g) with respect to a quarter

symmetric metric connection∇̂. So from (1.2), we have

1

2
(L̂κg)(X,Y ) = (

̂̂
δ − λ)g(X,Y ).(5.8)

From the definition of Lie derivative, equations (2.3) and (3.9), we obtain

(L̂κg)(X,Y ) = g(∇̂Xκ, Y ) + g(X, ∇̂Y κ)

= g(∇Xκ, Y ) + g(X,∇Y κ) + η(κ)g(ϕX, Y ) + η(κ)g(X,ϕY )

= (Lκg)(X,Y ),(5.9)

for all X,Y ∈ χ(M). With the help of (5.8) and (5.9), we get

1

2
(Lκg)(X,Y ) = (

̂̂
δ − λ)g(X,Y ).(5.10)

Proof is completed.

Theorem 5.4. Let (g, κ, λ) be a Yamabe soliton on an n-dimensional nearly hy-
perbolic Sasakian manifold Mn(ϕ, ξ, η, g) with respect to quarter symmetric metric

connection ∇̂. If κ is a torse-forming vector field, then the soliton (g, κ, λ) is ex-

panding, steady and shrinking according as λ =
̂̂
δ − ψ − 1

n{θ(κ)} <> =0, unless

λ =
̂̂
δ − ψ − 1

n{θ(κ)} is constant.

Proof. Let (g, κ, λ) be a Yamabe soliton on Mn(ϕ, ξ, η, g) with respect to a quarter

symmetric metric connection∇̂. So from (1.2), we have

1

2
(L̂κg)(X,Y ) = (

̂̂
δ − λ)g(X,Y ).(5.11)
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From the definition of Lie derivative, equations (1.3) and (3.9), we obtain

(L̂κg)(X,Y ) = g(∇̂Xκ, Y ) + g(X, ∇̂Y κ)

= 2ψg(X,Y ) + θ(X)g(κ, Y ) + θ(Y )g(κ,X)

(5.12)

for all X,Y ∈ χ(M). With the help of (5.11) and (5.12), we get

(ψ − ̂̂δ + λ)g(X,Y ) = −1

2
{θ(X)g(κ, Y ) + θ(Y )g(κ,X)}

(5.13)

Taking contraction (5.13), we have

λ =
̂̂
δ − ψ − 1

n
{θ(κ)}.(5.14)

This leads to the Theorem 5.4.

In this sequel, we write the following corollaries.

Corollary 5.2. Let (g, κ, λ) be a Yamabe soliton on an n-dimensional nearly hy-
perbolic Sasakian manifold Mn(ϕ, ξ, η, g) with respect to quarter symmetric metric

connection ∇̂. Then following relations hold

κ condition of existence condition of shrinking,
steady and expanding

torse-forming
̂̂
δ − ψ − 1

n{θ(κ)} = C
̂̂
δ − ψ − 1

n{θ(κ)} <> =0

concircular
̂̂
δ − ψ = C

̂̂
δ − ψ <> =0

concurrent
̂̂
δ − 1 = C

̂̂
δ − 1 <> =0

recurrent
̂̂
δ − 1

n{θ(κ)} = C
̂̂
δ − 1

n{θ(κ)} <> =0

parallel
̂̂
δ = C

̂̂
δ <> =0

torqued
̂̂
δ − ψ = C

̂̂
δ − ψ <> =0

6. Yamabe solitons whose potential vector field is torse-forming on
CR-submanifold of nearly hyperbolic Sasakian manifold

In this section, we study Yamabe soliton whose potential vector field is a torse-
forming on CR-sub-manifolds of nearly hyperbolic Sasakian manifold with respect

to the induced connection
`̃∇ and

`̂∇. We state the following theorem as:

Theorem 6.1. Let M̀ be a CR-submanifold of nearly hyperbolic Sasakian man-
ifold Mn(ϕ, ξ, η, g), n > 1, admitting semi-symmetric metric connection ∇̃ is ξ-

horizontal (resp. ξ-vertical) and D is parallel with respect to ∇̃. If (g, κ, λ) be a
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Yamabe soliton on M and κ is a torse-forming vector field, then (g, κ, λ) is expand-

ing, steady and shrinking according as
˜̂
δ−ψ− 1

n{θ(κ)+(n−1)η(κ)} <> =0, unless˜̂
δ − ψ − 1

n{θ(κ) + (n− 1)η(κ)} is constant.

Proof. If M̀ is ξ-horizontal for all X, Y ∈ Γ(D) and D is parallel with respect to
`̃∇, then in view of (4.5), we have

`̃∇XY = ∇̀XY + η(Y )X − g(X,Y )ξ.(6.1)

With the help of Theorem 5.2 and (3.1), we conclude that the induced connection
∇̀ is also semi-symmetric metric connection. This leads to the proof of the Theorem
6.1

In this sequel, we write the following corollaries.

Corollary 6.1. Let M̀ be a CR-submanifold nearly hyperbolic Sasakian mani-

fold Mn(ϕ, ξ, η, g), n > 1, admitting a semi-symmetric metric connection
`̃∇ is

ξ-horizontal (resp. ξ-vertical) and D is parallel with respect to
`̃∇. If (g, κ, λ) be

a Yamabe soliton on M and κ is a torse-forming vector field, then the following
results hold

κ condition of existence condition of shrinking,
steady and expanding

torse- ψ − ˜̂δ ψ − ˜̂δ
forming − 1

n{θ(κ) + (n− 1)η(κ)}=C − 1
n{θ(κ) + (n− 1)η(κ)} <> =0

concircular ψ − ˜̂δ − 1
n{(n− 1)η(κ)}=C ψ − ˜̂δ − 1

n{(n− 1)η(κ)} <> =0

concurrent 1− ˜̂δ − 1
n{(n− 1)η(κ)}=C 1− ˜̂δ − 1

n{(n− 1)η(κ)} <> =0

recurrent
˜̂
δ − 1

n{θ(κ) + (n− 1)η(κ)}=C ˜̂
δ − 1

n{θ(κ) + (n− 1)η(κ)} <> =0

parallel
˜̂
δ − 1

n{(n− 1)η(κ)}=C ˜̂
δ − 1

n{(n− 1)η(κ)} <> =0

torqued ψ − ˜̂δ − 1
n{(n− 1)η(κ)}=C ψ − ˜̂δ − 1

n{(n− 1)η(κ)} <> =0

Theorem 6.2. Let M̀ be a CR-submanifold of nearly hyperbolic Sasakian mani-
fold Mn(ϕ, ξ, η, g), n > 1, admitting quarter symmetric non- metric connection ∇̂
is ξ-horizontal (resp. ξ-vertical) and D is parallel with respect to ∇̂. If (g, κ, λ)
be a Yamabe soliton on M and κ is a torse-forming vector field, then (g, κ, λ) is

expanding, steady and shrinking according as λ =
̂̂
δ − ψ − 1

n{θ(κ)} <> =0, unless

λ =
̂̂
δ − ψ − 1

n{θ(κ)} is constant.

Proof. If M̀ is ξ-horizontal for all X, Y ∈ Γ(D) and D is parallel with respect to
`̂∇, then in view of (4.11), we have

`̂∇XY = ∇̀XY + η(Y )ϕX,(6.2)
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With the help of Theorem 5.5 and (3.9), we conclude that the induced connection
`̂∇ is also quarter symmetric non-metric connection. This leads to the statement of
the Theorem 6.2.

In this sequel, we write the following corollaries.

Corollary 6.2. Let M̀ be a CR-submanifold nearly hyperbolic Sasakian manifold
Mn(ϕ, ξ, η, g), n > 1, admitting induced quarter symmetric non-metric connection
`̂∇ is ξ-horizontal (resp. ξ-vertical) and D is parallel with respect to

`̃∇. If (g, κ, λ)
be a Yamabe soliton on M and κ is a torse-forming vector field, then the following
results hold

κ condition of existence condition of shrinking,
steady and expanding

torse-forming
̂̂
δ − ψ − 1

n{θ(κ)} = constant
̂̂
δ − ψ − 1

n{θ(κ)} <> =0

concircular
̂̂
δ − ψ = constant

̂̂
δ − ψ <> =0

concurrent
̂̂
δ − 1 = constant

̂̂
δ − 1 <> =0

recurrent
̂̂
δ − 1

n{θ(κ)} = constant
̂̂
δ − 1

n{θ(κ)} <> =0

parallel
̂̂
δ = constant

̂̂
δ <> =0

torqued
̂̂
δ − ψ = constant

̂̂
δ − ψ <> =0

7. Almost Yamabe solitons whose potential vector field is
torse-forming on CR-submanifold of nearly hyperbolic Sasakian

manifold

In this section, we classify almost Yamabe solitons whose potential field is torse-
forming on CR-submanifold of nearly hyperbolic Sasakian manifold with respect to
a semi-symmetric metric connection and quarter symmetric non-metric connection.
At this stage, we denote κt and κn as tangential and normal component of such
vector field. For almost Yamabe soliton we have the following.

Theorem 7.1. An almost Yamabe soliton (g, κt, λ) on a CR-submanifold M̀ of
nearly hyperbolic Sasakian manifold Mn(ϕ, ξ, η, g), n > 1, with a semi-symmetric

metric connection of type ∇̃ satisfies

(δ̂ − λ− ψ + η(κn))g(X,Y ) = g(AκnX,Y ) +
1

2
{θ(X)g(κ, Y ) + θ(Y )g(X,κ)}

+
1

2
{g(κn, X)η(Y ) + g(Y, κn)η(X)}(7.1)

for any vector fields X,Y on M .
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Proof. In view of (1.3), (3.1), (4.14) and (4.15), we have

ψX + θ(P )κ = ∇̃Xκ = ∇̃X(κt + κn) = ∇̀Xκ
t + h(X,κt) + η(κt)ϕQX

−AκnX +∇⊥
Xκ

n + η(κn)X − g(X,κn)ξ.(7.2)

On comparing tangential and normal component of (7.2), we obtain

∇̀Xκ
t = ψX + θ(P )κ+AκnX − η(κn)X + g(X,κn)ξ(7.3)

and
h(X,κt) = −∇⊥

Xκ
n − η(κn)ϕQX.(7.4)

From the definition of Lie derivative and (7.3), we have

Lκtg(X,Y ) = 2ψg(X,Y ) + 2g(AκnX,Y )− 2η(κn)g(X,Y ) + {θ(X)g(κ, Y )

+θ(Y )g(X,κ)}+ {g(κn, X)η(Y ) + g(Y, κn)η(X)}.(7.5)

Using (7.5) in (1.2), we yield

(δ̂ − λ− ψ + η(κn))g(X,Y ) = g(An
κX,Y ) +

1

2
{θ(X)g(κ, Y ) + θ(Y )g(X,κ)}

+
1

2
{g(κn, X)η(Y ) + g(Y, κn)η(X)}.(7.6)

This proves our assertion.

Corollary 7.1. If an almost Yamabe soliton (g, κt, λ) on a CR-submanifold M̀
of nearly hyperbolic Sasakian manifold Mn(ϕ, ξ, η, g), n > 1, with semi-symmetric
metric connection is minimal, then

(δ̂ − λ− ψ + η(κn))n = θ(κ).(7.7)

Corollary 7.2. Let (g, κt, λ) be an almost Yamabe soliton on a CR-submanifold
M̀ of nearly hyperbolic Sasakian manifold Mn(ϕ, ξ, η, g), n > 1, and ξ-horizontal
(resp.ξ-vertical), X,Y ∈ Γ(D), D is parallel with induced connection ∇̀ satisfies

(δ̂ − λ− ψ + η(κn))g(X,Y ) = g(AκnX,Y ) +
1

2
{θ(X)g(κ, Y ) + θ(Y )g(X,κ)}

+
1

2
{g(κn, X)η(Y ) + g(Y, κn)η(X)}(7.8)

for any vector fields X,Y on M .

Corollary 7.3. If an almost Yamabe soliton (g, κt, λ) on CR-submanifold M̀ of
nearly hyperbolic Sasakian manifold Mn(ϕ, ξ, η, g), (n > 1) and ξ-horizontal (resp.
ξ-vertical), X,Y ∈ Γ(D), D is parallel with induced connection ∇̀ is minimal, then

(δ̂ − λ− ψ + η(κn))n = θ(κ)(7.9)
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Theorem 7.2. An almost Yamabe soliton (g, κt, λ) on a CR-submanifold M̀ of
nearly hyperbolic Sasakian manifold Mn(ϕ, ξ, η, g), n > 1, with quarter symmetric

non-metric connection ∇̂ satisfies

(δ̂ − λ− ψ + η(κn))g(X,Y ) = g(AκnX,Y ) +
1

2
{θ(X)g(κ, Y ) + θ(Y )g(X,κ)}

(7.10)

for any vector fields X,Y on M .

Proof. In view of (1.3), (3.9), (4.16) and (4.17), we have

ψX + θ(P )κ = ∇̂Xκ = ∇̂X(κt + κn) = ∇̀Xκ
t + ĥ(X,κt)− ÂκnX + ∇̂⊥

Xκ
n

= ∇̀Xκ
t + h(X,κt)− ÂκnX +∇⊥

Xκ
n + η(κn)ϕX.(7.11)

On comparing tangential and normal component of (7.11), we obtain

∇̀Xκ
t = ψX + θ(X)κ+AκnX − η(κn)ϕX,(7.12)

and
h(X,κt) = −∇⊥

Xκ
n.(7.13)

From the definition of Lie derivative and (7.12), we have

Lκtg(X,Y ) = 2ψg(X,Y ) + 2g(AκnX,Y ) + {θ(X)g(κ, Y ) + θ(Y )g(X,κ)}.(7.14)

Using (7.14) in (1.2), we yield

(δ̂ − λ− ψ)g(X,Y ) = g(An
κX,Y ) +

1

2
{θ(X)g(κ, Y ) + θ(Y )g(X,κ)}

(7.15)

This proves our assertion.

Corollary 7.4. If an almost Yamabe soliton (g, κt, λ) on a CR-submanifold M̀ of
nearly hyperbolic Sasakian manifold Mn(ϕ, ξ, η, g), n > 1, with quarter symmetric
non-metric connection is minimal, then

(δ̂ − λ− ψ)n = θ(κ).(7.16)

Corollary 7.5. Let (g, κt, λ) be an almost Yamabe soliton on a CR-submanifold
M̀ of nearly hyperbolic Sasakian manifold Mn(ϕ, ξ, η, g), n > 1, and ξ-horizontal

(resp.ξ-vertical), X,Y ∈ Γ(D), D is parallel with induced connection
`̂∇ satisfies

(δ̂ − λ− ψ + η(κn))g(X,Y ) = g(An
κX,Y ) +

1

2
{θ(X)g(κ, Y ) + θ(Y )g(X,κ)}

(7.17)

for any vector fields X,Y on M .
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Corollary 7.6. If an almost Yamabe soliton (g, κt, λ) on CR-submanifold M̀ of
nearly hyperbolic Sasakian manifold Mn(ϕ, ξ, η, g), (n > 1) and ξ-horizontal (resp.

ξ-vertical), X,Y ∈ Γ(D), D is parallel with induced connection
`̂∇ is minimal, then

(δ̂ − λ− ψ)n = θ(κ)(7.18)

8. Example

Example 8.1. Let us consider on R2n+1 the following hyperbolic Sasakian structure
(ϕ, ξ, η, g) given by

η =
1

2

(
dz −

n∑
i=n

yidxi

)
, ξ =

∂

∂z
,

g = −η ⊗ η − 1

4

n∑
i=1

(dxi ⊗ dxi + dyi ⊗ dyi)

ϕ ◦
(
coshxi

∂

∂xi
+ sinhyi

∂

∂yi
+ z

∂

∂z

)

=

n∑
i=1

(
sinhyi

∂

∂xi
+ coshxi

∂

∂yi

)
+

n∑
i=1

sinhy, yi
∂

∂z
,

where
{
xi, yi, z

}
,i = 1, ....n are the denoting the Cartesian coordinates.

The equation t(x1, x2, x3, x4) = (x1, x2, x3, 0, x5) define a CR-sub-manifolds in R5 with
its hyperbolic Sasakian structure (ϕ, ξ, η, g). For this fact we take the orthogonal basis

E1 = coshx5
∂

∂x1
+ sinhx5

∂

∂x2
, E2 = sinhx5

∂

∂x1
+ coshx5

∂

∂x2

E3 = coshx5
∂

∂x3
+ sinhx5

∂

∂x4
, E4 = sinhx5

∂

∂x3
+ coshx5

∂

∂x4
, E5 =

∂

∂x5
= ξ,

and define D = span {E1, E2} and D⊥ = span {E3}. In this case it is clear that
TM = D ⊕D⊥ ⊕ ⟨ξ⟩.

Example 8.2. Let us consider the 5-dimensioanl manifold M = (x1, x2, x3, x4, x5) ∈ R5,
where (x1, x2, x3, x4, x5) are the standard coordinated in R5. Let e1, e2, e3, e4 and e5 be
the vector fields on M given by

e1 = coshx5
∂

∂x1
+ sinhx5

∂

∂x2
, e2 = sinhx5

∂

∂x1
+ coshx5

∂

∂x2

e3 = coshx5
∂

∂x3
+ sinhx5

∂

∂x4
, e4 = sinhx5

∂

∂x3
+ coshx5

∂

∂x4
, e5 =

∂

∂x5
= ξ,
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which are linearly independent at each point of M and hence form a basis tangent
space TpM .
Let g be the Riemannian metric on M define by

g(ei, ei) = −1, for1 ≤ i ≤ 4 and g(e5, e5) = −1,(8.1)

g(ei, ej) = 0, for 1 ̸= j and 1 ≤ i ≤ 5 1 ≤ j ≤ 5.(8.2)

Let η be the 1-form defined by η(X) = g(X, e5) for all X ∈ (M) and let ϕ be the
(1, 1)-tensor field defined by

ϕ(e1) = −e2, ϕ(e2) = −e1, ϕ(e3) = −e4, ϕ(e4) = −e3, ϕ(e5) = 0.

Thus e5 = ξ, the structure (ϕ, ξ, η, g) define an almost hyperbolic contact metric
structure on M . Then we have

[e1, e2] = [e1, e3] = [e1, e4] = [e2, e3] = [e2, e4] = [e3, e4] = 0,

[e1, e5] = −e2, [e2, e5] = −e1, [e3, e5] = e4, [e4, e5] = −e3,

The Levi-Civita connection ∇ of the Riemannian metric g is given by,

2g(∇XY, Z)(8.3)

= Xg(Y,Z) + Y g(Z,X)− Zg(X,Y )− g(X, [Y,Z]) + g(Y, [Z,X]) + g(Z, [X,Y ]),

which is known as Koszul’s formula. After using koszul’s formula, we find

∇e1e1 = 0, ∇e1e2 = −e5, ∇e1e3 = 0, ∇e1e4 = 0, ∇e1e5 = −e2,

∇ee1 = −e5, ∇e2e2 = 0, ∇e2e3 = 0, ∇e2e4 = 0, ∇e2e5 = −e1,

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0, ∇e3e4 = −e5, ∇e3e5 = −e4,

∇e4e1 = 0, ∇e4e2 = −e5, ∇e4e3 = −e5, ∇e4e4 = 0, ∇e4e5 = −e3,

∇e5e1 = 0, ∇e5e2 = 0, ∇e5e3 = 0, ∇e5e4 = 0, ∇e5e5 = 0,

By using the definition of semi-symmetric metric connection (3.1) and from above
expressions we find

∇̃e1e1 = −e5, ∇̃e1e2 = −e5, ∇̃e1e3 = 0, ∇̃e1e4 = 0, ∇̃e1e5 = −e1−e2,

∇̃e2e1 = −e5, ∇̃e2e2 = −e5, ∇̃e2e3 = 0, ∇e2e4 = 0, ∇e2e5 = −e1−e2,

∇̃e3e1 = 0, ∇̃e3e2 = 0, ∇̃e3e3 = −e5, ∇e3e4 = −e5, ∇e3e5 = e3 − e4,

∇̃e4e1 = 0, ∇̃e4e2 = −e5, ∇̃e4e3 = −e5, ∇̃e4e4 = −e5, ∇̃e4e5 = −e3 − e4,

∇̃e5e1 = 0, ∇̃e5e2 = 0, ∇̃e5e3 = 0, ∇̃e5e4 = 0, ∇̃e5e5 = 0,
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Therefore, the non-vanishing components of the Riemannian curvatures, the Ricci
curvatures and the Scalar curvature with respect to the semi-symmetric metric
connection as follows:

R̃(e1, e2)e1 = 0, R̃(e1, e2)e2 = 0, R̃(e1, e3)e1 = −e3 − e4, R̃(e1, e3)e3 = e1 + e2,

R̃(e1, e2)e1 = e2, R̃(e1, e2)e2 = −e1, R̃(e1, e3)e1 = 0, R̃(e1, e3)e3 = 0,

R̃(e1, e4)e1 = −e3 − e4, R̃(e1, e4)e4 = e1 + e2, R̃(e1, e5)e1 = −e5,

R̃(e1, e5)e5 = −e1 − e2, R̃(e2, e3)e2 = −e3 − e4, R̃(e2, e3)e3 = −e1 − e2,

R̃(e2, e4)e3 = 0, R̃(e3, e4)e4 = 0, R̃(e3, e5)e3 = −e5,

R̃(e3, e5)e5 = −e3 − e4, R̃(e4, e5)e4 = −e5, R̃(e4, e5)e5 = −e3 − e4,

From these Riemannian curvatures tensors, we calculate

S̃(e1, e1) = S̃(e2, e2) = S̃(e3, e3) = R̃(e4, e4) = S̃(e5, e5) = −4

Since {e1, e2, e3, e4, e5} form a basis of a 5-dimensional almost hyperbolic contact
metric structure. Thus any vector field X,Y, Z ∈ χ(M5) can be written as

X = a1e1 + b1e2 + c1e3 + d1e4 + t1e5,

Y = a2e1 + b2e2 + c2e3 + d2e4 + t2e5,

Z = a3e1 + b3e2 + c3e3 + d3e4 + t3e5,

where ai, bi, ci, di, ti ∈ Re+, i = 1, 2, 3, 4, 5 such that{
(a1a2 + b1b2 + c1c2 + d1d3)

t1
+ t1

(
b2
b1
− a2
a1
− c2
c1
− 1

)}
̸= 0.

If we consider the 1-form θ by θ(X)=-g(X, e5), for any X ∈ χ(M) and considering
ψ ∈ C∞(M) as

ψ =

{
(a1a2 + b1b2 + c1c2 + d1d3)

t1
+ t1

(
b2
b1
− a2
a1
− c2
c1
− 1

)}
.

So the relation
∇XY = ψX + θ(X)Y,(8.4)
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holds. As per this consequences Y is a torse-forming vector field. Thus from (9.3),
we get

(LY g)(X,Z) = g(∇XY,Z) + g(X,∇ZY )
= 2ψg(X,Z) + θ(X)g(Y,Z) + θ(Z)g(Y,X).

(8.5)

Also, we calculate g(X,Z) = a1a3 + b1b3 + c1c3 + d1d3 − t1t3
g(Y,Z) = a2a3 + b2b3 + c2c3 + d2d3 − t2t3
g(Y,X) = a1a2 + b1b2 + c1c2 + d1d2 − t1t2

.(8.6)

Also  θ(X) = t1
θ(Y ) = t2
θ(Z) = t3

.(8.7)

With the help of above equation (9.2) can be reduced

1
2 (LY g)(X,Z) =

{
(a1a2+b1b2+c1c2+d1d3)

t1
+ t1

(
b2
b1
− a2

a1
− c2

c1
− 1
)}

×{a1a3 + b1b3 + c1c3 + d1d3 − t1t3
− 1

2 t1(a2a3 + b2b3 + c2c3 + d2d3 − t2t3)
+t3(a1a3 + b1b3 + c1c3 + d1d3 − t1t3)}

(8.8)

Also,

(
˜̂
δ − λ)g(X,Z) = (−16− λ){a1a3 + b1b3 + c1c3 + d1d3 − t1t3}(8.9)

We consider that a1a3+b1b3+c1c3+d1d3−t1t3 ̸= 0 and 5t1(a2a3+b2b3+c2c3+d2d3−
t2t3)+5t3(a1a3+b1b3+c1c3+d1d3− t1t3)+2t2(a1a3+b1b3+c1c3+d1d3− t1t3)=0.

we get (g, Y, λ) is a Yamabe soliton, i.e., 1
2LY g(X,Z)=(

˜̂
δ− λ)g(X,Z) holds, unless

λ = −16−
{

(a1a2+b1b2+c1c2+d1d3)
t1

+ t1

(
b2
b1
− a2

a1
− c2

c1
− 1
)}
− 1

5 t2

= r̃ − ψ − 1
5θ(Y )

= constant

So the existence of Yamabe soliton (g, Y, λ) on a 5-dimensional hyperbolic Sasakian

manifold with semi symmetric metric connection ∇̃ with potential vector field Y as
torse-forming thus the Theorem 5.2 is verified.

Example 8.3. In Example 8.2, we consider the hyperbolic Sasakian manifoldM (ϕ, η, ξ, g)
with quarter symmetric non-metric connection. Using the equation (3.9), we obtain:

∇̂e1e1 = 0, ∇̂e1e2 = −e5, ∇̂e1e3 = 0, ∇e1e4 = 0, ∇̂e1e5 = −e2,

∇̂ee1 = −e5, ∇̂e2e2 = 0, ∇̂e2e3 = 0, ∇̂e2e4 = 0, ∇̂e2e5 = −e1,
∇̂e3e1 = 0, ∇̂e3e2 = 0, ∇̂e3e3 = 0, ∇̂e3e4 = −e5, ∇̂e3e5 = −e4,

∇̂e4e1 = 0, ∇̂e4e2 = −e5, ∇̂e4e3 = −e5, ∇̂e4e4 = 0, ∇̂e4e5 = −e3,
∇̂e5e1 = 0, ∇̂e5e2 = 0, ∇̂e5e3 = 0, ∇̂e5e4 = 0, ∇̂e5e5 = 0,
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Therefore, the non-vanishing components of the Riemannian curvatures, the Ricci curva-
tures and the Scalar curvature with respect to the quarter-symmetric non-metric connec-
tion are as follows:

R̂(e1, e2)e1 = e2, R̂(e1, e2)e2 = −e1, R̂(e1, e3)e1 = 0, R̂(e1, e3)e3 = 0,

R̂(e1, e4)e1 = 0, R̂(e1, e4)e4 = 0, R̂(e1, e5)e1 = −e5, R̂(e1, e5)e5 = −e1,

R̂(e2, e3)e2 = 0, R̂(e2, e3)e3 = 0, R̂(e2, e4)e3 = 0, R̂(e3, e4)e4 = 0,

R̂(e2, e5)e2 = −e5, R̂(e2, e5)e5 = −e2, R̂(e3, e4)e3 = e4, R̂(e3, e4)e4 = −e3,

R̂(e3, e5)e3 = −e5, R̂(e3, e5)e5 = −e3, R̂(e4, e5)e4 = −e5, R̂(e4, e5)e5 = −e4,

From these Riemannian curvatures tensors components with quarter semi-symmetric non-
metric connection we calculate:

Ŝ(e1, e1) = Ŝ(e2, e2) = Ŝ(e3, e3) = R̂(e4, e4) = 0, Ŝ(e5, e5) = −4

r̂ = −4.

Therefore, the constructed metric of the hyperbolic Sasakian manifold with quarter-
symmetric non-metric connection is Yamabe solion. It is shown that the scalar curvature
with respect to the quarter-symmetric non-metric connection r̂ = −4 and λ = −4 < 0 i.e
is admitting shrinking Yamabe soliton.
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1. Introduction

The concept of an LP-Sasakian manifold was first developed in 1989 by K.
Matsumoto [9]. The identical idea was then independently suggested by I. Mihai
and R. Rosca [11], who produced multiple results on this manifold. Additionally,
Venkatesha and C.S. Bagewadi [19], I. Mihai, A.A. Shaikh and U.C. De [12], A.A.
Shaikh [18], C. Ozgur [14] and others have explored the LP-Sasakian manifold.
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Subsequently, numerous geometers have published various works in this field ([8],
[4], [15], [16], [6]).

A non-flat Riemannian manifold (Mn, g) (n > 2) is called weakly symmetric if
there exist 1-forms α, β, γ, δ and σ such that

(∇XR)(Y,Z, V, U) = α(X)R(Y, Z, V, U) + β(Y )R(X,Z, V, U)(1.1)

+ γ(Z)R(Y,X, V, U) + δ(V )R(Y, Z,X,U)

+ σ(U)R(Y, Z, V,X),

holds for all vector fields X,Y, ..., V ∈ X(M), where R is the Riemannian curvature
tensor of (Mn, g) of type (0, 4) and ∇ is the covariant differentiation with respect
to the Riemannian metric g. A weakly symmetric manifold is said to be proper if
α = β = γ = δ = σ = 0 is not the case.

Let {ei}, (i = 1, 2, ..., n) be an orthonormal basis of the tangent space at point
of the manifold. Then, putting Y = U = ei in (1.1) and taking summation for
1 ≤ i ≤ n, we obtain

(∇XS)(Z, V ) = α(X)S(Z, V ) + γ(Z)S(X,V ) + δ(V )S(Z,X)(1.2)

+ β(R(X,Z)V ) + σ(R(X,V )Z).

A Riemannian manifold (Mn, g) (n > 2) is called weakly Ricci-symmetric if
there exist 1-forms ρ, µ, ν such that the relation

(∇XS)(Y, Z) = ρ(X)S(Y, Z) + µ(Y )S(X,Z) + ν(Z)S(X,Y ),(1.3)

holds for any vector fields X,Y, Z, where S is the Ricci tensor of type (0, 2) of the
manifold Mn. A weakly Ricci-symmetric manifold is said to be proper if ρ = µ =
ν = 0 is not the case.

An n-dimensional Riemannian manifold (Mn, g) is called a special weakly Ricci-
symmetric (SWRS)n manifold if

(∇XS)(Y, Z) = 2α(X)S(Y, Z) + α(Y )S(X,Z) + α(Z)S(X,Y ),(1.4)

where α is a 1-form and is defined by

α(X) = g(X, ρ),(1.5)

where ρ is the associated vector field.

We are the following known result.

Lemma 1.1. [13] If M : g = c is a surface in Rn, then the gradient vector field
is a non-vanishing normal vector field on the entire surface M .
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2. LP-Sasakian manifold

A differentiable manifold of dimensional n(odd) is called LP-Sasakian manifold if it
admits a (1, 1)-tensor field ϕ, a contravariant vector field ξ, a covariant vector field
η and a Lorentzian metric g which satisfy:

ϕ2 = I + η ⊗ ξ, η(ξ) = −1, ϕ(ξ) = 0, η ◦ ϕ = 0,(2.1)

g(ϕX, ϕY ) = g(X,Y ) + η(X)η(Y ), g(X, ξ) = η(X),(2.2)

for all X,Y ∈ TM .

Also LP-Sasakian manifold Mn satisfies

(∇Xϕ)Y = {g(X,Y )ξ + 2η(Y )η(X)ξ} ,(2.3)

∇Xξ = ϕX,(2.4)

where∇ denotes the operator of covariant differentiation with respect to the Lorentzian
metric g.

Example of LP-Sasakian manifold: Consider the 3-dimensional manifold M =
{(x, y, z) ∈ R3; z ̸= 0}, where (x, y, z) are the standard co-ordinates in R3. Let
{E1, E2, E3} be linearly independent global frame field on Mn given by

E1 =
ez

x

∂

∂x
, E2 =

ez−ax

y

∂

∂y
, E3 =

∂

∂z
.(2.5)

Let g be the Riemannian metric defined by

g(E1, E2) = g(E1, E3) = g(E2, E3) = 0,

g(E1, E1) = g(E2, E2) = 1 and g(E3, E3) = −1.

The (ϕ, ξ, η) is given by

η = −dz, ξ = E3 =
∂

∂z
,

ϕE1 = −E1, ϕE2 = −E2, ϕE3 = 0.

The linearity property of ϕ and g yields that

η(E3) = −1, ϕ2U = U + η(U)E3,

g(ϕU, ϕW ) = g(U,W ) + η(U)η(W ), g(U, ξ) = η(U),

for any vector fields U,W on M . By definition of Lie bracket, we have

[E1, E2] = −
aez

x
E2, [E1, E3] = −E1, [E2, E3] = −E2.(2.6)
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The Levi-Civita connection with respect to above metric g is given by Koszula
forumula

2g(∇XY, Z) = X(g(Y, Z)) + Y (g(Z,X))− Z(g(X,Y ))

−g(X, [Y, Z])− g(Y, [X,Z]) + g(Z, [X,Y ]).

Then we have,

∇E1E1 = −E3, ∇E1E2 = 0, ∇E1E3 = −E1,

∇E2E1 =
aez

x
E2, ∇E2E2 = −ae

z

x
E1 − E3, ∇E2E3 = −E2,

∇E3E1 = 0, ∇E3E2 = 0, ∇E3E3 = 0.

The tangent vectorsX and Y toM are expressed as linear combination of E1, E2, E3,
i.e., X = a1E1 + a2E2 + a3E3 and Y = b1E1 + b2E2 + b3E3, where ai and bj are
scalars. Clearly (ϕ, ξ, η, g) and X,Y satisfy equations (2.1), (2.2), (2.3) and (2.4).
Thus Mn is LP-Sasakian manifold.

Also, in LP-Sasakian manifold Mn the following relations hold:

η(R(X,Y )Z) = {g(Y,Z)η(X)− g(X,Z)η(Y )} ,(2.7)

R(X,Y )ξ = {η(Y )X − η(X)Y } ,(2.8)

R(ξ,X)Y = {g(X,Y )ξ − η(Y )X} ,(2.9)

R(ξ,X)ξ = {η(X)ξ +X} ,(2.10)

S(X, ξ) = (n− 1)η(X),(2.11)

Qξ = (n− 1)ξ,(2.12)

for any vector fields X,Y, Z, where R(X,Y )Z is the curvature tensor and S is the
Ricci tensor.

3. Semi-symmetric semi-metric connection

A. Friedmann and J.A. Schouten [5] introduced the idea of a semi-symmetric linear
connection. A linear connection ∇ is said to be semi-symmetric connection if its
torsion tensor T is of the form

T (X,Y ) = η(Y )X − η(X)Y,(3.1)

where η is a 1-form. Motivated by studies of author in [1], introduced the notion

of semi-symmetric semi-metric connection ∇̃ on a contact metric manifold and it is
defined as

∇̃XY = ∇XY − η(X)Y + g(X,Y )ξ,(3.2)

where ∇ is Levi-Civita connection. A study on semi-symmetric connections and
their properties can be found in [20, 3, 5, 7]. More recently, Mobin Ahmad and M.
Danish Siddiqui [1] have studied a nearly Sasakian manifold with a semi-symmetric
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semi-metric connection, proving the results of integrability conditions of distribution
of semi-invariant submanifolds of an approximately Sasakian manifold, inspired by
research done by the author in [1]. Our focus is on LP-Sasakian manifolds that
exhibit weakly symmetry.

A relation between the curvature tensor ofMn with respect to the semi-symmetric
semi-metric connection ∇̃ and the Levi-Civita connection ∇ is given by

R̃(X,Y )Z = R(X,Y )Z + 2[η(Y )g(X,Z)− η(X)g(Y, Z)]ξ + [g(X,ϕY )(3.3)

− g(Y, ϕX)]Z + [g(Y, Z)ϕX − g(X,Z)ϕY ],

where R̃ and R are the Riemannian curvatures of the connections ∇̃ and ∇ respec-
tively. From (3.3), it follows that

S̃(Y, Z) = S(Y,Z) + 2η(Y )η(Z) + 2g(Y,Z)− g(Z, ϕY ) + Tg(Y, Z),(3.4)

where T = traceϕ = g(ϕei, ei), S̃ and S are the Ricci tensors of the connections ∇̃
and ∇ respectively.

Taking Z instead of ξ, the above expression becomes

S̃(Y, ξ) = [(n− 1) + T ]η(Y ).(3.5)

4. Weakly symmetric LP-Sasakian manifold admitting
semi-symmetric semi-metric connection

Let M̃n denote LP-Sasakian manifold admitting semi-symmetric semi-metric con-
nection. Let M̃n be weakly symmetric. Then equation (1.2) may be written as

(∇̃X S̃)(Z, V ) = α(X)S̃(Z, V ) + γ(Z)S̃(X,V ) + δ(V )S̃(Z,X)(4.1)

+ β(R̃(X,Z)V ) + σ(R̃(X,V )Z).

Taking covariant differentiation of the Ricci tensor S̃ with respect to X, we have

(∇̃X S̃)(Z, V ) = ∇̃X S̃(Z, V )− S̃(∇̃XZ, V )− S̃(Z, ∇̃XV ).(4.2)

Putting V = ξ in (4.2) and by virtue of (2.1), (2.4), (2.11), (3.2), (3.4), we find

(∇̃X S̃)(Z, ξ) = (n− 1)η(∇XZ)− (n− 1)η(X)η(Z)− (n− 1)g(X,Z)(4.3)

+(n− 1)g(Z, ϕX) +X(T )η(Z) + Tη(∇XZ)− Tη(X)η(Z)

−Tg(X,Z) + Tg(Z, ϕX) + (n− 1)g(Z, ϕX)− S(Z, ϕX)

−2g(Z, ϕX) + g(Z,X) + η(X)η(Z).

On the other hand replacing V with ξ in (4.1) and use (2.1), (2.11), (3.3), (3.4),
(3.5), we immediately obtain

(∇̃X S̃)(Z, ξ) = [(n− 1) + T ]α(X)η(Z) + [(n− 1) + T ]γ(Z)η(X)(4.4)
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+ δ(ξ)S(Z,X) + 2δ(ξ)η(Z)η(X) + 2δ(ξ)g(Z,X)

− δ(ξ)g(X,ϕZ) + Tδ(ξ)g(Z,X) + η(Z)β(X)

− η(X)β(Z) + g(X,ϕZ)β(ξ)− g(Z, ϕX)β(ξ)

+ η(Z)β(ϕX)− η(X)β(ϕZ) + η(Z)σ(X)− g(X,Z)σ(ξ)
− 2g(X,Z)σ(ξ)− 2η(X)η(Z)σ(ξ) + η(Z)σ(ϕX).

Hence, comparing the right hand side of the equations (4.3) and (4.4), we get

(n− 1)η(∇XZ)− (n− 1)η(X)η(Z)− (n− 1)g(X,Z) + (n− 1)g(Z, ϕX)(4.5)

+X(T )η(Z) + Tη(∇XZ)− Tη(X)η(Z)− Tg(X,Z) + Tg(Z, ϕX)

+(n− 1)g(Z, ϕX)− S(Z, ϕX)− 2g(Z, ϕX) + g(Z,X) + η(X)η(Z)

= [(n− 1) + T ]α(X)η(Z) + [(n− 1) + T ]γ(Z)η(X) + δ(ξ)S(Z,X)

+2δ(ξ)η(Z)η(X) + 2δ(ξ)g(Z,X)− δ(ξ)g(X,ϕZ) + Tδ(ξ)g(Z,X)

+η(Z)β(X)− η(X)β(Z) + g(X,ϕZ)β(ξ)− g(Z, ϕX)β(ξ)

+η(Z)β(ϕX)− η(X)β(ϕZ) + η(Z)σ(X)− g(X,Z)σ(ξ)
−2g(X,Z)σ(ξ)− 2η(X)η(Z)σ(ξ) + η(Z)σ(ϕX).

Plugging Z = ξ in (4.5) and using these equations (2.1), (2.4), (2.11), we get the
equation

−X(T ) = −[(n− 1) + T ]α(X) + [(n− 1) + T ]γ(ξ)η(X)(4.6)

+ [(n− 1) + T ]δ(ξ)η(X)− β(X)− η(X)β(ξ)

− β(ϕX)− σ(X)− η(X)σ(ξ)− σ(ϕX).

At this stage we can’t give any geometric meaning to this equation. If we take
X = ξ, then

ξ(T ) = [(n− 1) + T ][α(ξ) + γ(ξ) + δ(ξ)],

i.e, gradT.ξ = [(n− 1) + T ][α(ξ) + γ(ξ) + δ(ξ)].(4.7)

Since [(n − 1) + T ] ̸= 0, we have gradT is normal to ξ if and only if [α(ξ) +
γ(ξ) + δ(ξ)] = 0.
Thus by Lemma 1.1 we can state the following:

Theorem 4.1. Let M̃n be weakly symmetric LP-Sasakian manifold with respect
to semi-symmetric semi-metric connection. Then the sum of 1-forms α, γ and δ on
vanish on the characteristic vector field ξ if and only if the gradient of trace of the
endomorphism ϕ is normal to Mn along ξ.

5. On special weakly Ricci-symmetric LP-Sasakian manifold admitting
semi-symmetric semi-metric connection

Let M̃n be special weakly Ricci-symmetric LP-Sasakian manifold. Then (1.4) may
be written as

(∇̃X S̃)(Y, Z) = 2α(X)S̃(Y, Z) + α(Y )S̃(X,Z) + α(Z)S̃(X,Y ).(5.1)
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Taking cyclic sum of (5.1). This implies that

(∇̃X S̃)(Y, Z) + (∇̃Y S̃)(Z,X) + (∇̃Z S̃)(X,Y )(5.2)

= 4[α(X)S̃(Y, Z) + α(Y )S̃(Z,X) + α(Z)S̃(X,Y )].

Let M̃n admit a cyclic Ricci tensor. Then (5.2) reduces to

0 = α(X)S̃(Y, Z) + α(Y )S̃(Z,X) + α(Z)S̃(X,Y ).(5.3)

Now setting Z = ξ in (5.3) and yield (2.1), (3.4), (3.5), we get

0 = [(n− 1) + T ]α(X)η(Y ) + [(n− 1) + T ]α(Y )η(X) + α(ξ)S(X,Y )(5.4)

+ 2α(ξ)η(X)η(Y ) + 2α(ξ)g(X,Y )− α(ξ)g(Y, ϕX) + Tα(ξ)g(X,Y ).

Again setting Y = ξ in (5.4) and employ (1.5) and (2.1), we obtain

2η(ρ)η(X) = α(X).(5.5)

Changing X to ξ in (5.5) and make use of (1.5) and (2.1), it follows that

η(ρ) = 0.(5.6)

By virtue of (5.6) in (5.5), we procure α(X) = 0, for all X.
This lead us to the following

Theorem 5.1. Let M̃n be special weakly Ricci-symmetric LP-Sasakian manifold
Mn with respect to semi-symmetric semi-metric connection and admits a cyclic
Ricci tensor. Then the 1-form α must vanish on Mn. However the converse holds
trivially.

Next setting Z = ξ in (5.1), we have the following

(∇̃X S̃)(Y, ξ) = 2α(X)S̃(Y, ξ) + α(Y )S̃(X, ξ) + α(ξ)S̃(X,Y ).(5.7)

The left hand side can be written in the form

(∇̃X S̃)(Y, ξ) = ∇̃X S̃(Y, ξ)− S̃(∇̃XY, ξ)− S̃(Y, ∇̃Xξ).(5.8)

By view of (1.5), (2.1), (2.11), (3.2), (3.4), (3.5), we infer that

(n− 1)η(∇XY )− (n− 1)η(X)η(Y )− (n− 1)g(X,Y ) + (n− 1)g(Y, ϕX)(5.9)

+X(T )η(Y ) + Tη(∇XY )− Tη(X)η(Y )− Tg(X,Y ) + Tg(Y, ϕX)

+(n− 1)g(Y, ϕX)− S(Y, ϕX)− 2g(Y, ϕX) + g(Y,X) + η(X)η(Y )

= 2[(n− 1) + T ]α(X)η(Y ) + [(n− 1) + T ]α(Y )η(X)

+η(ρ){S(X,Y ) + 2η(X)η(Y ) + 2g(X,Y )− g(Y, ϕX) + Tg(X,Y )}.
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Choosing Y = ξ in (5.9) and utilize (1.5) and (2.1), (2.4), (2.11), gives

−X(T ) = −2[(n− 1) + T ]α(X) + 2[(n− 1) + T ]η(ρ)η(X),(5.10)

i.e, X(T ) = 2[η(ρ)η(X)− α(X)][(n− 1) + T ].(5.11)

We know that X(T ) = gradT ·X. Since [(n− 1) + T ] ̸= 0. gradT is normal to
Mn if and only if η(ρ)η(X) = α(X).
Hence we state the following lemma 1.1.

Theorem 5.2. Let M̃n be special weakly Ricci-symmetric LP-Sasakian manifold
Mn with respect to semi-symmetric semi-metric connection. Then the gradient of
the trace of the endomorphism of T is normal toMn if and only if η(ρ)η(X) = α(X).

If we put X = ξ in η(ρ)η(X) = α(X), then η(ρ) = 0. Thus α(X) = 0.

Hence we can restate the Theorem 5.2 as follows:

Corollary 5.1. Let M̃n be special weakly symmetric LP-Sasakian manifold with
respect to semi-symmetric semi-metric connection. Then the gradient of the trace
of the endomorphism of T is normal to Mn along ξ if and only if 1-form vanish on
the whole space Mn.

We conclude from the above results:

Conclusion: If M̃n is weakly symmetric LP-Sasakian manifold, then the sum
of the 1-forms vanish along the characteristic vector field ξ if and only if the trace
of endomorphism of ϕ is normal to Mn along ξ, whereas if M̃n is special weakly
Ricci-symmetric then the 1-form vanishes for every vector field if and only if trace
of endomorphism ϕ is normal to Mn along ξ. If M̃n admits cyclic Ricci tensor then
the 1-form vanish the whole manifold Mn without any endomorphism.
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Abstract. In this study, we consider the concept of Mannheim partner trajectories re-
lated to the Positional Adapted Frame on Regular Surfaces (PAFORS) for the particles
moving on the different regular surfaces in Euclidean 3-space. We give the relations
between the PAFORS elements of these aforementioned trajectories. Also, we obtain
the relations between Darboux basis vectors of these trajectories. Furthermore, some
special cases of these trajectories are written.
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1. Introduction

The surface theory is one of the most popular fundamental areas in differential
geometry although its history is very long. The well-known moving frame Frenet-
Serret frame has played an important role in the development of this theory. The
steps which are performed by Frenet and Serret helped to adapt the moving frames
to the curves on regular surfaces. This success was achieved by French mathemati-
cian Darboux [3]. He constructed a moving frame that is called today as Darboux
frame for surface curves. Darboux frame is well-defined at every non-umbilic point
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of a surface. Therefore, it exists at every point of a regular surface curve [3,15,22].
Darboux frame has been used as a convenient tool for discussing many topics in the
surface theory. Until today, a lot of researchers have performed many significant
studies on the surface theory by means of Darboux frame. In [6, 11, 20, 26, 27], one
can easily find some of these studies.

Another popular area in differential geometry is the curve theory. The concept
of the special curves is an important part of this theory. In Euclidean 3-space E3,
curve pairs like Mannheim curve pairs are well-known examples of special curves.
The topic of moving frames has an important place in the investigation of the local
theory of these kinds of curve pairs. Developing new moving frames has always
been an important effort for mathematicians. The groundbreaking discovery in this
regard is the discovery of the Frenet-Serret frame, as everyone will agree. Most of
the moving frames developed later include one of the basis vectors of the Frenet-
Serret frame in common. Bishop frame [1], type 2-Bishop frame [29], type 3-Bishop
frame [25], q-frame [5], Flc-frame [4], N -C-W frame [23], N -Bishop frame [10] can
be given as examples to them. Similar to these moving frames, recently, Özen and
Tosun have introduced a new moving frame on regular surfaces in Euclidean 3-space
which is shortly called PAFORS by using the Darboux frame for the trajectories
with non-vanishing angular momentum [17]. The authors have followed similar
steps followed in the study [18] to construct this frame. The same authors also
give some characterizations on asymptotic, slant helical, and geodesic trajectories
with respect to PAFORS in the study [19]. Then, the idea of this new frame has
been expanded to the Minkowski 3-space by Gürbüz in the study [8]. Gürbüz has
taken into consideration the evolution of an electric field according to PAFORS in
Minkowski 3-space in the aforementioned study.

Mannheim partner curves (according to Frenet-Serret frame) are interesting and
popular special curves. The principal normal line of one of these partners matches
up with the binormal line of the other partner at the corresponding points of them.
Mannheim carried out the first study in 1878 on this topic [2, 13]. In the early
2000s, Mannheim partner curves were studied by Liu and Wang [12, 28]. In [12],
the authors specified the necessary and sufficient conditions for a curve to possess
a Mannheim partner curve in Euclidean 3-space and Minkowski 3-space. Then,
Mannheim offsets of ruled surfaces were defined in [16]. On the other hand, dual
Mannheim curves were discussed [7] and [21]. Another thing that can be of impor-
tance is that this topic was expanded to different frames such as Darboux frame and
Bishop frame. Kazaz et al. [9] determined the Mannheim partner D-curves taking
into consideration the Darboux frames of the curves on surfaces. Similar to this
study, Masal and Azak investigated the Mannheim B-curves utilizing the Bishop
frame [14].

In this paper, we investigate Mannheim partner trajectories related to PAFORS.
Firstly, in Section 2, we mention the necessary information to understand the en-
suing sections. In Section 3, Mannheim partner trajectories related to PAFORS
are defined, and the relations between the PAFORS elements of these trajectories
are given. Also, the relations between Darboux basis vectors of these trajectories



Mannheim Partner Trajectories Related to PAFORS 235

are obtained. Moreover, some special cases of these trajectories are characterized
according to PAFORS curvatures of these trajectories. Then, we give conclusions
in Section 4.

2. Preliminaries

In this section, we remind some required terminology used throughout this pa-
per.

In E3, the standard inner product of any two vectors W = (w1, w2, w3) and
X = (x1, x2, x3) are expressed as 〈W,X〉 = w1x1+w2x2+w3x3. Based on this equal-
ity, the norm of the vector W is given by ‖W‖ =

√
〈W,W〉 =

√
w2

1 + w2
2 + w2

3.
On the other hand, for a differentiable curve α = α (s) : I ⊂ R → E3, if the
condition ‖dα/ds‖ = 1 for all s ∈ I is satisfied, α is called a unit speed curve.
In such a case, the parameter s is said to be an arc-length parameter of α. Also,
if the derivative of a differentiable curve does not equal to zero everywhere along
this curve, it is called a regular curve. Any regular curve always has a unit speed
parameterization [24]. We must emphasize that the symbol prime ′ will be used to
show the differentiation with respect to the arc-length parameter s in the rest of
this study.

The researchers generally make use of the Frenet-Serret frame to investigate
many properties of regular curves. However, if these regular curves lie on regular
surfaces, then using the Darboux frame offers more possibilities than the Frenet-
Serret frame.

Let us suppose that a particle R moves on a regular surface M in the Euclidean
3-space along the trajectory α = α(s) that is a unit speed curve. Thus, we can
express α as α : I ⊂ R → M ⊂ E3. The base vectors of the Darboux frame of
the trajectory α are presented as {T (s) ,Y (s) ,U (s)} along α where T is called
the unit tangent vector, U is called the unit normal vector. The remaining basis
vector Y of the Darboux frame is found by means of the equality Y = U ×T. It
should be specified that the second-order derivatives of the curves, which we will
consider in this article, are always non-zero (it means that α′′(s) is zero nowhere).
For Darboux frame, the derivative formulas are constructed as follows:T′(s)

Y′(s)
U′(s)

 =

 0 kg(s) kn(s)
−kg(s) 0 τg(s)
−kn(s) −τg(s) 0

T(s)
Y(s)
U(s)

 ,

where kg is geodesic curvature, kn is normal curvature and τg is geodesic torsion of
the curve α [6, 15].

Assume that the angular momentum vector of the aforesaid particle R about the
origin does not vanish during the motion. In that case, PAFORS {T(s),G(s),H(s)}
is well defined along the trajectory α = α (s). The base vectors of PAFORS are
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given as follows:

T(s) = T(s),

G(s) =
〈α(s),U(s)〉√

〈α(s),Y(s)〉2 + 〈α(s),U(s)〉2
Y(s) +

〈α(s),Y(s)〉√
〈α(s),Y(s)〉2 + 〈α(s),U(s)〉2

U(s),

H(s) =
〈−α(s),Y(s)〉√

〈α(s),Y(s)〉2 + 〈α(s),U(s)〉2
Y(s) +

〈α(s),U(s)〉√
〈α(s),Y(s)〉2 + 〈α(s),U(s)〉2

U(s).

The relation between the Darboux frame and PAFORS exists as follows:

(2.1)

T (s)
G(s)
H(s)

 =

1 0 0
0 cosϕ(s) − sinϕ(s)
0 sinϕ(s) cosϕ(s)

T(s)
Y(s)
U(s)

 .

Here, ϕ(s) is the angle between the vectors Y(s) and G(s) that is positively oriented
from Y(s) to G(s) [17].
Furthermore, the derivative formulas of PAFORS are given as in the following [17]:

(2.2)

T′(s)
G′(s)
H′(s)

 =

 0 k1(s) k2(s)
−k1(s) 0 k3(s)
−k2(s) −k3(s) 0

 T(s)
G(s)
H(s)

 ,

where 
k1(s) = kg(s) cosϕ(s)− kn(s) sinϕ(s),

k2(s) = kg(s) sinϕ(s) + kn(s) cosϕ(s),

k3(s) = τg(s)− ϕ′(s).

Additionally, the rotation angle ϕ(s) is calculated by using the following equation
[17]:

ϕ(s) =



arctan
(
− 〈α(s),Y(s)〉

〈α(s),U(s)〉

)
if 〈α(s), U(s)〉 > 0,

arctan
(
− 〈α(s),Y(s)〉

〈α(s),U(s)〉

)
+ π if 〈α(s), U(s)〉 < 0,

−π2 if 〈α(s),U(s)〉 = 0 , 〈α(s), Y(s)〉 > 0,

π
2 if 〈α(s), U(s)〉 = 0 , 〈α(s), Y(s)〉 < 0.

Also, the elements of the set {T(s),G(s),H(s), k1(s), k2(s), k3(s)} are called as
PAFORS apparatuses of the trajectory α = α (s) [17].

In order to remind the asymptotic curve and geodesic curve, we can present the
following conditions [15]:

1. kn = 0 if and only if α = α(s) is an asymptotic curve.

2. kg = 0 if and only if α = α(s) is a geodesic curve.
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Theorem 2.1. [19] Suppose that α = α(s) is an asymptotic curve on the regular
surface M with the condition kg 6= 0. Then, α = α(s) is a curve whose position
vector lies on the corresponding plane Sp{T(s),U(s)} if and only if k2 = 0.

Theorem 2.2. [19] Assume that α = α(s) is an asymptotic curve on the regular
surface M with the condition kg 6= 0. Then, α = α(s) is a curve whose position
vector lies on the corresponding plane Sp{T(s),Y(s)} if and only if k1 = 0.

Theorem 2.3. [19] Suppose that α = α(s) is a geodesic curve on the regular surface
M with the condition kn 6= 0. Then, α = α(s) is a curve whose position vector lies
on the corresponding plane Sp{T(s),U(s)} if and only if k1 = 0.

Theorem 2.4. [19] Assume that α = α(s) is a geodesic curve on the regular surface
M with the condition kn 6= 0. Then, α = α(s) is a curve whose position vector lies
on the corresponding plane Sp{T(s),Y(s)} if and only if k2 = 0.

For more detailed and comprehensive information about PAFORS, see [8, 17,19].

3. Mannheim Partner Trajectories Related to PAFORS Lying on
Different Regular Surfaces

In this section of this study, we introduce the Mannheim partner trajectories related
to PAFORS and obtain some characterizations and geometric interpretations of
them.

Definition 3.1. Let R and R̂ be the moving point particles on regular surfaces
M and M̂ in Euclidean 3-space E3. Let us show the unit speed parametrization
of the trajectories of R and R̂ with α = α (s) and α̂ = α̂ (ŝ), respectively. Let

{T, G, H, k1, k2, k3} and
{

T̂, Ĝ, Ĥ, k̂1, k̂2, k̂3

}
represent the PAFORS appara-

tus of the trajectories α and α̂, respectively. If the PAFORS base vector G coincides
with the PAFORS base vector Ĥ at the corresponding points of the trajectories α
and α̂, α̂ is said to be a Mannheim partner trajectory of α related to PAFORS.
Additionally, the pair {α, α̂} is called a Mannheim pair related to PAFORS.

With the help of the definition of Mannheim pair related to PAFORS, we can give
the following equation:T

G
H

 =

 cosψ sinψ 0
0 0 1

− sinψ cosψ 0


T̂

Ĝ

Ĥ

 ,(3.1)

where ψ is the angle between the tangent vectors T and T̂.

Theorem 3.1. Suppose that {α = α (s) , α̂ = α̂ (ŝ)} is any Mannheim pair related
to PAFORS. Then, the distance between the corresponding points of α and α̂ is
constant.
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Fig. 3.1: Mannheim partner trajectories related to PAFORS

Proof. According to the definition of Mannheim trajectories related to PAFORS,
the following equation can be given:

α (s) = α̂ (ŝ) + η (ŝ) Ĥ (ŝ) ,(3.2)

where η is a real valued smooth function of ŝ (cf. Figure 3.1). Differentiating the
equation (3.2) with respect to ŝ and using the equation (2.2), we have:

T
ds

dŝ
=
(

1− ηk̂2
)

T̂− ηk̂3Ĝ + η′Ĥ.(3.3)

Since T, T̂ and Ĝ are orthogonal to Ĥ, we have η′ = 0 with the help of the inner
product. Thus, η is a non-zero constant and then we can rewrite the equation (3.3)
as follows:

T
ds

dŝ
=
(

1− ηk̂2
)

T̂− ηk̂3Ĝ.(3.4)

Hence, the distance between the corresponding points of α and α̂ can be written as
follows:

d (α (s) , α̂ (ŝ)) = ‖α (s)− α̂ (ŝ)‖ =
∥∥∥ηĤ∥∥∥ =| η | .

Therefore, we obtain the distance between each corresponding points of α and α̂ as
non-zero constant.

Theorem 3.2. Let {α = α (s) , α̂ = α̂ (ŝ)} be any Mannheim pair related to PAFORS.
In that case, the following equation is satisfied.

d

ds
(cosψ) = k2

〈
H, T̂

〉
+ k̂1

dŝ

ds

〈
T, Ĝ

〉
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Proof. Since ψ is the angle between the tangent vectors T and T̂, we can write〈
T, T̂

〉
= ‖T‖

∥∥∥T̂∥∥∥ cosψ = cosψ. If this equation is differentiated with respect to

the parameter s, we obtain:

d

ds
(cosψ) =

d

ds

〈
T, T̂

〉
=
〈
k1G + k2H, T̂

〉
+

〈
T, (k̂1Ĝ + k̂2Ĥ)

dŝ

ds

〉
.

Then, the last equation yields the desired result.

Corollary 3.1. The angles between the tangent vectors at the corresponding points
of a Mannheim pair (related to PAFORS) are generally not constant.

Theorem 3.3. Let {α = α (s) , α̂ = α̂ (ŝ)} be a Mannheim pair related to PAFORS.
Then, the following equation is satisfied:T

G
H

 =


(

1− ηk̂2
)
dŝ
ds −ηk̂3 dŝds 0

0 0 1

ηk̂3
dŝ
ds

(
1− ηk̂2

)
dŝ
ds 0


T̂

Ĝ

Ĥ

 .(3.5)

Proof. Let {α, α̂} be a Mannheim pair related to PAFORS. With the help of the
equations (3.1) and (3.4), we get:

cosψ
ds

dŝ
T̂ + sinψ

ds

dŝ
Ĝ =

(
1− ηk̂2

)
T̂− ηk̂3Ĝ.

From the previous equation, we can write:
cosψ =

(
1− ηk̂2

) dŝ
ds

,

sinψ = −ηk̂3
dŝ

ds
.

(3.6)

Substituting the equation (3.6) in the equation (3.1), we have the equation (3.5).

Corollary 3.2. The tangent of the angle between the unit tangent vectors of the
Mannheim partner trajectories (related to PAFORS) α = α (s) and α̂ = α̂ (ŝ) is
given as follows:

tanψ =
−ηk̂3

1− ηk̂2
.(3.7)

Corollary 3.3. Let {α = α (s) , α̂ = α̂ (ŝ)} be a Mannheim pair (related to PAFORS).
In that case, the following equation is satisfied∫

cosψds+ η

∫
k̂2dŝ = ŝ+ c1,

where c1 shows the integration constant.
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Corollary 3.4. Let {α = α (s) , α̂ = α̂ (ŝ)} be a Mannheim pair (related to PAFORS).
Then, the following equation is satisfied.∫

sinψds+ η

∫
k̂3dŝ = 0

Theorem 3.4. Let {α = α (s) , α̂ = α̂ (ŝ)} be a Mannheim pair related to PAFORS

and their Darboux frame be denoted by {T, Y, U} and
{

T̂, Ŷ, Û
}

, respectively.

In that case, the relations between the Darboux base vectors of this pair are given by

T̂ =
(

1− ηk̂2
) dŝ
ds

T− ηk̂3 sinϕ
dŝ

ds
Y − ηk̂3 cosϕ

dŝ

ds
U,

Ŷ =ηk̂3 sin ϕ̂
dŝ

ds
T +

(
cos ϕ̂ cosϕ+

(
1− ηk̂2

)
sin ϕ̂ sinϕ

dŝ

ds

)
Y

+

(
− cos ϕ̂ sinϕ+

(
1− ηk̂2

)
sin ϕ̂ cosϕ

dŝ

ds

)
U,

Û =ηk̂3 cos ϕ̂
dŝ

ds
T +

(
− sin ϕ̂ cosϕ+

(
1− ηk̂2

)
cos ϕ̂ sinϕ

dŝ

ds

)
Y

+

(
sin ϕ̂ sinϕ+

(
1− ηk̂2

)
cos ϕ̂ cosϕ

dŝ

ds

)
U,

where ϕ is the angle between the vectors U and H and also, ϕ̂ is the angle between
the vectors Û and Ĥ.

Proof. With the help of the equation (2.1), the following equationsT
G
H

 =

1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

T
Y
U

(3.8)

and T̂

Ŷ

Û

 =

1 0 0
0 cos ϕ̂ sin ϕ̂
0 − sin ϕ̂ cos ϕ̂


T̂

Ĝ

Ĥ

(3.9)

can be seen easily. Also, we can write the following equation according to the
equation (3.5):T̂

Ĝ

Ĥ

 =


(

1− ηk̂2
)
dŝ
ds 0 ηk̂3

dŝ
ds

−ηk̂3 dŝds 0
(

1− ηk̂2
)
dŝ
ds

0 1 0


T

G
H

 .(3.10)

Substituting the equation (3.10) in the equation (3.9) gives us the following:T̂

Ŷ

Û

 =


(

1− ηk̂2
)
dŝ
ds 0 ηk̂3

dŝ
ds

−ηk̂3 cosϕdŝds sin ϕ̂
(

1− ηk̂2
)

cos ϕ̂dŝds

ηk̂3 sin ϕ̂dŝds cos ϕ̂ −
(

1− ηk̂2
)

sin ϕ̂dŝds


T

G
H

 .(3.11)
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If the equation (3.8) is considered in the equation (3.11), the desired equations are
found.

Theorem 3.5. Let {α = α (s) , α̂ = α̂ (ŝ)} be a Mannheim pair related to PAFORS.
In that case, the following relations can be given:

1. k1 =
k̂2 − ηk̂2

2
− ηk̂3

2

1− 2ηk̂2 + η2
(
k̂2

2
+ k̂3

2
)

2. k̂2 =
k1 − ξk21 − ξk23

1− 2ξk1 + ξ2 (k21 + k23)

where ξ is a constant satisfying | ξ |=| η |.

Proof. 1. Assume that {α, α̂} is a Mannheim pair related to PAFORS. With the
help of the well-known identity cos2ψ + sin2ψ = 1, we get:(

dŝ

ds

)2((
1− ηk̂2

)2
+ η2k̂3

2
)

= 1

using the equation (3.6). Then, we can write:(
ds

dŝ

)2

= 1− 2ηk̂2 + η2
(
k̂2

2
+ k̂3

2
)
.(3.12)

By differentiating the equation (3.4) according to the parameter ŝ and by
using the equation (2.2), we have:

d2s

dŝ2
T + k1

(
ds

dŝ

)2

G + k2

(
ds

dŝ

)2

H =

(
−η
(
k̂2

)′
+ ηk̂1k̂3

)
T̂

+
(
k̂1

(
1− ηk̂2

)
− ηk̂3

′)
Ĝ

+
(
k̂2

(
1− ηk̂2

)
− ηk̂3

2
)

Ĥ.

(3.13)

The last equation yields:

k1

(
ds

dŝ

)2

=
(

1− ηk̂2
)
k̂2 − ηk̂3

2
.(3.14)

If we substitute the equation (3.12) in the equation (3.14), we get the desired
result.

2. We can easily see the equality:

α̂ (ŝ) = α (s) + ξG (s)
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where ξ is a constant satisfying | η |=| ξ | (cf. Figure 3.1). Derivating this
equation according to the s twice, we get:

T̂
dŝ

ds
= (1− ξk1) T + ξk3H(3.15)

and

d2ŝ

ds2
T̂ + k̂1

(
dŝ

ds

)2

Ĝ + k̂2

(
dŝ

ds

)2

Ĥ = (−ξk′1 − ξk2k3) T

+
(
k1 (1− ξk1)− ξk23

)
G

+ (k2 (1− ξk1) + ξk′3) H.

(3.16)

By the equation (3.1), it can be seen that T̂ = cosψT − sinψH. Thus, we
get:

dŝ

ds
cosψT− dŝ

ds
sinψH = (1− ξk1) T + ξk3H

and also dŝ
ds cosψ = 1− ξk1, −dŝds sinψ = ξk3. From here we can write:(

dŝ

ds

)2

= 1− 2ξk1 + ξ2
(
k21 + k23

)
.(3.17)

The inner product of the vectors at the right and left sides of the equation
(3.16) with the vector G gives us the following:

k̂2

(
dŝ

ds

)2

= k1 − ξk21 − ξk23.(3.18)

Consequently, by using the equation (3.17), we have:

k̂2 =
k1 − ξk21 − ξk23

1− 2ξk1 + ξ2 (k21 + k23)

and the proof is completed.

With the help of the Theorem 2.1, Theorem 2.2, Theorem 2.3, Theorem 2.4 and
Theorem 3.5, we can give the following corollaries.

Corollary 3.5. Let {α = α (s) , α̂ = α̂ (ŝ)} be a Mannheim pair (related to PAFORS).

If k̂2 = k̂3 = 0, then k1 = 0.

Corollary 3.6. Let {α = α (s) , α̂ = α̂ (ŝ)} be a Mannheim pair (related to PAFORS).

If k1 = k3 = 0, then k̂2 = 0.
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Corollary 3.7. Let {α = α (s) , α̂ = α̂ (ŝ)} be a Mannheim pair related to PAFORS.
Then, the followings are satisfied:

1. Suppose that the geodesic curvature of α never equals to zero. Then, α = α(s)
is an asymptotic curve whose position vector lies on the corresponding plane

Sp{T(s),Y(s)} if and only if
k̂2 − ηk̂2

2
− ηk̂3

2

1− 2ηk̂2 + η2
(
k̂2

2
+ k̂3

2
) = 0.

2. Assume that the geodesic curvature of α̂ never equals to zero. Then, α̂ = α̂ (ŝ)
is an asymptotic curve whose position vector lies on the corresponding plane

Sp{T̂(ŝ), Û(ŝ)} if and only if
k1 − ξk21 − ξk23

1− 2ξk1 + ξ2 (k21 + k23)
= 0.

Corollary 3.8. Let {α = α (s) , α̂ = α̂ (ŝ)} be a Mannheim pair related to PAFORS.
Then, the followings are satisfied:

1. Suppose that the normal curvature of α never equals to zero. Then,
α = α(s) is a geodesic curve whose position vector lies on the correspond-

ing plane Sp{T(s),U(s)} if and only if
k̂2 − ηk̂2

2
− ηk̂3

2

1− 2ηk̂2 + η2
(
k̂2

2
+ k̂3

2
) = 0.

2. Assume that the normal curvature of α̂ never equals to zero. Then,
α̂ = α̂ (ŝ) is a geodesic curve whose position vector lies on the correspond-

ing plane Sp{T̂(ŝ), Ŷ(ŝ)} if and only if
k1 − ξk21 − ξk23

1− 2ξk1 + ξ2 (k21 + k23)
= 0.

4. Conclusions

The main purpose of this study is to lead the studies investigating the special
classes of regular surface curves (traced out by a moving particle) by means of the
new and convenient moving frame PAFORS. In accordance with this purpose, we
choose the Mannheim partner curves which are well-known and preferred widely.
We think this choice makes the study more remarkable.

In this study, Mannheim partner trajectories related to PAFORS are defined
for the particles moving along the different regular surfaces in Euclidean 3-space.
Also, the relations are given between the PAFORS elements of these aforementioned
trajectories. Moreover, the relations are obtained between Darboux basis vectors
of these trajectories, and some special cases of these trajectories are characterized.

We state that we plan to discuss the Bertrand partner trajectories related to
PAFORS in the future study.
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8. N. E. Gürbüz: The evolution of an electric field with respect to the type-1 PAF and
the PAFORS frames in R3

1. Optik 250 (2022), 168285.
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properties of the hyperspace (Λ, τ
+

∆
) and covering properties of that of X have been

studied. We then investigate selective separability and some variations of this property.

Finally supertightness of (Λ, τ
+

∆
) has been studied.
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1. Introduction

In this paper we consider some stronger versions of separability in hyperspaces.
In [27], Marion Scheepers introduced a general notation for selection principles as
follows:

Let A and B be families of sets of an infinite set X. Then,
• S1(A,B) is the selection hypothesis: for each sequence {An : n ∈ N} of elements of
A there is a sequence {bn : n ∈ N} such that for each n, bn ∈ An , and {bn : n ∈ N}
is an element of B.
• S

fin
(A,B) is the selection hypothesis: for each sequence {An : n ∈ N} of elements

of A there is a sequence {Bn : n ∈ N} of finite sets such that for each n,Bn ⊆ An ,

and
∪
n∈N

Bn ∈ B.
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If A and B stand for the family of all dense subsets of X (where we denote the set
of all dense subsets of X by D), then Sfin(D,D) is called the selective separability
of X. I. Juhász and S. Shelah in their paper [13] proved that a compact space X
has countable π-weight whenever every dense subspace of X is separable. Selective
separability of X follows from countable π-weight of X and implies that all dense
subspaces of X are separable. Therefore, the above-mentioned theorem of Juhász
and Shelah implies that, in compact spaces, selective separability coincides with
countable π-weight.

In [3], spaces X satisfying S
fin

(D,D) or S
1
(D,D) are called M-separable and

R-separable, respectively. Also, X is said to be H-separable if for every sequence
{Dn : n ∈ N} of elements of D, one can pick finite Fn ⊂ Dn so that for every
nonempty open subset O of X, the intersection O ∩ Fn is nonempty for all but
finitely many n. Naturally, M-, R-, and H-, are motivated by analogy with well-
known Menger, Rothberger, and Hurewicz properties. Recall thatX is Menger if for
every sequence {Un : n ∈ N} of open covers of X, there exist finite Vn ⊂ Un, n ∈ N,
so that

∪
{Vn : n ∈ N} covers X; X is Rothberger if for every sequence {Un : n ∈ N}

of open covers of X, there exist Un ∈ Un, n ∈ N, so that {Un : n ∈ N} covers X;
X is Hurewicz if for every sequence {Un : n ∈ N} of open covers of X, there exist
finite Vn ⊂ Un, n ∈ N, so that for every x ∈ X, x ∈

∪
Vn, for all but finitely many

n. Also a family P of open sets in X is called a π-base for X if every nonempty
open set in X contains a nonempty element of P; where πw(X) = min{|P| : P is a
π-base for X} is the π-weight of X. The following implications are obvious:

Separable← M-separable

↙
R-separable

↖

↖ H-separable↙
Countable π-weight

Let us now recall some backgrounds of hyperspace topology. Given a Hausdorff
non-compact space X, we denote the family of nonempty closed subsets (resp.,

closed subsets, compact subsets) of a topological space X by CL(X) (resp., 2
X

,
K(X)). For a subset U ⊂ X and a family U of subsets of X, we write:

U
−
= {A ∈ CL(X) : A ∩ U ̸= ϕ},

U
+

= {A ∈ CL(X) : A ⊂ U},

U
c

= X \ U ,

U c

= {U c

: U ∈ U}.

The most known and popular among the topologies on 2
X

are Fell topology

and Vietoris topology. J. M. G. Fell [11] introduced a topology τF on 2
X

having a
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subbase consisting of all sets of the form V
−
, where V is an open subset of X plus

all sets of the form (K
c

)
+

, where K is a compact subset of X. The Fell topology

τF has a basic open subset of the form (

n∩
i=1

V
−

i
) ∩ (K

c

)
+

, where V1 , V2 , ..., Vn are

open subsets of X and K is a compact subset of X.

If compact subsets in the definition above are replaced by closed sets, we obtain
the stronger Vietoris topology τV [21]. A basic open subset of the Vietoris topology

τ
V

is of the form: < U1 , U2 , ..., Un >= {A ∈ 2
X

: A ⊂
n∪

i=1

Ui , A ∩ Ui ̸= ϕ, for

1 ≤ i ≤ n}, where U1 , U2 ,, Un are open subsets of X, for n ∈ N.
Let ∆ be a subset of 2

X

closed for finite unions and containing all singletons. The
upper ∆-topology, denoted by ∆

+

, is the topology whose subbase is the collection

{(Dc

)
+

: D ∈ ∆} ∪ {2X}. If ∆ is the family of all finite subsets of X (resp.,

the collection of compact subsets of X), the corresponding ∆
+

-topology known as

co-finite topology (resp., co-compact topology) will be denoted by Z
+

(resp., F
+

).

We have the inclusions: Z
+ ⊆ F

+ ⊆ τF ⊆ τV .
Let ∆ ⊆ CL(X) be a subfamily of CL(X) closed under finite unions and con-

taining all singletons. Then, the hit-and-miss topology on CL(X) with respect to
∆ (first studied in the abstract in [23] and then in [7]), denoted by τ+

∆
, has as a

base, the family

{(
m∩
i=1

V −
i
) ∩ (Bc)+ : B ∈ ∆ and V

i
∈ τ for i ∈ {1, 2, ...,m}, m ∈ N}.

Following [32], the basic element (
m∩
i=1

V −
i )∩(B

c

)+ will be denoted by (V1, ..., Vm)
+

B
.

Two important cases of the hit-and-miss topology are the Vietoris topology, τ
V
,

when ∆ = CL(X) ([31], [21]) and the Fell topology, τF , when ∆ = K(X) ([11]).

By a cover, we mean a nontrivial one, that is, U is a cover of X if X = ∪ U and
X ̸∈ U . k-covers and ω-covers play important roles in selection principles [2], [14],
[15]. Different ∆-covers exposed many dualities in hyperspace topologies such as

Fell topology, Vietoris topology, Z
+

, F
+

([5], [15], [16], [19], [10], [9], [8], [22], [26]).

Throughout the paper all spaces are assumed to be Hausdorff, non-compact.
Along this paper, unless we say the opposite, we will take a family Λ ⊆ CL(X) that
is closed under finite unions. Also we shall use [X]<ω to denote all finite subsets of
X.

2. Definitions and Results
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Let us recall that an open cover U of a space X is called an ω-cover [12] (respec-
tively, a k-cover [20]) if every finite (respectively, compact) subset of X is contained
in a member of U and X is not a member of U . An open cover U of X is called a
γ-cover [12] if it is infinite and each x ∈ X belongs to all but finitely many elements
of U . Notice that it is equivalent to the assertion: Each finite subset of X belongs
to all but finitely many members of U . Also Lj. D. R. Kočinac in his paper [16]
introduced a stronger version of γ-cover as: an open cover U of a space X is called
a γ

k
-cover of X if each compact subset of X is contained in all but finitely many

elements of U and X is not a member of the cover.

For a space (X, τ) and a point x ∈ X we use

• O : the collection of open covers of X;
• Ω : the collection of ω-covers of X;
• K : the collection of k-covers of X;
• Γ : the collection of all γ-covers of X;
• Γ

k
: the collection of all γ

k
-covers of X;

• Ωx = {A ⊂ X : x ∈ ClA};
• Dτ : the collection of all dense subsets of the space (X, τ).

As F
+

and Z
+

are miss type hyperspace topologies, they are dual to k-covers
and ω-covers in selection principles. The Fell topology and the Vietoris topology
are hit-and-miss topologies of types of subbasic open sets: those that hit a variable
open subset plus those that miss a compact subset (in case of Fell topology) or a
closed subset (in case of Vietoris topology). Z. Li in his paper [19] introduced the
definitions of hit-and-miss type covers to study the selection principles in CL(X)
under τ

F
and τ

V
. The following definition of hit-and-miss type covers has been

introduced in [6].

Definition 2.1. [6] Let (X, τ) be a topological space. A family U ⊆ Λ
c

is called
a c∆(Λ)-cover of X, if for any D ∈ ∆ and open subsets V1, ..., Vm of X, with
D

c ∩ Vi ̸= ϕ, for any i ∈ {1, ...,m}, there exist U ∈ U and F ∈ [X]<ω such that
D ⊆ U , F ∩ U = ϕ and for each i ∈ {1, ...,m}, F ∩ Vi ̸= ϕ. The family of all
c∆(Λ)-covers of X will be denoted by C∆(Λ).

Next we recall the relative version of the above type of covers as follows.

Definition 2.2. [29] Let (X, τ) be a topological space and Y ⊆ X with Y ̸= X.
A family U ⊆ Λ

c

is called a c∆(Λ)-cover of Y , if for any D ∈ ∆ with D ⊆ Y and
open subsets V1, ..., Vm of X, with Y

c ∩ Vi ̸= ϕ, for any i ∈ {1, ...,m}, there exist
U ∈ U and F ∈ [X]<ω such that D ⊆ U , F ∩ U = ϕ and for each i ∈ {1, ...,m},
F ∩ Vi ̸= ϕ. We denote by C∗

∆(Λ) the family of all c∆(Λ)-covers of Y ⊆ X, with
Y ̸= X.

Lemma 2.1. [29] Let Y be an open subset of a space X with Y ̸= X and U ⊆ Λ
c

be a cover of Y . Then the following statements are equivalent:
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(i) U is a c∆(Λ)-cover of Y .
(ii) Y

c ∈ Clτ+

∆

(U c

).

Lemma 2.2. For a space X, E ∈ Λ and a collection A ⊂ Λ, A ∈ Ω
τ+
∆

E
implies

{(A ∪ E)
c

: A ∈ A} is a c∆(Λ)-cover of E
c

, where Ω
τ+
∆

E = {A ⊂ CL(X) : E ∈
Clτ+

∆
(A)}.

Proof. Let D ∈ ∆ be such that D ⊂ E
c

and let V1, ..., Vm be open sets in X with
E ∩ Vi ̸= ϕ, for all i = 1, ...,m. Then (V1, ..., Vm)

+

D
is a τ

+

∆
-neighbourhood of E. As

A ∈ Ω
τ+
∆

E
, there exists A ∈ A such that A ∈ (V1, ..., Vm)

+

D
. Now choose xi ∈ A ∩ Vi,

for 1 ≤ i ≤ m and consider the set F = {xi : 1 ≤ i ≤ m}. Then F ∈ [X]<ω with
F ∩ Vi ̸= ϕ, for all 1 ≤ i ≤ m. Also D ⊂ (A ∪ E)

c

and (A ∪ E)
c ∩ F = ϕ. Hence

{(A ∪ E)
c

: A ∈ A} is a c∆(Λ)-cover of E
c

.

We next recall the definition of ∆γ-covers of a space as follows.

Definition 2.3. [29] Let (X, τ) be a topological space. A family U ⊆ Λ
c

is called
a ∆γ-cover of X, if each B ∈ ∆ belongs to all but finitely many elements of U
and for any B ∈ ∆ and open subsets V1, ..., Vm of X, with B

c ∩ Vi ̸= ϕ for any
i ∈ {1, ...,m}, there exist U ∈ U and F ∈ [X]<ω such that B ⊆ U , F ∩ U = ϕ and
for each i ∈ {1, ...,m}, F ∩Vi ̸= ϕ. The set of all ∆γ-covers of X is denoted by ∆Γ.

Next recall the relative version of the above type of covers as follows.

Definition 2.4. [28] Let (X, τ) be a topological space and Y ⊆ X with Y ̸= X.
A family U ⊆ Λ

c

is called a ∆γ-cover of Y , if each B ⊆ Y with B ∈ ∆ belongs
to all but finitely many elements of U and for any B ⊆ Y with B ∈ ∆ and open
subsets V1, ..., Vm of X, with Y

c ∩ Vi ̸= ϕ for any i ∈ {1, ...,m}, there exist U ∈ U
and F ∈ [X]<ω such that B ⊆ U , F ∩U = ϕ and for each i ∈ {1, ...,m}, F ∩Vi ̸= ϕ.
The set of all ∆γ-covers of Y ⊆ X is denoted by ∆Γ

∗
.

Remark 2.1. If we consider ∆ = K(X) and Λ = CL(X) (resp., ∆ = Λ = CL(X)) in
Definitions 2.3 and 2.4 above, we get the definitions of γkF -covers (resp., γcV -covers) of X
and also the definitions of γkF -covers (resp., γcV -covers) of a subset Y of X, with Y ̸= X.

It is easy to observe that ∆Γ ⊂ C∆(Λ).

Lemma 2.3. [28] Let X be a topological space, Y be an open subset of X and
U = {Un : n ∈ N} ⊆ Λ

c

be a cover of Y . Then the following statements are equiva-
lent:

(i) U is a ∆γ-cover of Y .

(ii) {U c

n : n ∈ N} converges to Y
c

in (Λ, τ
+

∆
).
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Recall now that an open cover U of a space X is called
(i) ω-groupable [15], [17] (k-groupable [9]) if it can be expressed as a countable
union of finite, pairwise disjoint subfamilies Un , n ∈ N, such that for each finite
(compact) set C ⊂ X, for all but finitely many n there is an U ∈ Un such that
C ⊂ U ,
(ii) weakly groupable [2] (k-weakly groupable [9]) if there is a partition of U into
countably many finite, pairwise disjoint sets Un , for n ∈ N, such that each finite
(compact) subset of X is contained in

∪
Un , for some n.

Also recall that a countable element D from D is said to be groupable [17], [18]

if there is a partition D =
∪
n∈N

Dn into finite pairwise disjoint sets such that each

nonempty open set of the space intersects Dn , for all but finitely many n. Let Dgp

denote the family of groupable elements of D.

For a space X, we denote:

• Ωgp

- the family of ω-groupable covers of X;
• Kgp

- the family of k-groupable covers of X;
• Owgp

the family of weakly groupable covers of X;

• Ok−wgp

the family of k-weakly groupable covers of X;

• (Ω
τ+
∆

E
)
gp

- the family of groupable elements of Ω
τ+
∆

E
.

Following Definitions 5.1 and 5.5 of [19], where the classes Kgp

F
of k

F
-groupable

covers and Cgp

V
of c

V
-groupable covers are introduced, we define the general notion

of a ∆-groupable c∆(Λ)-cover as follows.

Definition 2.5. A c∆(Λ)-cover U of a space X is said to be ∆-groupable if it
can be expressed as a union of infinitely many finite, pairwise disjoint subfamilies
Un ⊂ U such that for any subset B of X with B ∈ ∆, open sets V1, V2, ..., Vm of X
with Vi ∩ B

c ̸= ϕ (1 ≤ i ≤ m), there exists n0 ∈ N so that for each n ≥ n0 , there
exist Un ∈ Un and a finite set Fn with Fn ∩ Vi ̸= ϕ (1 ≤ i ≤ m) such that B ⊂ Un

and Fn∩Un = ϕ. We denote the family of all ∆-groupable covers of X by C∆(Λ)
gp

.

Definition 2.6. Let (X, τ) be a topological space and Y ⊆ X with Y ̸= X. A
c∆(Λ)-cover U of Y is said to be ∆-groupable if it can be expressed as a union of
infinitely many finite, pairwise disjoint subfamilies Un ⊂ U such that for any subset
B ⊆ Y with B ∈ ∆, open sets V1, V2, ..., Vm of X with Vi ∩ Y

c ̸= ϕ (1 ≤ i ≤ m),
there exists n0 ∈ N so that for each n ≥ n0 , there exist Un ∈ Un and a finite set Fn

with Fn ∩ Vi ̸= ϕ (1 ≤ i ≤ m) such that B ⊂ Un and Fn ∩ Un = ϕ. We denote the
family of all ∆-groupable covers of Y ⊆ X with Y ̸= X by C∗

∆
(Λ)

gp

.

Lemma 2.4. For a space X, E ∈ Λ and a collection A ⊂ Λ, A ∈ (Ω
τ+
∆

E
)
gp

implies

{(A ∪ E)
c

: A ∈ A} is a ∆-groupable cover of E
c

.
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Proof. Let A =
∪
n∈N
Bn be a partition of A into finite, pairwise disjoint sets such

that each τ
+

∆
-neighbourhood of E meets Bn for all but finitely many n. Then by

Lemma 2.2, U = {(A ∪ E)
c

: A ∈ A} is a c∆(Λ)-cover of E
c

. Write U =
∪
n∈N

Vn,

where for each n ∈ N, Vn = {(B ∪ E)
c

: B ∈ Bn}. Let D ∈ ∆ be such that
D ⊂ E

c

and let V1, ..., Vm be open sets in X with E ∩ Vi ̸= ϕ, for all i = 1, ...,m.
Then (V1, ..., Vm)

+

D
is a τ

+

∆
-neighbourhood of E. Hence there exists n0 ∈ N such

that for each n ≥ n0 , there exists Bn ∈ Bn such that Bn ∈ (V1, ..., Vm)
+

D
. Now

choose xi ∈ Bn ∩ Vi, for 1 ≤ i ≤ m and consider the set F = {xi : 1 ≤ i ≤ m}.
Then F ∈ [X]<ω with F ∩ Vi ̸= ϕ, for all 1 ≤ i ≤ m. Also D ⊂ (Bn ∪ E)

c

and
(B ∪ E)c ∩ F = ϕ. Hence {(A ∪ E)

c

: A ∈ A} is a ∆-groupable cover of E
c

.

Definition 2.7. A cover U of a space X is weakly ∆-groupable if it can be ex-
pressed as a union of infinitely many finite, pairwise disjoint subfamilies Un ⊂ U
such that for any subset B of X with B ∈ ∆, open sets V1, V2, ..., Vm of X with
Vi∩B

c ̸= ϕ (1 ≤ i ≤ m), there exist Un and a finite set F with F∩Vi ̸= ϕ (1 ≤ i ≤ m)
such that B ⊂ ∪ Un and F ∩ (∪ Un) = ϕ. We denote the family of all weakly ∆-
groupable covers of X by Cwgp

∆
.

Lemma 2.5. [6] A family U ⊆ Λ
c

is a c∆(Λ)-cover of X if and only if the family

U c

is a dense subset of (Λ, τ
+

∆
).

Lemma 2.6. For a space X and a countable subset A ⊂ CL(X), the following
statements are equivalent:

(i) A is a groupable dense subset of (CL(X), τ
+

∆
).

(ii) Ac

is a ∆-groupable cover of X.

Proof. (i) ⇒ (ii): Let A =
∪
n∈N

Bn be a partition into finite pairwise disjoint sets

such that each open set of (CL(X), τ
+

∆
) intersects Bn for all but finitely many n.

We claim that Ac

=
∪
n∈N
B

c

n
is a ∆-groupable cover of X. Indeed, let K ∈ ∆ be a

subset of X and V1 , ..., Vm be open in X with (X \ K) ∩ Vi ̸= ϕ, for 1 ≤ i ≤ m.

Then (V1, ..., Vm)
+

K
is a τ

+

∆
-open set in CL(X). Hence there exists n0 ∈ N such that

for all n ≥ n0 , there exists Bn ∈ Bn such that Bn ∈ (V1, ..., Vm)
+

K
. Let Un = B

c

n
,

for n ≥ n0 . Then Un ∈ B
c

n
. Choose x

(n)

i
∈ Vi ∩ Bn , for 1 ≤ i ≤ m and consieder

F = {x(n)

i
: 1 ≤ i ≤ m}. Then F is a finite subset of X with F ∩ Vi ̸= ϕ, for all

1 ≤ i ≤ m. Also K ⊂ Un and F ∩ Un = ϕ. Hence Bc

n
is a c∆(CL(X))-cover of X.

(ii) ⇒ (i): Let Ac

=
∪
n∈N

Un be a partition of Ac

that witnesses (ii). We claim

that A is a groupable dense subset of (CL(X), τ
+

∆
). Let (V1, ..., Vm)

+

D
be a τ

+

∆
-open
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set in (CL(X), τ
+

∆
). Then there exists n0 ∈ N such that for all n ≥ n0 , there exist

Un ∈ Un and Fn ∈ [X]<ω with Fn ∩ Vi ̸= ϕ, for all i = 1, ...,m such that D ⊆ Un

and Un∩Fn = ϕ. Hence U c
n ∈ (V1, ..., Vm)

+

D
, for all n ≥ n0 , so that A is a groupable

dense subset of (CL(X), τ
+

∆
).

3. Selective separability of the hyperspace (Λ, τ
+

∆
)

In this section we first start with the relationships between closure-type proper-
ties of the hyperspace (Λ, τ

+

∆
) and covering properties of that of X. We then discuss

about the selective separability and variations of separability in (Λ, τ
+

∆
).

Theorem 3.1. Let ⋆ ∈ {1, fin}. Then for a space X the following statements are
equivalent:

(i) X satisfies S
⋆
(C∆(Λ),C∆(Λ)).

(ii) (Λ, τ
+

∆
) satisfies S⋆(DC

∆
(Λ)
,DC

∆
(Λ)

).

(where DC
∆
(Λ) denotes the family of dense subsets of (Λ, τ+∆)).

Proof. We prove the theorem for ⋆ = fin, the other part being similar.

(i) ⇒ (ii): Let {Di : i ∈ N} be a family of dense subsets of (Λ, τ
+

∆
) such

that Di ∈ DC
∆
(Λ), for each i ∈ N. Then by Lemma 2.5, {Dc

i
: i ∈ N} is a

family of open covers of X such that D
c

i
∈ C∆(Λ), for all i ∈ N. As X satisfies

S
fin

(C∆(Λ),C∆(Λ)), there exists a sequence {Ai : i ∈ N} of finite sets such that

Ai ⊆ D
c

i
and

∪
i∈N

Ai ∈ C∆(Λ), for each i ∈ N. Then
∪
i∈N

A
c

i
∈ DC

∆
(Λ)

.

(ii) ⇒(i): Assume that {Un : n ∈ N} is a family of open covers of X such that
Un ∈ C∆(Λ). Consider An = U c

n
, for each n ∈ N. Then by Lemma 2.5, An is a

dense subset of (Λ, τ
+

∆
) for each n ∈ N such that An ∈ DC

∆
(Λ)

. As (Λ, τ
+

∆
) satisfies

S
fin

(DC
∆

(Λ)
,DC

∆
(Λ)

), there exists a sequence {An : n ∈ N} of finite subsets such

that An ⊆ An , for each n ∈ N and
∪
i∈N

Ai ∈ DC
∆

(Λ)
. Then Un = A

c

n
, for n ∈ N is

such that
∪
n∈N

Un is an open cover of X and
∪
n∈N

Un ∈ C∆(Λ).

Corollary 3.1. (Theorem 3.6 in [19]) For a space X, the following are equivalent:

(i) (CL(X), τV ) satisfies S1(D,D).
(ii) X satisfies S1(CV

,C
V
).

Corollary 3.2. (Theorem 3.4 in [19]) For a space X, the following are equivalent:

(i) (CL(X), τ
F
) satisfies S1(D,D).

(ii) X satisfies S1(KF ,KF ).
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Corollary 3.3. (Theorem 4.4 in [19]) For a space X, the following are equivalent:

(i) (CL(X), τ
V
) satisfies S

fin
(D,D).

(ii) X satisfies S
fin

(CV ,CV ).

Corollary 3.4. (Theorem 4.2 in [19]) For a space X, the following are equivalent:

(i) (CL(X), τF ) satisfies Sfin
(D,D).

(ii) X satisfies S
fin

(K
F
,K

F
).

Recall here that a space X is M-separable [3] if for every sequence {Dn : n ∈ N}
of dense subspaces of X one can select finite Fn ⊂ Dn so that

∪
{Fn : n ∈ N} is

dense in X. Thus we have the following theorem.

Theorem 3.2. For a space X, (Λ, τ
+

∆
) is M-separable if and only if X satisfies

Sfin(C∆(Λ),C∆(Λ)).

Again a space X is R-separable [3] if for every sequence {Dn : n ∈ N} of dense
subspaces of X one can pick xn ∈ Dn so that {xn : n ∈ N} is dense in X. Thus we
have the following theorem.

Theorem 3.3. For a space X, (Λ, τ
+

∆
) is R-separable if and only if X satisfies

S1(C∆(Λ),C∆(Λ)).

Theorem 3.4. Let Φ,Ψ ∈ {∆Γ
∗
,C∗

∆(Λ)}, ⋆ ∈ {1, fin}. Then for a space X the
following statements are equivalent:

(i) Each open set Y ⊂ X with Y ∈ Λ
c

has the property S⋆(Φ,Ψ).

(ii) Each E ∈ (Λ, τ
+

∆
) satisfies S⋆(ΦE

,Ψ
E
).

(where Φ
E

denotes the Φ family of covers of E and Ψ
E

denotes the Ψ family of
covers of E).

Proof. We prove the theorem for ⋆ = 1, the other parts being similar.

(i) ⇒ (ii): Let E ∈ Λ and let {A
n
: n ∈ N} be a sequence such that for each

n ∈ N, An ∈ Φ
E
. Then {Ac

n
: n ∈ N} is a sequence of open covers of E

c

such that

for each n ∈ N, Ac

n
∈ Φ. As E

c

has the property S1(Φ,Ψ), there exists a sequence

{Ac

n
: n ∈ N} such that for each n ∈ N, Ac

n
∈ Ac

n
and {Ac

n
: n ∈ N} is an open cover

of E
c

such that {Ac

n
: n ∈ N} ∈ Ψ. Hence {An : n ∈ N} ∈ ΨE .

(ii) ⇒ (i): Let Y be an open subset of X with Y ∈ Λ
c

and {Fn : n ∈ N} be
a sequence of open covers of Y such that Fn ∈ Φ

Y
, for n ∈ N. Let E = X \ Y .

Put An = F c

n
, n ∈ N. Then An ⊂ Λ and An ∈ ΦE , for n ∈ N. As E satisfies

S1(ΦE
,Ψ

E
), there exists a sequence {An : n ∈ N} such that An ∈ An , for each

n ∈ N and {An : n ∈ N} ∈ ΨE . Hence {Fn = A
c

n
: n ∈ N} ∈ Ψ.
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Recall that a space X has countable fan tightness [1] if whenever x ∈ ClAn for
all n ∈ N, one can choose finite Fn ⊂ An so that x ∈ Cl(∪{Fn : n ∈ N}) and X
has countable strong fan tightness [25] if whenever x ∈ ClAn for n ∈ N, there are
xn ∈ An such that x ∈ Cl({xn : n ∈ N}). In view of these definitions we can restate
the above theorem as follows.

Theorem 3.5. For a space X, (Λ, τ
+

∆
) has countable strong fan tightness if and

only if each open subset Y ( X with Y c ∈ Λ satisfies S1(C
∗

∆(Λ),C
∗

∆(Λ)).

Proof. First let Y ( X be open in X with Y c ∈ Λ and {Un : n ∈ N} be a

sequence of c∆(Λ)-covers of Y . Then by Lemma 2.1, Y c ∈ Clτ+
∆
(Uc

n). As (Λ, τ
+

∆
)

has countable strong fan tightness, there exists U c
n ∈ Uc

n, for n ∈ N such that
Y c ∈ Clτ∆+ ({U c

n : n ∈ N}). Hence {Un : n ∈ N} is a c∆(Λ)-cover of Y .

Conversely, let E ∈ Λ be such that E ∈ Cl(Un). Then by Lemma 2.1, {Uc
n :

n ∈ N} is a sequence of c∆(Λ)-covers of Ec. By the given condition, there exists
U c
n ∈ Uc

n, for n ∈ N such that {U c
n : n ∈ N} is a c∆(Λ)-cover of Ec. Hence

E ∈ Clτ+
∆
({Un : n ∈ N}), so that (Λ, τ

+

∆
) has countable strong fan tightness.

Theorem 3.6. For a space X, (Λ, τ
+

∆
) has countable fan tightness if and only if

each open subset Y ( X with Y c ∈ Λ satisfies S
fin

(C∗

∆(Λ),C
∗

∆(Λ)).

Proof. First let Y ( X be open in X with Y c ∈ Λ and {Un : n ∈ N} be a sequence of

c∆(Λ)-covers of Y . Then by Lemma 2.1, Y c ∈ Clτ+
∆
(Uc

n). As (Λ, τ
+

∆
) has countable

fan tightness, there exist finite Vc
n ⊂ Uc

n, for n ∈ N, such that Y c ∈ Clτ∆+ (
∪
{Vc

n :
n ∈ N}). Hence

∪
{Vn : n ∈ N} is a c∆(Λ)-cover of Y .

Conversely, let E ∈ Λ be such that E ∈ Cl(Un). Then by Lemma 2.1, {Uc
n :

n ∈ N} is a sequence of c∆(Λ)-covers of Ec. By the given condition, there exist
finite Vc

n ⊂ Uc
n, for n ∈ N, such that

∪
{Vc

n : n ∈ N} is a c∆(Λ)-cover of Ec. Hence
E ∈ Clτ+

∆
(
∪
{Vn : n ∈ N}).

Corollary 3.5. (Theorem 3.2 of [19]) For a space X, the following are equivalent:

(i) (CL(X), τV ) has countable strong fan tightness.
(ii) Each open subset Y of X with Y ⊂ X satisfies S1(C

∗

V
,C∗

V
).

Corollary 3.6. (Theorem 3.1 of [19]) For a space X, the following are equivalent:

(i) (CL(X), τ
F
) has countable strong fan tightness.

(ii) Each open subset Y of X with Y ⊂ X satisfies S1(K
∗

F
,K∗

F
).

Corollary 3.7. (Theorem 4.3 of [19]) For a space X, the following are equivalent:

(i) (CL(X), τ
V
) has countable fan tightness.

(ii) Each open subset Y of X with Y ⊂ X satisfies S
fin

(C∗

V
,C∗

V
).
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Corollary 3.8. (Theorem 4.1 of [19]) For a space X, the following are equivalent:

(i) (CL(X), τ
F
) has countable fan tightness.

(ii) Each open subset Y of X with Y ⊂ X satisfies S
fin

(K∗

F
,K∗

F
).

Theorem 3.7. For a space X, the following statements are equivalent:

(i) X satisfies S1(C∆(CL(X)),C∆(CL(X))
gp

).

(ii) (CL(X), τ
+

∆
) satisfies S1(D

τ
+

∆

,Dgp

τ
+

∆

).

Proof. (i) ⇒ (ii): Let {Dn : n ∈ N} be a sequence of dense subsets of (CL(X), τ
+

∆
).

For each n ∈ N, put Un = Dc

n
. Then Un is a c∆(CL(X))-cover of X, for each n ∈ N.

By (i) applied to {Un : n ∈ N}, there exists a sequence {Dc

n
: n ∈ N} such that for

each n ∈ N, Dc

n
∈ Un and {Dc

n
: n ∈ N} is a ∆-groupable cover of X. Hence by

Lemma 2.6, {Dn : n ∈ N} is a groupable dense subset of (CL(X), τ
+

∆
).

(ii) ⇒ (i): Let {Un : n ∈ N} be a sequence of c∆(CL(X))-covers of X. Put
An = U c

n
, n ∈ N. Then by Lemma 2.5 for each n ∈ N, An is a sequence of dense

subsets of (CL(X), τ
+

∆
). By (ii), there exists a sequence {An : n ∈ N} such that for

each n ∈ N, An ∈ An and B = {An : n ∈ N} ∈ Dgp

τ
+

∆

. Again by Lemma 2.6, Bc

is a

∆-groupable cover of X. Hence {Ac

n
: n ∈ N} guarantees for {Un : n ∈ N} that X

satisfies S1(C∆(CL(X)),C∆(CL(X))
gp

).

Next recall that a space X is H-separable [3] if for every sequence {Dn : n ∈ N}
of dense subspaces of X, one can pick finite Fn ⊂ Dn so that for every nonempty
open set O ⊂ X, the intersection O ∩ Fn is nonempty for all but finitely many n.
Thus we have the following theorem.

Theorem 3.8. For a space X, (CL(X), τ
+

∆
) is H-separable if and only if X sat-

isfies S
fin

(C∆(CL(X)),C∆(CL(X))gp).

Proof. First let, (CL(X), τ
+

∆
) be H-separable and {Un : n ∈ N} be a sequence of

c∆(CL(X))-covers of X. Then by Lemma 2.5, {Uc
n : n ∈ N} is a sequence of dense

subsets of CL(X). By H-separability of (CL(X), τ
+

∆
), there exist finite Vc

n ⊂ Uc
n,

n ∈ N, such that for every non-empty open set W of CL(X), W ∩ Vc
n ̸= ϕ, for all

but finitely many n ∈ N. We claim that
∪
Vn is a ∆-groupable cover of X. Indeed,

Let D ∈ ∆ and V1, ..., Vm be open in X with Dc ∩ Vi ̸= ϕ, for all 1 ≤ i ≤ m. Then
(V1, ..., Vm)+

D
is a τ+∆ -open set in CL(X) and hence there exists n0 ∈ N such that

(V1, ..., Vm)+
D
∩ Vc

n ̸= ϕ, for all n ≥ n0. Choose V c
n ∈ (V1, ..., Vm)+

D
∩ Vc

n, for all

n ≥ n0. Next choose x
(n)
i ∈ (V1, ..., Vm)+

D
∩ V c

n , for all 1 ≤ i ≤ m and consider the

set Fn = {x(n)i : 1 ≤ i ≤ m}. Then Fn ∈ [X]<ω with Fn ∩Vi ̸= ϕ, for all 1 ≤ i ≤ m.
Also, D ⊂ Vn and Vn ∩ Fn = ϕ, for all n ≥ n0. Hence

∪
Vn is a ∆-groupable cover

of X.



258 R. Sen

Conversely, let {Dn : n ∈ N} be a sequence of dense subsets of CL(X). By
Lemma 2.5, {Dc

n : n ∈ N} is a sequence of c∆(CL(X))-covers of X. As X satisfies
S

fin
(C∆(CL(X)),C∆(CL(X))gp), there exist finite Bc

n ⊂ Dc
n, n ∈ N, such that∪

Bcn is a ∆-groupable cover of X. Then every τ+∆ -open set intersects all but finitey
manyBn. Hence (CL(X), τ+∆ ) is H-separable.

Corollary 3.9. (Theorem 5.4 of [19]) For a space X, the following statements are
equivalent:

(i) (CL(X), τV )) satisfies S1(D,D
gp

).
(ii) X satisfies S1(CV

,Cgp

V
).

Corollary 3.10. (Theorem 5.2 of [19]) For a space X, the following statements
are equivalent:

(i) (CL(X), τF ) satisfies S1(D,D
gp

).
(ii) X satisfies S1(KF

,Kgp

F
).

Theorem 3.9. For a space X, the following statements are equivalent:

(i) (CL(X), τ
+

∆
) satisfies: for each sequence {Dn : n ∈ N} of dense subsets of

(CL(X), τ
+

∆
) there is a finite Bn ⊂ Dn such that

∪
n∈N
Bn can be partitioned into a

union of finite sets Cn , n ∈ N, so that {
∩
Cn : n ∈ N} is dense in (CL(X), τ

+

∆
).

(ii) X satisfies S
fin

(C∆(CL(X)),Cwgp

∆ ).

Proof. (i) ⇒ (ii): Let {U
n
: n ∈ N} be a sequence of c∆(CL(X))-open covers of

X. Then for each n ∈ N, A
n
= U c

n
is a dense subset of (CL(X), τ

+

∆
). By (i), there

exist finite Bn ⊂ An , for each n ∈ N, such that B =
∪
n∈N

Bn is a union of finite

pairwise disjoint sets Cn and {
∩
Cn : n ∈ N} is dense in (CL(X), τ

+

∆
). Let V = Bc

and W
n
= Cc

n
, for each n ∈ N. We now claim that V =

∪
n∈N

W
n
is a weakly ∆-

groupable cover of X. Let K ∈ ∆, V1, V2, ..., Vm be open sets of X with Vi∩K
c ̸= ϕ

(1 ≤ i ≤ m). Then there exists a n0 ∈ N such that
∩
Cn0
∈ (V1, ..., Vm)

+

K
. Choose

xi ∈ Vi ∩ (
∩
Cn0

), for 1 ≤ i ≤ m. Now consider F = {xi : 1 ≤ i ≤ m}. Hence

K ⊂ (
∩
Cn0

)
c

=
∪
Wn0

and F ∩ (
∪
Wn0

) = ϕ.

(ii)⇒ (i): Let {Dn : n ∈ N} be a sequence of dense subsets of (CL(X), τ
+

∆
). For

each n ∈ N, let Un = Dc

n
. Then {Un : n ∈ N} is a sequence of c∆(CL(X))-covers of

X. By (ii), for each n ∈ N, there is a finite subset Vn of Un such that V =
∪
n∈N
Vn

is a weakly ∆-groupable cover of X. Thus V =
∪
n∈N

Wn is a union of countably
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many finite pairwise disjoint sets Wn satisfying: for each subset K ∈ ∆, open sets
V1, V2, ..., Vm of X with Vi ∩K

c ̸= ϕ (1 ≤ i ≤ m), there exist a n0 and a finite set
F with F ∩ Vi = ϕ, for 1 ≤ i ≤ m such that K ⊂

∪
Wn0

and F ∩ (
∪
Wn0

) = ϕ.

Hence
∩
Cn0 ∈ (V1, ..., Vm)+K . Let Bn = Vc

n
and Cn =Wc

n
, for each n ∈ N. Then Bn

is finite set of Dn such that
∪
n∈N

Bn can be partitioned into a union
∪
n∈N

Cn of finite

sets Cn , for n ∈ N, such that {
∩
Cn : n ∈ N} is dense in (CL(X), τ

+

∆
).

Recall that a space X is weakly Fréchet in the strict sense [24] if whenever
x ∈ ClAn for all n ∈ N, there are finite Fn ⊂ An such that every neighbourhood of
x intersects all but finitely many Fn.

Theorem 3.10. For a space X, (Λ, τ
+

∆
) is weakly Fréchet in the strict sense if

and only if each open subset Y ( X with Y
c ∈ Λ has S

fin
(C∗

∆(Λ),C∗
∆(Λ)

gp

).

Proof. First let Y ( X be such that Y
c ∈ Λ and {Un : n ∈ N} be a sequence of

c∆(Λ)-covers of Y . Then by Lemma 2.1, {U c

n
: n ∈ N} is a sequence of subsets of

(Λ, τ
+

∆
) such that Y c ∈ Clτ+

∆

U c

n
, for each n ∈ N. Since (Λ, τ

+

∆
) is weakly Fréchet in

the strict sense, there exist finite Vc

n
⊂ U c

n
, n ∈ N, such that each neighbourhood of

Y
c

intersects all but finitely many Vc

n
. We now show that

∪
{Vn : n ∈ N} is a ∆-

groupable cover of Y . Let B ⊆ Y with B ∈ ∆ and V1, ..., Vm be open subsets of X
with Y

c∩Vi ̸= ϕ, for 1 ≤ i ≤ m so that (V1, ..., Vm)
+

B
∩Λ is a τ

+

∆
-neighbourhood of Y

c

in the space (Λ, τ
+

∆
). Thus there exists n0 ∈ N such that (V1, ..., Vm)

+

B
∩Vc

n
∩Λ ̸= ϕ,

for all n ≥ n0 . Let V
c

n
∈ Vc

n
be such that V

c

n
∈ (V1, ..., Vm)

+

B
∩ Λ and choose

x
(n)
i ∈ V

c

n
∩ Vi, for 1 ≤ i ≤ m. Now form the set Fn = {x(n)1 , ..., x

(n)
m }. Then

Fn ∈ [X]<ω with Fn ∩ Vi ̸= ϕ, for 1 ≤ i ≤ m, Fn ∩ Vn = ϕ and B ⊆ Vn, for all
n ≥ n0 .

Conversely, let {An : n ∈ N} be a sequence of subsets of Λ and E ∈ Λ be such
that E ∈ Clτ+

∆

(An), for n ∈ N. Then {Ac

n
: n ∈ N} is a sequence of c∆(Λ)-covers of

E
c

, for each n ∈ N. Hence by the given condition there exist finite Bc

n
⊂ Ac

n
, n ∈ N,

such that
∪
Bc

n
is a ∆-groupable cover of E

c

. Hence (Λ, τ
+

∆
) is weakly Fréchet in

the strict sense.

4. Supertightness of (Λ, τ
+

∆
)

In [29], the authors have posed an open problem as: “Is it possible to characterize
the supertightness of the hyperspace Λ by means of c∆(Λ)-covers of Y , for some
open subset Y ⊆ X ?” In this section we give an affirmative answer to the question.
Let us first recall that a family P of nonempty subsets of a space X is said to be a
π-network at p [30] if every neighbourhood of p contains some member of P.
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Definition 4.1. [30, 24] A space X is said to have countable supertightness if
p ∈ X and P is a π-network at p consisting of finite subsets of X, then there is a
countable subfamily F ⊂ P such that F is a π-network at p.

We now define the following.

Definition 4.2. Let Y be a subspace of X. A partitioned c∆(Λ)-cover U =
∪
α∈A

Uα

(where U ⊆ Λc) is called a finite p-c∆(Λ)-cover of Y if each Uα is finite and for any
subset B ⊆ Y with B ∈ ∆, open sets V1, V2, ..., Vm of X with Vi ∩B

c ̸= ϕ (1 ≤ i ≤
m), there exists α ∈ A and F ∈ [X]<ω with F ∩ Vi ̸= ϕ, for all i = 1, 2, ...,m such
that B ⊂ U and F ∩ U = ϕ, for each U ∈ Uα .

Theorem 4.1. For a space X, the following are equivalent:

(i) (Λ, τ
+

∆
) has countable supertightness.

(ii) For each open subset Y ( X with Y c ∈ Λ and each finite p-c∆(Λ)-cover

U =
∪
α∈A

Uα of Y , there exists a countable subset A′ ⊂ A such that
∪

α∈A′

Uα is a

finite p-c∆(Λ)-cover of Y .

Proof. (i) ⇒ (ii): Let Y ( X be an open subset of X with Y c ∈ Λ and U =
∪
α∈A

Uα

be a finite p-c∆(Λ)-cover of Y . Then {U c

α
: α ∈ A} is a π-network at Y

c

. Indeed let

Y
c ∈ (V1, ..., Vm)

+

D
∩ Λ. Then there exists α ∈ A and F ∈ [X]<ω with F ∩ Vi ̸= ϕ,

for all i = 1, ...,m such that D ⊂ U and F ∩ U = ϕ, for all U ∈ Uα . Then

U
c ∈ (V1, ..., Vm)

+

D
∩ Λ, for each U ∈ Uα . Hence {U c

α
: α ∈ A} is a π-network at

Y
c

consisting of finite subsets of Λ. As (Λ, τ
+

∆
) has countable supertightness, there

exists a countable subset A′ ⊂ A such that {U c

α
: α ∈ A′} is a π-network at Y

c

.

Hence
∪

α∈A′

Uα is a finite p-c∆(Λ)-cover of Y .

(ii) ⇒ (i): Let E ∈ Λ and {Aα : α ∈ A} be a π-network at E, where each Aα

is a finite subset of A. Then for any neighbourhood (V1, ..., Vm)
+

D
∩ Λ of E, there

exists α ∈ A such that Aα ⊂ (V1, ..., Vm)
+

D
∩ Λ. Let

A′ = {α ∈ A : E
c ∩ F c ̸= ϕ, for each F ∈ Aα}.

Then A′ ̸= ϕ and {Aα : α ∈ A′} is a π-network at A. Hence
∪

α∈A′

A
c

α
is a finite

p-c∆(Λ)-cover of E
c

. By (ii), there exists a countable family {Aαn
: n ∈ N} ⊂ {Aα :

α ∈ A′} such that
∪
n∈N

A
c

αn
is a finite p-c∆(Λ)-cover of E

c. Hence {Aαn
: n ∈ N} is

a π-network at E, so that (Λ, τ
+

∆
) has countable supertightness.
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Definition 4.3. [4] A space X is supertight at p ∈ X if whenever P is a π-network
at p consisting of countable subsets of X, there is a countable subfamily F ⊂ P such
that F is a π-network at p. A space is supertight if all its points are supertight.

Definition 4.4. Let Y be a subspace of X. A partitioned c∆(Λ)-cover U =
∪
α∈A

Uα

(where U ⊆ Λc) is called a countable p-c∆(Λ)-cover of Y if each Uα is countable and
for any subset B ⊆ Y with B ∈ ∆, open sets V1, V2, ..., Vm ofX with Vi∩B

c ̸= ϕ(1 ≤
i ≤ m), there exists α ∈ A and F ∈ [X]<ω with F ∩ Vi ̸= ϕ, for all i = 1, 2, ...,m
such that B ⊂ U and F ∩ U = ϕ, for each U ∈ Uα .

Theorem 4.2. For a space X, the following are equivalent:

(i) (Λ, τ
+

∆
) is supertight.

(ii) For each open subset Y ⊆ X with Y ̸= X and each countable p-c∆(Λ)-groupable

cover U =
∪
α∈A

Uα of Y , there exists a countable subset A′ ⊂ A such that
∪

α∈A′

Uα is

a countable p-c∆(Λ)-cover of Y .

Proof. Same as Theorem 4.1.
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2. L. Babinkostova, Lj. D. R. Kočinac and M. Scheepers: Combinatorics of open
covers (VIII). Topol. Appl., 130 (1) (2003), 15–32.

3. A. Bella, M. Bonanzinga and M. V. Matveev: Variations of selective separability.
Topol. Appl., 156 (2009), 1241–1252.

4. A. Bella and M. Sakai: Tight points of Pixley-Roy hyperspaces. Topol. Appl., 160
(2013), 2061–2068.

5. A. Caserta, G. Di Maio, Lj. D. R. Kočinac and E. Meccariello: Applications
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1. Introduction

The combined analysis of heat and momentum transport with a chemical reaction
(CR) on a constantly moving sheet has a significant role in many processes due
to which these problems obtained a lot of attention recently. These developments
include surface evaporation of the water body, transfer of heat in a misty refrig-
erating tower, drying, and the stream within a desert cooler. After the innovative
study of Sakiadis [29], who investigated BLF beyond a constant solid surface, many
researchers studied this problem with various aspects. Crane [10] studied the flow
past a stretching plate. In a numerical study, the characteristics of heat and mass
transport with nth-order CR over a linearly SS were discussed by Ferdows and
Al-Mdallal [14]. Makinde et al. [22] described the effects of BL flow with the
transmission of convective temperature at the surface in the existence of thermal
diffusion and MHD. Rashidi et al. [26] examined the heat and mass transport with
free convection in magnetohydrodynamic liquid flow under the effects of buoyancy
force and radiation past SS. Mabood et al. [20] studied the combined heat and
mass transport impacts on magnetohydrodynamic fluid flow through SS under the
impact of first-order CR. Babu and Sandeep [5, 4, 6] inspected the hydromagnetic
flow past a slendering stretching sheet (SS) along with various presumptions. All
the above studies discussed the fluid flow over a flat SS with different assumptions
and physical geometries. In real-world applications, the SS not necessarily be flat,
we may be confronted by sheets with variable thickness (VT). Plates having VT
are commonly present in acoustical components, nuclear reactor technology, naval
structures, and machine design and are also one of the essential characteristics in
the investigation of orthotropic plate vibration. Initially, Lee [19] discussed the idea
of needles by considering VT and solved the problem numerically. Later, Fang et al.
[13] analyzed the boundary layer (BL) flow over SS with VT. Khader and Megahed
[18] presented the numerical solution of Newtonian fluid flow through a non-linear
SS with VT and velocity slip condition (SC). Subhashini et al. [31] investigated the
two-fold solutions of two-dimensional laminar thermal diffusive flows past SS with
VT. The ramifications of the magnetohydrodynamic nanofluid flow comprising Ag
and TiO2 nanoparticles through a slender SS with VT are analyzed by Acharya
et al. [2]. Babu et al. [7] deliberated the dissipative hydromagnetic flow with
the influence of temperature-dependent variable viscosity over a slender SS. The
radiative effects on hydromagnetic fluid with heat and mass transport have several
important practical applications i.e., in astrophysical power technology, planetary
vehicle re-entry, electronic power manufacturing, removal of nuclear surplus and
suspension of chemical impurities through water-saturated dust, and many more.
Magyari and Pantokratoras [21] inspected the effect of thermal radiation (TR) on
various BL flows using linearized Rosseland approximation. Mushtaq et al. [24]
studied the impacts of nonlinear TR on the two-dimensional viscous flow of nano-
liquids because of the presence of solar energy. Devi and Prakash [11] explored the
influences of TR on hydromagnetic liquid flow past a slendering SS. Qayyum et al.
[28] scrutinized the third-grade MHD nanofluid flow over a slendering SS under the
effects of heat generation/absorption and TR heat. A radiative ferrofluid flow along
with the impact of aligned magnetic field and frictional heating through a slendering
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SS is examined by Reddy et al. [27]. Mousavi et al. [23] explored the dual solutions
for water-based TiO2-Cu nanofluid flow in the presence of TR over a continuously
moving thin needle. Due to the significance of slip flow in many industrial thermal
problems and manufacturing fluid dynamics, slip effects with various configurations
have been analyzed in the literature. Wang [33] discussed the flow through a SS
in the existence of partial slip. In another study, Wang [32] explored the viscous
flow over a SS under the impacts of velocity SC and suction force. Fang et al. [12]
analytically explained the MHD viscous flow problem with slip condition over SS.
BL flow with fixed heat flux surface and velocity SC through a uniform plate was
deliberated by Aziz [3]. For a BL flow, Hayat et al. [16] deliberated the hydro-
magnetic flow and heat transport characteristics over SS with velocity and thermal
SCs. Bhattacharyya et al. [8] inspected the BL forced convective flow past a porous
plate. Velocity and thermal SCs were also considered. Ibrahim and Shankar [17]
examined the heat transport and BL flow of nano liquid past SS with solutal slip
BCs. Hasnain et al. [15] deliberated the outcomes of velocity slip on dusty fer-
rofluid in a channel through spongy media. In the existing exploration, we analyze
the impact of nth-order CR on the hydromagnetic viscous liquid past a continually
moving sheet with VT. The non-linear TR and slip boundary conditions towards a
sheet are also considered. A numerical technique is employed to get the approxi-
mate solution of obtained coupled non-linear PDEs. The influence of the Hartman
number, the parameter of wall thickness, the radiation parameter, the Schmidt
number, and the parameter of velocity power index on liquid velocity, temperature,
and concentration profiles is examined through their graphic illustrations.

2. Problem development

The two-dimensional, laminar, and time-independent flow of Newtonian liquid
under the effects of Lorentz force with constant density through an impermeable
SS with BL and VT is considered. The sheet is situated in the xz-plane, the x-
axis is towards the motion of SS however y-axis is considered vertically. The SS
velocity is assumed as Uw(x) = U0(x+ b)m. We further suppose that the thickness
of the sheet is not fixed and is written as y = A(x + b)(1−m)/2. To do away with
the pressure gradient, a small enough value of A is chosen to make the sheet thin
enough. The magnetic field B(x) = B0(x+ b)(m−1)/2 is taken vertically upward to
fluid flow. Because of the supposition of neglectable magnetic Reynolds number,
the outer electric field is insignificant and there is no effect of an induced magnetic
field. Figure 2.1 signifies the physical model of a slendering SS along with varying
thickness. For this problem, we take m 6= 1, it is because the sheet becomes
flat by considering m = 1. Moreover, non-linear TR is considered in the present
numerical analysis. Under these physical considerations, the mathematical model
for the proposed boundary layer flow is specified as

(2.1)
∂u

∂x
+
∂v

∂y
= 0,
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Fig. 2.1: Physical model of a slendering SS along with varying thickness

(2.2) u
∂u

∂x
+ v

∂u

∂y
= υ

∂2u

∂y2
− σB (x)

2
u

ρ
,

(2.3) u
∂T

∂x
+ v

∂T

∂y
=

k

ρcp

∂2T

∂y2
− 1

ρcp

∂qr
∂y

,

(2.4) u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
− kn (x) (C − C∞)

n
,

where kn(x )=k(b+x )(m−1)(n+1)/2 represents the change of nth-order homogeneous
CR.
The relevant BCs of heat, momentum, and concentration fields are:

(2.5)

u (x, y) = Uw (x) + h∗1

(
∂u

∂y

)
,

v
(
x,A (x+ b)

1−m
2

)
= 0,

T (x, y) = Tw (x) + h∗2

(
∂T

∂y

)
,

C (x, y) = Cw (x) + h∗3

(
∂C

∂y

)
, at y = A (x+ b)

1−m
2 ,

u (x,∞) = 0, T (x,∞) = T∞, C (x,∞) = C∞, (m 6= 1)

here

h∗1 =
[
2−f1
f1

]
ξ1 (x+ b)

1−m
2 , h∗2 =

[
2−a
a

]
ξ2 (x+ b)

1−m
2 , ξ2 =

(
2γ1
γ1+1

)
ξ1
Pr ,

h∗3 =
[
2−c
c

]
ξ3 (x+ b)

1−m
2 , ξ3 =

(
2γ2
γ2+1

)
ξ1
Sc .

To obtain a similar solution we considered a special form of wall temperature and
wall concentration defined as (Subhashini et al. [31])

(2.6) Tw (x) = T0 (x+ b)
1−m

2 + T∞, Cw (x) = C0 (x+ b)
1−m

2 + C∞, (m 6= 1) .
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Applying Rosseland approximation for optically thick medium, the radiation heat
flux is taken as (Raptis [25], Brewster [9], and Sparrow and Cess [30])

(2.7) qr = −4σ∗

k∗
∂T 4

∂y
= −16σ∗

3k∗
T 3 ∂T

∂y
.

By using Eq. (2.7) in Eq. (2.3) , we get

(2.8) u
∂T

∂x
+ v

∂T

∂y
=

∂

∂y

[(
α+

16σ∗T 3

3k∗ρcp

)
∂T

∂y

]
.

Similarity transformations in the following form are considered to simplify the flow
problem (see Khader and Megahed [18])

(2.9) η = y

√
m+ 1

2

U0 (x+ b)
m−1

υ
, u = U0 (x+ b)

m
f ′ (η) ,

v = −
√

m+1
2 υ U0 (x+ b)

m−1
[
f ′ (η) η

(
m−1
m+1

)
+ f (η)

]
, (m 6= 1) ,

θ = T−T∞
Tw(x)−T∞ with T = T∞ (1 + (θw − 1) θ) ,

θw = Tw

T∞
, φ = C−C∞

Cw(x)−C∞ ,

Using similarity transformations (2.9), the continuity Eq. (2.1) is inevitably fulfilled
and Eqs. (2.2), (2.4) and (2.8) with BCs (2.5) take the form

(2.10) f ′′′ =

(
2m

m+ 1

)
(f ′)

2 − ff ′′ +M2f ′,

(2.11)
(

1 +Rd (1 + (θw − 1) θ)
3
θ′
)′

= Pr

((
1−m
m+ 1

)
f ′θ − fθ′

)
,

(2.12) φ′′ = Sc

((
1−m
m+ 1

)
f ′φ− fφ′

)
+ Scγφn.

with

(2.13)
f (λ) = λ

(
1−m
m+1

)
(1 + h1f

′′ (λ)) , f ′ (λ) = 1 + h1f
′′ (λ) ,

θ (λ) = 1 + h2 θ
′ (0) , φ (λ) = 1 + h3 φ

′ (0) ,

f ′ (∞) = 0, θ (∞) = 0, φ (∞) = 0, (m 6= 1) ,

where

Rd =
16σ∗T 3

∞
3kk∗

, M2 =
2σB2

0

(1 +m) ρU0
, γ =

2 k Cn−10

(1 +m)U0
, Pr =

υ

α
, Sc =

υ

D
.
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Moreover, Rd = 0 shows no TR effect, > 0 represents the destructive CR whereas
< 0 represents the constructive CR and

λ = A

√
U0 (m+ 1)

2ν
, h1 =

[
2− f1
f1

]
ξ1

√
U0 (m+ 1)

2ν
,

h2 =

[
2− a
a

]
ξ2

√
U0 (m+ 1)

2ν
, h3 =

[
2− c
c

]
ξ3

√
U0 (m+ 1)

2ν
.

The domain of Eqs. (2.10)-(2.12) with BC’s Eq. (2.13) is [λ, ∞]. To accommodate
the calculation we transform domain [λ, ∞] into [0, ∞], for this let F (ξ)=F (η-
λ)=f (η). Using this transformation Eqs. (2.10)–(2.12) become

(2.14) F ′′′ =

(
2m

m+ 1

)
(F ′)

2 − FF ′′ +M2F ′,

(2.15)
(

1 +Rd (1 + (θw − 1) Θ)
3

Θ′
)′

= Pr

((
1−m
m+ 1

)
F ′Θ− FΘ′

)
,

(2.16) Φ′′ = Sc

((
1−m
m+ 1

)
F ′Φ− FΦ′

)
+ Scγ Φn,

and the BC’s are

(2.17)
F (0) = λ

(
1−m
m+1

)
(1 + h1F

′′ (0)) , F ′ (0) = 1 + h1F
′′ (0) ,

Θ (0) = 1 + h2 Θ′ (0) , Φ (0) = 1 + h3 Φ′ (0) ,
F ′ (∞) = 0, Θ (∞) = 0, Φ (∞) = 0, (m 6= 1) .

The skin-drag parameter Cf , the local Nusselt number Nux and the local Sherwood
number Shx are defined as

(2.18) Cf =
1

1
2ρU

2
w

µ
∂u

∂y

∣∣∣∣
y=A(x+b)

1−m
2

= 2

√
m+ 1

2
(Rex)

− 1
2 F ′′ (0) ,

(2.19)

Nux = − (x+ b)

(Tw (x)− T∞)

∂T

∂y

∣∣∣∣
y=A(x+b)

1−m
2

+ (qr)w =

−
√
m+ 1

2

(
1 +Rdθ

3
w

)
(Rex)

1
2 Θ′ (0) ,

(2.20) Shx = − (x+ b)

(Cw (x)− C∞)

∂C

∂y

∣∣∣∣
y=A(x+b)

1−m
2

= −
√
m+ 1

2
(Rex)

1
2 Φ′ (0) ,

where Rex=UwX/υ and X=(x+b) is the local Reynolds number.
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3. Numerical scheme

Non-linear differential equations (2.14)-(2.16) with boundary conditions (2.17) are
solved using the shooting technique together with the fourth-order Runge-Kutta
method. Our system of equations must be transformed into a first-order initial
value system for this technique by declaring:

(3.1) y1 = F, y2 = F ′, y3 = F ′′, y′3 =

(
2m

m+ 1

)
y22 − y1y3 +M2y2,

(3.2)

y4 = Θ, y5 = Θ′,

y′5 =
1

1 +Rd (1 + (θw − 1) y4)
3

(
−3Rd (1 + (θw − 1) y4)

2
(θw − 1) y25

)
− 1

1 +Rd (1 + (θw − 1) y4)
3

(
(1 +Rd (θw − 1) y4)

3
)
y5

+
1

1 +Rd (1 + (θw − 1) y4)
3

(
Pr

((
1−m
m+ 1

)
y2y4 − y1y5

))
,

(3.3) y6 = Φ, y7 = Φ′, y′7 = Sc

((
1−m
m+ 1

)
y2y6 − y1y7

)
+ Scγ (y6)

n
,

with boundary conditions

y1 (0) = λ
(

1−m
m+1

)
(1 + h1u1) , y2 (0) = 1 + h1u1, F ′′ (0) = u1,

y4 (0) = 1 + h2u2, Θ′ = u2, y7 (0) = 1 + h3u3, Φ′ = u3.

4. Results and discussion

The solution of ODE’s (2.14)–(2.16) with BC’s (2.17) is numerically determined by
using the shooting method together with the 4th-order algorithm of Runge-Kutta.
The influences of all involved constraints on the momentum, concentration, and
temperature inside the BL are displayed in Figures 4.1-4.6.

The effect of Hartman number M on liquid velocity is seen in Figure 4.1a. Slip
and no-slip velocity conditions are taken into consideration. It is evident from Fig-
ure 4.1a that both the liquid velocity and BL thickness decline with an increase in
M for both slip and no-slip conditions. Lorentz force (a force manifesting owing
to the combined action of magnetic and electric fields) is responsible for this at-
tenuation since it works against transport phenomena more potently. Figure 4.1b
represents the variation of wall thickness parameter λ and power index parameter
m on liquid velocity. It is observed from this Figure that augmentation in m causes
an upsurge in sheet slenderness which enables the fluid to flow more rapidly due
to this flow velocity accelerates and ultimately boundary layer thickness becomes
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Fig. 4.1: Momentum transfer for distinct values of (a) M and h1 (b) λ and m.

thicker. However, the parameter of the wall thickness λ creates retardation in the
flow velocity and consequently, BL thickness reduces with a rise in wall thickness
parameter λ.

Figure 4.1a exhibits the influences of the M on dimensionless temperature. It
is detected that the temperature profiles enhance when Hartman number M is
increased, and results are the same when we consider velocity slip as well as non-
slip velocity. Since Lorentz force acts as a resistive force for fluid movement thus
heat is generated and therefore the thermal BL thickness rises when M escalates.
Figure 4.1b displays the variation of the power index of velocity m and thickness
of wall parameter λ on the temperature of the liquid. It is depicted that both the
thickness of thermal BL and temperature is the increasing function of m whereas
decreases with increasing wall thickness parameter λ. Heat transfers faster through
the thinner surface and in this case, an increase in m tends to reduce sheet thickness.
As a result, a higher value for m leads to a hotter temperature profile.

Fig. 4.2: Heat transfer for distinct values of (a) M and h2 (b) m and λ

Figure 4.3a is illustrated to show the variation in the temperature profiles for Pr
and Rd. It is noticed from this fig. that the temperature profiles along with thermal
BL thickness decrease with high Pr. Physically, the thermal diffusivity falls when
Pr increases therefore heat is diffused slowly far from the heated sheet. However,
the temperature profiles and thickness of thermal BL augments with increments in
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radiation parameter Rd. Figure 4.3b is the graphical depiction of variation in θw
for temperature profiles. It is detected that heat travels effectively as thickness for
thermal BL is found to grow with θw.

Fig. 4.3: Heat transport for distinct values of (a) Rd and Pr (b) θw

The influence of M on the concentration profile is demonstrated in Figure 4.4a.
Both the concentration and thickness of its BL are found to increase with M, and
this is true for both the slip and no-slip scenarios. The fluid experiences friction due
to Lorentz force by accumulative friction among the layers, which is why species
distribution increases. Figure 4.4b reveals the behavior of species concentration for
different values of m and λ. It shows that species concentration enhances when
m is increased and falls with the augmentation in λ. As the temperature of the
liquid escalates with m, the species concentration also increases. Comparison of the

Fig. 4.4: Concentration profile for distinct values of (a) M and h (b) λ and m.

effects of no-slip velocity vs slip velocity on species concentration as a function of
Sc are shown in Figure 4.5a. Schmidt number describes the ratio of the viscous
BL thickness and thickness of the concentration BL so from this figure, we see that
increasing Schmidt number Sc decreases the solute BL. Figure 4.5b displays the
impacts of the rate of CR parameter on the species concentration for no-slip velocity
and slip velocity conditions. For both cases, the liquid concentration decreases for
destructive CR (γ>0) and increases for constructive CR (γ<0). Destructive CR
behaves similarly to Schmidt number therefore, with destructive CR thickness of
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solute BL falls while it increases with constructive CR. Therefore, the reaction rate
is important in adjusting the solute BL in the reactive concentration distribution.

Fig. 4.5: Concentration behavior for distinct values of (a) Sc and h3 (b) γ and h3.

Figure 4.6a shows the influence of both parameters λ and velocity power index
m on F′′(0). Figure 4.6b illustrates the upshot of Θ′(0) with λ for distinct values of
Rd. Θ′(0) increases with λ, while diminishes with increasing values of Rd. Figure
4.6c depicts that Φ′(0) is increased with an increment in Sc and λ. It is also depicted
from this figure that Φ′(0) falls with the higher values of reaction-order parameter
n.

Fig. 4.6: Upshot of (a) F′′(0) for m (b) Θ′(0) for Rd (c) Φ′(0) for Sc versus λ.

To ensure the accuracy of new results, we compared them to previous studies’
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Table 4.1: Numerical comparative values of F′′(0) when λ=0.5 and M=0

m Fang et al. [13]
(Numerical Method)

Subhashini et al. [31]
(Numerical Method)

Present Results
(Numerical Method)

-0.51 -1.1859 -1.1860 -1.1860
-0.55 -1.2807 -1.2821 -1.2808
-0.60 -1.4522 -1.4531 -1.4522
-0.65 -1.7095 -1.7103 -1.7095
-0.70 -2.0967 -2.0974 -2.0967
-0.75 -2.6882 -2.6891 -2.6882
-0.80 -3.6278 -3.6282 -3.6278
-0.85 -5.2477 -5.2481 -5.2477
-0.90 -8.5457 -8.5463 -8.5457
-0.95 -18.5194 -18.5209 -18.5194
-0.99 -98.5034 -98.5046 -98.4642

Table 4.2: Comparison with the numerical and analytical solution for F′′(0) when
M=0

m λ Fang et al. [13]
(Shooting Method)

Abdel-wahed et al. [1]
(Optimal homotopy
asymptotic method)

Present
Results

0.50 0.25 -0.93380 -0.92641 -0.93376
1.00 -1.00000 -1.00000 -1.00000
5.00 -1.11860 -1.12623 -1.11858
0.50 0.5 -0.97990 -0.96335 -0.97994
1.00 -1.00000 -1.00000 -1.00000
2.00 -1.02340 -1.03339 -1.02339

findings and discovered they were in good accord which is represented in Table 4.1.
Table 4.2 compares the current results to both numerical and analytical approaches
and shows that they are in good agreement.

5. CONCLUDING REMARKS

The present work of hydromagnetic flow and dispersion of CRS towards a slendering
SS with slip condition has been studied. Non-linear Rosseland thermal radiation is
also considered within heat transfer. A comparison with available literature is also
carried out. The key effects of the existing study can be prescribed as below:

• Since the magnetic field creates a drag force, liquid velocity and thickness of
BL reduce when Hartman number M for both slip and no-slip conditions is
increased. Whereas, increasing values of the Hartman number M boosts the
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heat transfer and concentration field.

• The velocity, temperature, and CRS concentration profiles fall with increment
in the thickness of wall parameter λ however, rise with a velocity power index
m.

• Both radiation parameter Rd and θw increase the temperature profiles.

• Prandtl and Schmidt’s numbers decline the heat transfer and concentration
field, respectively.

• Destructive CR (γ>0) reduces while constructive CR γ<0) enhances the
species concentration with both slip and no-slip conditions.
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1. Introduction

For a given Finsler manifold (M,F ), the flag curvatureK = K(Π, y) is a function
of tangent planes Π = span{y, v} ⊂ TxM and directions y ∈ Π \ {0}. If F is a
Riemannian metric, then the flag curvature is independent of the direction and can
be written as K = K(Π). In this special case, K is called the sectional curvature
of F . Also, F is said to be of scalar flag curvature if the flag curvature is a scalar
function on the slit tangent space, namely K = K(x, y). F is called of isotropic
flag curvature if the flag curvature K = K(x) is a scalar function on the manifold
M . A Riemannian metric is of scalar curvature if and only if K = K(x) is a scalar
function on M , which is a constant in dimension n > 2 by the Schur lemma. One
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of the important problems in Finsler geometry is to study and characterize Finsler
metrics of isotropic flag curvature.

In order to study the class of Finsler metrics of isotropic flag curvature, one
may consider 2-dimensional Finsler metrics. In Finsler geometry, the behavior of
2-dimensional Finsler metrics is different and sometimes contradictory to the higher
dimensions. For example, all 2-dimensional Finsler metrics are C-reducible, while
they need not be of Randers or Kropina type. Also, Finsler surfaces are of scalar flag
curvature, while these cases are not valid for higher dimensions. Due to the latter
issue, Z. Shen constructed three families of Finslerian surfaces on S2 and D2 with
constant flag curvature that are not projectively flat, and thus the Beltrami’s famous
theorem in Finsler geometry lost its validity in the world of Finslerian surfaces [14].

To study of Finsler surfaces separately, L. Berwald made a special frame for
Finsler surfaces, namely Berwald’s frame. In this frame, a function appears that
depends of the tangent space of Finsler surface and distinguishes each metric from
the other metrics. This function is known as the main scalar of the Finsler surface
and denoted by I = I(x, y). In [9], Matsumoto gave some geometrical meanings of
the main scalar of Finsler surfaces. Very soon, Berwald discovered that the Finsler
surfaces with constant main scalar are Berwald, Landsberg or Douglas surfaces [4].
Then, he characterized two-dimensional Finsler metrics with isotropic main scalar
I = I(x). Using this characterization, Berwald succeeded to find the classification
of two-dimensional projectively flat Finsler metrics with isotropic main scalar [4].
These studies shows that the class of Finsler surfaces with isotropic main scalars
has important position in Finsler geometry and deserves to more studies.

Among the class of two-dimensional Finsler metrics, homogeneous Finsler sur-
faces are interesting, and until now little study has been done on these spaces. Then,
it is natural to study homogeneous Finsler manifolds. A Finsler manifold is called
homogeneous if its group of isometries acts transitively on the manifold. In [5],
Deng and Hou proved that the group of isometries I(M,F ) of a Finsler manifold
(M,F ) is a Lie transformation group of the underlying manifold which can be used
to study homogeneous Finsler manifolds. In this case, M can be written as the
quotient manifold I(M,F )/H, where H is the stabilizer subgroup at a point in M .
Recently, the authors proved that there is not any unicorn among the homogeneous
Finsler surfaces [18]. In this paper, we study homogeneous Finsler surfaces with
isotropic main scalar I = I(x) and isotropic flag curvature K = K(x), and prove
the following rigidity result.

Theorem 1.1. Every homogeneous Finsler surface with isotropic main scalar and
isotropic flag curvature is Riemannian or locally Minkowskian.

2. Preliminary

LetM be an n-dimensional C∞ manifold, TM =
∪

x∈M TxM the tangent space and
TM0 := TM − {0} the slit tangent space of M . A Finsler structure on manifold
M is a function F : TM → [0,∞) with the following properties: (i) F is C∞ on
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TM0; (ii) F is positively 1-homogeneous on the fibers of tangent bundle TM , i.e.,
F (x, λy) = λF (x, y), ∀λ > 0; (iii) The quadratic form gy : TxM × TxM → R is
positive-definite on TxM

gy(u, v) :=
1

2

∂2

∂s∂t

[
F 2(y + su+ tv)

]
s=t=0

, u, v ∈ TxM.

Then, the pair (M,F ) is called a Finsler manifold.

Let x ∈M and Fx := F |TxM . To measure the non-Euclidean feature of Fx, one
can define Cy : TxM × TxM × TxM → R by

Cy(u, v, w) :=
1

2

d

dt

[
gy+tw(u, v)

]
t=0

, u, v, w ∈ TxM.

The family C := {Cy}y∈TM0 is called the Cartan torsion. It is well known that
C = 0 if and only if F is Riemannian.

For y ∈ TxM0, define Iy : TxM → R by

Iy(u) :=
n∑

i=1

gij(y)Cy(u, ∂i, ∂j),

where {∂i} is a basis for TxM at x ∈ M . The family I := {Iy}y∈TM0 is called the
mean Cartan torsion. By definition, Iy(y) = 0 and Iλy = λ−1Iy, λ > 0. Therefore,
Iy(u) := Ii(y)u

i, where
Ii := gjkCijk.

Let F = F (x, y) be a Finsler metric on an n-dimensional manifold M . The
distortion τ = τ(x, y) on TM associated with the Busemann-Hausdorff volume
form

dVBH = σ(x)dx

is defined by

τ(x, y) = ln

√
det
(
gij(x, y)

)
σ(x)

.

By definition, the distortion τ is homogeneous of degree 1 with respect to y, i.e.,
the following holds

τ(λy) = λτ(y), λ > 0, y ∈ TxM0.

The following holds.

Lemma 2.1. ([13]) Let F be a positive-definite Finsler metric on a manifold M .
Then the following conditions are equivalent
(a) τ = constant;
(b) I = 0;
(c) C = 0;
In any case, F reduces to a Riemannian metric.
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Given a Finsler manifold (M,F ), then a global vector field G is induced by F
on TM0, which in a standard coordinate (xi, yi) for TM0 is given by

G = yi
∂

∂xi
− 2Gi ∂

∂yi
,

where Gi = Gi(x, y) are local functions on TM given by

Gi :=
1

4
gil
{ ∂2[F 2]

∂xk∂yl
yk − ∂[F 2]

∂xl

}
, y ∈ TxM.

G is called the associated spray to (M,F ).

DefineBy : TxM×TxM×TxM → TxM byBy(u, v, w) := Bi
jkl(y)u

jvkwl∂/∂xi|x,
where

Bi
jkl :=

∂3Gi

∂yj∂yk∂yl
.

B is called the Berwald curvature and F is called a Berwald metric if B = 0.

For y ∈ TxM , define the Landsberg curvature Ly : TxM × TxM × TxM → R by

Ly(u, v, w) := −
1

2
gy

(
By(u, v, w), y

)
.

In local coordinates, Ly(u, v, w) := Lijk(y)u
ivjwk, where

Lijk := −1

2
ylB

l
ijk.

L is called the Landsberg curvature and F is called a Landsberg metric if L = 0.
Also, F is called of relatively isotropic Landsberg curvature if

Lijk = cFCijk,

where c = c(x) is a scalar function on M .

For y ∈ TxM , define Jy : TxM → R by Jy(u) := Ji(y)u
i, where

Ji := gjkLijk.

The quantity J is called the mean Landsberg curvature. A Finsler metric F is
called a weakly Landsberg metric if J = 0. By definition, every Landsberg metric
is a weakly Landsberg metric. F is called of relatively isotropic mean Landsberg
curvature if

Ji = cFIi,

where c = c(x) is a scalar function on M .
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For a non-zero vector y ∈ TxM0, the Riemann curvature is a family of linear
transformation Ry : TxM → TxM with homogeneity Rλy = λ2Ry, ∀λ > 0 which is
defined by Ry(u) := Ri

k(y)u
k∂/∂xi, where

Ri
k(y) = 2

∂Gi

∂xk
− ∂2Gi

∂xj∂yk
yj + 2Gj ∂2Gi

∂yj∂yk
− ∂Gi

∂yj
∂Gj

∂yk
.(2.1)

The family R := {Ry}y∈TM0 is called the Riemann curvature.

For a flag P := span{y, u} ⊂ TxM with the flagpole y, the flag curvature
K = K(P, y) is defined by

K(x, y, P ) :=
gy

(
u,Ry(u)

)
gy(y, y)gy(u, u)− gy(y, u)2

.(2.2)

The flag curvature K = K(x, y, P ) is a function of tangent planes P = span{y, v} ⊂
TxM . This quantity tells us how curved the space is at a point. A Finsler metric F
is of scalar flag curvature, if K(x, y, P ) = K(x, y) is independent of P . In this case,
the flag curvature is just a scalar function on the tangent space of M .

The pulled-back bundle π∗TM admits a unique linear connection, called the
Berwald connection. Let (M,F ) be an n-dimensional Finsler manifold. Let {ej} be
a local frame for π∗TM , {ωi, ωn+i} be the corresponding local coframe for T ∗(TM0)
and {ωi

j} be the set of local Berwald connection forms with respect to {ej}. In local
coordinate system, the Berwald connection determined by following

dωi = ωj ∧ ωi
j ,(2.3)

dgij − gkjωk
i − gikωk

j = −2Lijkω
k + 2Cijkω

n+k,(2.4)

where

ωi := dxi,

ωn+k := dyk + yjωk
j .

Thus
gij|k = −2Lijk, gij,k = 2Cijk.

For a tensor T = Ti···kω
i ⊗ · · · ⊗ ωk, we have

Ti···k ·m =
∂Ti···k
∂ym

.

For a non-zero vector y ∈ TxM , the tensor T induces a multi-linear form

Ty(u, · · · , w) := Ti···k(x, y)u
i · · ·wk
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on TxM . Let σ(t) denote the geodesic with σ̇(0) = y. We have

d

dt

[
Tσ̇(t)

(
U(t), · · · ,W (t)

)]
= Ti···k|m(σ(t), σ̇(t))σ̇m(t)U i(t) · · ·W k(t),

where U(t) = U i(t)∂/∂xi|σ(t), · · · ,W (t) = W k(t)∂/∂xk|σ(t) are linearly parallel
vector fields along σ. Thus the Landsberg curvature is given by

Lijk = Cijk|my
m.(2.5)

3. Proof of Theorem 1.1

It is well known that for any Minkowskian plane (V,F) and any vector v ∈ V with
F(v) ̸= 0, there is a non-zero vector w ∈ V such that is orthogonal to v with
respect to the fundamental tensor raised by Minkowski functional F . The special
and useful Berwald frame was founded and developed method by Berwald in order
to study of two-dimensional Finsler spaces [4]. It works under the assumption that
the fundamental tensor is positive-definite.

Let (M,F ) be a two-dimensional Finsler manifold. It is easy to see that for
every y ∈ TxM , x ∈M , there is a vector y⊥ ∈ TxM0 such that

g(y,y⊥) = 0, g(y⊥,y⊥) = F (y).

The pair {y,y⊥} is called the Berwald frame at y.

Based on the Berwald frame, the Cartan torsion can be determined by a scalar
function on slit tangent bundle. Let us define

I(y) := Cy(y
⊥,y⊥,y⊥)

F (y)
= I(y⊥).

One can see that I(λy) = I(y) holds for ∀λ > 0 and ∀y ∈ TxM0. We call I the
main scalar of Finsler metric F .

In most of literature of Finsler geometry, the special notation (ℓ,m) was used
instead of {y,y⊥}. By considering this notation, for a scalar T = T (x, y), we define
the horizontal scalar derivatives (T|1, T|2) and vertical scalar derivatives (T,1, T,2) as
follows

T|i := T|1ℓi + T|2mi, FT,i := T,1ℓi + T,2mi,

where

T|i :=
∂T

∂xi
−Gj

i

∂T

∂yj
, FT,i := F

∂T

∂yi

denote the horizontal and vertical derivations with respect to the Berwald connec-
tion of F and

Gj
i :=

∂Gi

∂yj
.
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In order to prove Theorem 1.1, we need to know the special form of Berwald
curvature of Finsler surface. We remark that the following identity holds

Bp
jkl = gip

{
Cijl|k + Cikl|j − Cjkl|i + Lijk,l

}
.(3.1)

See (10.19) at page 145 in [13]. On the other hand, the Cartan torsion of a Finsler
surface (M,F ) has no components in the direction ℓi, i.e., Cijky

i = 0. Then it can
be written in the Berwald frame (ℓ,m) as follows

FCijk = Imimjmk.(3.2)

Taking a horizontal derivation of (3.2) implies that

FCijk|s =
(
I|1ℓs + I|2ms

)
mimjmk.(3.3)

Contracting (3.3) with ys yields

FLijk = I|1mimjmk.(3.4)

By putting (3.3) and (3.4) in (3.1), we get

FBi
jkl =

{
− 2I|1ℓi +

(
I|1,2 + I|2

)
mi
}
mjmkml.(3.5)

Let us put
I2 := I|1,2 + I|2.

Thus the Berwald curvature of Finsler surfaces is given by

Bi
jkl =

1

F

(
I2mi − 2I|1ℓi

)
mjmkml.(3.6)

By (3.2) and (3.6), we have

Bi
jkl = −

2I,1
I
Cjklℓ

i +
I2
3F

{
hjkh

i
l + hklh

i
j + hljh

i
k

}
,(3.7)

where h = hijdx
idxj denotes the angular metric. Then for a Finsler surface, the

Berwald curvature can be written as follows

Bi
jkl = µCjklℓ

i + λ
(
hijhkl + hikhjl + hilhjk

)
,(3.8)

where

µ := − 2

I
I|1, λ :=

1

3
I2.

Proposition 3.1. Every non-Riemannian Finsler surface with isotropic main scalar
and isotropic flag curvature is a relatively constant Landsberg metric.
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Proof. A 2-dimensional Finsler metrics F is of scalar curvature K = K(x, y). This
is equivalent to the following identity:

Ri
k = KF 2 hik.(3.9)

The following hold

Lijk|my
m = −1

3
F 2
{
K·ihjk +K·jhik +K·khij + 3KCijk

}
(3.10)

and

Jk|my
m = −F 2

{
K·k +KIk

}
.(3.11)

Contracting (3.8) with yi implies that

Ljkl +
1

2
µFCjkl = 0.(3.12)

Taking a trace of (3.12) implies that

Ji = −
1

2
µFIi.(3.13)

By taking a horizontal derivation of (3.13) along the Finslerian geodesics yields

Ji|sy
s = −F

4

(
2µxkyk − µ2F

)
Ii.(3.14)

By (3.11), (3.14) and Ik = τ·k, we get

Kyi +
1

4

(
4K+ µ2(x)− 2

F
µxkyk

)
τyi = 0.(3.15)

Now, suppose that K = K(x) is a scalar function on M . Then (3.15) simplifies to(
4K+ µ2 − 2

F
µ0

)
τyi = 0.(3.16)

where µ0 := µxkyk.

Now, we claim that µ(x) = c is a constant. If this is false, then there is an open
subset U such that dµ(x) ̸= 0 for any x ∈ U . Clearly, at any x ∈ U ,

K(x) ̸= 1

4

(
− µ(x)2 + 2µ0(x)

F (x, y)

)
for almost all y ∈ TxM . By (3.16), τ·i = Ii = 0. Thus F is Riemannian on U by
Deicke’s theorem. This contradicts with the assumption. Then µ = constant.
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Proposition 3.2. Let (M,F ) be a Finsler surface. Suppose that F has isotropic
main scalar and isotropic flag curvature. Then for any geodesic γ = γ(t) and any
parallel vector field X = X(t) along γ, the following function

C(t) = Cγ̇

(
X(t), X(t), X(t)

)
,(3.17)

satisfies the following equation

C(t) = exp
(
− 1

2
µt
)
C(0).(3.18)

Proof. By definition, we have

Ly(u, v, w) +
1

2
µFCy(u, v, w) = 0.(3.19)

where µ = constant. Let us define

L(t) = Lγ̇

(
X(t), X(t), X(t)

)
.(3.20)

From the definition of Ly, we have

L(t) = C
′
(t).(3.21)

Then, (3.19) can be written as follows

C
′
(t) = −1

2
µC(t).(3.22)

Integration (3.22) gives (3.18).

Proof of Theorem 1.1: The proof has two main cases as follows:

Case 1: If µ = 0, then F is a Landsberg metric. In [18], we proved that ev-
ery homogeneous Landsberg surface is Riemannian or locally Mikowskian.

Case 2: If µ ̸= 0. In this case, we have (3.18). In [17], it is proved that ev-
ery homogeneous Finsler manifold is complete. By definition, every two points
of a homogeneous Finsler manifold (M,F ) map to each other under an isometry.
This causes the norm of an invariant tensor under the isometries of a homogeneous
Finsler manifold is a constant function on M , and consequently, it has a bounded
norm. Using this fact, we showed that for a homogeneous Finsler manifold (M,F ),
every invariant tensor under the isometries of F has a bounded norm with respect
to it [16]. Then letting t→ −∞ in (3.18) and using ||C|| <∞ implies that C(0) = 0
and then C(t) = 0. Then F reduces to a Riemannian metric.
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(M,F ) is said to be homogeneous geodesic, if there exists one-parameter group of
isometries ϕ : R×M →M such that

γ(t) = ϕ(t, γ(0)), t ∈ R.

Geodesics are treated similar to relative equilibria in mechanics and physics. The
qualitative description of the behavior of the related mechanical system with symme-
tries depends on the description of such relative equilibria. Geodesics have always
been exciting to find and study, and this has been true since geometry’s incep-
tion. Due to the numerous uses of geodesics and homogeneous geodesics in physics
[22, 5, 6, 23] and other mathematics disciplines, there has been an interest in their
study recently.
There is a lot of literature in mechanics devoted to the investigation of relative
equilibria. In [1], author extended Euler’s theory of rigid-motions while studying
left invariant Riemannian metrics on Lie groups. In [20], the author discussed
that in homogeneous space with an invariant metric, geodesic flow can be seen as
framework of Smale’s mechanical system with symmetries. Tóth [26] studied the
paths that were orbits of one-parameter symmetry group G. In fact, he discovered
the conditions for solutions of Euler-Lagrange or Hamiltonian equations to coincide
with the orbit of a one-parameter subgroup of a symmetry group.
Kajzer has studied the existence of homogeneous geodesics in [14]. In this study,
the authors showed that in Lie groups with left invariant metrics, at least one ho-
mogeneous geodesic element can travel through the identity element. Kowalski and
Szenthe [17] also showed that every homogeneous Riemannian manifold has at least
one homogeneous geodesic across each point.
Additionally, Kowalski and Vlášek [18] established a few examples of homogeneous
Riemannian manifolds of any dim n ≥ 4 with precisely one homogeneous geodesic.
Latiffi [21] proposed the term ‘geodesic vector’ in homogeneous Finsler space and
proved that any vector in every connected Lie group with a bi-invariant Finsler
metric is a geodesic vector.
Recently, the existence of homogeneous geodesic for infinite series metric and ex-
ponential metric have been discussed in [15]. Also, some important results re-
lated to homogeneous Finsler spaces have been established in [25]. In homogeneous
Kropina spaces, the existence of homogeneous geodesic through any arbitrary point
have been discussed in [13] and it is also proved that under some conditions result
holds for any (α, β)-homogeneous space. In this paper, homogeneous geodesics of 3-
dimensional non-unimodular real Lie groups equipped with a left invariant Randers
metric of Douglas type are also discussed as an example. In [10], author has showed
the examples of homogeneous Randers manifold admitting just two homogeneous
geodesic. In [2], authors have extended the study of left-invariant (α, β)-metrics on
4-dimensional Lie groups.
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2. Preliminaries

In this section, we discuss basic definitions and notations of Finsler geometry.
For more elaborate concepts of Finsler geometry and homogeneous Finsler geome-
try, refer [3, 4, 7]. Let V be an n-dimensional real vector space endowed with smooth
norm F on V \{0}, which is non-negative i.e., F (u) ≥ 0 ∀ u ∈ V, positively homo-
geneous i.e., F (λu) = λF (u) ∀ λ > 0, and strongly convex i.e., if {u1, u2, ..., un}
be the basis of V such that y = y1u1 + y2u2 + ...+ ynun, then the Hessian matrix

(gij) :=
([

1
2F

2
]
yiyj

)
, is positive definite at every point of V \{0}. The pair (V, F )

is called Minkowski space and F is called Minkowski norm.
Let M be a connected (smooth) manifold. A Finsler metric on M is a function
F : TM → [0,∞) which satisfies:

1. F is smooth on slit tangent bundle TM\{0},

2. The restriction of F to any TxM,x ∈M is a Minkowski norm.

The space (M,F ) is called Finsler space. Let γ : [0, 1] → M be a C1-curve. Then
Finsler length L(γ) of γ is defined as

L(γ) =
∫ 1

0
F (γ(t), γ

′
(t))dt.

Further, Finsler distance dF (p, q) between two points p, q ∈M is defined as

dF (p, q) = infγL(γ),

where infimum is taken over all piecewise C1-curves joining p and q.

Definition 2.1. Let F = αϕ(s); s = β/α, where ϕ is a smooth function on an
open interval (−b0, b0), α =

√
aij(x)yiyj is a Riemannian metric, β = bi(x)y

i is a
1-form on an n-dimensional manifold with ||β|| < b0. Then, F is Finsler metric if
and only if following conditions are satisfied:

(2.1) ϕ(s) > 0, ϕ(s)− sϕ
′
(s) + (b2 − s2)ϕ

′′
(s) > 0 ∀ |s| ≤ b < b0.

An (α, β)-metric is said to be singular Finsler metric, if either ϕ(0) is not defined
or ϕ(s) does not satisfy 2.1. In this paper, we study generalized m-Kropina spaces,
which form a special class of (α, β)-metric. Kropina metric is a type of non-regular

(α, β)-metric where ϕ(s) = 1
s , i.e., F = α2

β . The concept is proposed by Russian

physicist V. K. Kropina [19]. Despite having singularities (β = 0), it is useful in
the Lagrangian function’s representation of the general dynamic system. Hence,
due to the physical and applied importance of Kropina metric, we here investigate
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geodesics for generalized m-Kropina metric. Generalized m-Kropina metric is an
important class of (α, β)-metric defined as

F (α, β) =
αm+1(x, y)

βm(x, y)
, (m ̸= 0, 1).

Consider the inner product ⟨, ⟩ on tangent space TxM, x ∈M defined as

⟨u, v⟩ = aiju
ivj , u, v ∈ TxM,

where aij is a Riemannian metric.
Using the above defined inner product we induce an inner product on the cotangent
space, T ∗

xM, of M at x,
⟨dxi, dxj⟩ = aij .

Using this inner product, a linear isomorphism can be defined between TxM and
T ∗
xM [9]. Hence, 1-form β corresponds to smooth vector field X on M given by

X|x = bi
∂

∂xi
, bi = aijbj ,

which further implies

⟨X|x, y⟩ = ⟨bi
∂

∂xi
, yj

∂

∂xj
⟩ = biyjaij = bjy

j = β(y).

Also, ||β|| = α(X|x) < 1. On the basis of above discussion, w can conclude the
following Lemma:

Lemma 2.1. Let (M,α) be a Riemannian space. Then the generalized m-Kropina

space, (M,F ) where F = αm+1

βm , (m ̸= −1, 0, 1) β = biy
i, a 1-form with ||β|| =

√
bibi,

consists of Riemannian metric α along with a smooth vector field X on M, which
satisfies α(X|x) < 1 ∀ x ∈M, i.e.,

F (x, y) =
α(x, y)m+1

⟨X|x, y⟩m
,

where ⟨, ⟩ is the inner product on TxM induced by the Riemannian metric α.

Let (M,F ) be a Finsler space. A diffeomorphism of M onto itself is said to be
isometry, if it preserves the Finsler function, i.e., F (ϕ(p), dϕp(X)) = F (p,X) for
any p ∈ M and X ∈ TpM . Let G be a Lie group and M a smooth manifold. If
G has smooth action on M , then G is called Lie transformation group of M . A
connected Finsler space (M,F ) is said to be homogeneous Finsler space, if action
of group of isometries of (M,F ), denoted by I(M,F ) is transitive on M .
Let G ⊂ I(M,F ) be a connected Lie group acting transitively on Finsler space
(M,F ), and at a fixed point p ∈ M, let H be its isotropy group. Then M can be
written as coset space G/H, with a G-invariant Finsler metric F . It is evident to
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see that H is comapct, since action of H leaves invariant unit sphere in TpM .
Hence, we obtain reductive decomposition of g, Lie algebra of G as

g = h+m,

where g and h are Lie algebras of G and H respectively and m ⊂ g is a vector
subspace such that Ad(h)(m) ⊂ m, where Ad denotes Adjoint representation of G.

Remark 2.1. [7] A homogeneous Finsler manifold M = G/H is reductive homogeneous
space.

Next proposition shows that G-invariant Finsler metrics on G/H can be identified
with Minkowski norm F as follows:

Proposition 2.1. [8] Let G/H be a reductive homogeneous manifold satisfying

g = h+m.

Then there exists a one-to-one correspondence between the G-invariant Finsler met-
rics on G/H and the Minkowski norms F on m which satisfy

F (Ad(h)x) = F (x), ∀ h ∈ H,x ∈ m.

A regular smooth curve γ with velocity vector T = γ̇, is said to be Finslerian
geodesic, if it satisfies

DT

(
T

F (T )

)
= 0,

with reference vector T . Here, D is defined from Chern connection, which is torsion
free and almost metric compatible. A geodesic γ(t) passing through origin eH ∈
M = G/H is said to be homogeneous if it is one-parameter subgroup of G, i.e.,
γ(t) = exp(tZ)(eH), t ∈ R and Z is a non zero vector in Lie algbera of G. A
non-zero vector X ∈ g is said to be a geodesic vector, if the curve exp(tX)(eH) is
constant speed geodesic of (M,F ). If all the geodesics of a Riemannian manifold
M are homogeneous, then M is callled g.o.(geodesic orbit) space.
A Finsler space (M,F ) is called a Finsler g.o. space, if every geodesic of (M,F )
is the orbit of a one-parameter subgroup of G = I(M,F ), i.e., if ϕ : R → M is a
geodesic, then there exists a non-zero vector Z ∈ g = Lie(G) and p ∈M such that
ϕ(t) = exp(tZ).p.
More precisely, a Finsler space (M,F ) is called Finsler g.o.(geodesic orbit) space, if
and only if the projections of all the geodesic vectors cover the set TeH(G/H)−{0}.
A Finsler g.o. space has vanishing S-curvature for Busemann volume form [21, 7].
Further, every Finsler g.o. space is homogeneous [7].
The following result provides criterion to study geodesic vector in Lie algbera level
and hence provide a useful tool to study homogeneous geodesic.



294 S. Jangir, G. Shanker, J. Kaur and L. Piscoran

Lemma 2.2. [21] Suppose (G/H,F ) is a homogeneous Finsler space with a re-
ductive decomposition g = h + m. A non-zero vector Y ∈ g is a geodesic vector if
and only if it satisfies

gYm
(Ym, [Y, Z]m) = 0, ∀Z ∈ g,

where the subscript m denotes the projection of a vector from g to m.

3. Necessary and sufficient condition

In this section, we discuss homogeneous geodesic in homogeneous generalized m-
Kropina space. We provide some necessary and sufficient condition for a non-zero
vector to be geodesic vector in homogeneous generalized m-Kropina space.

Corollary 3.1. Let (G/H,F ) be a homogeneous Finsler space equipped with gen-
eralized m- Kropina metric arising from an invariant Riemannian metric ⟨, ⟩ and
an invariant vector field X̃, such that X = X̃(H). Then necessary and sufficient
condition for a non-zero vector Y ∈ g to be a geodesic vector is
(3.1)
⟨Ym, Ym⟩m

⟨X,Ym⟩2m+1
[(m+ 1)⟨X,Ym⟩⟨Ym, [Y,Z]m⟩ −m⟨Ym, Ym⟩⟨X, [Y, Z]m⟩] = 0, ∀Z ∈ m.

Proof. Using the formula (2.7) for (α, β)-metric from [24], we get the following
corollary directly by taking ϕ(s) = 1

sm .

Further, we use Theorem 2.2 of [24] to get the following remark:

Remark 3.1. Let (G/H,F ) be a homogeneous generalized m-Kropina space with as-
sumptions same as taken in Theorem 3.1. Then the vector X is a geodesic vector of
(G/H, ⟨, ⟩) if and only if it is a geodesic vector of (G/H,F ). In other words, a non zero
vector is a geodesic vector of generalized m-Kropina metric if and only if it is a geodesic
of its base Riemannian metric.

Also, as direct consequence of Corollary 3.1, we can conclude the following corollary:

Corollary 3.2. Let (G/H,F ) be a homogeneous generalized m-Kropina space with
assumptions same as taken in Theorem 3.1. Let Y ∈ g be a non-zero vector such
that ⟨X, [Y, Z]m⟩ = 0 ∀ Z ∈ m. Then Y is a geodesic vector of (G/H, ⟨, ⟩) if and
only if it is a geodesic vector of (G/H,F ).

4. Existence

In this section, we prove the existence of atleast one homogeneous geodesic on
homogeneous generalized m-Kropina space passing through origin.
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Proposition 4.1. Let (G/H,F ) be homogeneous generalized m-Kropina space.
Then there exists atleast one homogeneous geodesic arising from each origin.

Proof. Suppose G ⊂ I(M,F ) be connected Lie group acting transitively on (M,F ).
Let H be isotropy group at {eH} ∈ G/H. Let K be killing form and radK be its
null space.
Firstly, let us suppose radK = m. In [17], it is proved that Lie algebra g has
reductive decomposition m + h such that m-projection [g, g] is a proper subspace
of m. Consider Y ∈ [g, g]m be a non-zero vector which satisfies ⟨Y, Y ⟩ = 1. Let
W = X ∈ [g, g]⊥m. We use Theorem 3.1 to check that W is a geodesic vector. Since,
equation 3.1 with respect to W can be written as:

⟨Wm,Wm⟩m

⟨X,Wm⟩2m+1
[⟨X,Wm⟩⟨(m+ 1)Wm, [W,Z]m⟩ − ⟨Wm,Wm⟩⟨mX, [W,Z]m⟩] = 0,

which implies that
⟨Wm,Wm⟩m

⟨X,Wm⟩2m+1
[⟨X, [W,Z]m⟩] = 0.

This proves the existence of atleast one geodesic through origin.
Secondly, we suppose radK ( m. If radK is a proper subset of m, then from [27],
it is proved that m can be decomposed into eigenspaces as m = V0 + V1 + ...Vr
with respect to K-symmetric endomorphism defined as K(X,Y ) = ⟨θ(X), Y ⟩ which
satisfies V0 = radK0. Consider {f1, f2, f3, ..., fr} be an orthonormal basis of V =
V0 +V1 + ...+Vr and θ be an endomorphism θ(fi) = λifi for i = 1, 2, ..., r. Suppose
that X = X0 +

∑r
i=1 xifi, Y = Y0 +

∑r
i=1 yifi, X0, Y0 ∈ V0, xi, yi ∈ R. Using

Theorem 3.1, Y ∈ g is a geodesic vector if and only if equation 3.1 equals to zero.

Hence, let us consider

[(m+ 1)⟨X,Ym⟩⟨Ym, [Y,Z]m⟩ −m⟨Ym, Ym⟩⟨X, [Y, Z]m⟩]

= [(m+ 1)⟨X0 +
r∑

i=1

xifi, Y0 +
r∑

i=1

yifi⟩⟨Y0 +
r∑

i=1

yifi, [Y, Z]m⟩

−m⟨Y0 +
r∑

i=1

yifi, Y0 +
r∑

i=1

yifi⟩⟨X0 +
r∑

i=1

xifi, [Y, Z]m⟩]

= [(m+ 1)⟨X0 +
r∑

i=1

xifi, Y0 +
r∑

i=1

yifi⟩⟨Y0, [Y, Z]m⟩

−m⟨Y0 +
r∑

i=1

yifi, Y0 +

r∑
i=1

yifi⟩⟨X0, [Y, Z]m⟩]

+ (m+ 1)⟨X0 +
r∑

i=1

xifi, Y0 +
r∑

i=1

yifi⟩K

(
[Y, Z]m,

r∑
i=1

yi
fi
λi

)

−m⟨Y0 +
r∑

i=1

yifi, Y0 +
r∑

i=1

yifiK

(
[Y, Z]m,

r∑
i=1

xifi

)
⟩

(4.1)
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= (m+ 1)

[
⟨X0 +

r∑
i=1

xifi, Y0 +

r∑
i=1

yifi⟩

][
⟨Y0, [Y, Z]m⟩+K

(
[Y,Z]m,

r∑
i=1

yi
fi
λi

)]

−m

[
⟨Y0 +

r∑
i=1

yifi, Y0 +

r∑
i=1

yifi⟩][⟨X0, [Y, Z]m⟩+K

(
[Y,Z]m,

r∑
i=1

xi
fi
λi

)]

= (m+ 1)[⟨X0 +
r∑

i=1

xifi, Y0 +
r∑

i=1

yifi⟩]K(Z, [Y, Y ]m)

−m⟨Y0 +
r∑

i=1

yifi, Y0 +
r∑

i=1

yifi⟩K(Z,X0 +
r∑

i=1

xiλifi, Y0 +
r∑

i=1

yiλifi).

(4.2)

The first term in last resultant of above equation 4.2 vanishes, which on plugging
into equation 3.1, we get

(4.3) m
⟨Y, Y ⟩m+1

⟨X,Y ⟩2m+1

[
K(Z, [x0 +

r∑
i=1

xiλiyi], y0 +

r∑
i=1

yiλifi)

]
.

Above equation vanishes, whenever we have a solution in the form (Y0, y1, ..., yr, t).
It is obvious to check that {Y0 = X0, y1 = t0x1, ..., yr = t0xr, t = t0} is a solution
to satisfy above equation. This completes the proof.

In fact, in [11] author has showed existence of two homogeneous geodesics in any
arbitrary homogeneous Finsler spaces. Hence, in particular, above proposition can
be extended to say that there exists two homogeneous geodesics in this space. With
this motivation in the next section, we construct an (n + 1)-dimensional and 4-
dimensional example and find homogeneous geodesics.

5. Examples of some homogeneous geodesic vectors

In this section, we visualize the homogeneous geodesics in an (n + 1)-dimensional
space and a 4-dimensional space. Let us consider a Lie algebra n with orthonormal
basis B = {e1, e2, ..., en+1} generated by Lie brackets as follows:

[ei, ej ] = 0, ∀i, j ≤ n

[en+1, ei] = aiei + ei+1, ∀i < n

[en+1, en] = anen

for arbitrary non-zero parameters a1, a2, ..., an ∈ R. The family of Lie algebras
(n, ⟨, ⟩) generates an (n-parameter) solvable Lie groups N with a set of invariant
Riemannian metrics. In [18], authors showed that for generic choices of {ai}ni=1 the
corresponding group N acting by left translations is the maximal group of isome-
tries. In [18] authors have assumed that N is diffeomorphic to (n+ 1)-dimensional
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Euclidean space. We use a similar approach as in [10] to solve our further re-
sult. For the sake of simplicity, we shall consider metric F generated by the vector
X = ke1, 0 < k < 1. which are suitable for our purpose.

Example 5.1. Let (G,F ) be an (n+1)-dimensional homogeneous generalizedm-Kropina
space, such that the parameters constructed above satisfies min{ai} > n and left-invariant
metric F is determined by X = ke1 and also ka1 < 1. Then (G,F ) admits exactly two
geodesics whose initial vectors are τ1 = c1en+1 + m

m+1
kF (Ym)e1, and τ2 = −c1en+1 +

m
m+1

kF (Ym)e1.

An arbitrary vector Y ∈ g can be expressed with respect to the basis B = {e1, e2, ..., en+1}
as Y = y1e1 + y2e2 + ...+ yn+1en+1. The Lie brackets can be calculated as follows:

[Y, ei] = yn+1(aiei + ei+1), 1 ≤ i < n,

[Y, en] = yn+1anen,

[Y, en+1] = −y1a1e1 −
n∑

i=2

(yi−1 + yiai)ei.

Next, we plug the vector Z ∈ m in equation 3.1 step by step for all elements of orthonormal
basis B. Using Theorem 3.1 we get the Y ∈ g is geodesic vector, if it satisfies the following
homogeneous system of equations:

(m+ 1)[yn+1(a1y1 + y2)−mF (Ym)ka1] = 0,

(m+ 1)[yn+1(aiyi + yi+1)] = 0, 1 < i < n

(m+ 1)yn+1anyn = 0,

(m+ 1)[−y21a1 −
n∑

i=2

(yi−1 + yiai)yi]−mF (Ym)ky1a1 = 0.

In order to solve system of equations, first let us consider the case if yn+1 ̸= 0. Due
to homogeneity of equations, without loss of generality we may assume yn+1 = ± c.
Consequently, from all equations for i = 1, ..., n we immediately get yn = yn−1 = ... =

y2 = 0 and y1 =
(

m
m+1

)
kF (Ym). Hence, we obtain just two geodesics solutions for above

system of equations.
Next, let us consider second case that yn+1 = 0, first n equations are satisfied immediately.
For the last equation, we solve for polynomial p(yi) = 0, where

p(yi) = (m+ 1)y21a1 + (m+ 1)

n∑
i=2

yiyi−1 +

n∑
i=2

y2i ai +

n∑
i=2

y2i ai +mka1y1F (Ym).

On using the estimates |yiyi+1| < 1 and min ai > n, we get that p(yi) > 0, which implies
above system of equation doesn’t have any other non trivial solution. This completes the
proof.

Example 5.2. Consider a 4-dimensional (R4, F ) equipped withm-Kropina metric, which
can be written as homogeneous space G/H where G is the 5-dimensional group of equiaffine
transformations of a Euclidean space and H is group of rotations around origin. Also g
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has reductive decomposition g = h + m, an orthonormal basis (e1, e2, e3, e4) of m and
generarator Λ of h. Using the multiplication table from [16], we have

[e1, e2] = 0, [e1, e3] = −e1, [e1, e4] = e1,

[e2, e3] = e2, [e2, e4] = e1, [e3, e4] = −2Λ,

[Λ, e1] = −e2, [Λ, e2] = e1, [Λ, e3] = 2e4, [Λ, e4] = −2e3.

Also, we have [g, g] = g. Suppose y ∈ g be geodesic vector,

y = y1e1 + y2e2 + y3e3 + y4e4 + qΛ

Using equation 3.1, we get the following set of equations:

(m+ 1)(x1y1 + x2y2 + x3y3 + x4y4)(y1(y3 − y4)− y2q)

−m(y21 + y22 + y23 + y24)(x1(y3 − y4)− x2q) = 0,
(5.1)

(m+ 1)(x1y1 + x2y2 + x3y3 + x4y4)(y1(y3 − y4)− y2q)

−m(y21 + y22 + y23 + y24)(x1(q − y4)− x2y3) = 0,
(5.2)

(m+ 1)(x1y1 + x2y2 + x3y3 + x4y4)(−y21 + y22 + 2qy4)

−m(y21 + y22 + y23 + y24)(−x1y1 + x2y2 + 2qx4) = 0,
(5.3)

(m+ 1)(x1y1 + x2y2 + x3y3 + x4y4)(y1(y1 + y2)− 2qy3)

−m(y21 + y22 + y23 + y24)(x1(y1 + y2)− 2qx3) = 0.
(5.4)

Using above equations, we also get

(m+ 1)(x1y1 + x2y2 + x3y3 + x4y4)(y1 + y2)(y3 − q)

−m(y21 + y22 + y23 + y24)(x1 + x2)(y3 − q) = 0,
(5.5)

(m+ 1)(x1y1 + x2y2 + x3y3 + x4y4)(y2(y1 + y2) + 2q(y4 − y3))

−m(y21 + y22 + y23 + y24)(y2(x1 + x2) + 2q(x4 − x3)) = 0.
(5.6)

We consider some assumptions to see geodesic vectors explicitly:
A: X = x3e3
B: X = x4e4
C: X = x3(e3 + e4)
D: X = x1(e1 − e2)
A : For X = x3e3, equation 5.5 gives

(m+ 1)(x3y3)(y1 + y2)(y3 − q) = 0.
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(1) Let us suppose
y1 = −y2, y3 ̸= 0 and
y3 ̸= q. In this case
equation 5.3, implies
2(m+ 1)(x3y3)qy4 = 0,
which again gives two
cases (a) and (b)

(a) q = 0 and y4 ̸= 0, this
implies y1(y3 − y4) = 0. If
y1 = 0, we also have
y2 = 0, which shows
y = y3e3 + y4e4. If
y3 − y4 = 0, implies y =
y1(e1−e2)+y3(e3+e4).

(b) If q ̸= 0 and y4 = 0,
then using equations 5.1
and 5.2, we get
y1(y1 + q) = 0. And again
here, if y1 = 0, y3 ̸= −q
we have y = y3e3 + qΛ,
otherwise for y1 ̸= 0 and
y3 = −q, we have y =
y1(e1−e2)+y3(e3−Λ).

(2) Next, we assume y1 ̸= −y2, y3 ̸= 0, and y3 = q. On plugging these into equation 5.3, we

get y4 =
y2
1−y2

2
2y3

, which gives geodesic vector y = y1e1 + y2e2 + y3e3 +
y2
1−y2

2
2y3

e4 + y3Λ.

(3) At last we suppose
y1 = −y2, y3 ̸= 0 and
y3 = q. On plugging into
(5.3), we get
2(m+ 1)x3q

2y4 = 0. This
takes us to two cases:

(a) If q = 0 and y4 ̸= 0,
this implies y = y4e4 or
y = y1(e1 − e2).

(b) On taking q ̸= 0,
y4 = 0 in (5.1), we get
2qy1 = 0 which vanishes
y1. So the geodesic vector
is y = y3(e3 + Λ).

(4) Next we suppose, y1 ̸= −y2, y3 ̸= q, y3 = 0, from equation 5.4, we have 2mqx3(y
2
1 +

y22 + y24) = 0. This gives that q vanishes and we get the geodesic vector as y = y1e1 +
y2e2 + y4e4.

Case (B) can be seen similar to the case(A). And it also coincides with the homoge-
neous geodesic in 4-dimensional Randers space example [12].

Case (C): On considering X = x3(e3 + e4), again from 5.5, we get

(m+ 1)x3(y3 + y4)(y1 + y3)(y3 − q) = 0.

This leads to different possiblities: (1) Let us Suppose y1 = −y2, y3 ̸= q, y3 ̸= −y4,

(1) also from equation 5.6,
we have
2q(m+ 1)x3(y

2
3 − y24) = 0

which implies two cases,
i.e., either q = 0 or
y3 = y4

(a) If q = 0, and y3 ̸= y4,
from equation (5.1), we
get y1(y3 − y4) = 0,
implies y1 = y2 = 0, which
gives geodesic vector
y = y3e3 + y4e4.

If q ̸= 0, y3 = y4,
equation(5.1), gives
2qy2(m+1)x3(y3+y4) = 0,
which vanishes
y3 = y4 = 0. Hence the
geodesic vector takes the
form
y = y3(e3 + e4) + qΛ.

(2) In this case assume y1 ̸= y2, y3 = q, y3 ̸= y4 using equation 5.6, we have

x3(y3 + y4)[y2(y1 + y2) + 2y3y4 − 2y23 ] = 0.

Since, in this case y3+y4 can’t vanish. Hence, we get 2y23 −2y3y4+y2(y3+y4) = 0, which

is quadratic in y3. So the roots are y3 =
y4±

√
y2
4+2(y1+y2)y2

2
. So the geodesic vector y is
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written as

y1e1 + y2e2 +
y4 ±

√
y2
4 + 2(y1 + y2)y2

2
(e3 + Λ) + y4e4.

(3) In third case, we assume y1 = −y2, y3 = q, y3 ̸= −y4, from using equation 5.6, we get
2x3y3(y3 + y4)(y3 − y4) = 0, which leads to two cases:

(a) If y3 = 0, the geodesic vector y takes form y = y1(e1 − e2) + y4e4.

(b) If y3 = y4, then y = y1(e1 + e2) + y3(e3 + e4 + Λ).

(4) In this, let us assume
y1 ̸= y2, y3 ̸= q, y3 = y4,
using the above
assumptions in equation
(5.4), we have
−4my23qx3 = 0, which
leads to two cases, i.e.,
either y3 = 0 or q = 0

(a) y3 = 0 implies geodesic
vector takes the form
y = y1e1 + y2e2 + qΛ.

(b) If q = 0, we get y =
y1e1 + y2e2 + y3(e3 − e4).
If both q = y3 = 0, y
reduces to y1e1 + y2e2.

(5) For this case, let us suppose y1 = −y2, y3 = −y4, y3 ̸= q. On plugging into equation
5.3, we get −4mqy23x4 = 0, which is similar to the case (4).

(6) For the last case, we take y1 ̸= y2, y3 = q, y3 = −y4. From equation 5.4, we have
−4my33x3 = 0, which implies y3 = 0 and this gives geodesic vector is y = y1e1 + y2e2.
For the last assumption X = x3(e3 − e4), we can retrace the steps of above to get the
homogeneous geodesics.
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Abstract. The purpose of this paper is to establish some fixed point results in the set-
ting of metric-like space by defining an (α, β)-admissible z-contraction mapping imbed-
ded in simulation function. Our results generalize and extend several well known results
in the literature of fixed point theory. A suitable example is also established to verify
the validity of the results obtained.
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1. Introduction

As generalization of the standard metrics spaces, metric-like spaces were con-
sidered by Amini-Harandi [3] and proved some fixed point theorems. There after
several authors have proved fixed and common fixed point theorem in metric-like
space, for example see [1, 7, 5, 6, 9, 8, 10, 11, 21]. In 2012, Samet et al. [24] intro-
duced the concept of α-contraction and α-admissible mappings and proved various
fixed point theorems in complete metric spaces. Afterward, many authors obtain
generalization of the result [24]. (For instance see [15, 17, 18, 19, 22]).
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Recently, Chandok[12] have introduced the notion of (α, β)-admissible mappings
and obtained some fixed point results. Some of authors (For instance [13, 14]) ob-
tained fixed point results by using the notion of (α, β)-admissible mappings and
certain contractive conditions. On the other hand, Khojasteh et al [16] introduced
a new class of mappings called simulation functions. In [16], they proved several
fixed point theorems and shows that many results in the literature are simple con-
sequences of their obtained results. In sequel, Argoubi et al.[4] modified the above
said definition and proved some fixed point theorems with nonlinear contractions.
There are many fixed point results in the setting of simulation function. (For in-
stance [1, 14, 15, 20, 23]).

In this paper, we consider simulation functions to show the existence of fixed
points of (α, β)-admissible z-contraction mapping in metric-like spaces. Our work
generalizes and extends some previous results in the literature. We modify and
generalize the results of Alsamir et al.[1], A. Dewangan et al.[14] and S. H, Cho[13].
Furthermore, we also give an examples to illustrate the main results.

2. Preliminaries

Let us recall some notations and definitions that we will need in the sequel.
Throughout this paper we assume the symbols R and N as a set of real numbers
and a set of natural numbers respectively.

Definition 2.1. [3] Let X be a non empty set. A function σ : X ×X → [0,∞) is
said to be a metric-like space (or a dislocated metric) on X if for any x, y, z ∈ X,
the following conditions hold:

(σ1) σ(x, y) = 0⇒ x = y;

(σ2) σ(x, y) = σ(y, x);

(σ3) σ(x, z) ≤ σ(x, y) + σ(y, z).

The pair (X,σ) is called metric-like space.

Then a metric-like on X satisfies all conditions of a metric except that σ(x, x) may
be positive for x ∈ X. Following [3], we have the following topological concepts.

Each metric-like σ on X generates a topology τσ on X, whose base is the family
of open σ-balls, then for all x ∈ X and ϵ > 0

Bσ(X, ϵ) = {y ∈ X : |σ(x, y)− σ(x, x)| < ϵ}.

Now, let (X,σ) be a metric-like space. A sequence {xn} in the metric-like space
(X,σ) converges to a point x ∈ X if and only if limn→∞ σ(xn, x) = σ(x, x).

Let (X,σ) be a metric-like space, and let T : X → X be a continuous mapping.
Then limn→∞ xn = x ⇒ limn→∞ T (xn) = T (x). A sequence {xn} is Cauchy in
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(X,σ), iff limn,m→∞ σ(xm, xn) exists and is finite. Moreover, the metric-like space
(X,σ) is called complete, iff for every Cauchy sequence {xn} in X, there exists
x ∈ X such that

lim
n→+∞

σ(xn, x) = σ(x, x) = lim
n,m→∞

σ(xn, xm).

It is clear that every metric space and partial metric space is a metric-like space
but the converse is not true.

Example 2.1. Let X = {0, 1} and

σ(x, y) =

{
2, if x = y = 0;
1, if otherwise.

Then (X,σ) is a metric-like space. It is neither a partial metric space (σ(0, 0) � σ(0, 1))
nor a metric-like space (σ(0, 0) = 2 ̸= 0).

Remark 2.1. A subset A of a metric-like space (X,σ) is bounded if there is a point
b ∈ X and a positive constant k such that σ(a, b) ≤ k for all a ∈ A.

Remark 2.2. [3] Let X = {0, 1} such that σ(x, y) = 1 for each x, y ∈ X and let xn = 1
for n ∈ N. Then it is easy to see that xn → 0 and xn → 1 and so in metric-like space, the
limit of convergence sequence is not necessarily unique.

The following lemma is known and useful for the rest of paper.

Lemma 2.1. [3] Let (X,σ) be a metric-like space. Let {xn} be a sequence in X
such that xn → x, where x ∈ X and σ(x, y) = 0. Then for all y ∈ X we have
limn→∞ σ(xn, y) = σ(x, y).

Definition 2.2. [12] Let X be a non-empty set, T : X → X and α, β : X ×X →
R+. We say that T is an (α, β)-admissible mapping if α(x, y) ≥ 1 and β(x, y) ≥ 1
imply that α(Tx, Ty) ≥ 1 and β(Tx, Ty) ≥ 1 for all x, y ∈ X.

Khojasteh et al.[16] introduced a new class of mappings called simulation func-
tions and proved several fixed point theorems and established that many results in
the literature are simple consequences of their obtained results.

Definition 2.3. [16] A function ζ : [0,∞) × [0,∞) → R is called a simulation
function if ζ satisfies the following conditions:

(ζ1) ζ(0, 0) = 0;

(ζ2) ζ(t, s) < s− t for all t, s > 0;
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(ζ3) If {tn}, {sn} are sequences in (0,∞) such that limn→∞ tn
= limn→∞ sn = l ∈ (0,∞), then limn→∞ sup ζ(tn, sn) < 0.

The following unique fixed point theorem is proved by Khojasteh et al.[16].

Theorem 2.1. Let (X, d) be a metric space and T : X → X be a z-contraction
with respect to a simulation function ζ, that is

ζ(d(Tx, Ty), d(x, y)) ≥ 0

for all x, y ∈ X. Then T has a unique fixed point.

It is worth mentioning that the Banach contraction is an example of z-contraction
by defining ζ : [0,∞) × [0,∞) → R via ζ(t, s) = λs − t for all s, t ∈ [0,∞), where
λ ∈ [0, 1).

Argoubi et al.[4] modified Definition (2.3) as follows.

Definition 2.4. [4] A simulation function is a function ζ : [0,∞) × [0,∞) → R
that satisfies the following conditions:

(i) ζ(t, s) < s− t for all s, t > 0;

(ii) If {tn} and {sn} are sequences in (0,∞) such that limn→∞ tn = limn→∞ sn =
l ∈ (0,∞), then limn→∞ sup ζ(tn, sn) < 0.

It is clear that any simulation function in the sense of Khojasteh et al.[16](Definition
(2.3)) is also a simulation function in the sense of Argoubi et al.[4] (Definition (2.4)).
The converse is not true.

Example 2.2. [4] Define a function ζ : [0,∞)× [0,∞) → R by

ζ(t, s) =

{
1, if (s, t) = (0, 0);
λs− t, otherwise.

where λ ∈ (0, 1). Then ζ is a simulation function in the sense of Argoubi et al.[4].

Some other examples of simulation functions in the sense of Definition (2.3) (see
[2, 16, 23])are as follows:

(i) ζ(t, s) = cs− t for all t, s ∈ [0,∞) where c ∈ [0, 1).

(ii) ζ(t, s) = s− ϕ(s)− t for all t, s ∈ [0,∞), where ϕ : R+ → R+ is a lower semi
continuous function such that ϕ(t) = 0 iff t = 0.
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3. Main Results

Now, we are ready to prove our first result with the following definitions.

Definition 3.1. [1] Let (X,σ) be a metric-like space. Given T : X → X and
α, β : X ×X → R+. Such T is said an (α, β)-admissible z-contraction with respect
to ζ if

ζ(α(x, y)β(x, y)σ(Tx, Ty), σ(x, y)) ≥ 0(3.1)

for all x, y ∈ X, where ζ is a simulation function in the sense of Definition (2.3).

Now, we prove our first fixed point result.

Theorem 3.1. Let (X,σ) be a complete metric-like space and T : X → X be a
(α, β)-admissible z-contraction mapping with respect to a ζ simulation function if
there exist ψ : R+ → R+ with ψ(t) < t such that

ζ(ψ(α(x, y)β(x, y)σ(Tx, Ty)), ψ(m(x, y))) ≥ 0(3.2)

for all x, y ∈ X, where

m(x, y) = max
{
σ(x, y),

[1 + σ(x, Tx)]σ(y, Ty)

1 + σ(x, y)

}
.

Assume that

(1) T is (α, β)-admissible;

(2) there exists an element x0 ∈ X such that α(x0, Tx0) ≥ 1 and
β(x0, Tx0) ≥ 1;

(3) T is σ-continuous.

Then T has a unique fixed point u ∈ X with σ(u, u) = 0.

Proof. By condition (2) of this theorem there exists x0 ∈ X such that α(x0, Tx0) ≥
1 and β(x0, Tx0) ≥ 1. Define the sequence {xn} in X such that xn+1 = Txn for
all n ∈ N ∪ {0}. If xn = xn+1 for some n, xn = xn+1 = Txn. So xn is fixed
point of T and the proof is completed. From now on assume that xn ̸= xn+1 for all
n ∈ N ∪ {0}. Since T is an (α, β)-admissible mapping, we derive

α(x0, Tx0) = α(x0, x1) ≥ 1⇒ α(Tx0, Tx1) = α(x1, x2) ≥ 1.

Continuing this process, we get

α(xn, xn+1) ≥ 1, for all n ≥ 0.(3.3)
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Similarly,

β(xn, xn+1) ≥ 1, for all n ≥ 0.(3.4)

From (3.2)(3.3), and (3.4), we have

0 ≤ ζ(ψ(α(xn, xn−1)β(xn, xn−1)σ(Txn, Txn−1)), ψ(m(xn, xn−1)))

= ζ(ψ(α(xn, xn−1)β(xn, xn−1)σ(xn+1, xn)), ψ(m(xn, xn−1))).(3.5)

Since

m(xn, xn−1) = max
{
σ(xn, xn−1),

[1 + σ(xn, Txn)]σ(xn−1, Txn−1)

1 + σ(xn, xn−1)

}
= max

{
σ(xn, xn−1),

[1 + σ(xn, xn+1)]σ(xn−1, xn)

1 + σ(xn, xn−1)

}

= max
{
σ(xn, xn−1), σ(xn, xn+1)

}
.(3.6)

If follows from (3.5) and (3.6) that

0 ≤ ζ(ψ(α(xn, xn−1)β(xn, xn−1)σ(xn+1, xn)),

ψ(max{σ(xn, xn−1), σ(xn, xn+1)}))
< ψ(max{σ(xn, xn−1), σ(xn, xn+1)})

−ψ(α(xn, xn−1)β(xn, xn−1)σ(xn+1, xn)).(3.7)

Consequently, we obtain that for all n = 0, 1, 2, 3...

ψ(σ(xn, xn+1)) < ψ(max{σ(xn, xn−1), σ(xn, xn+1)}).

If max{σ(xn, xn−1), σ(xn, xn+1)} = σ(xn, xn+1) for some n, then

ψ(σ(xn, xn+1)) < ψ(σ(xn, xn+1)),

which is a contradiction.

Hence max{σ(xn, xn−1), σ(xn, xn+1)} = σ(xn, xn−1), for all n ≥ 0 and hence
from (3.7) we get,

0 < ψ(σ(xn, xn−1))− ψ(α(xn, xn−1)β(xn, xn−1)σ(xn+1, xn))

or

ψ(α(xn, xn−1)β(xn, xn−1)σ(xn+1, xn)) < ψ(σ(xn, xn−1)).(3.8)
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By using the property of ψ, we get

α(xn, xn−1)β(xn, xn−1)σ(xn+1, xn) < σ(xn, xn−1)(3.9)

for all n ≥ 0. The sequence {σ(xn, xn−1)} is nondecreasing, so there exists r ≥ 0
such that limn→∞ σ(xn, xn−1) = r. We prove that

lim
n→∞

σ(xn, xn−1) = 0.(3.10)

Suppose that r > 0. By the properties of ψ, (3.5), (3.8) and (3.9) and the condition
(ζ3)

0 ≤ lim
n→∞

sup ζ(ψ(α(xn, xn−1)β(xn, xn−1)σ(xn+1, xn)), ψ(σ(xn, xn−1))) < 0,

which is a contradiction. Therefore r = 0. This implies that limn→∞ σ(xn, xn−1) =
0.

Now we will show that {xn} is a Cauchy sequence. Suppose on the contrary that
{xn} is not a Cauchy sequence. Then there exists ϵ > 0 for which we can assume
subsequences {xmk

} and {xnk
} of {xn} with m(k) > n(k) > k such that for every

k,

σ(xnk
, xmk

) ≥ ϵ.(3.11)

That is,

σ(xnk
, xmk−1) < ϵ.(3.12)

By the triangular inequality and using (3.11) and (3.12), we get

ϵ ≤ σ(xnk
, xmk

) ≤ σ(xnk
, xmk−1) + σ(xmk−1, xmk

)

< ϵ+ σ(xmk−1, xmk
).

Letting k →∞ in the above inequalities and by using (3.10) and (3.11), we have

lim
k→∞

σ(xnk
, xmk

) = ϵ.(3.13)

Also, from the triangular inequality, we have

σ(xnk
, xmk

) ≤ σ(xnk
, xnk+1) + σ(xnk+1, xmk

),

|σ(xnk+1, xmk
)− σ(xnk

, xmk
)| ≤ σ(xnk

, xnk+1).

On taking limit as k → ∞ on both sides of above inequality and using (3.10) and
(3.13), we get

lim
k→∞

σ(xnk+1, xmk
) = ϵ.(3.14)
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Similarly it is easy to show that

lim
k→∞

σ(xnk+1, xmk+1) = lim
k→∞

σ(xnk
, xmk+1) = ϵ.(3.15)

Moreover, since T is an (α, β)-admissible mapping, we have

α(xnk
, xmk

) ≥ 1 and β(xnk
, xmk

) ≥ 1.(3.16)

We deduce that

m(xnk
, xmk

) = max
{
σ(xnk

, xmk
),
[1 + σ(xnk

, Txnk
)]σ(xmk

, Txmk
)

1 + σ(xnk
, xmk

)

}
= max

{
σ(xnk

, xmk
),
[1 + σ(xnk

, xnk+1)]σ(xmk
, xmk+1)

1 + σ(xnk
, xmk

)

}
.

Taking k →∞ and using (3.10), (3.13) and (3.14), we obtain

lim
k→∞

ψ(m(xnk
, xmk

)) = ϵ.(3.17)

By the fact T is an (α, β)-admissible z-contraction with respect to ζ, together with
(3.13), (3.16) and (ζ3), we get

0 ≤ lim
k→∞

sup ζ(ψ(α(xnk
, xmk

)β(xnk
, xmk

)σ(xnk+1, xmk+1)),

ψ(m(xnk
, xmk

))) < 0,

which is a contradiction. Hence, {xn} is a Cauchy sequence. Owing to the fact that
(X,σ) is a complete metric-like space, there exists some u ∈ X such that

lim
n→∞

σ(xn, u) = σ(u, u) = lim
n,m→∞

σ(xn, xm) = 0(3.18)

Moreover, the continuity of T implies that

lim
n→∞

σ(xn+1, Tu) = lim
n→∞

σ(Txn, Tu) = σ(Tu, Tu) = 0.(3.19)

Using Lemma 2.1 and (3.19), we have

lim
n→∞

σ(xn+1, Tu) = σ(u, Tu).(3.20)

Continuing (3.19) and (3.20), we deduce that σ(Tu, u) = σ(Tu, Tu). That is Tu =
u. To prove the uniqueness of the fixed point, suppose that there exists w ∈ X such
that Tw = w and w ̸= u. Then

0 ≤ ζ(ψ(α(u,w)β(u,w)σ(Tu, Tw)), ψ(m(u,w)))(3.21)

where

m(u,w) = max
{
σ(u,w),

[1 + σ(u, Tu)]σ(w, Tw)

1 + σ(u,w)

}
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m(u,w) = σ(u,w)(3.22)

from (3.21), (3.22) and (ζ2) we have

0 ≤ ζ(ψ(α(u,w)β(u,w)σ(Tu, Tw)), ψ(σ(u,w)))

< ψ(σ(u,w))− ψ(α(u,w)β(u,w)σ(Tu, Tw)).(3.23)

By using the property of ψ, we have

0 < σ(u,w)− α(u,w)β(u,w)σ(Tu, Tw) ≤ 0.

Which is a contradiction, so u = w.

Theorem (3.1) remains true if we drop the continuity hypothesis by the following
property:

(H): If {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 and
β(xn, xn+1) ≥ 1 for all n, then there exists a subsequences {xnk

} of {xn} such
that α(xnk

, xnk+1) ≥ 1 and β(xnk
, xnk+1) ≥ 1 for all k ∈ N and α(x, Tx) ≥ 1

and β(x, Tx) ≥ 1.

Theorem 3.2. Let (X,σ) be a complete metric-like space and let T be a self-
mapping on X satisfying the following conditions:

(1) T is (α, β)-admissible;

(2) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and β(x0, Tx0) ≥ 1;

(3) (H) holds;

(4) T is an (α, β)-admissible z-contraction mapping with respect to a ζ simulation
function if there exist ψ : R+ → R+ with ψ(t) < t such that

ζ(ψ(α(x, y)β(x, y)σ(Tx, Ty)), ψ(m(x, y))) ≥ 0,

for all x, y ∈ X, where

m(x, y) = max
{
σ(x, y),

[1 + σ(x, Tx)]σ(y, Ty)

1 + σ(x, y)

}
.

Then T has a unique fixed point u ∈ X with σ(u, u) = 0.
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Proof. Following the proof of Theorem (3.1), we construct a sequence {xn} in X
defined by xn+1 = Txn, which converges to some u ∈ X. From definition of (α, β)-
admissible mapping and (H), there exists a subsequence {xnk

} of {xn} such that
α(xnk

, xnk+1) ≥ 1 and β(xnk
, xnk+1) ≥ 1 for all k ∈ N. Thus applying condition

(3.2) for all k, we have

0 ≤ ζ(ψ(α(xnk
, u)β(xnk

, u)σ(Txnk
, Tu)), ψ(m(xnk

, u)))

= ζ(ψ(α(xnk
, u)β(xnk

, u)σ(xnk+1, Tu)), ψ(m(xnk
, u)))

< ψ(m(xnk
, u))− ψ(α(xnk

, u)β(xnk
, u)σ(xnk+1, Tu)).(3.24)

By suing the property ψ, we have

0 < m(xnk
, u)− α(xnk

, u)β(xnk
, u)σ(xnk+1, Tu).(3.25)

Also from (3.22) and (3.25), we get

0 < σ(xnk
, u)− α(xnk

, u)β(xnk
, u)σ(xnk+1, Tu)(3.26)

which is equivalent to

σ(xnk+1, Tu) = σ(Txnk
, Tu) ≤ α(xnk

, u)β(xnk
, u)σ(Txnk

, Tu)

≤ σ(xnk
, u).(3.27)

Letting k → ∞ in the above, we have σ(u, Tu) = 0. Using similar arguments as
above, we can show that u is a fixed point of T . The uniqueness of the fixed point
of T is obtained by similar arguments as these given in the proof of Theorem (3.1)

Now, we apply Theorem (3.1) to obtain the following result which is known as
Banach type.

Corollary 3.1. Let (x, σ) be a complete metric-like space and let T be a self-
mapping on X satisfying the following conditions:

(1) T is (α, β)-admissible;

(2) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and β(x0, Tx0) ≥ 1;

(3) T is σ-continuous;

(4) ψ(α(x, y)β(x, y)σ(Tx, Ty)) ≤ λ(ψ(m(x, y))), for all x, y ∈ X and λ ∈ [0, 1)
and also ψ : R+ → R+ with ψ(t) ≤ t, ψ(0) = 0.

Then T has a unique fixed point u ∈ X with σ(u, u) = 0.

Proof. Following the lines of Theorem (3.1), by taking as a σ-simulation function,
ζ(t, s) = λs− t.
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Corollary 3.2. Let (X,σ) be a complete metric-like space and T be a self-mapping
on X satisfying the following conditions:

(1) T is (α, β)-admissible;

(2) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and β(x0, Tx0) ≥ 1;

(3) T is σ-continuous;

(4) there exists a lower semi continuous function γ : R+ → R+ with γ−1 = {0}
such that

α(x, y)β(x, y)σ(Tx, Ty) ≤ m(x, y)− γ(m(x, y))

for all x, y ∈ X. Then T has a unique fixed point u ∈ X with σ(u, u) = 0.

Proof. Following the proof of Theorem (3.1), it sufficient to take ζ(t, s) = s−γ(s)−
t.

If we consider in Theorem (3.1), α(x, y) = β(x, y) = 1 for all x, y ∈ X, we have:

Corollary 3.3. Let (X,σ) be a complete metric-like space and let T be a self-
mapping on X. Suppose that there exists a σ-simulation function ζ such that

ζ(ψ(σ(Tx, Ty)), ψ(m(x, y))) ≥ 0

for all x, y ∈ X. Then T has a unique fixed point u ∈ X with σ(u, u) = 0.

We present the following illustrated example.

Example 3.1. Let X = [0,∞), σ(x, y) = x + y for all x, y ∈ X and T : X → X be
defined by

T (x) =

{
x
4
, if 0 ≤ x ≤ 1,

4x, otherwise.

consider ζ(t, s) = λs− t, where 0 ≤ 1/4 < λ < 1.

We define two mappings α, β : X ×X → R+ as

α(x, y) =

{
5
3
, if 0 ≤ x, y ≤ 1,

0, otherwise.

β(x, y) =

{
3
2
, if 0 ≤ x, y ≤ 1,

0, otherwise.

Let ψ : R+ → R+ be defined as ψ(t) = t for all t ≥ 0. We shall prove that Corollary
3.1 can be applied. Clearly (X,σ) is a complete metric-like space. Let x, y ∈ X such
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that α(x, y) ≥ 1 and β(x, y) ≥ 1. Since x, y ∈ [0, 1] and so Tx ∈ [0, 1], Ty ∈ [0, 1] and
α(Tx, Ty) = 1 and β(Tx, Ty) = 1. Hence T is (α, β)-admissible. Condition (2) is satisfied
with x0 = 1. Condition (3.2) is also satisfied with xn = Tnx1 = 1/n.

If 0 ≤ x ≤ 1, then α(x, y) = 5/3 and β(x, y) = 3/2.

Now

ψ(α(x, y)β(x, y)σ(Tx, Ty)), ψ(m(x, y)) = α(x, y)β(x, y)σ(Tx, Ty),m(x, y)

where

m(x, y) = max

{
x+ y,

[1 + x+ Tx](y + Ty)

1 + x+ y

}
= max

{
x+ y,

[1 + x+ x/4](y + y/4)

1 + x+ y

}
= max

{
x+ y,

[4 + 5x](5y)

16(1 + x+ y)

}
= {x+ y}

ψ(α(x, y)β(x, y)σ(Tx, Ty)), ψ(m(x, y)) = α(x, y)β(x, y)σ(Tx, Ty), x+ y

ζ(ψ(α(x, y)β(x, y)σ(Tx, Ty)), ψ(m(x, y))) = ζ(α(x, y)β(x, y)

σ(Tx, Ty), x+ y)

= λ(x+ y)−
α(x, y)β(x, y)σ(Tx, Ty)

=
3

4
(x+ y)−(
5

3

)(
3

2

)(
x

4
+
y

4

)
=

3

4
(x+ y)− 5

8
(x+ y)

=

(
3

4
− 5

8

)
(x+ y)

=
1

8
(x+ y) ≥ 0.

If 0 ≤ x ≤ 1 and y > 1, then ζ(ψ(α(x, y)β(x, y)σ(Tx, Ty)), ψ(m(x, y))) ≥ 0. Since
α(x, y) = β(x, y) = 0. Consequently, all assumptions of Corollary 3.1 are satisfied and
hence T has a unique fixed point which is u = 0

4. Conclusion

In this attempt, we studied (α, β)-admissible z-contraction mappings imbedded in
simulation function and proved some fixed point theorems in metric-like spaces.
Our results are generalized and extended forms of recent results in the literature.
Finally, we have illustrated an example in support of our obtained results.
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1. Introduction

The geodesics curves of an arbitrary Finsler metric F = F (x, y) on a manifold
M are characterized by the following system of differential equations

c̈i + 2Gi(ċ) = 0,

where the local functions Gi = Gi(x, y) are called the spray coefficients of F . Two
Finsler metrics F and F̄ on a manifold M are called projectively related if any
geodesic of the first is also geodesic for the second and the other way around. In
this case, there is a scalar function P = P (x, y) defined on the slit tangent bundle
TM0 = TM − {0} such that

Gi = Ḡi + Pyi.
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Here, Gi and Ḡi denote the geodesic spray coefficients of F and F̄ , respectively
[6]. The problem of projectively related Finsler metrics is quite old in geometry
and its origin is formulated in Hilberts Fourth Problem: to determine the metrics
on an open subset in Rn, whose geodesics are straight lines [2]. Projectively flat
Finsler metrics on a convex domain in Rn are regular solutions to Hilbert’s Fourth
Problem. A Finsler metric F on an open subset U ⊂ Rn is called projectively flat
if all geodesics are straight in U . In this case, F and the Euclidean metric on U are
projectively related.

In order to find projectively flat Finsler metrics, one can search in the class of
generalized Berwald metrics. A Finsler metric F = F (x, y) on a manifold M is
called a generalized Berwald metric if there exists a covariant derivative D on M
such that the parallel translations induced by D preserve the Finsler function F
[1][12]. In this case, F is called a generalized Berwald metric onM . If the covariant
derivative D is also torsion-free, then F reduces to a Berwald metric. In this case,
the spray coefficients of F is quadratic in direction y. By definition, the class of
Berwald metrics belongs to the class of generalized Berwald metrics.

The class of generalized Berwald metrics is very large to search, and finding
projectively flat Finsler metrics in this class is very complex. Thus, one can focus
on a meaningful subclasses of these Finsler metrics, maybe the class of generalized
Berwald (α, β)-metrics. An (α, β)-metric is a Finsler metric on a manifoldM defined
by F := αϕ(s), where s = β/α, ϕ = ϕ(s) is a C∞ function on the (−b0, b0)
with certain regularity, α =

√
aijyiyj is a positive-definite Riemannian metric and

β = bi(x)y
i is a 1-form on M .

It is interesting to find some conditions under which a projectively flat gener-
alized Berwald (α, β)-metric reduces to a Berwald metric. To find the mentioned
condition, for an (α, β)-metric F := αϕ(s), let us put

Q :=
ϕ′

ϕ− sϕ′
, Ψ :=

Q′

2[1 + sQ+ (b2 − s2)Q′]
.

Define

Λ := bibjbkbl
[
αβQ

]
yiyjykyl

and Υ := bjbjbkblbm
[
Ψ
]
yiyjykylym

.(1.1)

Then, we will prove the following result.

Theorem 1.1. Let F = αϕ(β/α) be a projectively flat (α, β)-metric on a manifold
M . Suppose that ϕ satisfies ϕ′(0) ̸= 0, Λ ̸= 0 and Υ ̸= 0. Then F is a generalized
Berwald metric of isotropic S-curvature if and only if it is a Berwald metric. In
this case, F is a locally Minkowskian metric.

We remark that the S-curvature is constructed by Zhongmin Shen for given com-
parison theorems on Finsler manifolds [11]. A natural problem is to study and
characterize Finsler metrics of vanishing S-curvature. An n-dimensional Finsler
metric is said to have isotropic S-curvature if S = (n+ 1)cF , for some scalar func-
tion c = c(x) on M .
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2. Preliminary

LetM be an n-dimensional C∞ manifold, TM =
∪

x∈M TxM the tangent space and
TM0 := TM −{0} the slit tangent space of M . A Finsler structure on manifold M
is a function F : TM → [0,∞) with the following properties:
(i) F is C∞ on TM0;
(ii) F is positively 1-homogeneous on the fibers of tangent bundle TM , i.e., F (x, λy) =
λF (x, y), ∀λ > 0;
(iii) The quadratic form gy : TxM × TxM → R is positive-definite on TxM

gy(u, v) :=
1

2

∂2

∂s∂t

[
F 2(y + su+ tv)

]
s=t=0

, u, v ∈ TxM.

Then, the pair (M,F ) is called a Finsler manifold.

Given a Finsler manifold (M,F ), then a global vector field G is induced by F
on TM0, which in a standard coordinate (xi, yi) for TM0 is given by

G = yi
∂

∂xi
− 2Gi(x, y)

∂

∂yi
,

where

Gi :=
1

4
gil
[ ∂2F 2

∂xk∂yl
yk − ∂F 2

∂xl

]
, y ∈ TxM.(2.1)

G is called the spray associated to (M,F ).

For a tangent vector y ∈ TxM0, define By : TxM × TxM × TxM → TxM by
By(u, v, w) := Bi

jkl(y)u
jvkwl∂/∂xi|x where

Bi
jkl :=

∂3Gi

∂yj∂yk∂yl
.

B is called the Berwald curvature. Then F is called a Berwald metric if B = 0 [10].

For a Finsler metric F on an n-dimensional manifoldM , the Busemann-Hausdorff
volume form dVF = σF (x)dx

1 · · · dxn is defined by

σF (x) :=
Vol(Bn(1))

Vol
[
(yi) ∈ Rn

∣∣ F (yi ∂
∂xi |x

)
< 1
] .

Let Gi denote the geodesic coefficients of F in the same local coordinate system.
Then for y = yi ∂

∂xi |x ∈ TxM , the S-curvature is defined by

S(y) :=
∂Gi

∂yi
(x, y)− yi ∂

∂xi
[
lnσF (x)

]
.
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This quantity was first introduced by Shen for a volume comparison theorem [10].
A Finsler metric F on an n-dimensional manifold M has isotropic S-curvature if

S = (n+ 1)cF,

where c = c(x) is a scalar function on M . Also, F has vanishing S-curvature if
S = 0.

It is known that a Finsler metric F (x, y) on U is projective if and only if its
geodesic coefficients Gi are in the form

Gi(x, y) = P (x, y)yi,

where P : TU = U×Rn → R is positively homogeneous with degree one, P (x, λy) =
λP (x, y), λ > 0. We call P (x, y) the projective factor of F (x, y).

For a non-zero vector y ∈ TxM0, the Riemann curvature is a family of linear
transformation Ry : TxM → TxM which is defined by Ry(u) := Ri

k(y)u
k∂/∂xi,

where

Ri
k(y) = 2

∂Gi

∂xk
− ∂2Gi

∂xj∂yk
yj + 2Gj ∂2Gi

∂yj∂yk
− ∂Gi

∂yj
∂Gj

∂yk
.

The family R := {Ry}y∈TM0
is called the Riemann curvature.

For a flag P := span{y, u} ⊂ TxM with flagpole y, the flag curvature K =
K(P, y) is defined by

K(x, y, P ) :=
gy

(
u,Ry(u)

)
gy(y, y)gy(u, u)− gy(y, u)2

.(2.2)

The flag curvatureK(x, y, P ) is a function of tangent planes P = span{y, v} ⊂ TxM .
F is of scalar flag curvature if K = K(x, y) is independent of flag P .

3. Proof of Theorem 1.1

An (α, β)-metric is a Finsler metric on a manifold M defined by F := αϕ(s), where
s = β/α, ϕ = ϕ(s) is a C∞ function on the (−b0, b0) with certain regularity,
α =

√
aijyiyj is a Riemannian metric and β = bi(x)y

i is a 1-form on M . For

an (α, β)-metric, let us define bi|j by bi|jθ
j := dbi − bjθ

j
i , where θi := dxi and

θji := Γj
ikdx

k denote the Levi-Civita connection form of α. Let us define

rij :=
1

2
(bi|j + bj|i), sij :=

1

2
(bi|j − bj|i),

ri0 := rijy
j , r00 := rijy

iyj , rj := birij ,

si0 := sijy
j , sj := bisij , r0 := rjy

j , s0 := sjy
j .
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Let ϕ = ϕ(s) be a positive C∞ function on (−b0, b0). For a number b ∈ [0, b0), put

∆ := 1 + sQ+ (b2 − s2)Q′,

Φ := −(n∆+ 1 + sQ)(Q− sQ′)− (b2 − s2)(1 + sQ)Q′′.

In [4], Cheng-Shen characterized (α, β)-metrics with isotropic S-curvature on a
manifold M of dimension n ≥ 3. Soon, they found that their result holds for the
class of (α, β)-metrics with constant length one-forms, only. Here, we modify their
result as follows.

Lemma 3.1. Let F = αϕ(β/α) be an non-Randers type (α, β)-metric on an man-
ifold M of dimension n ≥ 3. Suppose that β has constant length with respect to
α. Then, F is of isotropic S-curvature S = (n + 1)cF , if and only if one of the
following holds

(i) β satisfies

rij = ϵ
{
b2aij − bibj

}
, sj = 0,(3.1)

where ϵ = ϵ(x) is a scalar function, and ϕ = ϕ(s) satisfies

Φ = −2(n+ 1)k
ϕ∆2

b2 − s2
,(3.2)

where k is a constant. In this case, S = (n+ 1)kϵF .

(ii) β satisfies

rij = 0, sj = 0.(3.3)

In this case, S = 0.

In [18], the following is proved.

Lemma 3.2. ([18]) An (α, β)-metric satisfying ϕ′(0) ̸= 0 is a generalized Berwald
manifold if and only if β has constant length with respect to α.

By Lemmas 3.1 and 3.2, we get the following.

Lemma 3.3. Let F = αϕ(β/α) be an non-Randers type generalized Berwald (α, β)-
metric on a manifold M of dimension n ≥ 3 such that ϕ′(0) ̸= 0. Then, F is of
isotropic S-curvature S = (n+ 1)cF , if and only if one of the following holds:
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(i) β satisfies

rij = ϵ
{
b2aij − bibj

}
, sj = 0,(3.4)

where ϵ = ϵ(x) is a scalar function, and ϕ = ϕ(s) satisfies

Φ = −2(n+ 1)k
ϕ∆2

b2 − s2
,(3.5)

where k is a constant. In this case, S = (n+ 1)kϵF .

(ii) β satisfies

rij = 0, sj = 0.(3.6)

In this case, S = 0.

To prove Theorem 1.1, we need the following.

Proposition 3.1. Let F = αϕ(β/α) be a non-Randers type (α, β)-metric on a
manifold M of dimension n ≥ 3 such that Λ ̸= 0. Then F is a generalized Berwald
metric with vanishing S-curvature S = 0 if and only if it is a Berwald metric.

Proof. Let Gi = Gi(x, y) and Gi
α = Gi

α(x, y) denote the spray coefficients of F and
α respectively in the same coordinate system. By (2.1), we have

Gi = Gi
α + Pyi +Qi,(3.7)

where

P := α−1Θ(r00 − 2Qαs0),

Qi := αQsi0 +Ψ(r00 − 2Qαs0)b
i.

In [3], Cheng proved that every regular (α, β)-metric with isotropic S-curvature has
vanishing S-curvature (see Theorem 2.4). In this case, by Lemma 3.3, we have
r00 = s0 = 0. Then (3.7) reduces to following

Gi = Gi
α + αQsi0.(3.8)

F is a projectively flat Finsler metric which is equal to following

Gi = Pyi,(3.9)

where P = P (x, y) is a local scalar function satisfying P (x, λy) = λP (x, y). By
(3.8) and (3.9), we have

Pyi = Gi
α + αQsi0.(3.10)
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Multiplying (3.10) with bi and yi, respectively, imply that

Pβ = biG
i
α,(3.11)

Pα2 = yiG
i
α.(3.12)

Contracting (3.10) with β yields

Pβyi = βGi
α + αβQsi0.(3.13)

By (3.11) and (3.13) it follows that

(brG
r
α)y

i − βGi
α = αβQsi0.(3.14)

The following holds [
(brG

r
α)y

i − βGi
α

]
yjykylym = 0.(3.15)

(3.14) and (3.15) give us

[αβQsi0]yjykylym = 0.(3.16)

We have[
αβQsi0

]
yjykylym =

[
αβQ

]
yjykyls

i
m +

[
αβQ

]
yjykyms

i
l +
[
αβQ

]
yjylyms

i
k

+
[
αβQ

]
ylykyms

i
j +

[
αβQ

]
yjykylyms

i
0 = 0(3.17)

By part (b) of Lemma 3.3, we have sk = bmskm = 0. Then multiplying (3.17) with
bjbkblbm and considering (3.16) imply that

bjbkblbm
[
αβQ

]
yjykylyms

i
0 = 0(3.18)

By assumption, we get

sij = 0.(3.19)

Putting (3.19) in (3.8) gives us Gi = Gi
α. It implies that F is a Berwald metric.

Now, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1: The proof divided to three main cases as follows:

Case (i). F is not a Randers metric and dim(M) ≥ 3: Let F = αϕ(s),
s = β/α, be a generalized Berwald non-Randers type (α, β)-metric on a mani-
fold M of dimension dim(M) ≥ 3. Suppose that F has isotropic S-curvature,
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S = (n + 1)cF , where c = c(x) is a scalar function on M . In this case, by Lemma
3.3 we have

s0 = 0,(3.20)

r00 = c(b2 − s2)α2.(3.21)

Since F is a projectively flat metric, then there exists a local scalar function P =
P (x, y) satisfies P (x, λy) = λP (x, y). By (3.7) and (3.20), it follows that

Pyi = Gi
α + αQsi0 + r00

[
Θ
yi

α
+Ψbi

]
.(3.22)

Multiplying (3.22) with bi and yi, respectively, imply that

Pβ = biG
i
α + r00

[
Θ
β

α
+Ψb2

]
,(3.23)

Pα2 = yiG
i
α + r00

[
Θα+Ψβ

]
.(3.24)

(3.23)× α2 − (3.24)× β yields

Ψr00(b
2α2 − β2) = (yiG

i
α)β − (biG

i
α)α

2.(3.25)

By (3.21) and (3.25), we get

cΨ(b2α2 − β2)2 = (yiG
i
α)β − (biG

i
α)α

2.(3.26)

Since [
(yiG

i
α)β − (biG

i
α)α

2
]
yjykylymyp

= 0

then [
cΨ(b2α2 − β2)2

]
yjykylymyp

= 0.

It is easy to see that the following holds

bt
[
(b2α2 − β2)2

]
yt

= 0.

Then

bjbkblbmbp
[
cΨ(b2α2 − β2)2

]
yjykylymyp

= cbjbkblbmbp
[
Ψ
]
yjykylymyp

(b2α2 − β2)2

= 0(3.27)

According to the assumption, (3.27) implies that c = 0. Then r00 = 0 and by (3.20)
we get s0 = 0. By Lemma 3.3, F has vanishing S-curvature. Then by Proposition
3.1, we conclude that F is a Berwald metric. Since F is projectively flat metric
then it is of scalar flag curvature K = K(x, y). F is not Randers-type and then is
not Riemannian. Then K = 0, and F is a locally Minkowsian metric.
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Case (ii). F is not a Randers metric and dim(M) = 2: Let F = αϕ(s),
s = β/α, be a two-dimensional generalized Berwald non-Randers type (α, β)-metric
on a manifoldM . Suppose that F has isotropic S-curvature. By Theorem 2.4 of [3],
every regular (α, β)-metric with isotropic S-curvature has vanishing S-curvature. In
[13], it is proved that such metric reduces to a locally Minkowskian metric. This
completes the proof.

Case (iii). F is a Randers metric: A Randers metric F = α + β is locally
projectively flat if and only if α is locally projectively flat and β is closed, i.e.,
sij = 0 (see [10]). On the other hand, in [18], it is proved that F is a general-
ized Berwald manifold if and only if β is of constant Riemannian length, namely
ri + si = 0. These imply

sij = 0, ri = 0.(3.28)

In [4], it is proved that F = α + β has isotropic S-curvature S = (n + 1)cF if and
only if

e00 = 2c(α2 − β2),(3.29)

where c = c(x) is a scalar function on M , e00 = eijy
iyj and eij = rij + bisj + bjsi.

By (3.28) and (3.29), we get

rij = 2c(aij − bibj).(3.30)

Multiplying (3.30) with bi yields

rj = 2c(1− b2)bj .(3.31)

Since b < 1 then by (3.28) and (3.31) we get bj = 0 or c = 0. If bj = 0 then F is
Riemannian. If c = 0 then by (3.30) implies that rij = 0. By considering (3.28),
β is parallel with respect to α and F reduces to a Berwald metric. This completes
the proof.
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1. Introduction

There are many similar concepts in complex geometry and contact geometry. Ta-
chibana introduces ∗-Ricci tensor within the framework of an almost Hermitian
manifold in their work [23]. Afterward, Hamada introduces the ∗-Ricci tensor for
the real hypersurfaces embedded in a non-flat complex space form [16]. This notion
on an almost contact metric manifold (M, g, η, ξ, φ) is defined as

∗Ric(X1, X2) =
1

2
trace{X3 → K(X1, φX2)φX3},(1.1)

for any vector field X1, X2. The ∗-Ricci operator ∗L is characterized by the relation
g(∗LX1, X2) =

∗Ric(X1, X2). With the help of the ∗-Ricci tensor, several authors
have investigated ∗-Ricci soliton in contact geometry (see [14], [10], [25], [2]). In
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c⃝ 2024 by University of Nǐs, Serbia | Creative Commons License: CC BY-NC-ND

327

ORCID IDs:   Hannane Faraji
Behzad Najafi
Tayebeh Tabatabaeifar

https://orcid.org/0009-0008-6143-4941    
https://orcid.org/0000-0003-2788-3360 
N/A



328 H. Faraji, B. Najafi and T. Tabatabaeifar

general, the equality ∗Ric(X1, X2) =
∗Ric(X2, X1) does not always hold.

In a Riemannian manifold (M2n+1, g), the conformal curvature tensor C is ex-
pressed as

C(X1, X2)X3 = K(X1, X2)X3 − 1

2n− 1

(
Ric(X2, X3)X1 −Ric(X1, X3)X2

+ g(X2, X3)LX1 − g(X1, X3)LX2

)
+

r

2n(2n− 1)

(
g(X2, X3)X1 − g(X1, X3)X2

)
,(1.2)

where K represents the curvature tensor of (1,3) type, Ric indicates the Ricci ten-
sor, r is the scalar curvature and L is the Ricci operator of (M, g).

The paper is organized as follows: In Section 2, we express some preliminary def-
initions, then we proceed to investigate ∗-conformal curvature tensor of the contact
manifolds. We examine some features of ∗-conformal curvature tensor.

In Section 3, we considered the Sasakian structure. Then, having the ∗-Ricci,
we determined the relationship between η-Einstien and ∗η-Einstien manifold.

Theorem 1.1. Let M2n+1 be a manifold with a Sasakian structure (g, η, ξ, φ).
The manifold (M2n+1, g, η, ξ, φ) is an η-Einstien manifold if and only if it is a
∗η-Einstien manifold.

Then, we investigate the ∗-conformal curvature tensor of the Sasakian manifolds. In
addition, we show that ξ-conformally flat and ξ-∗conformally flat will not co-occur in
Sasakian manifolds. By the condition ∗Ric(X1, X2) and

∗r for a 2n+1-dimensional
Sasakian manifold, we get the following (0, 2)-tensor

∗T (X1, X2) = −
∗Ric(X1, X2)

2n− 1
+

∗r g(X1, X2)

4n(2n− 1)
.

We conclude that if n > 1, then ∗-conformal curvature tensor ans and ∗D(X1, X2)X3

do not vanish simultaneously.

In Section 4, we find some conditions for a Kenmotsu 3-manifold to have vanish-
ing ∗-conformal curvature tensor. We show that for a special case, the ∗-conformal
tensor of this manifold becomes zero as in the following Theorem.

Theorem 1.2. If a Kenmotsu 3-manifold is of quasi-constant curvature of the
form

K(X1, X2)X3 = α(X1 ∧X2)(X3) − α
[
η(X2)η(X3)X1 − η(X1)η(X3)X2

+ g(X2, X3)η(X1)ξ − g(X1, X3)η(X2)ξ
]
,

where α = r
2 + 2, then ∗-conformal curvature tensor vanishes.
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But in general, we show that on Kenmotsu manifolds, the ∗-conformal tensor cannot
vanish identically. Similarly, the equivalence of η-Einstien and ∗η-Einstien is also
established in Kenmotsu manifolds. The same result about ∗-conformal curvature
tensor and ∗D(X1, X2)X3 on the Sasakian manifold is obtained for the Kenmotsu
manifold.

In the last section, we prove the ∗-conformal curvature tensor is identically
zero on the 3-dimensional cosymplectic manifolds. We confirm a conformally flat
cosymplectic manifold is an ∗η-Einstien manifold. We prove the following theorem:

Theorem 1.3. Let (M2n+1, g, η, ξ, φ) be a 2n+1-dimension cosymplectic manifold
with n > 1. If M is a ∗-conformally flat manifold, then ∗D = 0.

2. Preliminaries

Definition 2.1. Consider a contact metric manifold (M, g, η, ξ, φ) of dimension
2n+ 1. The ∗-conformal curvature tensor for (M, g, η, ξ, φ) is expressed as

∗C(X1, X2)X3 = K(X1, X2)X3 − 1

2n− 1

(
∗Ric(X2, X3)X1 − ∗Ric(X1, X3)X2

+ g(X2, X3)
∗LX1 − g(X1, X3)

∗LX2

)
+

∗r

2n(2n− 1)

(
g(X2, X3)X1 − g(X1, X3)X2

)
,(2.1)

where ∗r represents the ∗-scalar curvature, which is the trace of the ∗-Ricci tensor.

Definition 2.2. A contact metric manifold is named ∗η-Einstien if

∗Ric(X1, X2) = c g(X1, X2) + d η(X1)η(X2), c, d ∈ C∞(M).(2.2)

A differentiable manifold M2n+1 has an almost contact structure [2] if it admits
a 1-form η, a characteristic vector field ξ, and a (1, 1)-tensor field φ, which satisfy

φ2 = −I + η ⊗ ξ, η(ξ) = 1,(2.3)

where I indicates the identity endomorphism. Then, by (2.3), can see that

φξ = 0, η ◦ φ = 0.(2.4)

If an almost contact manifold M2n+1 admits a Riemannian metric g with the prop-
erty:

g(φX1, φX2) = g(X1, X2)− η(X1)η(X2), ∀X1, X2 ∈ χ(M),(2.5)

then (M2n+1, g, η, ξ, φ) is called an almost contact metric manifold. The 2-form
Φ(X1, X2) = g(X1, φX2) is called the fundamental 2-form on the almost contact
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metric manifold (M2n+1, g, η, ξ, φ). An almost contact metric manifold is called
normal if the (1,2)-type torsion tensor Nφ vanishes, where Nφ = [φ,φ] + 2dη ⊗ ξ
is the Nijenhuis tensor of φ. A normal almost contact metric manifold is called a
Sasakian manifold. A Sasakian manifold is also characterized by(

∇X1φ
)
X2 = g(X1, X2)ξ − η(X2)X1, ∀X1, X2 ∈ χ(M).

On a Sasakian manifold beside (2.3)-(2.5), we also have

∇X1ξ = −φX1, K(X1, X2)ξ = η(X2)X1 − η(X1)X2,(2.6)

where K denotes the curvature tensor of (1,3) type. The importance and appli-
cation of Sasakian structures are in holomorphic statistical structures and are also
related to string theory (see [1]).

If the 1-form η is closed and dΦ = 2η ∧ Φ, then the almost contact metric
manifold is called almost Kenmotsu manifold. A normal almost Kenmutsu manifold
is a Kenmutsu manifold, which is equivalent to:

(∇X1φ)X2 = g(φX1, X2)ξ − η(X2)φX1, ∀X1, X2 ∈ χ(M).

It is known that every Kenmotsu manifold is locally a warped product I ×f N
2n,

where N2n is a Kahler manifold, I is an open interval with coordinate t, and the
warping function f defined by f = cet for some positive constant c [19]. For a
(2n+ 1)-dimensional Kenmotsu manifold, we have

∇X1ξ = X1 − η(X1)ξ,(2.7)

K(X1, X2)ξ = η(X1)X2 − η(X2)X1,(2.8)

Ric(X1, ξ) = −2n η(X1),(2.9)

K(ξ,X1)X2 = η(X2)X1 − g(X1, X2)ξ,(2.10)

Ric(ϕX1, ϕX2) = Ric(X1, X2) + 2n η(X1)η(X2).(2.11)

An almost contact metric manifold is termed an almost cosymplectic manifold
when both the 1-form η and 2-form Φ are closed. A normal almost cosymplectic
manifold is called a cosymplectic manifold [3], [15]. Every cosymplectic manifold
satisfies the following:

∇X1ξ = 0, K(X1, X2)ξ = 0, Ric(X1, ξ) = 0.(2.12)

The cosymplectic structure is a tool for time-dependent Hamiltonian mechanics. It
has some applications in string theory, which shows the importance of cosymplectic
manifolds.

Suppose that (M2n+1, g, η, ξ, φ) is an almost contact metric manifold and ∗C is
its ∗-conformal curvature tensor, which is defined by (2.1). A direct computation
shows some symmetries of ∗C.
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Proposition 2.1. In a contact metric manifold, the ∗-conformal curvature tensor
obeys the following:

1. ∗C(X1, X2)X3 = −∗C(X2, X1)X3,

2. ∗C(X1, X2)X3 +
∗C(X2, X3)X1 +

∗C(X3, X1)X2

= − 1
2n−1{

∗Ric(X1, X2)X3+
∗Ric(X2, X3)X1+

∗Ric(X3, X1)X2

− ∗Ric(X1, X3)X2 − ∗Ric(X2, X1)X3 − ∗Ric(X3, X2)X1}.

Definition 2.3. A contact metric manifold is called ξ-conformally flat and ξ-
∗conformally flat, respectively, if C(X1, X2)ξ = 0 and ∗C(X1, X2)ξ = 0, respec-
tively.

3. ∗-conformal curvature tensor in Sasakian manifolds

In [14], Ghash and Patra obtained the ∗-Ricci tensor in a (2n+ 1)-dimensional
Sasakian manifold as follows

∗Ric(X1, X2) = Ric(X1, X2)− (2n− 1) g(X1, X2)− η(X1)η(X2).(3.1)

Equation (3.1) provides

∗LX1 = LX1 − (2n− 1)X1 − η(X1)ξ,(3.2)

and

∗r = r − 4n2.(3.3)

Theorem 3.1. Let M2n+1 be a manifold with a Sasakian structure (g, η, ξ, φ).
The manifold (M2n+1, g, η, ξ, φ) is an η-Einstien manifold if and only if it is a
∗η-Einstien manifold.

Proof. If (M2n+1, g, η, ξ, φ) is an η-Einstien manifold, then

∃c, d ∈ C∞(M), Ric(X1, X2) = c g(X1, X2) + d η(X1)η(X2).(3.4)

From (3.1) and (3.4), we have

∗Ric(X1, X2) = c̃ g(X1, X2) + d̃ η(X1)η(X2),(3.5)

where c̃ = c − (2n − 1) and d̃ = d − 1. Thus, (M2n+1, g, η, ξ, φ) is a ∗η-Einstien
manifold. In this case, there are smooth scalar functions c̃ and d̃

∗Ric(X1, X2) = c̃ g(X1, X2) + d̃ η(X1)η(X2).(3.6)

By (3.6) and (3.1), we conclude that M is a η-Einstien manifold.
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A Sasakian manifold is said to be a ϕ−recurrent manifold if there exists a nonzero
1−form A such that

ϕ2((∇X1K)(X2, X3)X4) = A(X1)K(X2, X3)X4,(3.7)

for arbitrary vector fields X1, X2, X3, and X4 on the manifold M [11]. As a result,
a ϕ−recurrent Sasakian manifold is an Einstein manifold. Thus, by Theorem 3.1,
it follows that every ϕ−recurrent Sasakian manifold is a ∗η-Einstein manifold.

In 1968, Yano and Sawaki [27] defined quasi-conformal curvature tensor as fol-
lows:

W (X1, X2)X3 = [−(n− 2) d ]C(X1, X2)X3

+ [c+ (n− 2) d ] C̃(X1, X2)X3,(3.8)

where c and d are arbitrary constants, C is the conformal curvature tensor, and C̃
given by

C̃(X1, X2)X3 = K(X1, X2)X3

− r

n(n− 1)

[
g(X2, X3)X1 − g(X1, X3)X2

]
,(3.9)

where K is the Riemannian curvature tensor.

A quasi-conformally flat Sasakian manifold or a quasi-conformally semi-symmetric
Sasakian manifold is an η-Einstein manifold [9]. Using Theorem 3.1, we infer every
quasi-conformally flat or quasi-conformally semi-symmetric Sasakian manifold is a
∗η-Einstein manifold.

By using (3.1), (3.2) and (3.3), from (2.1), we get

∗C(X1, X2)X3 = C(X1, X2)X3 +
2n− 2

2n− 1

(
g(X2, X3)X1 − g(X1, X3)X2

)
+

1

2n− 1

(
η(X2)η(X3)X1 − η(X1)η(X3)X2

+ g(X2, X3)η(X1)ξ − g(X1, X3)η(X2)ξ
)
.(3.10)

In Sasakian manifolds, Proposition 2.1 reduces to Proposition 3.1.

Proposition 3.1. In a Sasakian manifold, the ∗-conformal curvature tensor obeys
the following:

∗C(X1, X2)X3 +
∗C(X2, X3)X1 +

∗C(X3, X1)X2 = 0.

In a 3-dimensional manifold, C vanishes identically, and hence, we have:

∗C(X1, X2)X3 = η(X2)η(X3)X1 − η(X1)η(X3)X2

+ g(X2, X3)η(X1)ξ − g(X1, X3)η(X2)ξ,(3.11)
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In this case, (3.11) infers ∗C does not vanish identically. Indeed, for any non-zero
vector filed X̃ in the kernel of η, we have

∗C(2X̃ + ξ, X̃ + ξ)ξ = X̃.

Suppose (M2n+1, g, η, ξ, φ) is a Sasakian manifold. By putting X3 = ξ in (3.10),
we have

∗C(X1, X2)ξ = C(X1, X2)ξ +K(X1, X2)ξ.(3.12)

Based on (3.12) and K(X1, X2)ξ ̸= 0, we infer the Sasakian manifold does not
become ξ-conformally flat and ξ-∗conformally flat simultaneously.

Every Sasakian manifold is K-contact, but in general, every K-contact manifold
is not Sasakian. For 3-dimensional manifolds, these are equivalent. In [28], the
authors prove that a K-contact manifold is ξ-conformally flat if and only if it is
an η-Einstien Sasakian manifold. From Theorem 3.1, we can say that a K-contact
manifold is ξ-conformally flat if and only if it is a ∗η-Einstien Sasakian manifold.

In [8], the authors defined the (0, 2)-tensor field T on M2n+1 as follows:

T (X1, X2) = −
Ric(X1, X2)

2n− 1
+
r g(X1, X2)

4n(2n− 1)
.(3.13)

The conformal curvature tensor is given by

C(X1, X2)X3 = K(X1, X2)X3 + T (X2, X3) ·X1 − T (X1, X3) ·X2

+ g(X2, X3) T̂ (X1)− g(X1, X3) T̂ (X2),(3.14)

where T (X1, X2) = g(T̂ (X1), X2). For n > 1, If C = 0, then

∇X1T (X2, X3)−∇X2T (X1, X3) = 0.(3.15)

We put D(X1, X2)X3 := ∇X1T (X2, X3) − ∇X2T (X1, X3). Now, we define (0, 2)-
tensor field ∗T on a Sasakian manifold M2n+1 as follows:

∗T (X1, X2) = −
∗Ric(X1, X2)

2n− 1
+

∗r g(X1, X2)

4n(2n− 1)
.(3.16)

By (3.1) and (3.3), we can write (3.16) as follows

∗T (X1, X2) = T (X1, X2) +
n− 1

2n− 1
g(X1, X2) +

1

2n− 1
η(X1)η(X2).(3.17)

Also, we define the conformal curvature tensor as follows:

∗C(X1, X2)X3 = K(X1, X2)X3 + ∗T (X2, X3) ·X1 − ∗T (X1, X3) ·X2

+ g(X2, X3)
∗T̂ (X1)− g(X1, X3)

∗T̂ (X2),(3.18)

where ∗T (X1, X2) = g(∗T̂ (X1), X2). So (0, 1)-tensor field ∗T̂ is given by

∗T̂ (X1) = T̂ (X1) +
n− 1

2n− 1
X1 +

1

2n− 1
η(X1)ξ.(3.19)
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By putting (3.17) and (3.19) in (3.18), we have

∗C(X1, X2)X3 = C(X1, X2)X3 +
2(n− 1)

2n− 1

[
g(X2, X3)X1 − g(X1, X3)X2

]
+

1

2n− 1

[
g(X2, X3)ξ − η(X3)X2

]
η(X1)

− 1

2n− 1

[
g(X1, X3)ξ − η(X3)X1

]
η(X2).(3.20)

We consider

∗D(X1, X2)X3 := ∇X1

∗T (X2, X3)−∇X2

∗T (X1, X3).(3.21)

A direct computation shows that

∇X1

∗T (X2, X3) = ∇X1T (X2, X3) + µ ∇X1g(X2, X3) + λ ∇X1(η(X2)η(X3))

= ∇X1T (X2, X3) + µ ∇X1g(X2, X3)

+ λ
[(
∇X1η(X2)

)
η(X3) + η(X2)

(
∇X1η(X3)

)]
,(3.22)

and

∇X2

∗T (X1, X3) = ∇X2T (X1, X3) + µ ∇X2g(X1, X3) + λ ∇X2(η(X1)η(X3))

= ∇X2T (X1, X3) + µ ∇X2g(X1, X3)

+ λ
[(
∇X2η(X1)

)
η(X3) + η(X1)

(
∇X2η(X3)

)]
,(3.23)

where µ = 2n−2
2n−1 and λ = 1

2n−1 . By putting (3.22) and (3.23) in (3.21), we have

∗D(X1, X2)X3 = D(X1, X2)X3 + λ

{
2g(X1, ϕX2)η(X3)

+ (∇X1η)(X3)η(X2)− (∇X2η)(X3)η(X1)

}
.(3.24)

If M2n+1 is a conformally flat Sasakian manifold with n > 1, then

∗D(X1, X2)X3 = λ

{
2g(X1, ϕX2)η(X3)+(∇X1η)(X3)η(X2)− (∇X2η)(X3)η(X1)

}
.

(3.25)
From (3.24), it can be concluded that, if M2n+1 is a Sasakian manifold of dimen-
sion greater than 3, then D(X1, X2)X3 = 0 and ∗D(X1, X2)X3 = 0 do not hold
simultaneously, because otherwise, we have dη = 0, which is a contradiction with
the Sasakian structure.

Example 3.1. We consider the Sasakian manifold (R3, g, η, ξ, φ), where the 1-form η,
vector field ξ, Riemannian metric g, and (1, 1)-tensor field φ respectively as follows

η =
1

2
(dz − ydx), ξ = 2

∂

∂z
, g = η ⊗ η +

1

4

(
(dx)2 + (dy)2

)
,
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and φ == dx⊗ ∂
∂y

− dy ⊗ ∂
∂x

+ ydz ⊗ ∂
∂y

. Also, the vector fields are given by

X1 = 2
∂

∂y
, X2 = 2(

∂

∂x
+ y

∂

∂z
), X3 = ξ.

So, we have
φX1 = X2, φX2 = −X1, φξ = 0.

We know that, R3 is a conformally flat manifold, then C = 0. By (3.10) and C(X1, X2)X3 =
0, we have ∗C(X1, X2)X3 = −y X1. Therefore, for this 3-dimensional Sasakian manifold,
the tensor ∗C will not be zero. On the other hand, we know that since C(X1, X2)X3 = 0,
then D(X1, X2)X3 = 0. Therefore, having (3.25), we calculate the tensor ∗D as follows:

∗D(X1, X2)X3 = −2.

4. ∗-conformal curvature tensor in Kenmotsu manifolds

In [25], the author proves that in a Kenmotsu 3-manifold the ∗-Ricci tensor is given
by

∗Ric(X1, X2) = (
r

2
+ 2)g(φX1, φX2),(4.1)

∗r = r + 4,(4.2)

∗LX1 = (
r

2
+ 2)

[
X1 − η(X1)ξ

]
.(4.3)

By substituting (4.1), (4.2), and (4.3) into (2.1) yields

∗C(X1, X2)X3 = K(X1, X2)X3 − (
r

2
+ 2)

[
g(X2, X3)X1 − g(X1, X3)X2

]
+ (

r

2
+ 2)

[
η(X2)η(X3)X1 − η(X1)η(X3)X2

+ g(X2, X3)η(X1)ξ − g(X1, X3)η(X2)ξ
]
.(4.4)

Definition 4.1. [18] If the curvature tensor K of an almost contact metric mani-
fold obeys the subsequent condition, then is called quasi-constant curvature:

K(X1, X2)X3 = α(X1 ∧X2)(X3) + β
[
η(X2)η(X3)X1 − η(X1)η(X3)X2

+ g(X2, X3)η(X1)ξ − g(X1, X3)η(X2)ξ
]
,(4.5)

where (X1∧X2)(X3) := g(X2, X3)X1−g(X1, X3)X2, α and β are smooth functions.

By some calculation, one concludes that the following holds.

Theorem 4.1. If a Kenmotsu 3-manifold is of quasi-constant curvature of the
form

K(X1, X2)X3 = α(X1 ∧X2)(X3) − α
[
η(X2)η(X3)X1 − η(X1)η(X3)X2

+ g(X2, X3)η(X1)ξ − g(X1, X3)η(X2)ξ
]
,(4.6)

where α = r
2 + 2, then ∗-conformal curvature tensor vanishes.
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Suppose (M2n+1, g, η, ξ, φ) is a Kenmostu manifold. By [21], we have

∗Ric(X1, X2) = Ric(X1, X2) + (2n− 1)g(X1, X2) + η(X1)η(X2),(4.7)
∗r = r + 4n2,(4.8)

∗LX1 = LX1 + (2n− 1)X1 + η(X1)ξ.(4.9)

By putting X2 = ξ in (4.7) and from (2.9), we have

∗Ric(X1, ξ) = 0,(4.10)

from (2.11) and (4.7), we have

∗Ric(ϕX1, ϕX2) =
∗Ric(X1, X2).(4.11)

Theorem 4.2. Suppose M2n+1 is a manifold and (g, η, ξ, φ) is a Kenmotsu struc-
ture on M . The M is an η-Einstien manifold if and only if it is a ∗η-Einstien
manifold.

Proof. In [5], the contact metric structure is said to be η-Einstein if

L = c I + d η ⊗ ξ, c, d ∈ C∞(M).(4.12)

Let (M2n+1, g, η, ξ, φ) be a η-Einstein Kenmotsu manifold. By (4.9) and (4.12), we
have

∗L = c̃ I + d̃ η ⊗ ξ,(4.13)

where c̃ = c+ (2n− 1) and d̃ = c+ 1.

Suppose (M2n+1, g, η, ξ, φ) is a ∗η-Einstein Kenmotsu manifold, then there are
smooth functions c̃, and d̃ such that

∗Ric(X1, X2) = c̃ g(X1, X2) + d̃ η(X1)η(X2).(4.14)

By (4.14) and (4.7), we have

Ric(X1, X2) = c g(X1, X2) + d η(X1)η(X2),(4.15)

where c = c̃− (2n− 1) and d = d̃− 1.

By substituting (4.7), (4.8), and (4.9) into (2.1) yields

∗C(X1, X2)X3 = C(X1, X2)X3 − 2n− 2

2n− 1

[
g(X2, X3)X1 − g(X1, X3)X2

]
− 1

2n− 1

[
g(X2, X3)η(X1)ξ − g(X1, X3)η(X2)ξ

+ η(X2)η(X3)X1 − η(X1)η(X3)X2

]
.(4.16)

By putting X3 = ξ in (4.16), we obtain

∗C(X1, X2)ξ = C(X1, X2)ξ +K(X1, X2)ξ.(4.17)
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From (4.17), we conclude that if C(X1, X2)ξ = 0 then ∗C(X1, X2)ξ ̸= 0. In other
words, the Kenmotsu manifold cannot be ξ-conformally flat and ξ-∗conformally flat
simultaneously.

In the Kenmotsu manifold, (2) results in ∗Ric(X1, X2) = ∗Ric(X2, X1). By
Proposition 2.1 and ∗Ric(X1, X2) =

∗Ric(X2, X1), the ∗-conformal curvature tensor
satisfies in Bianchi type identity, which leads to the next proposition.

Proposition 4.1. In a Kenmotsu manifold, the ∗-conformal curvature tensor obeys
the relation:

∗C(X1, X2)X3 +
∗C(X2, X3)X1 +

∗C(X3, X1)X2 = 0.

Let us define

C(X1, X2, X3, X4) := g
(
C(X1, X2)X3, X4

)
, ∀X1, X2, X3, X4 ∈ χ(M).

By substituting (4.7) into (2.1), we have

∗C(X1, X2, X3, X4) = C(X1, X2, X3, X4)

− 2n− 2

2n− 1

[
g(X2, X3)g(X1, X4)− g(X1, X3)g(X2, X4)

]
− 1

2n− 1

[
g(X2, X3)η(X1)η(X4)− g(X1, X3)η(X2)η(X4)

+ g(X1, X4)η(X2)η(X3)− g(X2, X4)η(X1)η(X3)
]
.(4.18)

Proposition 4.2. For a Kenmotsu manifold, the ∗-conformal tensor cannot van-
ish identically.

Proof. One can see that

C(X1, X2, X3, X4) = −C(X1, X2, X4, X3).(4.19)

Suppose that ∗C vanishes identically. Therefore, by (4.18) and (4.19), we have

2(2n− 2)

[
g(X2, X3)g(X1, X4)− g(X1, X3)g(X2, X4)

]
+ 2

[
g(X2, X3)η(X1)η(X4)− g(X1, X3)η(X2)η(X4)

+ g(X1, X4)η(X2)η(X3)− g(X2, X4)η(X1)η(X3)
]
= 0.(4.20)

Putting X3 = X1 = ξ into (4.20) implies that

(2n− 1)
(
g(X2, X4)− η(X2)η(X4)

)
= 0.(4.21)

Since 2n− 1 is an odd number, we have

g(X2, X4)− η(X2)η(X4) = 0, ∀X2, X4 ∈ χ(M),(4.22)

which is impossible.
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Using Propositions 4.1 and 4.2, one concludes that a Kenmotsu 3-manifold cannot
be of quasi-constant curvature of the form (4.6).

Now, we consider (0, 2)-tensor field ∗T on Kenmotsu manifoldM2n+1 as follows:

∗T (X1, X2) = −
∗Ric(X1, X2)

2n− 1
+

∗r g(X1, X2)

4n(2n− 1)
.(4.23)

By (4.8) and (4.7), we can write (4.23) as follows:

∗T (X1, X2) = T (X1, X2) +
(1− n)
(2n− 1)

g(X1, X2) +
−1

2n− 1
η(X1)η(X2).(4.24)

Also, we define the conformal curvature tensor as follows:

∗C(X1, X2)X3 = K(X1, X2)X3 + ∗T (X2, X3) ·X1 − ∗T (X1, X3) ·X2

+ g(X2, X3)
∗T̂ (X1)− g(X1, X3)

∗T̂ (X2),(4.25)

where ∗T (X1, X2) = g(∗T̂ (X1), X2). So
∗T̂ is given by

∗T̂ (X1) = T̂ (X1) +
(1− n)
(2n− 1)

X1 +
−1

2n− 1
η(X1)ξ.(4.26)

By putting (4.24) and (4.26) in (4.25), we have

∗C(X1, X2)X3 = C(X1, X2)X3 +
2(1− n)
(2n− 1)

[
g(X2, X3)X1 − g(X1, X3)X2

]
+ (

−1
2n− 1

)
[
g(X2, X3)ξ − η(X3)X2

]
η(X1)

− (
−1

2n− 1
)
[
g(X1, X3)ξ − η(X3)X1

]
η(X2).(4.27)

We consider

∗D(X1, X2)X3 := ∇X1

∗T (X2, X3)−∇X2

∗T (X1, X3).(4.28)

Now, we consider can we conclude ∗D(X1, X2)X3 = 0 if ∗C(X1, X2)X3 = 0. So

∇X1

∗T (X2, X3) = ∇X1T (X2, X3) + µ ∇X1g(X2, X3) + λ ∇X1(η(X2)η(X3))

= ∇X1T (X2, X3) + µ ∇X1g(X2, X3)

+ λ
[(
∇X1η(X2)

)
η(X3) + η(X2)

(
∇X1η(X3)

)]
,(4.29)

and

∇X2

∗T (X1, X3) = ∇X2T (X1, X3) + µ ∇X2g(X1, X3) + λ ∇X2(η(X1)η(X3))

= ∇X2
T (X1, X3) + µ ∇X2

g(X1, X3)

+ λ
[(
∇X2η(X1)

)
η(X3) + η(X1)

(
∇X2η(X3)

)]
,(4.30)



∗-Conformal Curvature of Contact Metric Manifolds 339

where µ = 2(1−n)
(2n−1) and λ = −1

2n−1 . By putting (4.29) and (4.30) in (4.28), we have

∗D(X1, X2)X3 = D(X1, X2)X3

+ λ

{
(∇X1η)(X3)η(X2)− (∇X2η)(X3)η(X1)

}
.(4.31)

Theorem 4.3. Let M be a 2n+ 1-dimension manifold with n > 1 and (g, η, ξ, φ)
is a Kenmotsu structure on M . Then D(X1, X2)X3 = 0 and ∗D(X1, X2)X3 = 0 do
not hold at the same time.

Proof. From (4.31), it is easily proved.

Example 4.1. We consider the Kenmotsu manifold (R3 − (0, 0, 0), g, η, ξ, φ), where the
1-form η, vector field ξ, Riemannian metric g, and (1, 1)-tensor field φ respectively as
follows

η = −1

z
dz, ξ = −z ∂

∂z
, g = (dx)2 + (dy)2 + (dz)2,

and φ = dx⊗ ∂
∂y

− dy ⊗ ∂
∂x

. Also, the vector fields are given by

X1 = z
∂

∂x
, X2 = z

∂

∂y
, X3 = ξ.

So, we have
φX1 = −X2, φX2 = X1, φξ = 0.

By conformally flat manifold R3, we have C = 0. By (4.16) and C = 0, then ∗C(X1, X2)X3 =
0. We know that since C(X1, X2)X3 = 0, then D(X1, X2)X3 = 0. Therefore, having
(4.31), ∗D(X1,X2)X3 = 0.

5. ∗-conformal curvature of the cosymplectic manifolds

Let (g, η, ξ, φ) be a cosymplectic structure on M2n+1. In [17], it is proved that for
a cosymplectic manifold

∗Ric(X1, X2) = Ric(X1, X2),(5.1)

and

∗r = r.(5.2)

Theorem 5.1. Suppose (M2n+1, g, η, ξ, φ) is a cosymplectic manifold. Then M is
an η-Einstien manifold if and only if it is a ∗η-Einstien manifold.

Proof. It is easy to conclude from (5.1) that for the cosymplectic manifold, the
η-Einstien manifold and ∗η-Einstien manifold are equivalent.

Substituting (5.1) and (5.2) into (2.1) yields

∗C(X1, X2)X3 = C(X1, X2)X3.(5.3)
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Proposition 5.1. In a cosymplectic manifold, the ∗-conformal curvature tensor
obeys the relation:

∗C(X1, X2)X3 +
∗C(X2, X3)X1 +

∗C(X3, X1)X2 = 0.

The following results are obtained from (5.3).

Corollary 5.1. Let (M2n+1, g, η, ξ, φ) be a cosymplectic manifold. Then M is a
conformally flat if and only if it is a ∗-conformally flat.

Corollary 5.2. Let (M2n+1, g, η, ξ, φ) be a cosymplectic manifold. Then M is a
ξ-conformally flat if and only if it is a ξ-∗conformally flat.

The conformal curvature tensor is zero in dimension 3. Thus we have:

Proposition 5.2. For a 3-dimensional cosymplectic manifold, ∗C is identically
zero.

We consider (0, 2)-tensor field ∗T on cosymplectic manifold M2n+1 as follows:

∗T (X1, X2) = −
∗Ric(X1, X2)

2n− 1
+

∗r g(X1, X2)

4n(2n− 1)
.(5.4)

By (5.1) and (5.2), we can

∗T (X1, X2) = T (X1, X2).(5.5)

Also, define the conformal curvature tensor as follows:

∗C(X1, X2)X3 = K(X1, X2)X3 + ∗T (X2, X3) ·X1 − ∗T (X1, X3) ·X2

+ g(X2, X3)
∗T̂ (X1)− g(X1, X3)

∗T̂ (X2),(5.6)

where ∗T (X1, X2) = g(∗T̂ (X1), X2). So (0, 1)-tensor field ∗T̂ is given by

∗T̂ (X1) = T̂ (X1).(5.7)

By putting (5.5) and (5.7) in (5.6), we have

∗C(X1, X2)X3 = C(X1, X2)X3.(5.8)

We consider

∗D(X1, X2)X3 := ∇X1

∗T (X2, X3)−∇X2

∗T (X1, X3).(5.9)

On the other hand, we have

∇X1

∗T (X2, X3) = ∇X1T (X2, X3),(5.10)
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and
∇X2

∗T (X1, X3) = ∇X2T (X1, X3).(5.11)

By putting (5.10) and (5.11) in (5.9), we have

∗D(X1, X2)X3 = D(X1, X2)X3.(5.12)

We know that if C = 0 for a 2n + 1-dimension cosymplectic manifold with n > 1,
then D = 0. Now, if we assume ∗C = 0, then according to (5.12), the following
theorem is obtained.

Theorem 5.2. Let (M2n+1, g, η, ξ, φ) be a 2n+1-dimension cosymplectic manifold
with n > 1. If M is a ∗-conformally flat manifold, then ∗D = 0.
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