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Abstract Finite element method (FEM) is a tool that is mostly used for the structural 

analysis. The method is based upon approximation of the actual geometry and displacement 

field of the structure over the finite element domain.  In practice, Lagrange polynomials are 

mostly used as shape functions (approximate functions). They provide only C0-continuity at 

the element boundaries. This paper elucidates a possible approach based on the so-called 

isogeometric analysis to improve this property. The isogeometric FEM analysis applies the 

same functions to describe the CAD model, the element geometry and the element 

displacements. The paper represents developed algorithm and the obtained results for a 

relatively simple test case. 
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1. INTRODUCTION 

A reliable design of sophisticated mechanical systems requires numerous computational 

analyses and simulations. Hence, the engineering design cannot be considered separately from 

the analysis. They are strongly related because the process of design optimization is evaluated 

through the analyses and, vice versa, the analyses drive the design process by revealing design 

weakness. In the 'classical' finite element method (FEM), the geometric model suitable for 

structural analysis is usually not the very same CAD geometry model. Most often a simplified 

geometry is used for generating the mesh of finite elements. Furthermore, the resulting domain 

of FEM models is only an approximation of the already simplified CAD geometry. These ap-

proximations give rise to larger or smaller errors which produce several consequences. For 

example, the stability of thin-walled structures is very sensitive to geometric imperfections and, 
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therefore, without the exact geometry, an adaptively formed FE mesh may yield results of insuf-

ficient accuracy. The high accuracy of the geometry description is also important in design op-

timization. Furthermore, the quality of the FEM geometry descriptions has a significant impact 

in contact problems. 

Development of the classical FEM is mainly based on the application of isoparametric finite 

elements, which implies mapping of finite elements from the real geometry into the so-called mas-

ter element, i.e. from the global coordinate system into the natural coordinate one. These types of 

elements use the same shape function, typically Lagrange polynomials, to approximate both the 

displacement field and the geometry. The quality of geometry description directly depends on the 

degree of the selected polynomial and element size, i.e. the quality of the finite element mesh. One 

of the main disadvantages of this approach is that the Lagrange polynomials as shape functions 

provide only C
0
 continuity at the element boundaries, while many elements require at least C

1
 con-

tinuity, such as beams, plates or shells.  

In relation to the aforementioned characteristics of the classical FEM, a significant step 

forward would be a FEM formulation that allows for geometry description done in exactly the 

same manner as in the CAD software packages. Such a FE model would ideally represent the 

analyzed geometry, regardless of the mesh quality. This FEM concept is known as isogeometric 

analysis [1, 2, 5]. As basis for setting the CAD model, different technologies of computational 

geometry can be used. Currently in the engineering design, NURBS (non-uniform rational B-

spline) is mostly used. The main advantage of NURBS is a convenience for representing free 

forms, accurate representation of conical sections (circles, cylinders, spheres, ellipsoids), etc. 

The continuity of p-order NURBS is C
p+1

. As opposed to B-spline and NURBS surfaces, a T-

spline represents a surface based on the points of a control polygon and not on the control mesh 

[3, 4]. T-spline is non-uniform B-spline surface with T-junctions (for more information see [3]). 

T-splines are also used to merge multiple patches into one tight part. Immersed boundary meth-

ods, which do not require body-fitted meshes, may also be applied within the isogeometric ap-

proach. This allows a structural analysis of rather complex engineering parts [6].  

2. NURBS GEOMETRY 

Definition of complex geometric shapes is usually performed by using splines. Splines 

application in geometric modeling is related to the work of French engineers Pierre Bezier 

and Paul de Faget in the automotive industry in the sixties (Fig. 1). 

 

Fig. 1 Example of drawing a spline with lattice 
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As the basic type of spline for geometric modeling, B-splines and splines that use the 

same basis as B-splines are applied. This primarily refers to NURBS and T-splines, the 

latter representing a generalization of NURBS and also a part of the so-called PB spline 

(point based spline). 

A p-order NURBS curve can be represented as a rational function using the Bernstein 

basic functions by means of the following expression [1, 2, 8]: 
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where Pi are the control points that form a control polygon, wi are the weights, and {Ni,p(u)} 

are the B-spline basic functions of order p defined on non-uniform knot vector U: 

 },...,,,...,,,...,{ 11 bbuuaa pmp U  (2) 

Usually the knot vector is normalized, i.e. a = 0 and b = 1. Repetition of elements a 

and b in the knot vector depends on the order of spline and it is p+1. In this way, the 

discontinuity is realized at the ends of the spline. Rearranging Eq. (1), the NURBS curve 

can be represented by the following expression, where Ri,p are the basic rational functions 

of the p-order NURBS: 
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Surfaces and solids can be defined in a similar way. A NURBS surface of order p in  

the u-direction and order q in the v-direction can be expressed as: 
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By substituting the basic rational function: 

 1,0

)()(

)()(
),(

0 0
,,

,,



 

vu

wvNuN

wvNuN
vuR

n

i

m

j
ijqjpi

ijqjpi

ij , (5) 

the equation for the surface takes the form: 
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The B-spline basic functions are used to determine the NURBS basic functions and they 

are determined by means of the Cox-de Boor's recursive formula and using the basic func-
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tions of lower order. For any given knot span, at least p+1 B-splines and NURBS basic 

functions are not equal to zero. Also, the basic function has values different from zero at p+1 

knot spans. In Fig. 2, a NURBS surface is shown in the so-called physical space, index space 

and parameter space together with the corresponding basic functions of B-spline. The area 

defined by index coordinates ξ and η is known as a patch. A less complex geometry can be 

described by a single patch [7], while more complex geometric forms need to use more 

patches. Repeating the elements knot vector creates an open knot vector and, hence, in mod-

eling complex geometries, the C
0
-continuity is obtained on the element borders because only 

the continuity of the polygon control point displacements is realized. 

As the NURBS basis functions are constructed from the B-spline basis functions, the de-

rivatives of rational functions will clearly depend on the derivatives of their non-rational 

counterparts as well [1]. In literature, there are several algorithms for computing deriva-

tives of the B-spline basic functions. 

  

Fig. 2 NURBS surface, index space, and B-spline basic function 

3. BASICS ОF ISOGEOMETRIC ANALYSIS 

The isogeometric analysis is based on the fact that the same shape functions are used to 

describe the CAD geometry and the displacement field of the element. It implies that there is 

a set of basic functions, R, which perform geometric mapping from index space ξ to physical 

space x, i.e. there is parameter ξ such that mapping x: ̂  is realized as follows: 
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where xa
e
, ya

e
, za

e
 are the components of the a

th
 element of the vector that defines element 

geometry Ωe (the set of control points). In a similar way, other connections between the 

parameter and the physical space can be formed, such as connections between control 

point displacements di and the displacements within the element, i.e. Rh  ˆ:)(û : 
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For a planar problem, the previous equation takes the form: 
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where u and v are the components of the element displacement obtained by means of  

basic functions Ri and the corresponding displacements at control points di, and d
(e) 

are 

the displacements of all the element control points. 

Assuming small displacements (linear approach), strains ε are further given as: 
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Respectively, using the previously presented concept: 
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where B is the strain-displacement matrix. 

The element stiffness matrix is computed by integration over the element volume using the 

strain-displacement matrix, B, and the Hooke's matrix of the material, D. Element stiffness 

matrix Kij that relates the i-th and j-th point of the control polygon can be expressed as:  
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where t is the thickness of the structure. 

Computation of the integral is performed by numerical integration, typically by means 

of the Gaussian quadratures [9]. In order to compute the system stiffness matrix, partial 

derivatives of the shape functions are needed so that the strain-displacement matrix and 

the Jacobi matrix can be determined for an adequate set of the Gaussian integration 

points. The number of integration points depends on the order of basic functions. For each 

element, there are at least p+1 main functions different from zero in one direction. This 

means that, for a solid element with the second-order NURBS basic functions, 

displacements in the element are determined by means of 27 main functions. This number 

of basic functions requires significant computational time. As the influence of a basic 

function spreads not only over the domain of a single element, but over p+1 elements, this 

means that any effect in one element is reflected in the p neighbouring elements. The 

consequence of this property is that the system stiffness matrix typically has a wider 

matrix band compared to the stiffness matrix in the classical finite element method. 
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4. SOFTWARE SOLUTIONS 

A new software solution has been developed in order to implement the isogeometric 

FEM formulation. There are basically two approaches to structural analysis by means of 

the isogeometric FEM. The first approach implies that the entire structure is described by 

means of one patch and it comes down to computing the stiffness matrix of a single patch. 

The second approach means solving a complex structure. In this case, once the stiffness 

matrices of individual patches are determined, the stiffness matrix of the whole system is 

assembled. The input data for the developed software are: geometry data (degree of inter-

polation functions for each direction, knot vectors for all three directions, mesh of control 

points with coordinates and weights), material properties, loads and constraints.  

 

Fig. 3 The algorithm of the isogeometric analysis using NURBS shape functions 

For the example discussed in this paper, the assumption of linearly elastic, homogene-

ous, isotropic material has been adopted. Loads can be defined as concentrated forces, 

surface loads (pressure or force components on the surface) and volume loads. The soft-

ware implementation of loads depends on the type of load. The basic steps and informa-

tion flow in the algorithm are shown in Fig. 3. 

The resulting system of equations yields the displacements of the polygon control points. 

The computation of element displacements and the corresponding element stress-strain states 

requires the values of basic functions and their derivatives at certain points of the element. 

The stresses are determined based on the known strains and the Hooke's matrix. 
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5. NUMERICAL EXAMPLE 

The application of the developed FEM formulation and algorithm will be demonstrated on 

a relatively simple example of a linear static analysis. The results have been compared with the 

solution obtained using commercial FE software package ANSYS. Fig. 4a depicts the quarter 

model of a plate with a hole that has been used as a test example. The constraints in the model 

are set so as to represent the symmetry of the modeled structure. The structure has been 

modeled as a solid and the depicted load is defined as a surface load of intensity 10 kN/cm
2
. 

The CAD model of the above described problem (polygon of control points and elements) is 

given in Fig. 4b as a NURBS patch. 

 

Fig. 4 Plate with a hole – a) physical model, b) NURBS geometry 

The exact analytical solution of the infinite plate with a circular hole under constant 

in-plane tension exists [10] and it can be represented in polar coordinates (r, θ) as:  
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where   rrr ,,  are the stress components in the polar coordinate system for  corre-

sponding coordinates r and θ.  

The maximum value of normal stress in the direction of tension computed with previ-

ous equations yields 30 kN/cm
2
, i.e. the stress concentration factor is K = 3. For a similar 

case, but with finite plate dimensions, there is no exact analytical solution, but a higher 

stress concentration factor is expected. As a reference model for evaluating the accuracy 

of the isogeometric solution, a rather fine FEM model created in Ansys software package 

has been used (Fig 5.). 
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Fig. 5 FEM model created in Ansys with 44235 quadratic elements (Plate183) 

The solution convergence has been investigated for this problem by means of isogeometric 

analysis based on two different geometry definitions. The geometric models and, consequently, 

the FEM models, differ in the degree of NURBS basic functions and definitions of knot vec-

tors. The initial model has been prepared manually, while further model refinements have been 

done by using originally developed codes for knot insertion and degree elevation. The first al-

gorithm increases the number of entries in the knot vector and, hence, the number of finite ele-

ments. The second algorithm is used to obtain the NURBS basic functions of higher order. The 

results of analyses are shown in Table 1 and Fig. 6. 

Table 1 The dependence of results on the interpolation function degree and mesh size 

Case Number of 

elements 

Order Number of basis 

functions 

Translation in x 

direction [m] 

1 2 

2 

24 -2.54158E-07 

2 8 48 -2.69193E-07 

3 32 120 -2.74696E-07 

4 2 

3 

48 -2.70553E-07 

5 8 80 -2.74405E-07 

6 32 168 -2.75427E-07 

 

 

Fig. 6 The result convergence with quadratic and cubic NURBS shape functions  
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Although the number of elements in the isogeometric model was significantly smaller (128 

elements) compared to 44235 elements of the FEM model in ANSYS, the obtained results for 

displacements (Fig. 7) and stresses (Fig. 8) differ negligibly. This demonstrates the capability 

of the NURBS shape functions to describe the stress field very accurately even with a small 

number of elements. 

The stress concentration factor computed by means of the reference model is K=3.57 

and, as anticipated, it is larger than the value for the theoretical case with infinite dimensions. 

The classical FEM model (the ANSYS model) needed a high number of elements to recover 

very accurately the high stress gradients  in the vicinity of the hole edge. 

 

Fig. 7 The displacement field obtained by a) isogeometric structural analysis,  

b) commercial software package ANSYS (with 267032 DOF) 

 

Fig. 8 The normal stress component xx (N/cm
2
) obtained by a) isogeometric structural analysis,  

b) commercial software package ANSYS 

6. CONCLUSIONS 

The isogeometric FEM analysis is a relatively new direction of FEM development in 

the field of structural analysis and a rapid pace of its development is expected in the years 

to come. The world's leading vendors of CAD software have already included NURBS as 

the main tool to define and display more complex geometries. The main problem resides 

in a seamless integration of CAD geometries and FEM models for structural analysis. The 
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isogeometric analysis is a significant step forward in this direction. One of the major 

disadvantages of NURBS is their inability for local mesh refinement, but this can be 

overcome by applying a special type of NURBS denoted as T-spline. This will be the 

focus of the authors' further work. It is expected that the field of structural dynamics will 

particularly benefit from the advantages offered by the isogeometric FEM analysis. 

REFERENCES 

1. T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact 

geometry and mesh refinement, Computer Methods in Applied Mechanics and  Engineering, Volume 

194, pp. 4135–4195, 2005. 

2. J.A. Cottrell, T.J.R. Hughes, A. Reali, Studies of refinement and continuity in isogeometric structural 

analysis, Computer Methods in Applied Mechanics and Engineering, Volume 196, Issues 41–44,  pp. 

4160–4183, 2007. 

3. T. W. Sederberg, J. Zheng, A. Bakenov, A. Nasri, T-splines and T-NURCCs, ACM Transactions on 

Graphics (TOG), Proceedings of ACM SIGGRAPH 2003 TOG Homepage, Volume 22 Issue 3, July 

2003, pp.  477-484 

4. P. Wanga, J. Xua, J. Denga, F. Chena, Adaptive isogeometric analysis using rational PHT-splines, 

Computer-Aided Design, 43, pp. 1438-1448, 2011. 

5. R. Sevilla, S. Fernández-Méndez,A. Huerta, 3D NURBS-enhanced finite element method (NEFEM), 

International Journal for Numerical Methods in Engineering, Volume 88, pp. 103–125, 2011. 

6. D. Schillinger, L. Dedè, M. Scott, J. Evans, M. Borden, E. Rank, T. Hughes, An isogeometric design-

through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed 

boundary methods, and T-spline CAD surfaces, Computer Methods in Applied Mechanics and 

Engineering, Volumes 249–252, pp. 116–150, 2012. 

7. E. Cohen, T. Martin,  R.M. Kirby, T. Lyche, R. F. Riesenfeld, Analysis-aware modeling: Understanding 

quality considerations in modeling for isogeometric analysis, Computer Methods in Applied Mechanics 

and Engineering, Volumes 199, pp. 334-356, 2010. 

8. L. Piegl, W. Tiller, The NURBS Book (Monographs in Visual Communication), Springer, 1996, ISBN: 

3540615458 

9. T.J.R. Hughes, A. Reali, G. Sangalli, Efficient quadrature for NURBS-based isogeometric analysis, 

Computer Methods in Applied Mechanics and Engineering, Volume 199, pp. 301–313, 2010. 

10. W.Pilkey, D. Pilkey, Peterson's Stress Concentration Factors, third edition Wiley, 2008, ISBN-10: 

0470048247 

IZOGEOMETRIJSKA STRUKTURNA ANALIZA 

ZASNOVANA NA NURBS FUNKCIJAMA OBLIKA 

Metoda konačnih elemenata je najčešće korišćen alat u strukturnoj analizi. Metoda se zasniva 

na aproksimaciji stvarne geometrije i polja pomeranja strukture u domenu konačnih elemenata. U 

praksi se kao funkcije oblika (aproksimacione funkcije) najčešće koriste Lagrange-ovi polinomi. 

Oni omogućuju samo C0 kontinuitet na granici elementa. U ovom radu će biti predstavljeno 

rešenje za poboljšanje kontinualnosti na granici elementa zasnovano na tzv. izogeometrijskoj 

analizi. Izogeometrijski pristup u okviru metode konačnih elemenata koristi iste funkcije oblika za 

definisanje CAD modela, geometrije konačnog elementa i za interpolacione funkcije pomeranja u 

polju konačnog elementa. Rad predstavlja razvijeni algoritam i dobijene rezultate ze relativno 

jednostavan test primer.  

Ključne reči: Izogeometrijska analiza, NURBS, FEM 


