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Abstract. The present investigation examines the range of effect of nonlocal parameters 

on dynamic behavior of a smart beam-like nanostructure modeled as sandwich 

functionally graded porous nanobeam with piezoelectric layers. Therefore, the study is 

concentrated on determining length of the structure for which nonlocal effects are 

observed for vibration of nanobeam under in-plane electro-mechanical forces. The 

nanobeam-based NEMS device model is obtained based on assumptions of the nonlocal 

strain gradient theory in conjunction with Reddy higher-order shear deformation 

theory. The investigation present differences in obtained results for nanostructure’s 

free vibration based on classical and nonlocal assumptions. To study range of 

application of nonlocal parameters for different length of simply supported nanobeam, 

defined eigenvalue problem is solved in view of variation of length to thickness ratio, 

distribution of material properties, as well as electro-mechanical loads. What is more, 

the study attempts to determine and calibrate values of size-dependent coefficients 

based on expected natural frequencies, material properties, and applied loads. The 

results are completed with extensive discussion on the dependence of nonlocal 

parameters on nanobeam’s dynamic response, thus may be an important step forward 

to extend understanding of ultra-small structure’s behavior. 

Key words: Nanobeam, FGM, Porosity, Piezoelectric effect, Free vibration, Detected 

nonlocal parameters 

1. INTRODUCTION 

Nanoelectromechanical systems (NEMS) are modern devices that employ ultra-small 

structures in form of beams, plates, and shells which are powered by electrical circuits 

[1]. Due to extremely small size of the structure, these devices experience unique 

properties and characteristics. This special kind of structure found applications in various 
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areas, such as logic switches, sensors, actuators, and energy harvesting [2-4]. Ultra-small 

devices operation may be based, inter alia, on electromagnetic [5], piezoelectric [6], and 

thermo-electric [7] phenomena. What is more, operations principle for diverse small-

scaled devices is based on their buckling and vibration characteristics [8].  

In view of ultra-small dimensions of the structure, the size-dependent characteristic is 

fundamental in modelling of mechanical behavior of nano- and micro-sized elements [9].  

There are diverse approaches to study small-scaled structures, including molecular 

dynamics [10] as well as continuum-based nonlocal theories. The latter characterizes 

lower computational effort for very complex ultra-small systems, and therefore gained 

much interest [11]. It should be noted, due to size-dependent phenomena, the classical 

continuum-based theories are insufficient to accurately describe mechanical behavior of 

ultra-small structures. Among advanced continuum-based nonlocal theories, that capture 

size-dependent effects in micro- and nanostructures, one can distinguish the couple stress 

theory [12-14], the modified couple stress theory [15], Mindlin’s strain gradient theory 

[16,17], the modified strain gradient theory [18], Gurtin-Murdoch surface elasticity [19], 

the nonlocal elasticity [20-24], the stress-driven nonlocal integral elasticity [25] and a 

higher-order nonlocal elasticity and strain gradient theory [26]. Among these, the strain-

gradient-based ones are established on assumption that ultra-small structures’ mechanical 

behavior depends on classical strains and higher-order gradient of strains. On the other 

hand, the stress-based theories indicate that the key role in size-dependent characteristics 

has classical stresses and higher-order gradients of stresses Two entirely different 

responses, such as stiffness softening and hardening effects, has been seen in 

nanostructures mechanical behavior [27]. Therefore, it has become an important issue to 

combine both phenomena in one refined theory [26,28].  

Diverse methods and approaches were used in modelling and analyzing nanostructures 

[29-41], nevertheless in the current literature survey is focused on dynamics of beam-like 

nanostructures. Wang and Varadan [42] presented effect of Eringen’s nonlocal parameter 

on frequency of both single-walled and double-walled carbon nanotubes based on Euler-

Bernoulli beam theory. Reddy [43] compared results obtained for diverse beam models for 

bending, buckling and free vibration of simply supported nanobeams considering nonlocal 

elasticity of Eringen. Wang et al. [44] studied influence of small-scale parameter from 

Eringen’s nonlocal theory and diverse length to diameter ratio on vibrations of single-

walled nanotubes modelled by Timoshenko beam theory with diverse boundary conditions 

(BCs). Aydogdu [45] used Eringen’s nonlocal elasticity to study axial vibration of nanorods 

with clamped-clamped and clamped-free BCs based on Euler-Bernoulli model assumptions. 

Roque et al. [46] employed RBF meshless numerical formulation to study bending, 

buckling, and free vibration of Timoshenko nanobeams using nonlocal elasticity theory. Li 

et al. [47] conducted a study on transverse vibrations of simply supported Euler-Bernoulli 

nanobeam under axial mechanical load. Thai [48], and then Thai and Vo [49] presented a 

closed-form solution for deflection, buckling, and vibration of Eringen’s nanobeam under 

transverse loads modelled by diverse refined beam theories. Ke et al. [50] investigated 

piezoelectric effect on nonlinear vibration of Timoshenko nanobeam with various BCs 

using the Differential Quadrature Method (DQM). Eltaher et al. [51] used Euler-

Bernoulli beam assumptions and a finite element formulation to study eigenfrequencies 

of functionally graded (FG) nanobeam based on Eringen’s nonlocal theory. Berrabah et 

al. [52] analytically solved bending, buckling and vibration problems of Eringen’s 

nanobeam modelled via various theories. Şimşek [53] compared nonlinear to linear 
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frequencies obtained for Euler-Bernoulli nanobeam with various boundary conditions based 

on a nonlocal elasticity. Rahmani and Pedram [54] presented analytical solution for natural 

frequencies of functionally graded nanobeam according to Timoshenko beam and Eringen’s 

nonlocal theories. Nejad and Hadi [55] analyzed impact of bi-directional functionally 

graded material properties on Eringen’s nanobeam vibrational response using the 

Generalized Differential Quadrature Method (GDQM). Beni [56] discussed impact of 

piezoelectric phenomenon on nonlinear vibration and bending characteristics of Euler-

Bernoulli nanobeam using the couple stress theory. Arefi and Zenkour [57] discussed effect 

of electric field on vibration and bending of nanobeam with piezomagnetic layers resting on 

Winkler-Pasternak foundation based on Timoshenko beam model assumptions and 

Eringen’s nonlocal elasticity. Lu et al. [58] used the nonlocal strain gradient theory to 

perform analysis of nanobeams free vibration based on the sinusoidal shear deformation 

theory. Liu et al. [59] examined vibration response of visco-elastic functionally graded 

porous Timoshenko nanobeam with magneto-electro-elastic coupling effect for different 

boundary conditions. Thai et al. [60] analytically solved deflection and vibration 

problems of Eringen’s nanobeams subjected to uniformly distributed load. Karami and 

Janghorban [61] proposed novel higher-order shear deformation beam theory and studied 

natural vibration of functionally graded nanobeam using nonlocal strain gradient theory. 

Liu et al. [62] utilized Galerkin approach to study nonlinear vibration of functionally 

graded sandwich nanobeam with diverse boundary conditions based on the nonlocal 

strain gradient theory and Euler-Bernoulli model. Jankowski et al. [63,64] presented 

analytical and numerical approaches to study vibrational behavior of FG and sandwich 

FG with piezoelectric layers nanobeams based on Reddy third-order shear deformation 

theory and the nonlocal strain gradient theory. Nasr et al. [65] studied effect two-

parameter foundation and thermoelastic phenomenon on deflection and vibration 

nanobeam based on Euler-Bernoulli beam assumptions and Eringen’s nonlocal elasticity.  

1.1. Novelty of the Present Study 

Based on the best author’s knowledge and presented literature survey there is a lack 

of investigation focused on the range of nonlocal parameters interaction on dynamic 

response of functionally graded porous beam-like nanostructures, with simply supported 

edges, under in-plane electromechanical forces. Achieved nano-actuator model based on 

the nonlocal strain gradient theory in conjunction with the Reddy third-order shear 

deformation theory enables a wide spectrum to analyze nanostructures dynamic response 

in view of nonlocal parameters as well as geometrical and material properties. The study 

ensures different point of view to the analysis of vibrational response of nanobeams. In 

contrast to previous papers, the present investigation is focused on an influence range of 

nonlocal parameters on dynamic behavior of nanostructure in view of material and 

geometrical properties together with an applied electromechanical load. The investigation 

considers length of the nanostructure at which the nonlocal phenomena have crucial 

influence on its vibrational response. In accordance with this objective, the study displays 

differences in results obtained based on classical and nonlocal assumptions. What is 

more, the present study together with solution methodology provides a possibility to 

estimate values of small-scale parameters depending on expected fundamental frequencies, 

assumed, or predicted material properties along with mechanical and electrical forces 

acting in NEMS devices. The presented approach could be an important tool in better 
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understanding NEMS structures and consequently, may avoid some of cost-consuming and 

complex material characterization processes, especially for NEMS devices in engineering 

applications. 

2. HIGHER-ORDER NONLOCAL ELASTICITY AND STRAIN GRADIENT THEORY 

A higher-order nonlocal elasticity and strain gradient theory called as the nonlocal 

strain gradient theory [26] is a novel hybrid refined theory that enables consider both 

stiffnesses softening and hardening effects in the nanostructure. Thus, such an approach 

allows taking advantage of Eringen’s nonlocal theory and Mindlin’s strain gradient 

theory from a single point of view [66]. According to assumptions of the nonlocal strain 

gradient theory, the total stress tensor is presented in the form: 

 (1)  = −  (1) 

where   refers to classical stresses (work conjugate of classical strains) and (1)  to 

higher-order stresses (work conjugate of gradients of strains). Used vector differential 

operator ∇ = ei∂/∂xi is coupled with unit vector ei and direction xi of a nonlocal effect 

(gradient) in nanostructure. The classical and higher-order stress tensors are derived as: 

 ) :(
V

Cx x =  0 0 'α ,', e 'dVa  (2a) 

 (1) 2 ) :(
V

x Cx =  1 1', 'dV'α ,e a  (2b) 

where α0 and α1 represent principial and additional attenuation kernel functions to 

describe nonlocality effects in terms of the Euclidean distance between the point x and 

neighboring points x′ in the domain V. Additionally, ℓ stands for the length scale 

parameter form the strain gradient theory, as well as e0 and e1 are nonlocal constants 

together with a represent internal characteristic length. Then, ε′ is the Cartesian 

components of the strain tensor at point x′, and C is the elastic modulus tensor of 

classical elasticity. A general form of constitutive equations in differential form may be 

obtained assuming that nonlocal attenuation kernel functions satisfy conditions proposed 

by Eringen [24] and applying linear differentiational operators on both sides of Eq. (1). 

The differential operator is in the form: 

 2 21 ( ) = − ii e a  for i = 0,1L  (3) 

The generalized nonlocal constitutive relations based on the higher-order nonlocal 

elasticity and strain gradient theory take the form: 

 
2 2 2 2 2 2 2 2 2 21 ( 1 ( 1 ( 1[ ) ][ ) ] [ ) ] : [ ) ]( :C C  −  − − −= −  1 0 1 0e a e a e a e a  (4) 

Where ∇2 = ∂2/∂x2 is one dimensional differential operator. Assuming e0 = e1 = e the 

higher-order constitutive relations may be easily reduced to the lower-order nonlocal 

strain gradient model: 

 2 2 2 2[ ) ]( :1 [ ]1 C = − − ea  (5) 
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What is more, based on the present model, Eringen’s nonlocal elasticity may be obtained 

assuming ℓ = 0: 

 2 2[ ) ]1 ( :C  =− ea  (6) 

From the other point of view, form of Mindlin’s strain gradient theory may be achieved 

by taking ea = 0: 

 2 2[ :1 ]C −=  (7) 

Finally, classical constitutive relations may be obtained while both nonlocal coefficients 

are assumed to be zero.  

3. MATERIAL PROPERTIES AND PIEZOELECTRIC EFFECT 

3.1. Three-Layered FGM Nanobeam 

In the study we consider composite nanobeam-like actuator model that consists of 

porous functionally graded nanobeam with thickness h and piezoelectric layers of 

thicknesses hp. The total thickness of the nanostructure is assumed H = h + hp, length L 

and unit width b. Between FGM core and piezoelectric face-sheets it is presumed ideal 

mechanical contact. To imitate environment impact in the NEMS device, the nanobeam is 

subjected to an electrical field with external voltage ϕ0 and axial compressive/tensile 

mechanical in-plane forces ˆ
xxN . The cross-section and coordinate system of sandwich 

nanobeam are presented in Fig. 1.  

 

Fig. 1 Three-layered porous FGM nanobeam as a nanoactuator model 

3.2. Functionally Graded Core 

Elastic parameters of the functionally graded porous nanobeam core are given by: 

 ( )= C E z,
xx

 (8a) 

 
( , )

2(1 )


=

+

E z
C

xz
 (8b) 
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E(z,ϒ) stands for Young’s modulus of nanobeam core and ϒ(z,ϑ) is porosity distribution 

function. Young’s modulus, as well as an FG porous structure mass density ρ(z,ϑ), vary 

in the thickness direction according to the power-law distribution. In the study, Poisson’s 

ratio υ is assumed to be constant since its low volatility has negligible influence on 

mechanical behavior of the structure. Properties of functionally graded core are symmetric 

with respect to the midplane, and presented as: 

 ( ) [ ][1 ( , )] = −(n)

c m mE z, (E - E )V (z,g)+E z  (9a) 

 ( ) [ ][1 ( , )]     = −(n)

c m mz, ( - )V (z,g)+ z  (9b) 

Components of the functionally graded material generally consist of ceramic (Ec, ρc) and 

metallic (Em, ρm) parts but can be replaced by other materials/nanomaterials with well-

known experimental values of elastic/physical parameters. Properties of functionally 

graded core are assumed to be symmetric with respect to the midplane. The volume 

fraction function V(n) controls volatility of material distribution through the nanobeam 

core thickness, and is described as follows: 

 ,0
2

 
 

=  − 
  
 

g

(1)

h
z +

h2V  for z
h

2

 (10a) 

 0, ,
2

g

(2)

h
z

h2V  for z
h

2

 
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=  
 − 
 

 (10b) 

where g is the power-law index.  

In the investigation, we consider three diverse symmetric to the midplane porosity 

distributions: 

 ( , ) cos 
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where ϑ refers to averaged volume of voids in the structure called porosity coefficient. 

Distributions as well as volume of voids, together with variation of volume fraction 

function are shown in Fig. 2. 

 

a) 
 

b) 

Fig. 2 Material variation in functionally graded nanobeam core: a) porosity distribution 

and accumulation; b) volume fraction function 

3.3. Piezoelectric Relations 

The studied nanobeam is subjected to an electric field. Electric potential   is 

presented as approximated combination of half-cosine and linear variation [67] satisfying 

Maxwell relations: 

 0( ) cos ( )
p p

p p

πz 2z
x,z,t x,t

h h


 
 = −  + 

 
 

 (12) 

where zp stands for variable that is measured from the geometrical center of the 

piezoelectric layers, z1 = z-h/2-hp/2 for top face-sheet and z2 = z+h/2+hp/2 for bottom face-

sheet. Additionally, Φ(x,t) refers to variation of electric potential in longitudinal 

direction. Electric field components are achieved based on electric potential function: 

 cos
p

x

p

πz
E

x h x

  
= − =  
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 (13a) 

 0

2
sin

p

z

p p p

πzπ
E

z h h h


 
= − = − − 
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 (13b) 

4. DISPLACEMENT FIELD AND CONSTITUTIVE EQUATIONS  

Displacement vector components are described in the framework of Reddy third-order 

shear deformation theory [68]: 
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( )

( ) ( ) ( ) ( )3 0
x 0 x 1 x

w x,t
u x,z,t = u x,t + z x,t - c z x,t +

x
 




 

 

 (14a) 

 ( ) ( )z 0u x,z,t = w x,t  (14b) 

where u0 and w0 are axial and transverse displacements of material point on the midplane 

in an undeformed configuration, φx is rotation of a point on the centroidal axis x of the 

beam, and c1 = 4/(3H2) for clarity of formulation. The strain-displacement relations are 

presented as linear and infinitesimal Green-Lagrange strain tensor: 

  
2

(0) (1) (3)

2
, , , ,
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0 x x 0
xx xx xx 1

u w
ε ε ε -c +

x x x x
 (15a) 

  (0) (2), ,   
   

=  
  

 
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0 0
xz xz x 2 x

w w
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x x
 (15b) 

where c2 = 3c1. Thus, the strains take the form: 

 (0) (1) (3)= + + 3

xx xx xx xxε ε zε z ε  (16a) 

 (0) (2) = + 2

xz xz xz2ε z  (16b) 

Based on a higher-order nonlocal elasticity and strain gradient theory, the constitutive 

relations are: 

 
2 2 2(1 ) 1( )c

xx xx xxC ε− = −B  (17a) 

 
2 2 2(1 ) 1( )c

xz xz xz2C ε− = −B  (17b) 

 
2 2 2( )( )(1 ) 1p

xx xx xx x zD ε - e E = − −B  (18a) 

 
2 2 2 )(1 ( )) 1 (2p

xz xz xz z xD ε - e E− = −B  (18b) 

 
2 2 2 )(1 ( )) 1 (2p

x z xz x xD e ε E− =  +−B  (18c) 

 
2 2 2( )( )(1 ) 1p

z x xx z zD e ε E =  +− −B  (18d) 

where ℬ = (ea)2. σc
ij, σp

ij and Dp
i are nanobeam core stress tensor, piezoelectric face-

sheets stress tensor and electric displacement component. Additionally, Dij are elastic 

constants for piezoelectric layers, ei are piezoelectric permittivity constants and ∈i are 

dielectric permittivity constants.  
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5. EQUATIONS OF MOTION AND CLOSED-FORM SOLUTION PROCEDURE  

Equations of motion are obtained based on modified Hamilton’s variational principle 

including virtual strain energy U, virtual kinetic energy K, virtual electric field E, and 

virtual work done by external mechanical and electrical forces V in the form 

 ( )   
T

0
U - K - E + V dt = 0  (19) 

A detailed explanation on the derivation of the equations of motion is presented in 

previous paper [64]. The equations of motion of FGM sandwich nanobeam are presented 

by displacements and obtained based on the nonlocal strain gradient theory as: 
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where Aij
(m), Bj

(m), Ci, Ciϕ and Ii stand for resultant stiffnesses, piezoelectric coefficients, 

dielectric coefficients and mass moments of inertias. The terms are also presented in [64]. 

For simply supported boundary conditions Navier solution method is used: 
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where 0u ,  x
, 0w ,   are maximum values of displacements and electric potential. 

Natural frequency of the nth mode is expressed as ωn. 

System of governing equations are expressed in a vector form: 

      0 − =
 

0 0x

T

n u wK ω M  (22) 

[K] and [M] are symmetric stiffness and inertia matrices, respectively. Components of 

these are presented in [64]. Presented solution procedure and numerical results based on 

it were comprehensively verified with results from the literature. Verification study is 

also presented in [64]. 

6. PARAMETRIC STUDY 

The study ensures a novel perspective of analyzing small-scaled structures. The 

numerical results show the range of influences of nonlocal parameters on a dynamical 

response of complex nanobeam. To this aim, variation of length of the nanobeam with 

different nonlocal parameters values is considered to observe when size-dependent effects 

disappear for its vibration under in-plane electro-mechanical forces. The interaction range 

parameter is defined as differences in obtained solutions for classical (local) 
l

nω , and 

nonlocal 
nl

nω  theory of elasticity as: 

 ( )% 100%
−

= 

l nl

n n

l

n

ω ω

ω
 (23) 

The top lines are used to show dimensionless frequencies in form: 

 2 2 010=   
i i
n n

c 2

I
ω ω L  for i = l,nl

E I
 (24) 

where ωi
n is dimensional frequency. The material and geometrical parameters of the 

studied sandwich nanobeam are assumed as follows hp = 1.5 nm, h = 7 nm, ρ = 5550 

kg/m3, ρc = 3100 kg/m3, ρm = 2700 kg/m3, Dxx = 226 GPa, Dxz = 44.2 GPa, Ec = 380 GPa,  

Em = 70 GPa, υ = 0.3, ex = -2.2 C/m2, ez = 5.8 C/m2
, ∈x = 5.64∙10-9 C/Vm, ∈z = 6.35∙10-9 

C/Vm. Not mentioned here coefficients are assumed to be variable and explained in 

individual studies. 

What is more, the present section shows selected results for predicting nonlocal 

coefficients depending on expected free vibration frequencies, material gradation, 

distributions and volume of voids together with defined in-plane mechanical and 

electrical forces. 

6.1. Nonlocal Interaction Range Parameter 

Figure 3 displays influence of diverse length to thickness ratio on the nonlocal interaction 

range for fundamental frequency of the studied nanobeam with homogeneous (g = 0) core.  
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a)

 

b)

 

c)

 

Fig. 3 Influence of length to thickness ratio on the nonlocal interaction range parameter for 

nanobeam fundamental frequencies: a) ψ = 2; b) ℬ = 0; c) pseudorandom ψ ratio  



 Detection of Nonlocal Calibration Parameters and Range Interaction for Dynamics of FGM Porous… 469 

Nonlocal to length scale coefficients ratio is introduced as ψ = ℬ/ℓ and assumed for 

this study ψ = 2 nm in Fig. 3 a). Additionally, for Fig. 3b,  it is assumed constant nonlocal 

coefficient of Eringen’s elasticity as ℬ = 0 (pure Mindlin’s strain gradient), and 

pseudorandom ψ ratio for Fig. 3c. The pseudorandom distribution was chosen to clearly 

present influence of nonlocal coefficients. Diverse ratios of nonlocal Eringen’s to length 

scale coefficients are required in modelling nanostructures because values of nonlocal 

parameters vary due to initial stress, mode shape, rotary inertia, boundary conditions as 

well as material properties [69-72]. Based on Fig. 3, it may be concluded that the more 

lengthened the nanostructure is (higher length to thickness ratio), the lower impact of 

size-dependent parameters on dynamics of nanobeam. The scale coefficients refer to 

nanostructure and consequently has nanoscale dimensions. Therefore, large dimensions 

of the structure cause the effect of nanoscale to disappear. In the study, only length is 

used as a variable since nonlocal constitutive equations consider gradients of strains and 

stresses in the x-direction. For that reason, using thickness as a variable does not change 

mechanical response of the structure. On the other hand, increasing values of nano-scale 

coefficients induced higher gradients of stresses and strains (higher-order derivatives in 

equations of motion), and consequently, higher differences in results obtained by 

classical and nonlocal approaches. In addition, the study agrees with previous studies [58] 

that stiffness hardening and softening phenomena caused by strain and stress gradients 

disappear while ℓ2
 = ℬ because nonlocal parameters reduced each other out, consequently 

referring to classical elasticity. Moreover, greater differences are observed in the case of 

the strain gradient approach because only stiffness hardening effect is considered. 

Additionally, Fig. 3c clearly shows that appropriate detection of nonlocal parameters has 

a crucial role in predicting dynamic response of nano-scaled structures. 

The effect of diverse axial in-plane forces on the nonlocal interaction range parameter 

for eigenfrequencies of homogeneous nanobeam is presented in Fig. 4. In the study, we 

assumed ψ = 1.2 nm and length of the nanostructure L = 100 nm. The study considers 

impact of both, mechanical forces and electrical loads induced by an external voltage. It 

should be noticed, applying compressive load (in both cases refer to positive values) 

relates to higher differences in classical- and nonlocal-based results. This is because 

additional compression generates strains and stresses in the structure. The nanostructure 

under compression experiences small shortening and bent. Thus, nonlocal parameters 

causing further gradients of stresses and strains result in greater differences between 

obtained results. The higher load is applied, the higher difference is achieved. It may be 

concluded that small-scale parameters have the most important role when the nanostructure is 

subjected to loads near their critical values. On the other hand, negative values of applied 

loads decrease the results differences because the tension causes opposite situation and 

results in a small lengthening of the structure. 

Continuing study on diverse loads acting on sandwich nanobeam, the nonlocal 

interaction range parameter for natural frequency of nanobeam subjected to complex 

loadings is examined considering diverse length to thickness ratios. In the study, it is also 

assumed homogeneous core. Figure 5 indicates that despite simultaneous acting tension and 

compression, the applied loads lead to an increase of differences between results from local 

and nonlocal approaches. It is also observed, despite applying loads the nonlocal interaction 

range decrease with increasing length to thickness ratio. It clearly presents, increasing 

dimensions of the nanostructure decreases applications’ range of size-dependent coefficients by 

decreasing a long-range interaction. Consequently, it may be an important issue to 
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appropriately detect the nonlocal parameters in terms of dimensions of the studied 

nanostructure. 

a)

 

b)

 

Fig. 4 Influence of external axial in-plane forces on the nonlocal interaction range parameter: 

a) mechanical forces; b) electrical forces 

 

Fig. 5 Influence of complex loadings, length to thickness ratio and small-scale parameters on 

the nonlocal interaction range parameter 
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The effect of varying mechanical properties of functionally graded core in 

conjunction with nonlocal parameters and diverse length to thickness ratios on the 

nonlocal interaction range parameters is examined in Fig. 6. In this study, we assumed 

constant compressive force acting on the nanostructure as ˆ
xxN = 6 N. According to 

previously discussed cases, size-dependent coefficients change influence on the nonlocal 

interaction range parameter depending on L/H ratios. Nevertheless, opposite to previous 

results, higher differences are observed for higher length to thickness ratio when the core 

structure is functionally graded. What is more, increasing the power-law index increases 

value of the nonlocal interaction range parameter. Varying material properties influence 

resultant stiffness and mass moments of inertias, consequently coupled with nonlocal 

parameters and higher-order displacements derivatives have a greater impact on a 

dynamic behavior of nanostructures. Moreover, applied compressive mechanical forces 

are approaching the critical value for FGM structure with L/H = 15. It confirms the previously 

stated suggestion that small-scale parameters are significant when the structure is under load 

that is near to its critical value. 

 

Fig. 6 Influence of length to thickness ratio, material gradation and small-scale parameters on 

nonlocal interaction range parameter 

 

Fig. 7 Influence of length to thickness ratio, volume of voids and small-scale parameters 

on nonlocal interaction range parameter 
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Figure 7 displays impact of volume of voids (Type 1 porosity distribution), size-dependent 

parameters, and aspect ratio on the nonlocal interaction range parameter. In the study it is 

assumed that homogeneous nanobeam is subjected to electric field induced by external 

voltage ϕ0 = 0.95 V. Similar to the previously discussed situation, increasing volume of 

voids decreases nanostructure’s stiffness and mass density, so it affects resultant stiffness 

coefficients and mass moments of inertia. Therefore, applied nonlocal parameters and higher-

order derivatives of displacements have a greater impact on free vibration response of 

nanobeam with lower stiffness and density. This investigation ensures, that regardless of 

mechanical or electrical forces are applied, loads tending to critical values have a higher 

impact on the nonlocal interaction range parameter because of more significant strains or 

stresses gradients. 

The influence of diverse porosity distribution together with the porosity coefficient as 

well as length to thickness ratio is presented in Fig. 8. In the present study, homogeneous 

sandwich nanobeam is subjected to compressive mechanical forces ˆ
xxN = 15 N, and 

nonlocal parameters are assumed ℬ = 1 nm2 and ℓ = 4 nm. Diverse porosity types are 

characterized by different voids accumulation through the thickness of nanobeam core. 

Therefore, they have a diverse impact on resultant stiffness and density coefficients, and 

consequently, on the nonlocal interaction range parameter. Increasing volume of voids 

has a significant impact on the nonlocal interaction range parameter for higher values of 

length to thickness ratios. Weakness of the structure caused by porosity becomes 

important for structures with a high aspect ratio when the applied force is near the critical 

value. Therefore, regardless of whether the nanostructure stiffness is influenced by 

material gradation or porosity, the used size-dependent coefficients have a bigger impact 

on non-homogeneous structures. Thus, proper detection of nonlocal parameters is a 

significant issue, especially for heterogeneous structures. 

 

Fig. 8 Influence of diverse porosity distributions, volume of voids and length to thickness 

ratio on the nonlocal interaction range parameter 

6.2. Detection of Nonlocal Parameters 

In the current section, the detected values on nonlocal parameters are presented with 

superscripted *. First of all, Figure 9 presents predicted both Eringen’s nonlocal coefficient 

and the length scale parameter for homogeneous and functionally graded nanobeam. The 
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figure shows the dependence of small-scale coefficients on assumed nanostructure’s 

eigenfrequencies. It may be observed that increasing frequencies relate to decreasing 

Eringen’s nonlocal constant. It agrees with the theory assumptions because the parameter is 

involved in stiffness softening phenomenon. So, the lower predicted frequencies are, the 

higher nonlocal coefficient is needed, because assuming constant other parameters, the 

structure must be softer. On the other hand, increasing length scale parameter causing stiffness 

hardening phenomenon, affects on increasing size-dependent parameter of Eringen. In 

contrast, increasing fundamental frequency values causes increasing in predicted length scale 

coefficient. Higher frequencies are related to stiffer construction (assuming constant mass) 

therefore higher length scale coefficient is required. Likewise, increasing Eringen’s nonlocal 

parameter increases stiffness softening effect, so length scale parameter values are greater. 

a)

 

b)

 

Fig. 9 Detection of nonlocal parameters for expected fundamental frequencies: 

a) Eringen’s nonlocal coefficient for homogeneous nanobeam core; b) length 

scale parameter for FGM (g = 2) core 
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Next, relationship between nonlocal parameters and electro-mechanical forces is 

presented in Figure 10. In the study, we assumed ψ = 4/3 nm and expected fundamental 

frequency as ω1 = 21.4 GHz for homogeneous nanobeam. The structure is complexly loaded, 

so there are initial gradients of stress and strains. Increasing values of mechanical forces 

together with positive values of external voltage results in compression of the nanostructure. 

On the other hand, negative values of applied voltage refer to tension of the structure. 

Compression/tension of the structure results in its stiffness decrement/increment. Increasing 

values of nonlocal parameters involves a higher stiffness hardening effect due to assumed 

ratio of nonlocal to length scale coefficients. Therefore, increasing applied forces, with 

constant predicted nanobeam frequency, requires stiffness enhancement effect from nonlocal 

coefficients. Being knowledgeable about environment acting in NEMS device, for 

example, applied loads and operation’s frequency, this solution gives a possibility to 

estimate/detect nanostructure nonlocal coefficients. 

 

Fig. 10 Detection of nonlocal parameters for expected applied loads 

Figure 11 represents a nonlocal parameters detection in view of porosity distributions 

and volume of voids. It is assumed homogeneous nanobeam core, nonlocal coefficients 

ratio as ψ = 1.5 nm, and fundamental frequency ω1 = 24.65 GHz. Increasing volume of 

voids decreases nanostructure stiffness and influences nanobeams mass. Nonetheless, 

diverse distribution affects stiffness and mass in diverse ways. Type 1 and 2 are 

characterized with non-porous bottom and lower surfaces, while Type 3 porosity 

distribution at these points is described with a maximum volume of porosity. Therefore, 

diverse effect on stiffness to mass ratios obtained from diverse porosity distribution is 

connected with diverse nano-scale effects from nonlocal coefficients. 
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Fig. 11 Detection of nonlocal parameters for different porosity distributions and volume 

of voids 

7. CONCLUDING REMARKS 

The current study gives a different perspective to higher-order nonlocal strain gradient 

theory. The approach enables an analysis of differences in obtained results from classical 

and nonlocal theories for dynamic response of sandwich piezoelectric nanobeam under 

complex loads. The model represents a three-layered FGM porous beam-based nanoactuator 

subjected to external mechanical and electrical loads. Functionally graded material properties 

along with diverse porosity accumulation types are obtained based on the power-law 

distribution. The contribution of an electric field is represented by a combination of half-

cosine and linear variation of the electric potential. Utilized equations of motion obtained 

based on Hamilton’s principle and the nonlocal strain gradient theory, include Eringen’s 

nonlocal coefficient and the length scale parameter to investigate both size-dependent 

phenomena from a single point of view. The displacement field is obtained based on 

Reddy third-order shear deformation theory that does not require shear correction factor, 

then it may be used for a wide range of structures. The results and discussion show effect 

of nonlocal parameters in conjunction with diverse length to thickness ratio, external 

loads, and material properties on a free vibration response of intelligent nanobeam. 

Defined the nonlocal interaction range parameter clearly demonstrates that small-

scale coefficients are dependent on geometrical properties of the structure, its material 

properties, and applied loads. Therefore, employing nonlocal theories is necessary for 

modelling of nanostructure-based ultra-small devices. What is more, the presented multi-

parameter solution gives a possibility to estimate/detect nonlocal parameters for nanobeams 

based on assumed/predicted natural frequencies, material properties, and applied loads. 

Therefore, the conducted investigation, due to a widening understanding of nonlocal effects, 

may be an important tool in modelling, optimization, and control of NEMS devices. 
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