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Abstract. Recently the method of dimensionality reduction (MDR) has been introduced 

to solve axisymmetric contact problems easily and exactly. The list of tasks that this 

method can deal with comprises normal, tangential, adhesive and rolling contacts with 

simply connected contact areas between elastic or viscoelastic bodies. Due to its 

simplicity and easy applicability the MDR provides the possibility of fast and comprehensive 

studies of contact problems in technological or biological systems, for example bearings, 

artificial hip joints, wheel-rail systems or others. Within the complicated three-dimensional 

contact theory those studies, in most cases, cannot be done without a tremendous 

mathematical or numerical effort.  

In view of all this, the torsional contact problems have been disregarded until now, 

although it is known that torsion is a major reason of wear and possible failure of 

system components. Therefore, in the present paper, we extend the MDR to contacts of 

axisymmetric profiles under superimposed normal and torsional loading. 
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1. INTRODUCTION

Pure torsional contacts or normal and torsional contacts coupled by friction were not 

given much attention in the past, although torsional loading is known to be a major reason 

of wear and fatigue.  

In [1] Lubkin gave the shear stress distribution for the torsional contact between two 

elastic spheres with partial slip. Hetényi and McDonald Jr. calculated the stresses and 

displacements for the full-sliding contact between an elastic sphere and an elastic halfspace 

using Hankel transforms [2]. Also based on Hankel transforms, i.e. Bessel functions,  Kartal 
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et al. analyzed the torsional contact with partial slip between flat-ended elastic cylinders [3]. 

Jäger determined the stress distributions in the form of Abel transforms for the torsional 

contact with partial slip between axisymmetric bodies of arbitrary profile shape [4]. He 

thereby used a superposition of flat-punch-solutions to solve the contact problem of 

arbitrarily shaped bodies. In the experimental work [5] Trejo et al. investigated the friction 

between an elastomer and a randomly rough surface using a torsional contact configuration. 

In a series of recent papers, Popov and collaborators have introduced the so-called method 

of dimensionality reduction (MDR), which allows solving normal contact problems of 

axisymmetric elastic and viscoelastic bodies as well as tangential contact problems with a 

constant coefficient of friction for arbitrary loading histories [6, 7]. In the monographs [8] and 

[9], the MDR has been summarized and many applications have been provided. Moreover, an 

introduction into its usage in the form of a user's handbook can be found in [10].  

In the present paper, we are showing that the contact with torsion (rotation around the 

normal axis to the contact plane) can also be described with the MDR as long as there is 

no slip in the contact or the thickness of the slip annulus at the edge of the contact is small 

compared to the contact radius.  

The paper is organized as follows: In the Section 2 we reproduce, for convenience of the 

reader, the derivation of the MDR equations for the normal contact following [9]. In the Section 

3 the application of the MDR to contacts with torsion without slip is discussed. In the Section 4 

the torsional contact with a narrow slip region is considered. Section 5 closes the paper. 

2. METHOD OF DIMENSIONALITY REDUCTION FOR THE NORMAL CONTACT 

In this section, the equations of the MDR for the normal contact of axisymmetric profiles 

f (r) with a compact area of contact are deduced. Thereby we follow the idea of Jäger [11] to 

derive the solution of an axisymmetric contact problem by summation of differential flat punch 

solutions.  

A flat punch of radius a, indenting an elastic half space with effective elastic modulus 
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The resulting pressure distribution will be 
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and the total normal force 

 *2NF E ad . (3) 

Hence, contact stiffness kz is 
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Note that this equation is valid for any profile shape, if a is understood as the current 

contact radius.  
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Let us assume a contact between a rigid indenter of shape z = f (r) and an elastic half 

space. The indentation depth due to normal force FN will be d and contact radius a. For 

any given profile shape any of those three parameters will unambiguously define the other 

two. Especially, the indentation depth is a definite function of the contact radius, which 

we will denote by  

 ( )d g a . (5) 

Firstly we show that the complete solution of the normal contact problem will be 

unambiguously determined by function d = g(a). 

Analyzing the complete process of indentation from its very first moment until the 

final indentation, the current values of the normal force, indentation depth and contact 

radius are given by NF , d  and a . During the indentation process, the indentation depth 

changes from d = 0 to d  = d, the contact radius accordingly from a  = 0 to a  = a and 

the normal force from NF  = 0 to NF = FN. The final normal force can be written as 
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If we take into account that the differential contact stiffness of an area with radius a  is 

given by (4) and the indentation depth by (5), we get 
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which gives after partial integration  
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Let us calculate the pressure distribution within the contact area. An infinitesimal 

indentation d d  of an area with radius a  will, due to (2), produce the pressure 

 
*

2 2

1
d ( ) d

E
p r d

a r



. (9) 

The pressure distribution at the end of the indentation process is given by the sum of all 

infinitesimal pressure components, 
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Hence, function d = g(a) unambiguously defines the pressure distribution and therefore 

the total normal force as well. That is why the solution of the contact problem is reduced 

to the determination of this function. 

This can be done as follows: Infinitesimal indentation dd  mentioned above will, due 

to (1), produce surface displacement at r a a    
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Again, the total displacement can be understood as a sum of all infinitesimal indentations: 
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On the other hand, this displacement is given by ( ) ( )zu a d f a  : 
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which gives after partial integration 
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This is an Abel integration equation, which can be inverted [12]:  
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The MDR is mainly an interpretation of the equations (5), (8), (10) and (15), which, 

on the one hand, can be interpreted as just a mnemonic rule. However, in many ways it 

has a deeper physical meaning.  

Let us assume an elastic foundation of independent equal springs, each at distance x 

from each other and with stiffness kz = E
*
x, as shown in Fig. 1. 

Also, we define a one-dimensional profile g(x) as a formal transformation of the three-

dimensional axisymmetric profile z = f (r) according to 
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This transformation is illustrated in Fig. 2. 

 

Fig. 1 Equivalent elastic foundation  

 

Fig. 2 Axisymmetric three-dimensional profile and one-dimensional analogue  

within the framework of the MDR (see Eq. (16)) 
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The transformed profile is now pressed into the elastic foundation described above. 

This is shown in Fig. 3. The surface displacement in normal direction at any point x will 

be given by the difference of indentation depth d and profile shape g(x): 

 1 ( ) ( )D

zu x d g x   . (17) 

 

Fig. 3 MDR-model for the normal contact 

For contacts without adhesion the displacement vanishes at the edge of the contact: 

 1 ( ) ( ) 0D

zu a d g a   . (18) 

The normal force in a single spring is given by 

 *( ) ( ( )) ( ( ))N zF x k d g x E d g x x       , (19) 

from which the total normal force in the equilibrium state can be calculated by summation 

over all springs. In limiting case 0x    the sum will be the integral 
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It can be seen easily that the equations (18), (20)  and (16) reproduce (5), (8) and (15). 

Hence, transformed profile g(x) is the geometrical interpretation of dependence d = g(a) 

for the given three-dimensional profile shape. By the equivalence of the equations presented 

above it is also shown that, instead of analyzing the three-dimensional contact problem, the 

described equivalent one-dimensional problem can be solved, obtaining the correct and exact 

results for the original contact. 

In the next paragraph we are going to show how this can be done, by the same method, 

for torsional contact as well. 

3. DESCRIPTION OF THE TORSIONAL CONTACT  

WITH THE METHOD OF DIMENSIONALITY REDUCTION  

Again, we start with the known solution for the torsional contact of a rigid flat 

cylinder. If a rigid flat-ended punch is pressed on an elastic half space and rotated around 

the axis of the cylinder by angle , the produced torsional moment, surface displacement 

and stress distribution will be given by equations [13] 

 316

3
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where G is the shear modulus. In the case of rotational symmetry and of no slip, the torsional 

contact problem completely decouples from the normal contact problem.  

We analyze the torsional contact problem that is analogical to the normal contact 

problem described in the previous section, i.e. we imprint rotational surface displacement  

u(r) = r(  (r)) into an elastic half space and want to determine the shear stresses due 

to this displacement. (r)  is the deviation of the torsional angle from the pure constant 

rotation with . This displacement is understood as a sum of infinitesimal torsional loadings 

of flat punches [4]. In analogy to (5) we introduce the function 

 ( ).a    (24) 

The complete torsional moment after the process of torque loading can be calculated as  
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We introduce variable uy(x) in the following differential way: 
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At the end of the described process of infinitesimal torsional loadings this field will be 
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Dividing (27) by x  and differentiating with respect to x  we get 
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Equation (25) can then be written in the following way: 
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which gives after partial integration 
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It is obvious that this equation can also be interpreted within a one-dimensional model.  
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Let us assume an elastic foundation with tangential stiffness 

 8yk G x   . (31) 

The force of a single spring is given by 

 ( )y y yF k u x    (32) 

and the resulting torsional moment by     

 8 ( )z yM Gxu x x   . (33) 

The total moment can be calculated again by integration and will be 
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which coincides with (30).  

To complete the solution of the described torsional contact problem, let us calculate 

function (a) and the stress distribution. According to (23)  the stress distribution can – 

analogically to the previous section – be calculated from function ( )a :    
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or with equation (28) 
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which is equivalent to 
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The displacement at the edge of the contact, i.e. at r a a  , will be, according to (22), 
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In the next section we will analyze the case of slip in the contact area. This will inevitably 

lead to requirement  (a) = 0. This given, (27) can be written as 

 ( ) ( ( ))yu x x x    (39) 

and partial integration of (38) will give 
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This is again an Abel integration equation, which can be inverted [12]:  
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4. TORSIONAL CONTACT WITH A NARROW SLIP REGION 

The boundary conditions at the surface of the half space in the presence of slip can 

generally be written in the form 
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with the radius of stick domain c and coefficient of friction . From (41) it is obvious that  

 ( ) 0 ,          for  x x c   .  (43) 

Hence, the shear stresses within the contact area will be 
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Note, that (44)  can always be written in the form 
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Here pa(r) and pc(r) denote known pressure distribution p(r) with respective contact radii 

a and c. Thus the shear stress distribution in the whole contact area is known. The contact 

problem will be solved completely, if the integral equation  
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can be solved for function ( )a . 

In case of a very small area of the slip domain, i.e. if a c a , this solution is 

elementary, because r  a  and therefore  
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    Geometrically, (47) together with (43) describes the following indentation process: 

First the indenter is pressed into the half space in a pure normal direction until the radius 

of stick domain c is reached. After that any infinitesimal indentation is a superposition of 

normal and torque loading, bound by (47). The solution of (47) with the boundary conditions 

(24) and (5) is given by 
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Hence, 
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Again, as we assumed a c a , it is x a in the slip domain and therefore 
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If we choose *
 = 2 as the equivalent coefficient of friction in the MDR-model for torsion, 

(50) can be written in the form 
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The radius of the stick domain is given by  

 * * *8 2 ( ( ) ( )) ( ( ) ( ))G c E g a g c E g a g c       , (52) 

which agrees with the condition of no slip for the springs at the edge of the stick domain 

in the MDR-model. That is why this torsional contact problem with a finite coefficient of 

friction can be described by the MDR.  

We emphasize again that the derivation starting with (47) is only valid for a c a . 

In the case of general partial slip the solution for ( a ) in the slip domain is given by 

the inverse Abel transform of (46) [12]: 
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However, the resulting necessary spring displacement of the MDR-model 
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cannot be interpreted as easily as in the case described above in (47) - (51). 

5. CONCLUSION 

In the present paper, we have extended the method of dimensionality reduction to 

contacts subjected to a superimposed normal and tangential loading. For the case of the 

simultaneous normal and torsional loading we have shown that the consideration of the 

original three-dimensional contact problem can be replaced by a contact with a one-

dimensional elastic foundation with a properly defined coefficient of friction and normal 

and tangential stiffness if the slip annulus is small compared to the contact radius.  
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