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Abstract. Production of three-dimensional parts in 3D printing process gains growing 

importance in various fields, such as: aviation and car industry, architecture, medicine, 

dentistry, etc. Mechanical performance is an important users’ requirement for 

manufacturers of 3D printed parts. Furthermore, printed part highly depends on 

process parameters, position and orientation of the printed part, and performances of 

the 3D printer which prints the part. In this paper, based on experimental results, an 

artificial neural network has been used for modeling the dependence of process 

parameters and object orientation during printing, on the one side, and tensile strength 

as very important mechanical performance, on the other side. After establishing 

abovementioned dependence, the developed neural network has been used as a fitness 

function for the genetic algorithm while the genetic algorithm has been created for the 

optimization process. The result of optimization process was a set of optimal process 

parameters and part orientation giving the maximum tensile strength. The results have 

shown acceptable potential of the developed methodology for optimizing the 3D 

printing process as a complex engineering problem. 

Key Words: 3D Printing, Optimization, Tensile Strength, Neural Network, Genetic 

Algorithm 

1. INTRODUCTION 

3D printing or additive manufacturing is a modern manufacturing process of making a 

three-dimensional part from a digital 3D model. It allows making the part from several 

different materials that have different mechanical and physical properties, in a unique 

                                                           
Received: April 29, 2022 / Accepted September 12, 2022 

Corresponding author: Nedeljko Dučić 
University of Kragujevac, Faculty of Technical Sciences Čačak, Sv. Save Street, 32000 Čačak, Serbia 

E-mail: nedeljko.ducic@ftn.kg.ac.rs 



2 I. MILIĆEVIĆ, M. POPOVIĆ, N. DUČIĆ, V. VUJIČIĆ, P. STEPANIĆ, ET AL. 

process, usually, layer by layer. Additive manufacturing technologies have been initially 

used only for prototyping in order to accelerate part development and minimize 

development costs. However, with the improvement of technology and materials, a 

development level allowing the production of final, functional parts or tools has been 

reached. In addition to prototyping, 3D printers offer a great potential for the production 

of various applications in the field of industrial design, aviation and car industry, 

architecture, medicine, dentistry, etc. 

Fused Deposition Modeling (FDM) is one of the most important 3D printing methods 

which deliver parts made of thermoplastic filaments. The layers are stacked on top of 

each other in order to create a final 3D part. FDM 3D printing process uses different 

types of plastic materials and composite materials made of plastics and metal particles, 

ceramics, various carbon fibers, etc. Due to its ease of use and low cost, this method has 

become very popular and is widely used for prototyping as well as for manufacturing 

functional industrial products. However, the default settings of printing process 

parameters, set by a manufacturer in some cases, do not guarantee the quality 

(dimensional errors and unsatisfactory mechanical characteristics of the part) of the 

printed part because of a significant number of process parameeters to be taken into 

consideration. For the parts made in this way to be completely functional, it is necessary 

to meet the requirements on the mechanical characteristics that depend on choice of basic 

material, technological process parameters as well as post-processing procedures. FDM 

3D printing process consists of a fairly large number of parameters that can affect the 

final appearance and mechanical characteristics of the part. These parameters can be 

classified into: process parameters, FDM printer parameters, 3D model orientation mode, 

material type, 3D model and environment parameters [1], [2].  

Analysis of the process parameters influence on the quality of printed part and its 

mechanical properties in the FDM printing process has been the subject of numerous 

scientific research papers [3-6]. The most analyzed have been influences of the following 

parameters: layer thickness, type of internal filling, percentage of internal filling, distance 

between rasters, raster width, raster angle, material density, part orientation by x, y and z 

axis, number of contour walls, printer head velocity, nozzle temperature in the printer 

head, etc. [7-12]. Research that includes testing the influence of all abovementioned 

parameters and their combinations requires a large number of samples, so the literature 

usually states the impact of only certain ones [13-18]. Furthermore, due to the complexity 

of process parameters and an unclear relationship between process parameters and part 

performances, the influence of each parameter on 3D printed parts has not been 

universally defined yet. Therefore, it is necessary to consider the method of choosing 

optimization parameters of process that will improve the quality of 3D printing [19-23]. 

In previous scientific research papers the mechanical properties of FDM printed samples 

have been most frequently tested by tensing [4,8,10,17,25-29]. Tensile strength testing 

provides the most complete image of material’s mechanical properties. Test samples (test 

pipes) have been defined by relevant standards. During testing, forces in the direction of 

the axis are acting on test pipe, tending to extend and break it. Tensile testing machines, 

also known as tension test machines, have been used for this type of testing.    

After selecting the appropriate influential process parameters, it is possible to improve 

quality and mechanical properties of 3D printed part by their optimization. Optimization of 

process parameters is a research challenge that has been addressed by many researchers [7,30-

32]. The research field of this challenge is wide because a significant number of process 
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parameters and their combinations lie in a design of the experiment while a range of materials 

to be processed is wide. It is also important to note that every 3D printer has its own specifics. 

The present paper deals with the influence that process parameters and test specimen 

orientation in 3D printer's workspace have on the mechanical characteristics, in particular 

case – on the tensile strength. This paper represents in a way an improvement over 

research studies that have been investigating only the influence of certain process 

parameters without taking into account the orientation of the test specimen in the 3D 

printer workspace. The present paper is divided into four chapters. After Introduction, the 

second chapter describes the experimental part related to 3D printing and mechanical 

testing. The second chapter describes the process parameters and test specimen 

orientations used in the design of the experiment and their influence on tensile strength. 

Then follows the mechanical testing of tensile strength. In the third chapter of the paper, 

a hybrid intelligent neuro-genetic system for the selection of process parameters and test 

specimen orientation that provides the best mechanical characteristics of the printed part 

has been developed. Conclusions on the application of such a hybrid intelligent system 

for optimization the process parameters in order to maximize the tensile strength of the 

part made by 3D printing, are given in the fourth chapter. 

2. EXPERIMENTAL SETUP 

2.1 3D Printing process parameters and conditions 

For the purposes of the experiment, at first a 3D model of a standard test specimen, 

type 1BA (for tensile tests, according to ISO 527-2:2012, Annex A) has been created, 

from which an STL file have been obtained (Fig. 1). The STL file has been imported into 

CreatWare software, in which the G-code has been generated. Each G-code consisted of 

3 test specimens that were positioned on a base at an angle 0, 45° and 90° to the y-axis 

(Fig. 2), in order to determine how the direction of printing affects the tensile strength of 

the printed model. Along with three different angles, the experiment has been repeated 

with different parameters of print speed, printer head temperature and print density. 

Speed has varied from 40 to 80 mm/s, temperature from 200 °C to 220 °C and print 

density from 5 to 25%. Thus 81 samples are obtained. The samples have been sorted and 

marked. A CreatBot DX2 3D printer, that uses FDM printing technology, has been used 

for making the samples. PLA plastics in the form of a wire (3 mm diameter) have been 

used as a material. All input data, i.e. process parameters, are displayed in the diagram at 

Fig. 3. 

 

Fig. 1 Test specimen: a) STL model; b) a sample made on a 3D printer 
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Fig. 2 Generation of the G-code in the CreatWare  software of the CreatBot DX2 3D printer 

 

Fig. 3 Input data – Process parameters 
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2.2 Tensile strength testing procedure 

For determination of tensile strength of printed test pipes have been used tensile load 

tests in accordance with requirements defined by ISO 527-1:2019 (Plastics – 

Determination of tensile properties – General principles) and ISO 527-2:2012 (Plastics – 

Determination of tensile properties – Test conditions for molding and extrusion plastics). 

A machine type SKAZ 2000 has been used for testing, equipped with 1st class force-

measuring cell up to 20 kN in accordance with ISO 7500-1:2018 and 1st class 

extensometer in accordance with ISO 9513:2012. The appropriate software generated a 

dependence diagram of tensile force on deformation, the value of tensile strength as well as 

the relative elongation when tearing the test specimen for each test sample. Tensile 

strength values for all tested samples are given in the diagram shown in Fig. 4. 

 

Fig. 4 Output data - Tensile strength 

3. NEURO-GENETIC OPTIMIZATION OF PROCESS PARAMETERS 

3.1 Tensile strength prediction model 

A neural network is a massively parallelized distributed processor with a natural 

ability to store experiential knowledge and ensure its use. Through the training process, 

synaptic weights are systematically changed in an artificial neural network in order to 

achieve the desired network performance. The basic computing power of neural networks 

is massive parallelism, the ability to train and generalize. In order for the system 

modeling process through training to be as high quality as possible, it is necessary to 

cover the widest possible range of operating modes of the dynamic system. A neural 

network architecture consists of an input layer, one or more hidden layers, and an output 

layer. The most commonly used algorithm for training multilayer neural networks with a 

supervisor is error propagation backwards and is only applicable to feedforward 

networks. The basic idea is that the input signal propagates forward, from the input to the 
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output layer while the error signal propagates backwards, from the output to the input 

layer, changing the weights of the network in that order. The structure of the i-th artificial 

neuron with r inputs
1 2, ,..., rx x x  multiplied by appropriate weighting coefficients 

,1 ,2 ,, ,...,i i i r   and added bias can be represented in the following from [33]: 

 1 ,1 2 ,2 ,...i i i r i r ia x x x b        (1) 

where ai represents argument of transfer function (called activation function). The i-th 

neuron produces output data yi 

    ,1

r

i i j i r ij
y f a f x b


    (2) 

This output then represents the input for the neurons of the next layer or represents an 

element of the output vector of the artificial neural network. In this paper, the Levenberg-

Marquardt backpropagation algorithm has been used to train neural networks. This 

algorithm is a standard method for minimizing the mean square error (MSE) criterion and 

is characterized by fast convergence and robustness [34]. The MSE is calculated as follows: 

       
22
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where Q denotes number of experiments, e(k) denotes error, t(k) denotes target values, 

while y(k) are predicted values. Updating the weights of network with the Levenberg-

Marquardt algorithm [35] is presented by the equation: 

  
1

1

T

k k k k k kw w J J I J e


     (4) 

which is based on the approximation of Hessian matrix H. 

 TH JJ I   (5) 

where I is identity unit matrix,  is a learning parameter and J is the Jacobian matrix (the 

Levenberg-Marquardt algorithm requires the computation of the Jacobian J matrix at 

each iteration step and the inversion of JTJ square matrix, the dimension of which is 

N×N). 

To predict the tensile strength, the feedforward backpropagation neural network described 

above has been developed, whose training algorithm is the Levenberg–Marquardt algorithm. 

A set of data (81 samples) was used for the development of neural networks, which has been 

divided into three groups: training 80% (65 samples), validation 10% (8 samples) and testing 

10% (8 samples). Several different neural network architectures have been developed (with 

different number of hidden layers and neurons in them), and network performance has been 

evaluated based on mean squared error. The best performance in the prediction of tensile 

strength was shown by a network with one hidden layer and 12 neurons in the hidden 

layer (Fig. 5). The neurons in input and hidden layers of neural networks had the sigmoid 

transfer function, while the neuron of the output layer has the linear transfer function. 

The process of creating a neural network ends in 15 epochs when the values of the 

mean square error are in the phase of training, validation and testing: 0.34, 5.17 and 9.25, 

respectively (Fig. 6). 
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Fig. 5 Neural Network Architecture 4-12-1 

 

Fig. 6 Mean square error during the epochs 



8 I. MILIĆEVIĆ, M. POPOVIĆ, N. DUČIĆ, V. VUJIČIĆ, P. STEPANIĆ, ET AL. 

As another criterion for confirming the validity of the created neural network, the 

Regression criterion has been used, which compares the outputs from the neural network 

and the target outputs (tensile strength values obtained by experimental testing) in the 

training, validation, training and total in all phase. A graphical presentation of the 

Regression criterion in the training, validation and testing phase as well as the total for all 

the above phases, is given in Fig. 7. 

 

Fig. 7 Regression criterion as an assessment of neural network performance 

The listed performances of the neural network ANN 4-12-1 are given in Table 1. 

Table 1 Performance of the neural network 4-12-1 

 Mean Squared Error (MSE) Regression 

Training 0.34 0.996 

Validation 5.17 0.965 

Testing 9.25 0.931 

The created neural network ANN 4-12-1 is used below as a fitness function of the 

genetic algorithm for optimization of the process parameters with the aim of maximizing 

tensile strength. 
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3.2 Optimization of 3D printing process parameters 

Genetic algorithms (GA) are a search technique that uses heuristic optimization 

methods to find an exact or approximate solution simulating the mechanism of natural 

evolution. The algorithm uses four genetic operators: selection, reproduction, crossover 

and mutation. The second basic component of the genetic algorithm is the fitness 

function, which is a quantitative measure of quality, i.e., correctness of the proposed 

solution. The strength of the algorithm lies in its ability to determine the position of the 

global optimum in a space with multiple local extremes in the so-called multidimensional 

space. Unlike most deterministic algorithms, the characteristic of genetic algorithms is 

that they begin the search for the optimal solution from a series of possible solutions that 

represent the initial population of the genetic algorithm. It is common to generate the 

initial population (initialization) by randomly selecting solutions from the domain. This 

includes defining individuals and associating them with possible solutions. Genetic 

algorithms use individuals that describe a set of objects. Each individual is assigned a 

fitness score that evaluates the quality of a given individual. The genetic algorithm must 

provide a way to continuously improve, from generation to generation, the absolute 

adaptation of each individual in the population as well as the mean adaptation of the 

entire population. This is achieved by successive application of genetic operators of 

selection, crossing and mutation, which provides better solutions to a given specific 

problem (Fig. 8). 

 

Fig. 8 Flowchart of genetic algorithm 

The main disadvantage of GA is that the speed of convergence close to the global 

optimum can be quite slow. If the population has become sufficiently similar, but an 
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optimal solution has not been reached, the mean fitness of all individuals in the 

population is large, and the differences between the best individual and other individuals 

in the population are small. Therefore, there is an insufficient gradient in the fitness 

function that would help the genetic algorithm to reach the optimal value. To overcome 

the above-mentioned anomalies simple GA and the successful execution of the genetic 

algorithm used various techniques adapted to the nature of the problem to solve. These 

are: various types of coding, customized more complex genetic operators, several types 

of fitness functions, generation replacement policy, fixed or adaptive parameter change 

during GA execution. Methods of calculating the fitness function can also greatly affect 

GA performance. More detailed descriptions and analysis of the operation principles of 

genetic algorithms are given by References [36-39]. 

 

Fig. 9 GA/ANN-based optimization algorithm [40] 

The principle of hybrid neuro-genetic combination for optimization of 3D printing 

process parameters in order to maximize tensile strength is shown in Fig. 9. The selection 

of the initial population is generated randomly. The fitness function of the genetic 
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algorithm is the neural network (ANN 4-12-1), described in the previous section of this 

paper. The fitness of each member of the initial population is calculated using the ANN 

model and is followed by selection, crossing and mutation as parts of the reproduction 

process of a new generation. The process is repeated until one of the multiple 

requirements for termination of GA is satisfied. 

The population range is 30 individuals, with 100 generations at maximum. Stochastic 

universal sampling algorithm is used in the selection. Uniform crossover served as the 

crossing operator. The coefficient of the crossover fraction is 0.8. Crossover fraction 

defines a portion of the new population derived from a crossing (non-elite individuals), 

its value being between 0 and 1. Not more than two elite individuals are to be transferred 

to the next generation. The optimization ends in 53 iterations (Fig. 10), and gives us a 

maximized value of tensile strength of 46.47MPa, and the values of the parameters are 

angle = 0.005 (°), speed = 69.36 (mm/min), temperature 218 (°C), density 24 (%). 

 

Fig. 10 Optimization process during iterations 

The optimization results indicate that by increasing the velocity by 10 and slightly 

shifting the temperature and density, GA has found the maximum function generated by 

the neural network ANN 4-12-1. 

4. CONCLUSION 

The present study describes a joint influence of process parameters and part 

orientation on the tensile strength as a very important mechanical characteristic of the 

part made bay 3D printing process. In order to establish a connection between inputs 

(process parameters and part orientation) and outputs (tensile strength), and based on 
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experimental results, a neural network has been developed that showed a high degree of 

efficiency in establishing correlations between inputs and outputs. The best performance 

(MSE=0.931 in testing phase) has been shown by a neural network with 12 neurons in a 

hidden layer and it was determined as a fitness function for the optimization process 

resulting in a set of process parameters (speed = 69.36 (mm/min), temperature 218 (°C), 

density 24 (%)) and part orientation (angle = 0.005 (°)) for which the tensile strength has 

maximum value. The genetic algorithm has been used as an optimization technique and it 

showed great potential in optimizing the process parameters of 3D printing and the 

orientation of the part being created. The very special importance of the present paper is 

that it considers a joint influence of process parameters and orientation of the part to be 

printed on the tensile strength. It is also of a great importance for practical workers who 

set 3D printer settings and prepare process, and who need to know the influence of 

process parameters on mechanical characteristics of the part. The application of the 

presented methodology eliminates the expensive principles of "trial and error" to achieve 

high product quality. 

Thus, the study promotes the methodology of obtaining a set of process parameters 

and the orientation of the part for which the tensile strength is the maximum value. In 

practice, maximum mechanical characteristics are often not required, so some other 

values of process parameters can produce an acceptable printed part. The application of 

the neural network model developed in this study for any set of input parameters (within 

defined limits) gives a stable and relatively accurate prediction of tensile strength. This 

practically means that the developed neural network can be used separately as a high-

precision model of 3D printing process in the cases when maximum tensile strength is not 

sought, which gives the presented study additional significance. 

Future research will be directed in three research directions. The first one is to 

increase the precision of the process model through a larger number of experiments. The 

second one will include a wider class of materials used in 3D printing technology, while 

the third one will include the application of the presented methodology to other processes 

from the family of Rapid prototyping technology. 
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