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Abstract. This study presents a newly developed size-dependent beam-substrate medium 

model for bending, buckling, and free-vibration analyses of nanobeams resting on elastic 

substrate media. The Euler-Bernoulli beam theory describes the beam-section kinematics 

and the Winkler-foundation model represents interaction between the beam and its 

underlying substrate medium. The reformulated strain-gradient elasticity theory possessing 

three non-classical material constants is employed to address the beam-bulk material small-

scale effect. The first and second constants is associated with the strain-gradient and couple-

stress effects, respectively while the third constant is related to the velocity-gradient effect. 

The Gurtin-Murdoch surface elasticity theory is adopted to account for the surface-free 

energy. To obtain the system governing equation as well as corresponding boundary 

conditions, Hamilton’s principle is called for. Three numerical simulations are presented to 

characterize the influences of the material small-scale effect, the surface-energy effect, and 

the surrounding substrate medium on bending, buckling, and free vibration responses of 
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nanobeam-substrate medium systems. The first simulation focuses on the bending response 

and shows the ability of the proposed model to eliminate the paradoxical characteristic 

inherent to nanobeam models proposed in the literature. The second and third simulations 

perform the sensitivity investigation of the system parameters on the buckling load and the 

natural frequency, respectively. All analytical results reveal that both material small-scale 

and surface-energy effects consistently stiffen the system response while the velocity-gradient 

effect weakens the system response. Furthermore, these sized-scale effects are more 

pronounced when the underlying substrate medium becomes softer. 

Key words: Reformulated strain gradient elasticity theory, Small-scale effect, Surface-

energy effect, Bending analysis, Buckling analysis, Free vibration analysis 

1. INTRODUCTION 

With the discovery of carbon nanotubes (CNTs) by Iijima [1] in 1991, distinct responses 

of nano-sized structures have drawn high attention from researchers worldwide. As a result, 

several innovative devices and systems have been possible with superior and unique 

mechanical characteristics of structures at nanoscale [2-4]. To expedite and support the 

development of these innovative devices and systems, a thorough understanding of 

characteristics and behaviours of their nano-sized structural components is of paramount 

importance. In general, the experimental method is the most straightforward way to 

characterize mechanical responses of structures. However, there are several limitations on 

experiments conducted on nano-sized specimens, such as the necessity of a specifically testing 

apparatus, the requirement of a special testing procedure, and the expensive testing cost, etc. 

[5-7]. Furthermore, available classical structural models (e.g. bar, beam, shell, and plate 

models) are inadequate to characterize the structural response at nanoscale since the material 

small-scale effect and the size dependency inherent to nano-sized structures are not considered 

[5-13]. Therefore, a rational mathematical model capable of representing the material small-

scale effect and the size dependency is deemed necessary and is the main emphasis of the 

present study.  

In the research community, both atomistic-based model [14-17] and enhanced structural 

mechanics-based model [18-20] have been employed to characterize mechanical responses of 

nano-sized structures for a wide spectrum of applications [21-24]. Although comprehensive 

details on the mechanical responses of nano-sized structures can be gained with the atomistic-

based model [14-17], expensive computational costs and sophisticated modelling efforts are 

usually required with this numerical model, thus limiting the model access by researchers. 

Consequently, the enhanced structural mechanics-based model [18-20] have gained increasing 

popularity due to its good compromise between model efficiency and model accuracy [11]. 

The enhanced structural mechanics-based model is possible with unification of non-classical 

elasticity theories [25-33] and classical structural models.  

When the structural dimension is in the order of nanometer, the material small-scale 

effect induced by long-range interatomic forces becomes pronounced. A family of 

higher-order elasticity theories have been proposed in the research community to address 

this material small-scale effect [34-39]. Among these higher-order elasticity theories, the 

nonlocal elasticity theory proposed by Eringen [25-26] has been the most popular and 

was first employed by Peddieson et al. [34] to construct the nano-sized beam model. 

However, the material small-scale effect was not detected by this beam model in the case 

of the cantilever beam under an end load [35, 38, 40-42]. This peculiar response was 
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defined as a “paradox” in the literature [34, 38, 40-43]. Romano et al. [43] demonstrated 

that an ill-posed structural-mechanics problem (bounded domain) arises with adoption of 

the Eringen nonlocal differential model. Furthermore, Koutsoumaris et al. [44] demonstrated 

that the Eringen nonlocal differential model does not conform to the requirement of the 

quadratic energy functional form of elasticity. To obtain a more rational small-scale beam 

model, the strain-gradient elasticity theory has been employed as an alternative [38, 45-49]. 

The strain-gradient elasticity theory was originally invented by Mindlin [27-28] and 

possesses three forms, namely: Form I, Form II, and Form III. The difference among these 

three rudimentary forms is their expressions of the strain energy density function. Form I 

expresses the strain energy density function in terms of the infinitesimal strain and the 

second displacement gradient; Form II describes the strain energy density function in terms 

of the infinitesimal strain and the first strain gradient; and Form III represents the strain 

energy density function in terms of the infinitesimal strain, the symmetric part of the second 

displacement gradient; and the rotation gradient (curvature tensor). Several researchers [5, 

30, 38, 50-54] have formulated their own strain-gradient elasticity models based on these 

three forms (Form I, Form II, and Form III). As the simplest variant of the strain-gradient 

elasticity theory, the simplified strain-gradient elasticity theory of Altan and Aifantis [51] 

is constructed based on Form II but can account only for the strain gradient along the 

longitudinal direction. To obtain a more refined variant of the strain-gradient elasticity 

theory, the modified strain-gradient elasticity theory of Lam et al. [5] is formulated based 

on either Form I or Form III and contains three material length-scale parameters associated 

with three strain-gradient measures, namely: the dilatation gradient, the deviatoric stretch 

gradient, and the symmetric rotation gradient. A thorough study by Papargyri-Beskou et al. 

[55] has shown the essence of the velocity gradient on wave dispersion in gradient elastic 

solids and structures. However, the modified strain-gradient elasticity theory of Lam et al. 

[5] lacks the material length-scale parameter associated with the velocity gradient. Therefore, 

a more versatile strain-gradient elasticity theory is required to construct a mathematical tool 

for static and dynamic analyses of nano-sized structures. Recently, Zhang and Guo [30] has 

proposed the reformulated strain-gradient elasticity theory based on Form I. Strain-gradient 

measures as well as velocity gradient are both considered in this strain-gradient-type theory. 

Consequently, the reformulated strain-gradient elasticity theory is preferable to the 

narrowness of the research gap and is adopted in the present work. 

In addition to the material small-scale effect, the size dependency invoked by the 

surface-energy effect is crucial when the structural dimension approaches the range of 

nanometer [36, 38, 56-59]. To incorporate the surface-energy effect into a conventional 

structural-mechanics model, the surface elasticity theory proposed by Gurtin and Murdoch 

[32-33] has been widely employed. In the Gurtin-Murdoch surface elasticity theory, the 

surface elastic layer is assumed to be a zero-thickness membrane perfectly bonded to its 

wrapped bulk material. Due to the good compromise between model accuracy and simplicity, 

several structural-mechanics models have been armed with the ability to account for the 

size dependency using the Gurtin-Murdoch surface elasticity theory [11, 36, 38, 57-62]. As 

a result, the present work adopts the Gurtin-Murdoch surface elasticity theory to represent 

the size dependency induced by the surface-energy effect. 

The concept of a beam on elastic foundation has found a wide spectrum of applications 

in nanoengineering and nanoscience [21-24]. Due to its good compromise between model 

accuracy and simplicity, the Winkler foundation model is the most widely employed 

foundation model to account for the interactive mechanism between nanobeams and their 
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underlying substrate media [9, 38, 59, 63]. During the last decade, several nanobeam-

substrate medium models have been proposed in the research community to characterize 

the nanobeam-substrate medium system [64-68]. For example, Azizi et al. [64] assessed 

the influence of the surface-free energy on the nonlinear vibration characteristics of the 

simply-supported nanobeam-substrate medium system; Niknam and Aghdam [65] derived 

the analytical solution for buckling and vibration analyses of the nonlocal functionally 

graded (FG) beam on the elastic foundation; Demir [66] employed the differential transform 

method (DTM) to compute the natural frequencies of simply supported and clamped-clamped 

nanobeams on elastic foundation; Ponbunyanon et al. [67] extended the Winkler-

Pasternak based beam-foundation of Limkatanyu et al. [9] to study the flexural behaviour 

of the nanobeam-substrate medium system; and Jena et al. [68] performed buckling 

analyses of single-walled carbon nanotubes on elastic substrate media under both low and 

high temperature environments. To the best of the authors’ knowledge, the reformulated 

strain-gradient elasticity theory of Zhang and Guo [30] has not been applied to the 

problem of nanobeams on substrate media. Therefore, there is still room to add a rational 

nanobeam-substrate model into the research community due to the merit of the 

reformulated strain-gradient elasticity theory. 

The objective of the present work is to propose the rational mathematical model for 

static and free vibration analyses of nanobeams on substrate media. The presentation of 

the present work is in the following order. First, the kinematics of the Euler-Bernoulli 

beam theory is described. Then, the reformulated strain-gradient elasticity theory of 

Zhang and Guo [30] and the surface elasticity theory of Gurtin and Murdoch [32-33] are 

briefly discussed. Next, the Winkler-based interactive mechanism between the beam and 

its underlying substrate medium is presented. Hamilton’s principle is employed to obtain 

the system governing equation and classical as well as non-classical boundary conditions 

for bending, buckling, and free vibration analyses. Finally, three numerical simulations 

are provided to demonstrate behaviours and characteristics of the proposed nanobeam-

substrate medium model. The first simulation is employed to demonstrate the ability of 

the proposed model to overcome the paradoxical response found in the literature [34, 38, 

40-42] and to investigate the material small-scale and surface-energy effects as well as 

the nanobeam-substrate medium interaction on the bending responses. The second and 

third simulations examine the variation of the system parameters on the critical buckling 

load and the natural frequency of the simply-supported nanobeam-substrate medium 

systems. All symbolic calculations in the present work are carried out using the computer 

software Mathematica [69]. 

2. EULER-BERNOULLI BEAM THEORY 

In the present work, the kinematic assumption of the proposed beam model follows 

the Euler-Bernoulli beam hypothesis [70] asserting that “Plane section remains plane and 

still normal to the longitudinal axis”. Based on this kinematical constraint, the 

displacements of a generic point along the x-, y-, and z- axes are: 

 0
0

( )
( , ) ; ( , ) ( ); and ( , ) 0x y z

v x
U x y y U x y v x U x y

x


= − = =


 (1) 
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where Ux(x,y), Uy(x,y), and Uz(x,y) are displacement fields along the x-, y-, and z- axes, 

respectively; v0(x) is the vertical displacement of the beam section; and y is the vertical 

distance of the point measured from the reference axis x. 

3. REFORMULATED STRAIN-GRADIENT ELASTICITY THEORY 

The reformulated strain-gradient elasticity theory of Zhang and Gao [30] is modified 

from Form I of Mindlin’s strain-gradient elasticity theory [27]. The assertion of Form I is 

that the strain energy density function is expressed as a function of the infinitesimal strain 

tensor and the second gradient of displacement. For a linear isotropic elastic material, 

Form I contains five material constants related to strain gradients in addition to two 

conventional material constants (Lame constants). To simplify Form I of Mindlin’s 

strain-gradient elasticity theory, Zhang and Gao [30] reduced the number of material 

length-scale parameters from five to two using the symmetry property of the tensor [71]. 

The first material length-scale parameter addresses the strain-gradient effect while the 

second material length-scale parameter considers the couple-stress effect. This simplified 

strain-gradient elasticity theory is named as the “reformulated” strain-gradient elasticity 

theory and is employed in this study to address the beam-bulk material small-scale effect. 

Based on the reformulated strain-gradient elasticity theory proposed by Zhang and 

Gao [30], the stored strain energy U is defined as [54]: 

 
1

( )
2

L

ij ij ijk ijk ij ij

V

U m dV     = + +  (2) 

where 
L

ij  represents the Cauchy stress tensor and is the conjugate-work pair of the strain 

tensor εij; ijk 

 represents the symmetric part of the double stress tensor and is the conjugate-

work pair of the strain gradient tensor ijk 
; mij defines the symmetric part of the couple-stress 

tensor and is the conjugate-work pair of the curvature tensor χij; and V is the volume of the 

elastic body. It is worth mentioning that the stored strain energy U of Eq. (2) is identical to the 

one associated with the modified couple-stress theory of Yang et al. [29] when the strain-

gradient effect is neglected. 

In the reformulated strain-gradient elasticity theory, the constitutive relations between 

stress and strain quantities are given by Yin et al. [54] as: 

 2L

ij kk ij ij   = +  (3) 

 22ijk s ijkl   =  (4) 

 
22ij m ijm l =  (5) 

where δij is the Kronecker delta; μ and λ are Lame constants; and ls and lm are the material 

length-scale parameters associated with the stain-gradient effect and the couple-stress 

effect, respectively. 

The strain εij and the strain-gradient measures ijk  , and χij are defined as: 

 , ,

1
( )

2
ij i j j iu u = +  (6) 
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, , ,

1
( )

3
ijk i jk j ki k iju u u = + +  (7) 

 , ,

1
( )

2
ij i j j i  = +  (8) 

where ui is the displacement field; and θi is the rotation vector defined as: 

 ,

1

2
i ijk k je u =  (9) 

with eijk being the permutation symbol. 

4. SURFACE ELASTICITY THEORY 

As the structural dimension approaches the range of nanometer, the free energy at the 

surface of a bulk material can no longer be neglected since it is comparable to the energy 

stored in the bulk material. This surface-free energy induces the size dependency of nano-

sized structures as confirmed by both experiments and numerical simulations [36, 57, 

72]. To account for this size-dependent characteristic, the proposed nanobeam-substrate 

medium model employs the surface elasticity theory of Gurtin and Murdoch [32-33].     

Based on the assumptions of this surface elasticity theory [32-33], the beam cross 

section is assumed to be composed of a bulk core and a wrapping outer surface layer 

shown in Fig. 1. The bulk core and its wrapping outer surface layer are assumed to be in a 

perfect bond condition. The wrapping outer surface layer is taken as a mathematically 

zero-thickness elastic layer. The constitutive relations of the surface layer are: 

 0 0 , 0 , , ,[ ( ) ] ( )sur sur sur sur sur sur sur sur sur sur

res resu u u u               = + + + + −  (10) 

 ,

sur sur sur

n res nu  =  (11) 

where 
sur

  and 
sur

n  are, respectively, the in-plane and out-of-plane components of the 

surface stresses; 
sur

res  is the residual surface stress under unconstrained conditions 

obtained from the atomistic simulation [72]; α and β are the in-plane Cartesian 

coordinates of the lateral surface for the nanobeam; usur is the surface-layer deformation; 

and 
0

sur  and 
0

sur  are the surface elastic constants. 

D b

hz z

y y

n
t

nSurface Layer

t

Bulk Bulk

 

Fig. 1 Beam cross-sections: Beam bulk and surface layer [32-33] 
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5. NANOBEAM-SUBSTRATE MEDIUM INTERACTION 

In the present work, the interaction between the nanobeam and its underlying 

substrate medium shown in Fig. 2(a) is simulated based on the concept of the Winkler 

foundation model [73]. Following this foundation concept, the interactive mechanism of 

the underlying substrate medium is represented by a set of continuously distributed and 

non-interconnected springs attached along the nanobeam length shown in Fig. 2(b). The 

relation between the substrate-medium interactive force Des(x) and the substrate-medium 

deformation Δes(x) is: 

 ( ) ( )es es esD x k x=   (12) 

where kes is the elastic modulus of the substrate medium. 

x

L
Elastic Substrate Medium

( )0,y v x

( )yq x

Surface Layer

Beam-Bulk

4 4,P U
1 1,P U

esk

Beam

( )0,y v x

x

5 5,P U
2 2,P U

 1 2 3 4 5 6

T
P P P P P P=P

 1 2 3 4 5 6

T
U U U U U U=U

Elastic Substrate-Medium Springs

3 3,P U
6 6,P U

 
                         (a)                                                                (b) 

Fig. 2 Typical systems: (a) Nanobeam resting on elastic substrate medium; and (b) Beam-

substrate medium model 

6. REFORMULATED STRAIN-GRADIENT NANOBEAM-SUBSTRATE MEDIUM MODEL 

6.1. Compatibility Conditions and Constitutive Relations 

6.1.1. Beam bulk 

In the case of the planar Euler-Bernoulli beam problem, the transverse displacement 

v0(x,t) serves as a primary variable and is a function of the spatial variable x and the 

temporal variable t since both static and free vibration responses of nanobeam-substrate 

medium systems are of interest.  

Based on the beam kinematics of Eq. (1), non-zero components of the strain εij and 

the strain-gradient measures ijk 
, and χij in Eqs. (6) to (9) are expressed in terms of the 

transverse displacement v0(x,t) as: 

 
2

0

2

( , )
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v x t
x t y

x



= −


 (13) 
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x
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 (14) 
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2
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2
xz zx
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x
 
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
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Substituting the compatibility relations of Eqs. (13) to (16) into the constitutive 

relations of Eqs. (3) to (5), the corresponding non-zero stress components in terms of the 

transverse displacement v0(x,t) are: 

 
2

0
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( , )
( , )xx xx

v x t
x t E y

x

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= −


 (17) 
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x
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=
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2

2 0

2

( , )
( , ) ( , )xz zx m

v x t
m x t m x t l

x



= =


 (20) 

where Exx defines the elastic modulus of the beam bulk. 

6.1.2. Outer surface layer 

For the problem of the planar Euler-Bernoulli beam, the degenerated forms of Eqs. 

(10) and (11) are given by Guo and Mahmoud [57] as: 

 ( , ) ( , )sur sur sur sur

xx res xx xxx t E x t  − =  (21) 

 ( , ) ( , )sur sur sur

nx res nxx t x t  =  (22) 

where ( , )sur

xx x t  denotes the in-plane component of the surface stress and is the conjugate-

work pair of the in-plane component of the surface strain ( , )sur

xx x t ; ( , )sur

nx x t  denotes the 

out-of-plane component of the surface stress and is the conjugate-work pair of the out-of-

plane component of the surface strain ( , )sur

nx x t ; and 0 02sur sur sur

xxE  = +  is the surface-layer 

elastic modulus obtained from two surface elastic constants 0

sur and 
0

sur  [72]. 

Following the beam kinematics of Eq. (1) and the full compatibility of the composite 

nanobeam section of Fig. 1, the in-plane ( , )sur

xx x t  and out-of-plane surface strain ( , )sur

nx x t  

components can be expressed in terms of the transverse displacement v0(x,t) as: 

 
2

0

2

( , )
( , )sur

xx

v x t
x t y

x



= −


 (23) 

 0 ( , )
( , )sur

nx y

v x t
x t n

x



=


 (24) 

where ny defines the y component of the unit vector n normal to the lateral surface of 

beam section as shown in Fig. 1. 
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Substituting Eqs. (23) and (24) into Eqs. (21) and (22), the in-plane ( , )sur

xx x t  and out-

of-plane ( , )sur

nx x t  surface stress components are described in terms of the transverse 

displacement v0(x,t) as: 

 
2

0

2

( , )
( , ) ( , )sur sur sur sur sur

xx res xx xx xx

v x t
x t E x t E y

x
  


− = = −


 (25) 

 0 ( , )
( , ) ( , )sur sur sur sur

nx res nx res y

v x t
x t x t n

x
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
= =


 (26) 

6.1.3. Substrate medium 

Based on the assumption of the Winkler-foundation model [73], the beam and its 

supporting Winkler-spring bed is in a full compatibility condition (Δes(x,t) = v0(x,t)). 

Therefore, the substrate-medium interactive force Des(x) of Eq. (12) can be described in 

terms of the transverse displacement v0(x,t) as: 

 0( , ) ( , ) ( , )es es es esD x t k x t k v x t=  =  (27) 

6.2. Equilibrium Equation: Hamilton’s Principle 

For an isotropic linear elastic material, the stored strain energy U of the nanobeam-

substrate medium system of Fig. 2(a) can be defined as: 

 

2 2
2 2
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-plane component

Surface-induced shear force contribution

 (28) 

where P is the applied axial force; L is the nanobeam length; Г is the beam section 

perimeter; 
A

A dA=   is the sectional area; 
2

A

I y dA=   is the second moment of area; 

2I y d



=   is the second moment of perimeter; and 2

yS n d



=  . 

The first variation of the stored strain energy U of Eq. (28) during the time interval [0, T] is: 
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 (29) 

To remove all differential operators from the virtual transverse displacement δv0(x,t), 

the integration by parts is applied to Eq. (29), thus leading to the following expression: 
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where 2( ) 2H

eff sEI Il=  denotes the higher-order flexural rigidity associated with the strain-

gradient contribution; and 
2 22

( )
3

L sur

eff xx s m xxEI E I Al Al E I  = + + +  denotes the lower-order 

flexural rigidity combining the beam-bulk and surface-layer contributions. 

Based on the kinetic energy expression given by Papargyri-Beskou et al. [55], the first 

variation of the kinetic energy K with the inclusion of the velocity gradient during the 

time interval [0, T] is [30]: 
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(31) 

where ρ represents the nanobeam mass density; and lv defines the material length-scale 

parameter associated with the velocity gradient. It should be noted from the first variation 

of the kinematic energy in Eq. (31) that the beam configurations are prescribed at t = 0 

and t = T, resulting in the vanish of the virtual displacements and its derivatives at t = 0 
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and t = T. Moreover, the mass density ρ over the time interval [0, T] is constant along the 

cross section of the nanobeam [30]. 

The first variation of the external work done W by the transverse distributed load qy(x,t) 

and end forces P shown in Fig. 2(b) during the time interval [0, T] can be defined as: 
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where the displacement vector U = [U1 U2 U3 U4 U5 U6]T collects end displacements of 

the system and the force vector P = [P1 P2 P3 P4 P5 P6]T contains end forces of the system. 

To establish the governing differential equation of motion and its associated boundary 

conditions, Hamilton’s principal is called for. As a result, Eqs. (30), (31), and (32) can be 

written together as: 
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(33) 

Considering the arbitrariness of δv0(x,t) during the time interval [0, T], the governing 

differential equation of motion is unveiled as: 

 

6 4 2

0 0 0
06 4 2

2 4 6 4
2 20 0 0 0

2 2 2 4 2 2 2

( , ) ( , ) ( , )
( ) ( ) ( ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )
2

H L sur

eff eff res es y

v v

v x t v x t v x t
EI EI S P k v x t q x t

x x x

v x t v x t v x t v x t
A l I l

t x t x t x t



 



  
− + − − +

  

      
= − + −   

         

 (34) 

Eq. (34) serves as a fundamental equation for bending, buckling, and free vibration 

analyses of nanobeam-substrate medium systems. It is worth noting that the governing 

differential equation of motion for the reformulated strain-gradient nanobeam proposed 

by Zhang and Gao [30] can be retrieved from Eq. (34) when the surface-energy effect and 

the underlying substrate medium are neglected. 
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Considering the arbitrariness of δv0(x,t) and δU on boundary terms in Eq. (33) provides 

boundary conditions of the nanobeam-substrate medium system as: 

Boundary conditions: 
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 (35) 

6.3. Analytical Solution for Bending Analyses 

When the applied axial force P and the inertia forces are omitted, the governing 

equation for bending analyses of nanobeam-substrate medium systems can be obtained 

from Eq. (34) as: 
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The general solution to Eq. (36) possesses two parts, namely; the homogeneous 

solution 0 ( )hv x  and the particular solution 0 ( )pv x . 

 
0 0 0( ) ( ) ( )h pv x v x v x= +  (37) 

The homogeneous solution 0 ( )hv x  is obtained from Eq. (36) when qy(x) = 0 while the 

particular solution 0 ( )pv x  depends on the transversely distributed load qy(x).  It is noticed 

that the governing differential equilibrium equation of the beam on Kerr-type foundation 

and Eq. (36) are in the same form. Consequently, the following homogeneous solution 

0 ( )hv x  given by Morfidis [74] and Avramidis and Morfidis [75] can be applied to the 

proposed nanobeam-substrate medium model. 

 
0 1 1 2 2 3 3 4 4 5 5 6 6( ) ( ) ( ) ( ) ( ) ( ) ( )hv x x C x C x C x C x C x C     = + + + + +  (38) 

where φ1(x), φ2(x), φ3(x), φ4(x), φ5(x) and φ6(x) are the basic displacement functions 

expressed in Appendix A; and C1, C2, C3, C4, C5 and C6 are constants of integration 

obtained from imposed boundary conditions. 
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6.4. Analytical Solution for Buckling Analyses 

To determine the buckling load capacity of nanobeam-substrate medium systems, the 

transversely distributed load qy(x) and the inertia forces present in Eq. (34) are suppressed. 

Therefore, Eq. (34) becomes: 
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For the sake of conciseness, only the simply-supported nanobeam-substrate medium 

system is considered. The associated classical boundary conditions are defined as: 
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As suggested by Zhang and Gao [30], the non-classical boundary conditions associated 

with the simply-supported nanobeam-substrate medium system are: 
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The following analytical displacement solution for the critical (lowest) buckling load 

is provided by Sae-Long et al. [38] as: 

 0 ( ) sin( )v x A x=  (43) 

where A  is the generalized coordinate and ψ = π/L. 

Substituting Eq. (43) into Eq. (39) and subsequently enforcing the non-trivial condition, 

the critical buckling load proposed

crP  can be gained as: 
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It is worth mentioning that Eq. (44) can provide the critical buckling load obtained 

with either the degenerated strain-gradient model or the modified couple-stress model 

when the associated material length-scale parameter vanishes (lm = 0 or ls = 0). 

Furthermore, the classical Euler’s buckling load of the beam-Winkler foundation system 

can be determined from Eq. (44) when the material length-scale parameters (ls and lm) and 

the surface-layer parameters ( sur

xxE  and sur

res ) vanish. 
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6.5. Analytical Solution for Free-Vibration Analyses 

When the free vibration response of nanobeam-substrate medium systems is of interest, 

the transversely distributed load qy(x,t) and the applied axial force P present in Eq. (34) are 

suppressed. Therefore, the governing differential equation of motion becomes: 
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For the sake of simplicity, only the simply-supported nanobeam-substrate medium 

system is considered in the present study. Classical and non-classical boundary conditions 

of the simply-supported nanobeam-substrate medium system follow those suggested by 

Zhang and Gao [30] as: 

Classical boundary conditions: 
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Non-classical boundary conditions: 
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To determine the analytical solution to Eq. (45), the method of separation of variables 

is called for. The following transverse displacement v0(x,t) suggested by Zhang and Gao 

[30] satisfies all boundary conditions of Eqs. (46) to (48). 
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where ϕn = nπ/L; Vn is the Fourier coefficient; n is the vibration mode; ωn is the natural 

frequency associated with the nth vibration mode; and i is an imaginary number. 

Substituting Eq. (49) into Eq. (45), the natural frequency proposed

n  of the nth vibration 

mode is obtained by enforcing the non-trivial condition (Vn ≠ 0). The resulting explicit 

form of the nth-vibration mode natural frequency is: 
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The natural frequency 
proposed

n  of Eq. (50) becomes identical to the natural frequency 
classical

n  obtained with the local beam-Winkler foundation system when the material 

length-scale parameters (ls, lm, and lv) and the surface-layer parameters (
sur

xxE  and 
sur

res ) 

vanish. Furthermore, Eq. (50) reduces to the explicit form of the natural frequency 

obtained with the reformulated strain-gradient beam model of Zhang and Gao [30] when 

the underlying substrate medium and surface energy are ignored (kes =
sur

xxE =
sur

res = 0). 

7. NUMERICAL SIMULATIONS 

To assess bending, buckling, and free-vibration responses of nanobeam-substrate 

medium systems, three numerical simulations using the proposed model are presented. 

The material properties of the lead nanobeam employed in all simulations are obtained 

from Cuenot et al. [76] and Wan et al. [77] as summarized in Table 1. 

Table 1 Material properties of the lead nanobeam [76-77]. 

Material 

 Bulk  

modulus 

(GPa) 

Poisson’s  

ratio 

Density 

(kg/m3) 

Surface elastic 

modulus 

(nN/nm) 

Residual 

surface stress 

(nN/nm) 

Lead  16 0.4 11,343 8 0.63 

7.1. Simulation I: Bending Responses 

Simulation I focuses on bending responses of the proposed model and considers two 

analysis cases. The first analysis case demonstrates the ability of the proposed model to 

obtain a rational response of the cantilever nanobeam under the pure-bending state while 

the second analysis case assesses the influence of system parameters on the bending 

response of cantilever nanobeam-substrate medium systems. 

7.1.1. Analysis case I 

Fig. 3 shows a lead cantilever nanobeam of length L = 1,000 nm under an end moment 

M0 of 3,000 nN-nm, thus inducing the pure-bending state along the whole length. The 

beam-section shape is square with a dimension h of 100 nm, thus A = 10x103 nm2, I = 

8.333x106 nm4, IГ = 6.667x105 nm3, and SГ = 200 nm. Only the material small-scale effect is 

considered in this analysis case. Therefore, the system parameters associated with the 

underlying substrate medium and the surface energy vanish (kes =
sur

xxE  =
sur

res = 0). This 

cantilever nanobeam is used to demonstrate the capability of the proposed nanobeam model 

in producing the small-scale dependent response under the pure-bending state. It is worth 

remarking that the Eringen nonlocal beam model of Limkatanyu et al. [11] and the 

simplified strain-gradient beam model of Sae-Long et al. [38] fail to represent such a small-

scale dependent response under the pure-bending state. Therefore, the cantilever nanobeam 

of Fig. 3 is also analysed by these two beam models to confirm the ability of the proposed 

model to suppress the paradoxical behaviour. The material length-scale parameters 

associated with the strain-gradient effect and the couple-stress effect are set to be identical 

(ls = lm) and are varied through the following relations: 
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 s
s

h

l
 =   and  m

m
h

l
 =  (51) 

where ξs and ξm are, respectively, the normalized material length-scale parameters 

associated with the strain-gradient effect and the couple-stress effect and range from 0 to 2. 
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Fig. 3 Simulation I: Bending analysis case I 

The transverse-displacement responses associated with all beam models are 

superimposed in Fig. 4. Obviously, the transverse-displacement response obtained with 

the local beam model is identical to those obtained with the Eringen nonlocal beam 

model of Limkatanyu et al. [11] and the simplified strain-gradient beam model of Sae-

Long et al. [38] regardless of their values of material length-scale parameters. This 

observation confirms the inability of these two nanobeam models to represent the 

material small-scale dependency under the pure-bending state as observed in Limkatanyu 

et al. [42]. The peculiar transverse-displacement response obtained with the Eringen 

nonlocal beam model of Limkatanyu et al. [11] stems from the fact that adoption of the 

Eringen nonlocal differential form leads to an ill-posed structural-mechanics problem 

[34, 35, 43]. Employment of the simplified strain-gradient model leads to a well-posed 

structural-mechanics problem [38] and is capable of remedying the well-known paradoxical 

response of a cantilever beam under an end load [42] but fails to represent the small-scale 

dependent response under the pure-bending state. This failure relies on the fact that only 

the axial-strain gradient (∂εxx/∂x) along the beam length is accounted for in the simplified 

strain-gradient beam model of Sae-Long et al. [38]. Nevertheless, the pure-bending state 

induces the constant axial-strain variation along the beam length, thus vanishing the 

axial-strain gradient (∂εxx/∂x = 0). In opposition, the proposed nanobeam model is able to 

represent the material small-scale dependency under pure bending and the obtained 

transverse-displacement responses become stiffer with enlarging values of material 

length-scale parameters. This observation is confirmed with both experimental evidence 

[5, 78] and analytical results [35, 40-43] available in literature. 
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Fig. 4 Transverse displacement versus distance along nanobeam of Simulation I for 

analysis case I 

7.1.2. Analysis case II 

Fig. 5 shows a lead cantilever nanobeam-substrate medium system under an end 

moment M0 of 30,000 nN-nm. Geometric and material properties of this nanobeam 

follow those employed in analysis case I. To assess the influence of underlying substrate 

media and surface-free energy on the bending response, the nanobeam-substrate medium 

system of Fig. 5 is analyzed with various values of the substrate-medium stiffness kes and 

slenderness ratio L/h. Three different beam-bulk constitutive models are employed in this 

analysis case to address the material small-scale effect, namely: (a) the reformulated 

strain-gradient model; (b) the degenerated strain-gradient model; and (c) the modified 

couple-stress model. It is worth mentioning that the reformulated strain-gradient model 

embraces the degenerated strain-gradient model (ls ≠ 0 and lm = 0) as well as the modified 

couple-stress model (lm ≠ 0 and ls = 0). 
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Fig. 5 Simulation I: Bending analysis case II 
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Fig. 6(a) compares the variation of the normalized end displacement / Local

v End Endv v =  

with the non-dimensional substrate-medium stiffness esK  = kesL4/(ExxI) obtained from all 

nanobeam models. The non-dimensional substrate-medium stiffness esK   varies from 1 to 

100 while the beam depth h is kept constant at 100 nm. This range of the non-

dimensional substrate-medium stiffness esK   follows that employed by Demir et al. [18]. 

The normalized material-length scale parameters are kept constant at ξs = 1 and ξm = 1. 

Clearly, the material small-scale effect and the surface-energy effect consistently stiffen 

the system response (ξv < 1) especially for lower values of non-dimensional substrate-

medium stiffness (softer substrate media). Comparison among three nanobeam models 

indicates that the reformulated strain-gradient beam model leads to the stiffest system 

response. This superiority of the system stiffness enhancement relies on the fact that both 

strain-gradient and couple-stress effects are addressed in this beam model and can 

obviously be observed in Eq. (34). Furthermore, Fig. 6(a) points out that the system 

stiffness enhancement associated with the couple-stress effect is more pronounced than 

that associated with the strain-gradient effect. 

Fig. 6(b) shows the variation of the normalized end displacement / Local

v End Endv v =  

with the slenderness ratio L/h obtained from all nanobeam models. Different values of the 

slenderness ratio L/h are employed to reflect the surface-energy effect as well as the 

material small-scale effect, ranging from 1 to 100 (very stubby to very slender beams). A 

specific value of slenderness ratio L/h can be earned by keeping L = 1,000 nm and 

varying h. As provided by Liew et al. [79], a stiffness coefficient of Kes = 95x10-3 nN/nm3 

is selected to represent the underlying substrate medium as polymer. The material length-

scale parameters are kept constant at ls = 100 nm and lm = 100 nm. Fig. 6(b) indicates that 

with increasing beam slenderness ratio L/h, the system stiffness enhancement induced by 

the material small-scale effect and the surface-energy effect becomes more pronounced, 

thus lowering the normalized end displacement / Local

v End Endv v = . It is worth pointing out 

that the normalized material-length scale parameters (ξs and ξm) become larger with 

increasing beam slenderness ratio L/h (decreasing beam depth h), thus magnifying the 

stiffening characteristic induced by the material small-scale effect. Furthermore, 

increasing beam slenderness ratio L/h enlarges the beam surface-area/section-area ratio 

(AS/AB), hence amplifying the stiffness enhancement induced by the surface-energy 

effect. Among three nanobeam models, the reformulated strain-gradient beam model 

consistently provides the largest system stiffness. However, the beam depth h dictates the 

system stiffness obtained with the degenerated strain-gradient model and the modified 

couple-stress model. As shown in the inset of Fig. 6(b), the response obtained with the 

degenerated strain-gradient model is stiffer than that obtained with the modified couple-

stress model when the beam depth h is larger than 100 nm (L/h < 10). As the beam 

becomes thinner (h ≤ 100 nm), the system response associated with the modified couple-

stress model is stiffer than that associated with the degenerated strain-gradient model. 

This observation relies on the fact that the higher-order flexural rigidity ( )H

effEI  of the 

degenerated strain-gradient model provides more contribution to the system stiffness 

when the beam becomes thicker (h > 100 nm). Zhang et al. [80] also noticed a similar 

observation for the reformulated strain-gradient Kirchhoff plate model. 
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Fig. 6 Normalized end displacements with variation of: (a) non-dimensional substrate-

medium stiffness esK  ; and (b) slenderness ratio L/h 

7.2. Simulation II: Buckling Analysis 

The second simulation assesses the influence of system parameters on the critical buckling 

load Pcr of the simply-supported lead nanobeam-substrate medium system shown in Fig. 7. 

Investigated system parameters include the beam depth h, the strain-gradient material 

parameter ls, and the substrate-medium stiffness kes. The couple-stress material parameter lm is 

held constant at 100 nm. The normalized beam-depth parameter h/lm is employed to vary the 

beam depth h and ranges from 0.2 to 4; the normalized material length-scale parameter ls/lm is 

employed to examine the strain-gradient effect and varies from 0.2 to 1.2; and the non-

dimensional substrate-medium stiffness esK = kesL4/ ( )L

effEI  is employed to vary the substrate-

medium stiffness kes and ranges from 1 to 10. 
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Fig. 7 Simulation II: Buckling analysis 

The variation of the normalized buckling load /proposed classical

cr cr crP P =  with all 

aforementioned system parameters is presented in Fig. 8. The “classical” buckling load 
classical

crP  is obtained with the beam-substrate medium model in which the material small-

scale and surface-energy effects are all neglected. Clearly, decreasing beam depth h and 

increasing strain-gradient material parameter ls both magnify the normalized buckling 

load cr , especially for lower values of non-dimensional substrate-medium stiffness esK  

(softer substrate media). However, different degrees of magnification are observed for 
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these two parameters. The buckling-load magnification associated with decreasing beam 

depth h is more pronounced than that associated with increasing strain-gradient material 

parameter ls. It is worth pointing out that decreasing beam depth h results in a larger beam 

surface-area/section-area ratio (AS/AB) and renders the beam thickness smaller when 

compared to the couple-stress material parameter lm. The first one amplifies the system 

stiffening phenomenon induced by the surface-energy effect while the second one 

magnifies the system stiffening phenomenon associated with the couple-stress effect. 
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Fig. 8 Normalized buckling load ξcr with variation of normalized parameters ls/lm and  

h/ lm: (a) esK = 1, (b) esK = 4, (c) esK = 7, and (d) esK = 10  

7.3. Simulation III: Free Vibration Analysis 

The third simulation performs parametric studies on free-vibration responses of the 

simply-supported lead nanobeam-substrate medium system shown in Fig. 9. The material 

and geometric properties of this nanobeam follow those employed in the first and second 

simulations. The mass density of the lead nanobeam is 11,343 kg/m3 as provided in Table 

1. Investigated system parameters include the beam depth h, the velocity-gradient 

material parameter lv, and the substrate-medium stiffness kes. The material length-scale 

parameters are kept constant at ls = 100 nm and lm = 100 nm.  The slenderness ratio L/h is 

employed to vary the beam depth h and ranges from 5 to 100; the normalized velocity-
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gradient material parameter lv/lm is employed to examine the velocity-gradient effect and 

varies from 1 to 20; and the non-dimensional substrate-medium stiffness esK = kesL4/ ( )L

effEI  

is employed to vary the substrate-medium stiffness kes  and ranges from 1 to 10. A given 

value of slenderness ratio L/h can be obtained by keeping L = 1,000 nm and varying h. It 

is worth remarking that the system size-dependency associated with the material small-

scale effect and the surface-energy effect is reflected through the variation of the 

slenderness ratio L/h. 
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Fig. 9 Simulation III: Free vibration analysis 

Fig. 10 shows variations of the normalized natural frequency 
1 1 1/proposed classical  =  

for the first vibration mode (n = 1) with normalized velocity-gradient material parameter 

lv/lm and slenderness ratio L/h for various values of the non-dimensional substrate-

medium stiffness esK . The “classical” natural frequency 1

classical  for the first vibration 

mode is obtained with the beam-substrate medium model in which material small-scale 

and surface-energy effects are both neglected. With decreasing beam depth h (increasing 

slenderness ratio L/h), the normalized natural frequency 
1

  becomes larger, particularly 

for lower values of non-dimensional substrate-medium stiffness esK  (softer substrate 

media) as shown in Fig.10. It is worth mentioning that decreasing beam depth h leads to a 

larger beam surface-area/section-area ratio (AS/AB) and renders the beam thickness 

smaller compared to the material length-scale parameters (ls = 100 nm and lm = 100 nm). 

The first one magnifies the system stiffening phenomenon induced by the surface-energy 

effect while the second one amplifies the system stiffening phenomenon associated with 

the material small-scale effect, thus resulting in a higher natural frequency 
1

proposed . In 

opposition, inclusion of the velocity-gradient effect lowers the system stiffness. The 

normalized natural frequency 1

  reduces with increasing normalized velocity-gradient 

material parameter lv/lm, especially for lower values of non-dimensional substrate-

medium stiffness esK  (softer substrate media). This observation is consistent with that 

made by Zhang and Gao [30] and Yin et al. [54]. However, the system stiffening 

phenomenon associated with the material small-scale effect and the surface-energy effect 

surpasses the system weakening phenomenon associated with the velocity-gradient effect. 

Therefore, the combination of the material small-scale effect, the surface-energy effect, 

and the velocity-gradient effect results in a higher system natural frequency ( 1

 >1.0) for 

specific values of system parameters investigated in the current study. 
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Fig. 10 Normalized natural frequency 1

  with variation of normalized parameter lv/lm  

and slenderness ratio L/h: (a) esK = 1, (b) esK = 4, (c) esK = 7, and (d) esK = 10 

8. SUMMARY AND CONCLUSIONS 

A rational beam-substrate medium model for bending, buckling, and free vibration 

analyses of nanobeams resting on elastic substrate media is proposed in the present work. The 

reformulated strain-gradient theory is employed to consider the beam-bulk material small-

scale effect. The strain-gradient and couple-stress effects are included in the strain energy 

density expression while the velocity-gradient effect is included in the kinetic energy 

expression. The Gurtin-Murdoch surface elasticity theory is used to address the surface-

energy effect. The interaction between the nanobeam and its underlying substrate medium is 

considered through the Winkler-foundation model. To obtain the system governing equation 

and corresponding boundary conditions, Hamilton’s principle is called for. Three numerical 

simulations are presented to characterize the influences of the material small-scale effect, the 

surface-energy effect, and the surrounding substrate medium on bending, buckling, and free 

vibration responses of nanobeam-substrate medium systems.      

The first simulation possesses two analysis cases and emphasizes on bending analyses 

of nanobeam-substrate medium systems. The first one presents the ability of the proposed 

model to address the size dependency under the pure-bending state and shows the 

stiffening bending response associated with the material small-scale effect. The second 
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one shows that the system-stiffness enhancement associated with the material small-scale 

and surface-energy effects is more pronounced when the underlying substrate medium 

becomes softer and the beam becomes more slender.  

The second simulation assesses the combined impacts of material small-scale, surface 

energy, and substrate media on the critical buckling load of a simply-supported nanobeam-

elastic substrate system. It is indicated that the critical buckling load is enhanced by two 

distinct stiffening phenomena. The first one is associated with the material small-scale effect 

while the second one is related to the surface-energy effect. However, these two stiffening 

phenomena are less pronounced when the underlying substrate medium becomes softer.  

The third simulation investigates the combined effects of material small-scale, surface 

energy, and substrate media on the fundamental frequency of a simply-supported 

nanobeam-elastic substrate system. It is found that the material small-scale and surface-

energy effects enhance the system stiffness while the velocity-gradient effect lowers the 

system stiffness, particularly for softer substrate media.  However, the system stiffening 

phenomenon associated with the material small-scale effect and the surface-energy effect 

surpasses the system weakening phenomenon associated with the velocity-gradient effect. 

Therefore, the combination of the material small-scale effect, the surface-energy effect, 

and the velocity-gradient effect results in a higher system natural frequency (
1

 >1.0) for 

specific values of system parameters investigated in the current study.  

The next step in developing the proposed beam model is considering the geometric 

nonlinearity for analyses of the nanobeam system with large displacement. Moreover, the 

material nonlinearity is included into the model and applying the model to assess the 

rational micro/nanobeam structures against the failure scenarios in the future. 
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APPENDIX A 

The general form of the differential equation of Eqs. (36) can be expressed as: 
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where the parameters λ1, λ2, and λ3 are defined as: 
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For the sake of conciseness, the parameters λ1, λ2, and λ3 are rewritten in terms of the 

auxiliary parameters for the expression of the general solution as: 
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The general form of homogeneous solution of Eq. (A.1) can be expressed as: 
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As suggested by Morfidis [74] and Avramidis and Morfidis [75], there are two 

possible homogeneous solutions, which depend on the sign of the parameter Δ as follows: 

Solution Case I: when Δ = α3 + β2 > 0 
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where 
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Solution Case II: when Δ = α3 + β2 < 0 
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