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Abstract. Since real processes usually are not linear, different non-linear mathematical 

models are usually applied for studying their behavior: high order polynomials, power, 

exponential and other functions. In this paper, the application of multiple power functions 

is presented, with and without interactions between the influential factors, in modelling 

various technological problems. The modeling results show that the proper mathematical 

model is selected, one that guarantees high accuracy in the entire experimental space. 

Furthermore, an important conclusion is reached, stating that interactions between the 

influential factors are not of importance in such mathematical models; thus they can be 

neglected. Therefore, it is shown that it is more practical to use the basic mathematical 

model (without interactions) than the expanded mathematical model (with interactions) 
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1. INTRODUCTION

The theory of experimental design represents a qualitatively new approach to the 

theoretical-experimental analysis and optimization of complex processes/systems, with 

universal application and range of advantages in comparison to the concept and practice 

of the one-factor-at-a-time method [1-2]. The theory of experimental design addresses 

management of an experiment, i.e., its preparation and physical realization as well as 

processing and analysis of the experimental results according to the previously 

determined plan, which enables the variations of the influential factors simultaneously on 

various levels, in each of the following series of trials.  

The experimental design was proven as successful method in various fields, which is 

especially evident in complex research objects with a large number of influential factors. 
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The basic characteristics and advantages of the theory of experimental design are as 

follows [1,5,6]: number of trials, successive experiment management, i.e., in stages (step 

by step), from simpler to more complex designs, a simple statistical (regression and 

dispersion) analysis of experimental results, a possibility of qualitative and quantitative 

assessment of effects of each of the influential factors and their interactions on the target 

function, easy optimization of a process/system which is the subject of research, on the 

basis of obtained empirical (regression) model of the target function that encompasses the 

complete experimental space, minimum time and material losses (expenses) for 

experiment realization, elimination of the subjective influence of the researcher, etc. [7]. 

The outline of recommended procedure in the theory of experimental design, as a 

statistical approach in designing and analysing an experiment, include [1-4]: recognition 

and statement of the problem, choice of factors, levels, and range, selection of the 

response variable, choice of experimental design, performing the experiment, statistical 

analysis of the data, and conclusions and recommendations. 

The selection of mathematical model (regression equation), which is used to establish 

a connection between influential factors and target function, depends on the research 

objective, the complexity of the phenomenon under study, the selected experimental 

design, as well as quantity and quality of available information. 

Both theory and practice have shown that in most cases the best choice is a 

mathematical model in the form of polynomials (linear, quasi-linear, square, etc.). More 

complex mathematical models ensure higher accuracy in the prediction of researched 

system behaviour in the selected hyperspace. However, such models also imply a more 

complex experimental procedures, higher expenses, time-consuming analysis and 

interpretation of experimental results etc. On the other hand, the selection of the simplest 

linear mathematical model does not enable an analysis of the factor interactions’ effects; 

various examples undoubtedly show that the factor interactions’ effect on the target 

function can be more significant than that of separate factors. It should also be 

emphasized that it is the case of lower-order factor interactions, since the higher-order 

factor interactions can be neglected. Namely, interactions of many factors, as a rule, do 

not influence the accuracy of the selected mathematical model. 

Various experiments and practical knowledge point to the fact that the mathematical 

models used for the analysis and optimisation of complex processes are those in the form 

of multiple power, exponential, or some other function instead of polynomials. Such 

mathematical models are easily transformed into linear functions (first order 

polynomials). Therefore, the synergy of a complex non-linear mathematical model and 

simple processing and analysis of experimental data is established [8]. 

Upon linearization of the aforementioned functions, a basic mathematical model 

without interactions is obtained. As it was mentioned, the influence of interactions should 

not be rejected a priori. The choice of appropriate criterion for building the mathematical 

model is not often obvious [9-10]. The accuracy of basic non-linear models without 

interactions and expanded non-linear mathematical models with interactions are 

comparatively analyzed on examples given in this paper. 
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2. COMPLEX POWER FUNCTIONS AS MATHEMATICAL MODELS 

Numerous experiments have shown that a successful approximation can be made for 

modelling most diverse technological processes by using a complex power equation [11-

16] in the following form: 
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where Xi (i=1,2,3…k) - influential factors (natural coordinates), C, pi - constants to be 

determined, k - number of factors. 

By using logarithmic form for the Eq. (1) it could be rewritten in a reduced linear 

form: 
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Eq. (2) is represented in coded coordinates. The connection between natural and 

coded coordinates is established through the following transformation equations: 
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According to Eq. (3), coded coordinates take integer values (xi=+1  0  -1). 

For the purposes of dispersion analysis it is necessary to repeat trials at certain points 

in the experimental hyperspace. The systems of trial repetition are as follows: 

1. Repetition for n0 times only in the central point of the experimental design (xi=0); 

2. Uniform repetition for n times in each vertex of an experimental hypercube 

(xi=1); 

3. Non-uniform repetition for nu times in certain vertices of an experimental 

hypercube, or possibly, only in one point. 

It should be emphasised that for such mathematical model the determination of basic 

levels of influential factors is conducted by applying the following relations: 
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After determining the coefficients of linear regression Eq. (2), the unknown constants 

of target function Eq. (1) are calculated using the following formulas: 
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The mathematical model can be expanded by introducing interactions of influential factors, 

when Eq. (2) turns into the quasi-linear form. By introducing transformation equations into this 

equation, one gets the expanded form of power function Eq. (1) in the form: 
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2.1 Selected examples of mathematical models application 

Example I: Modelling of the kerf in plasma arc cutting 

The objective of the plasma cutting process is to concentrate a large amount of energy 

on a small surface of a workpiece which leads to intensive heating of the material surface. 

The source of energy is high temperature and high speed ionized gas. The gas is ionized 

by means of a direct current passing between the cathode (inside the nozzle) and the 

anode (workpiece). The plasma jet cuts the material by releasing the energy spent for the 

plasma gas ionization upon hitting the workpiece surface. The removal of the melted 

material from the cutting zone is done by the plasma jet kinetic energy.  

Even though it is the case of a complex process, which is characterised by a large 

number of influential factors, the previous analysis has shown that this number can be 

reduced to three influential factors (input values, independent variables): cutting current 

(I), cutting speed (V) and material thickness (s) (Table 1). As the target function (output 

value, dependent variable) one of the basic characteristics of the cutting quality is selected 

– kerf (W). Influential factors were varied on two levels. 

Table 1 Cutting factors and their levels 

Cutting factor Symbol Unit 

Factor levels 

Level 1 

(Low)
 

Level 2 

(High)
 

Cutting current I A 45 80 

Material thickness s mm 4 6 

Cutting speed V m/min 0.9 1.3 

For the purpose of this research, a number of experiments were done [17]. The entire 

experiment consists of 25 trials, while 8 measurement results are used for regression 

analysis (Table 2). The main experimental matrix (used for all the examples in this paper) 

is represented by the full factorial design of type 2
3
. Such a design enables the application 

of mathematical models including independent assessment of the main effects, as well as 

all influential factor interactions. 

Straight-line cuts are made in the performed experiment by varying input process 

factors, according to Table 1. Test samples are made of stainless steel X10CrNiMn-16-

10-2 EN designation (EN10025). The experimental research of plasma cutting process is 

conducted on the CNC machine for plasma cutting, type HPm Steel Max 6.25. The given 

data on the kerf represent mean values from obtained 3 measurements. 

For the purposes of using Eqs. (1-6), the following substitution of variables was 

introduced: Fc=W; X1=I; X2=V; X3=s. The need to determine the unknown constant C and 

exponents p1; p2; p3 in this case arises from the basic Eq. (1). 

The regression analysis is conducted, coefficients of the linear mathematical model are 

generated, and thus the regression equation in coded coordinates obtains the following form: 

 1 2 30.62338 0.03463 0.04263 0.008125y x x x     (7a) 
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This equation is easily transformed, in the afore-described manner, into non-linear 

regression equation in natural coordinates: 

 04008.023186.012038.008073.1 sVIW   (7b) 

The kerf increases with the increase in cutting current and material thickness since the 

exponents I and s are positive, whereas the exponent of cutting speed is negative, 

indicating decreasing tendency of kerf, with increasing cutting speed. Eq. (7b) is suitable 

for application in engineering practice. 

By introducing interactions into the Eq. (7a), the quasi-linear regression equation is 

obtained in the form: 
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In the natural coordinates, this regression equation has the form: 
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For the purposes of verification of the generated mathematical models, the results 

from 17 trials are used, otherwise not used for the purposes of regression analysis, as 

shown in Table 3. This experiment confirmation, which contains a great number of trails, 

should contribute to higher reliability of conclusions from the following analysis. 

Table 2 Main experiment 

 I V s Wexp Wcal   

1 80 

(+1) 

1.3 

(+1) 

6 

(+1) 
1.88 

1.8776

1.8655  

0.1277-

0.7713-  
0.1277

0.7713  

2 45 

(-1) 

1.3 

(+1) 

6 

(+1) 
1.75 

1.7507

1.7406  
0.0400

0.5371-  
0.0400

0.5371  

3 80 

(+1) 

0.9 

(-1) 

6 

(+1) 
2.05 

2.0483

2.0315  
0.0829-

-0.9024  
0.0829

0.9024  

4 45 

(-1) 

0.9 

(-1) 

6 

(+1) 
1.86 

8571.1

8955.1  
0.1559-

1.9086  
0.1559

1.9086  

5 80 

(+1) 

1.3 

(+1) 

4 

(-1) 
1.83 

1.8276

1.8354

 

0.1311-

0.2951  
0.1311

0.2951  

6 45 

(-1) 

1.3 

(+1) 

4 

(-1) 
1.70 

1.6989

1.7126  
0.0647-

0.7412  
0.0647

0.7412  

7 80 

(+1) 

0.9 

(-1) 

4 

(-1) 
1.98 

1.9779

1.9987  
0.1061-

0.9444  
0.1061

0.9444  

8 45 

(-1) 

0.9 

(-1) 

4 

(-1) 
1.91 

1.9079

1,8650  
0.1099-

-2.3560  
0.1099-

-2.3560  

Note: Results in the numerator are related to the basic mathematical model, 

while in the denominator is related to the expanded mathematical model 

 

Into Table 2 and Table 3, the calculation results obtained by applying Eq. (7b) and Eq. 

(8b) are also inserted, as well as corresponding errors. 
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The following relations were used for the calculation of errors: 

 For the percentage error () and mean percentage error ( ), 
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 For absolute percentage error () and mean absolute percentage error ( Δ ),  
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where n - the number of trials in the experiment. 

Table 3 Confirmation experiment 

I V s Wexp Wcal   

80 1.025 6 2.02 
1.9862

1.9711  
1.6733-

-2.4208  
1.6733

2.4208  

80 1.075 6 1.96 
1.9640

1.9495  
0.2041

-0.5357  
0.2041

0.5357  

80 1.125 6 1.98 
1.9430

1.9291  
1.8687-

-2.5707  
1.8687

2.5707  

80 1.175 6 1.91 
1.9231

1.9097  
0.6859

-0.0157  
0.6859

0.0157  

80 1.225 6 1.93 
1.9042

1.8913  
1.3368-

-2.0052  
1.3368

2.0052  

80 1.275 6 1.92 
1.8863

1.8739  
1.7552-

-2.4010  
7552.1

2.4010  

80 1.0 4 1.83 
1.9336

1.9505  
5.6612

6.5847  
5.6612

6.5847  

80 1.2 4 1.82 
1.8593

1.8698  
2.1593

2.7363  
2.1593

2.7363  

45 1.0 6 1.81 
1.8259

1.8498  
0.8785

2.1989  
0.8785

2.1989  

45 1.1 6 1.84 
1.7982

1.8094  
2.2717-

-1.6630  
2.2717

1.6630  

45 0.95 4 1.80 
1.8756

1.8418  
4.2000

2.3222  
4.2000

2.3222  

45 1.0 4 1.80 
1.8455

1.8200  
2.5278

1.1111  
2.5278

1.1111  

45 1.05 4 1.72 
1.8173

1.7995  
5.6570

4.6221  
5.6570

4.6221  

45 1.1 4 1.75 
1.7909

 1.7802  
2.3371

1.7257  
2.3371

1.7257  

45 1.15 4 1.67 
1.7659

1.7619  
5.7425

5.5030  
5.7425

5.5030  

45 1.20 4 1.63 
1.7424

1.7446  
6.8957

7.0307  
6.8957

7.0307  

45 1.25 4 1.62 
1.7201

1.7282  
6.1790

6.6790  
6.1790

6.6790  

Note: Results in the numerator are related to the basic mathematical 

model, while in the denominator is related to the expanded mathematical model 

 

Based on the data from Table 2, one can conclude that the calculation errors are 

negligible, regardless whether the basic regression Eq. (7b) or the expanded regression 

Eq. (8b) is applied. As it could have been expected, calculation errors are larger in 

relation to confirmation experiment results (Table 3). 
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Fig. 1 Correlations between the experimental results and results predicted by the generated 

model for the kerf calculation: a.) for basic model, b) for expanded model 

The conformance assessment of the mathematical model prediction with the 

experimental results can also be conducted using the correlation coefficient (R). 

Based on the Fig. 1 it could be concluded that both mathematical models ensure high 

levels of correlation, which are very similar, although not identical. The perfect prediction 

implies that all points should lie on a straight line passing through the origin and inclined 

at 45º. From Fig. 1 one can observe that there is a relatively small deviation of the line of 

regression (which represents the best linear approximation of the data) from the ideal line. 

Table 4 Adequacy assessment criteria of the mathematical models related for the plasma 

cutting process 

Experiment 
Basic mathematical model Expanded mathematical model 

max Δ  R max Δ  R 

Main experiment 2.36 1.06 
0.911 

0.16 0.1 
0.925 

Confirm.experiment 7.03 3.07 6.9 3.06 

 

Taking three criteria (max,  , R) into consideration results in the fact that an 

expanded mathematical model cannot guarantee better prediction for randomly selected 

points within the chosen experimental space (Table 4). 

Example II: Modelling of the thermal stress in the face milling 

Face milling process has periodical characteristics, since the number of teeth in 

contact with material change periodically. Periodical heating and cooling of the teeth is 

very unfavourable, since it itself represents a thermal process.  

In this investigation three influential factors are chosen for modelling the face milling 

process: cutting speed (V), unit feed rate (fz) and depth of cut (a) (Table 5). 
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Table 5 Cutting factors and their levels 

Cutting factor Symbol Unit 

Factor levels 

Level 1 

(Low)
 

Level 2 

(High)
 

Cutting speed V m/s 2.32 3.67 

Unit feed rate fz mm/tooth 0.178 0.280 

Depth of cut a mm 1.00 2.25 

Thermo-electric current (U) is chosen as the target function. Influential factors are 

varied on two levels. A sample of 16 trials is extracted from the literature [18]. One half 

of trials are used for conducting the regression analysis (Table 6), while another half is 

used for the selected mathematical models verification (Table 7). 

Table 6 Main experiment 

V fz a Uexp Ucal   

3.67 

(+1) 

0.28 

(+1) 

2.25 

(+1) 
14.8 8000.14

8188.14  
0000.0

1270.0  
0000.0

1270.0  

2.32 

(-1) 

0.28 

(+1) 

2.25 

(+1) 
13.4 3998.13

3733.13  
0015.0

1993.0



  
0015.0

1993.0  

3.67 

(+1) 

0.18 

(-1) 

2.25 

(+1) 
14.0 0000.14

0413.14  
0000.0

2950.0  
0000.0

2950.0  

2.32 

(-1) 

0.18 

(-1) 

2.25 

(+1) 
12.7 6998.12

6716.12  
0016.0

2236.0



  
0016.0

2236.0  

3.67 

(+1) 

0.28 

(+1) 

1.00 

(-1) 
14.2 2000.14

1413.14  
0000.0

4134.0  
0000.0

4134.0  

2.32 

(-1) 

0.28 

(+1) 

1.00 

(-1) 
12.7 7000.12

7618.12  
0000.0

4866.0  
0000.0

4866.0  

3.67 

(+1) 

0.18 

(-1) 

1.00 

(-1) 
13.4 4001.13

3993.13  
0007.0

0052.0  
0007.0

0052.0  

2.32 

(-1) 

0.18 

(-1) 

1.00 

(-1) 
12.1 1000.12

0922.12  
0000.0

0645.0  
0000.0

0645.0  

Note: Results in the numerator are related to the basic mathematical 

model, while in the denominator is related to the expanded mathematical model 

Test samples are made of steel C 60 DIN designation. The experiment is done on the 

milling machine FS-GVK-3 (Prvomajska). Cutting head JAL G-750 ( 125 mm) with 

hard material inserts SPAN 12 03 ER is used. The metering of the thermo-electric current 

(in mV) is done using thermocouples and heatmeter (Digital Multi-thermometer). The 

metering is done in a few seconds after the beginning of the cutting process, namely in the 

stationary phase of the process. 
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It should be mentioned that in the confirmation experiment the first two trials are 

related to the central point of the experimental design. The other trails are related to the 

experimental points located on the coordinate axes of the experimental design, therefore, 

both models generate the same results. 

Table 7 Confirmation experiment 

V fz a Uexp Ucal   

2.95 0.223 1.0 13.4 
13.3863

13.3863 
0.1022-

-0.1022  
0.1022

0.1022  

2.95 0.223 1.0 13.7 
13.3863

13.3863 
2.2898-

-2.2898  
2.2898

2.2898  

1.83 0.223 1.5 12.1 
12.0805

12.0805 
0.1612-

-0.1612  
0.1612

0.1612  

4.65 0.223 1.5 14.9 
14.8332

14.8332 
0.4483-

-0.4483  
0.4483

0.4483 

2.95 0.142 1.5 12.6 
12.6839

12.6839 
0.6659

0.6659  
0.6659

0.6659  

2.95 0.351 1.5 14.1 
14.1276

14.1276 
0.1957

0.1957  
0.1957

0.1957  

2.95 0.223 0.67 12.8 
12.7742

12.7742 
0.2016-

-0.2016  
0.2016

0.2016  

2.95 0.223 3.37 15.0 
14.0276

14.0276 
6.4827-

-6.4827  
6.4827

6.4827  

Note: Results in the numerator are related to the basic mathematical 

model, while in the denominator is related to the expanded mathematical model 

 

Applying the same methodology as in the previous examples, the following regresion 

equations are generated: 

 for the mathematical model without interactions: 

 321 02340.002695.005132.059423.2 xxxy   (10a) 

 05771.011898.022380.029976.12 afVU z  (10b) 

 for the mathematical model with interactions: 
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 (11a) 

 
)lnlnln06834.0lnln06930.0

lnln07980.0(exp1562.12 04102.011741.023298.0
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z
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 (11b) 

From Eqs. (10) and (11) it is obvious that the thermo-electric current increases with 

the increase of cutting speed, unit feed rate and depth of cut, since exponents V, fz and a 

are positive. The regression equation in the form of Eq. (10b) is suitable for application in 

engineering practice. 

Based on Fig. 2 (which relates to the entire experiment) one can conclude that both 

mathematical models ensure high levels of correlations, which are almost identical. 
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Fig. 2 Correlations between the experimental results and results predicted by the generated 

model for the face milling process: a) for basic model, b) for expanded model 

Taking all criteria into consideration results in the fact that an expanded mathematical 

model cannot guarantee a better prediction for randomly selected points within the entire 

experimental hyperspace (Table 8). 

Table 8 Adequacy assessment criteria of the mathematical models related to the face 

milling process 

Experiment 
Basic mathematical model Expanded mathematical model 

max Δ  R max Δ  R 

Main experiment 0.49 0.23 
0.965 

0.02 0.005 
0.966 

Confirm. experiment 6.48 1.32 6.48 1.32 

3. CONCLUSIONS 

This paper presents the application of non-linear mathematical models for different 

technological process modelling. It is possible to draw the following conclusions from the 

analysis of described example: 

1. The classical theory of experimental design shows that non-linear mathematical 

models in the form of higher-order polynomials ensure a higher accuracy than the linear 

ones. These models, especially models including factors’ interactions, make intricate the 

analysis and interpretation of modeling results. However, non-linear mathematical models 

in the form of complex power functions with interactions do not guarantee higher 

accuracy than the same models without interactions. This is the reason why the 

application of such mathematical models can be justified only in specific cases. 

2. Although non-linear mathematical models without factors’ interactions show lower 

accuracy in the points of experiment than expanded mathematical models, the mean error 

of both models within the entire experimental space is practically identical. 
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3. It is shown that it is more practical and purposeful to use the basic mathematical 

model (without interactions) than the expanded mathematical model (with interactions). 

4. The accuracy of selected mathematical models in this paper is significantly larger in 

experimental points than in other points of experimental hyperspace. 

5. The analogous analysis should indicate whether the same conclusions can be 

reached for other mathematical models of this type. 
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