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Abstract. All mechanical properties of a porous medium depend upon its fractal 

dimensions, however, how to measure the fractal dimensions is still an open issue. This 

paper adopts the two-scale fractal theory to calculate fast and effectively the fractal 

dimensions of a porous concrete. Of the concrete's properties that have been fascinating 

engineers and scientists, by far the most perplexing is the effects of its porosity and pore 

size on concrete's strength. Though there were many ad hoc empirical formulae for 

predicting the strength, much deviation arose for practical applications. Here a 

dimensionless model and the fractal theory are adopted to insight theoretically into the 

effects, and for the first time ever, some physically relative and mathematically reliable 

formulations are proposed. Additionally nano/micro particles’ size and distribution can 

also be used for theoretical prediction of the concrete’s strength, it shows that the 

boundary-induced force occurs when the particles tend to micro/nanoscales. The present 

theory sheds new light on the optimal design of various functional concretes. 

Key words: Two-scale fractal, Geometric potential, Dimensionless analysis, Hall-Petch 

effect, Porosity 

1. INTRODUCTION  

A porous medium always behaves extremely attractively compared to its continuum 

partner, the latter is focus of the continuum mechanics, which has matured into a 

fully-fledged theory, and has laid the foundation for the mechanical engineering, however, 

there is no universal theory for porous problems. Xue and Liu [1] found that a porous 

medium with a hierarchical structure has an excellent heat insulation. Xo, et al. [2] revealed 

the mechanism of heat prevention for cocoon-like hierarchy. Xue, et al. [3] further elucidated 

cocoon's biomechanism using the fractal theory. Hierarchical porous materials are now 
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widely used for high-rate electrochemical capacitive energy storage [4], supercapacitors 

[5] and energy harvesting [6,7]. Nano/micro scale porous membranes have extremely high 

permeability and extremely small pressure drop [8-11], the diffusion process in a porous 

medium (e.g. water) has attracted much attention in the academic community, because the 

seemingly stochastic diffusion process is actually deterministic in a fractal space, making 

the impossible possible [12,13,14]. The vibrating process in air can also be considered in a 

fractal space, and a new discipline, the fractal vibration theory, has been skyrocketing 

[15,16,17].  The fractal theory and the artificial intelligent have been successfully applied 

to investigate the hardness properties of tool steel alloys [18,19,20].  

Some phenomena arising in porous media cannot be explained by continuum mechanics, 

where the smooth space is the footstone. This paper focuses on the most commonly used 

porous material on the Earth, that is the concrete [21,22,23], using the fractal theory [24]. 

2. FRACTAL DIMENSIONS 

All mechanical properties of a continuum medium are relative to its dimensions, for 

example, its volume scales with the cube of the measured size  

 3V r  (1) 

where V is the volume, r is the measured size. Similarly for a porous medium, its volume 

can be written as  

 V r  (2)                                                     

where  is the fractal dimensions. In a fractal space with a fractal dimensionality α, the 

volume is a measurement of the measured size. The relation of the fractal dimensionality α 

and the volume can be expressed in Eq. (2). When α=3, it becomes a continuum, and when 

α=0, it is an empty pore.  

Zuo and Liu elucidated that the mechanical and electrical properties of a composite depend 

upon the fractal dimensions [25], Mandelbrot, et al. revealed that fracture property of 

metals can be effectively explained by the fractal dimensions [26]. Babič, et al. elucidated 

that the fractal dimensions are relative to the material’s surface characteristics and 

mechanical property [18,19,20]. However how to calculate the value of the fractal 

dimensions is a difficult problem, and mathematicians and engineers will be captivated by 

an effective and reliable measurement.  

There are many methods to calculate fractal dimensions, among which the Hausdorff 

dimensions are the most used one, its definition is [24, 26]   

 
ln

ln

N

r
 =  (3) 

where N is new measured units when we measure the fractal pattern using a reduced 1/r 

scale. Taking the Cantor set as an example, when we use a reduced 1/3 scale, we find two 

new units, N=2, so  α=ln2/ln3. 

But for a porous medium, we might know only its porosity, then how to calculate its 

fractal dimensions? We consider a Sierpiński-like porous area as shown in Fig. 1. When the 

porosity is zero, the area is two dimensional; while when the porosity equals to one, the area 
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is zero dimensional, so it is obvious that 0<α<2. The Sierpinski carpet is a pure mathematical 

concept, the first cascade is similar to Fig. 1, however, each unit can continue iteration to 

form a Hausdorff dimensions of α=ln8/ln3 when C=L/3. 

Feng, et al. [27] suggested the following formulation to calculate its fractal dimensions 

 
2 2ln( )

ln

L C

L


−
=  (4) 

where L2 and C2 are the areas of the measured unit and the porosity, respectively.  

 

Fig. 1 A Sierpiński-like porous area 

According to the definition of Eq. (4), we have  

 
2 2

0 0

ln( )
lim lim 2

lnC C

L C

L


→ →

−
= =  (5) 

and  

 
2 2ln( )

lim lim
lnC L C L

L C

L


→ →

−
= → −  (6) 

Though Eq. (5) meets the continuum assumption for a continuous medium, Eq. (6) is 

not physically inconsistent. Kong [28] suggested the following modified one   

 
2 2ln( / 1)

ln( / )

L C

L C


−
=  (7) 

It is interesting to note that most natural materials have fractal dimensions closed to 

1.618, the golden mean [29,30]. The fractal dimensions are also the key factor affecting a 

porous concrete’s properties, Rieu and Sposito suggested the following formulation [31]: 

 pore3min

max

1 ( )
r

r




−
= −  (8) 
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where φ is the porosity, rmin and rmax are the largest and smallest pore radiuses, 

respectively, αpore is the fractal dimensions of the pore space.  

Yu [32] pointed out that Eq. (8) is physically inconsistent, because for a continuum 

medium, we have αpore =0 and φ=0; on the other hand, for the full porosity, αpore =3 and 

φ=1. For the both cases, Eq. (8) gives wrong results. Yu suggested that following one [32]:  

 
3min

max

( ) pore
r

c
r




−
=  (9) 

For a porous concrete, c=1, and Eq. (9) becomes  

 
3min

max

( ) pore
r

r




−
=  (10) 

Eq. (10) is physically consistent and mathematically reliable. But in practical 

applications, we have difficulty in determining rmin and rmax, and its fractal dimensions can 

not be calculated through the porosity.  

In this paper we adopt the two-scale fractal dimensions [33-35], which uses two scales, 

L and C, to measure the area for Fig. 1. When we use the scale of L, any pores with sizes 

less than L are ignored, so the area is L2 with a two-dimensional property; when we 

measure it using a scale of C, its area becomes L2-C2. According to the definition of the 

two-scale fractal dimensions [33-35], we have  

 
2

2 2

2 L

L C
=

−
 (11) 

or 

 
2 2

2

2( )L C

L


−
=  (12) 

For a porous concrete, when using a large scale, we can obtain its volume, V, with a 

three-dimensional property; while if we use a micro scale, the porous structure can be 

found, and the two-scale fractal dimensions for the concrete can be calculated through the 

following relationship [33]:  

 
pore

3

V V

V

−
=  (13) 

where Vpore  is the total volume for pores. The porosity can be expressed as  

 
poreV

V
 =  (14) 

So the two-scale fractal dimensions of the porous concrete can be calculated as 

 3(1 ) = −  (15) 
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The fractal dimensions for the porous space in the concrete can be expressed as  

 3 3pore  = − =  (16) 

The two-scale theory has become an effective tool to various discontinuous problems 

[36-40].  

3. CONCRETE’S STRENGTH VS. FRACTAL DIMENSIONS 

Concrete is a porous material, and the porosity and the pore size significantly affect the 

concrete's properties, especially its strength. There are many empirical formulae to express 

the relationship between the strength and its pore structure. The most famous one is [41, 42, 43] 

 
 0 (1 )mF F = −  (17) 

where F is the concrete's strength, F0 is the strength of its continuum partner with zero 

porosity, m is an empiric constant,  φ is the porosity.  

Eq. (17) reflects only the effect of porosity, and the pore size is not considered. Kumar 

and Bhattacharjee suggested the following one [43] 

 0 1/2

(1 )
F F K

r

−
=  (18) 

where K is a constant, r is the pores' average radius.  

In Eq. (17), the physical understanding of the parameter m lacks, and there is no 

practical criterion for choosing its value. Though Eq. (18) considers the effects of porosity 

and pores' size, the parameter K also lacks its physical meaning. The main problem of Eq. 

(18) is that the parameter K is dimension-related and physically irrelative. We re-write Eq. 

(18) in the form   

 
1/2

0

(1 )F
K

F r

−
=  (19) 

When the porosity φ tends to zero, we have r=0, the concrete becomes a continuum 

medium and Eq. (19) implies that  F/F0 becomes infinitely large instead of F/F0=1,  so this 

is physically irrelative. Furthermore the left side of Eq. (19) is dimensionless, so the 

dimension of K has to be  m1/2. The value of K is different if r uses different dimensions, 

e.g., nanometer or micrometer. In order to resolve this apparent contradiction, the 

dimensionless analysis [44,45] can be powerfully applied, which is the central dogma of 

complex problems. Using the dimensionless analysis, Estrada-Diaz, et al. [44] found a 

useful mathematical formulation for electrospinning, He, et al. [45] established a bond 

stress-slip model for 3-D printed concretes, and Kong [28] found a totally new friction law 

for porous fabrics. According to the dimensionless analysis, Eq. (15) can be modified as  

 0

0

(1 ) ( )a b

dimensionless

m

rF
K

F r
= −  (20) 
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where Kdimensionless  is a material constant,  a and b are constants to be determined later, rm is 

the average radius, r0 is the porosity size of a reference pore, it can be the minimal/maximal 

porosity size. 

Eq. (20) is a dimensionless formula, so it is physically relative and mathematically 

reliable. In order to determine the value of a, we write down the concrete's strength in the 

form 

  
 F A=  (21) 

where   is the stress, A is the contacted section area. Considering the porosity, the whole 

volume can be calculated as  

 0 (1 )V V = −  (22) 

where V0 is the sample's total volume. 

The section area scales approximately with  

 2/3A V  (23) 

So we have  

 2/3 2/3 2/3

0 (1 )dimensionlessA KV K V = = −  (24) 

According to the above relationships, we obtain 

 
2/3 2/3 2/3

0 0(1 ) (1 )dimensionless dimensionlessF K V K F  = − = −  (25) 

where F0 is the strength with zero porosity.  

If we have the section's area porosity, p, the actual area can be written as  

 
0= (1 )A A p−  (26) 

where A0 is the section area when p=0. 

Eq. (21) becomes  

 
0 (1 )F A p= −  (27) 

According to Eq. (23), the area porosity and the volume porosity have the following 

approximate relationship 

 
2/3(1 ) (1 )p −  −  (28) 

After a simple calculation, we have  

 
2/3

0 0(1 ) (1 )dimensionless dimensionlessF K A p K F = − = −  (29) 

which is the same as Eq. (25).  

  According to the above analysis, the value of m in Eq. (17) and a in Eq. (20) should be 

approximately 2/3. Eq. (17) should be corrected as  

 
2/3

0 (1 )dimensionlessF K F = −  (30) 
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In Ref. [42], m=8.15, this large deviation is due to the ignorance of the effect of pores' 

size. When the pores' size tends to micro/nano scales, the size effect [46] becomes 

enormous. Now we correct Eq. (20) as  

 2/3 0

0

(1 ) ( )b

dimensionless

m

rF
K

F r
= −  (31) 

To understand the parameter b, we explain the size effect [46] through the geometric 

potential theory [47]. When the pores' size tends to nano/micro scales, high surface energy 

(geometric potential) [47] can be produced. The geometric potential theory assumes that 

any surface produces a boundary-induced force, and it can explain many complex 

phenomena, for examples, Fangzhu's absorption of water molecules from the air [48,49],  

the nanofiber's wetting [47], and the cell orientation [50].  

In order to use the geometric potential theory [47], we modify Eq. (31) in the form  

 2/3 0

0

(1 ) ( )b

particle

m

RF
K

F R
= −  (32) 

where Kparticle is a geometrical parameter, Rm is the average radius of the particles in the 

concrete, R0 is the reference size. The geometric potential of particles can produce a surface 

force [47]: 

 
m

d
f

dR


= −  (33) 

where Π is the geometric potential produced by the particles. Generally, it can be expressed 

as [47]  

 
1

( )mR 
   (34) 

where β is the geometrical parameter. For a sphere like the Sun, β=1, which leads to 

Newton's gravity.  

The concrete's strength due to nano/micro particles can be expressed as   

 
( )

particle

b

m

K
F

R
  (35) 

where  b=β+1.  Generally b=1/2 for the qualitative analysis as that in Hall-Petch effect 

[51]. 

 
2/3 1/20

0

(1 ) ( )particle

m

RF
K

F R
= −  (36) 

Generally we have Rm scales with rm, so Eq. (36) can be expressed as Model I: 

 
2/3 1/20

0

(1 ) ( )dimensionless

m

rF
K

F r
= −  (37) 
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Using the experimental data given in Ref. [43], Kdimensionless  and  r0 in Eq. (37) can be 

identified, and finally for the studied concrete of Ref. [43], we have  

 2/3 1/2

0

1
52. (

3.
9 1 ) ( )

64

m

F

F r
= −  (38) 

Fig. 2 shows the comparison between the theoretical prediction of Eq. (38) and 

experimental data given in Ref. [43], and a relative agreement is seen. The deviation arises 

in various factors, the main factor is the pore size distribution because, in our theory 

analysis, only average pore size is considered.  

 

Fig. 2 Comparison between the theoretical prediction of Eq. (38) and experimental data 

given in Ref. [43] 

As discussed above, b=1/2 is only used for the qualitative analysis. To understand the 

parameter b, the fractal theory has to be adopted.  

As the concrete's strength is reflected by the contacted area, in a fractal space, the area 

and the volume have the following scaling relationship:  

 ( 1)/A V  −  (39) 

When α=3, we have the well-known 2/3 scaling law: 

 2/3A V  (40) 

For a 4-dimensional space, we have 

 3/4A V  (41) 

This 3/4 scaling law plays an important role in life science [52].  

In a fractal space, Eq. (39) holds exactly, and Eq. (23) is approximate one, so Eq. (37) 

can be further improved as  Model II: 
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 ( 1)/ 1/20

0

(1 ) ( )
m

rF
K

F r

 

  −= −  (42) 

where Kα is a geometric parameter, α=3(1-φ). 

Using the experimental data given in Ref. [43] to determine Kα and r0 in Eq. (42), we 

have  

 ( 1)/ 1/2

0

19.47
44.0(1 ) ( )

m

F

F r

  −= −  (43) 

Fig. 3 shows the comparison between the theoretical prediction of Eq. (43) and 

experimental data given in Ref. [43].  

 

Fig. 3 Comparison between the theoretical prediction of Eq. (43) and experimental data 

given in Ref. [43]. 

We write the concrete's strength in the form 

 
2/3

0 0

1 1
( ) (1 ) ( )c d c c d

particle particle

m m

F K V K F V
R R

 −= = −  (44) 

where Kparticle is a geometrical constant, c and d are constants. According to the 

dimensionless analysis, the following equation should be satisfied:  

 
2

3( ) 0
3

c d− − =  (45) 
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So we have Model III: 

 2/3 (3 2)

0

0

1
(1 ) ( ) , 2 / 3c c c

particle

m

F
K V c

F R
− −= −   (46) 

and 

 2/3 (3 2)

0

0

1
(1 ) ( ) , 2 / 3c c c

pore

m

F
K V c

F R
− −= −   (47) 

Eq. (46) or Eq. (47) reveals that the concrete's strength depends also upon its volume. 

Using the experimental data given in Ref. [43], we have approximately the following 

formulation: 

 
40.798

0

0.391
136.2(1 ) ( )

m

F

F r
= −  (48) 

Fig. 4 shows the comparison between the theoretical prediction of Eq. (48) and 

experimental data given in Ref. [43].  

  

Fig. 4 Comparison between the theoretical prediction of Eq. (47) and experimental data 

given in Ref. [43]. 
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Table 1 Comparison of our two models with experimental data [43]

 
Porosity 

(%) 

Average pore 

radius (nm) 

Strength 

(MPa) 

K-B model[43] 

 (MPa) 

Model I  

(MPa) 

Model II  

 (MPa) 

Model III   

(MPa) 

12.96 34.3 18.3 30.3 30.4 30.4 30.1 

11.93 38.7 28.4 28.9 28.9 28.8 29.0 

10.87 58.7 26.8 23.7 23.6 23.6 24.8 

11.1 41.3 22.7 28.2 28.1 28.1 28.4 

13.53 42.3 21.5 27.1 27.3 27.3 27.6 

12.75 26.6 27.5 34.5 34.6 34.6 33.4 

10.8 39.3 29.7 29.0 28.9 28.8 29.1 

10.83 52.9 26.8 25.0 24.9 24.8 25.9 

11.8 45.8 30.3 26.6 26.6 26.5 27.1 

11.22 31.2 35.3 32.4 32.3 32.3 31.7 

11.5 30.4 40.3 32.7 32.7 32.6 32.0 

9.26 28.1 43.2 34.9 34.6 34.4 33.7 

10.38 41.9 38.7 28.2 28.1 28.0 28.5 

16.55 34.2 28.3 29.1 29.6 29.8 29.1 

9.5 23 42.5 38.5 38.1 38.0 36.4 

9.63 30.3 39.3 33.5 33.2 33.1 32.6 

33.7 146.9 14.2 11.2 12.3 13.1 13.6 

33.14 126.7 16.4 12.1 13.3 14.1 14.5 

11.22 41.6 15.5 28.1 28.0 27.9 28.3 

12.04 35.4 24 30.2 30.2 30.1 30.0 

11.39 71.3 23.2 21.4 21.4 21.3 22.9 

12.23 31.2 14.9 32.1 32.1 32.1 31.5 

15.37 49.6 13.6 24.5 24.8 24.9 25.4 

12.01 30.5 23.7 32.5 32.5 32.5 31.8 

10.38 47.5 25.7 26.5 26.4 26.3 27.1 

10.4 68.3 23.9 22.1 22.0 21.9 23.5 

11.3 43 30.7 27.6 27.5 27.5 27.9 

13.55 45 33.8 26.3 26.4 26.5 26.9 

11.85 29.3 37.7 33.2 33.2 33.2 32.4 

9.9 36.9 35.4 30.3 30.0 29.9 30.1 

9.92 43.6 28.8 27.8 27.6 27.5 28.1 

13.31 36.9 24.2 29.1 29.3 29.3 29.1 

9.28 35 36.2 31.3 31.0 30.9 30.9 

9.54 35.9 36.3 30.8 30.5 30.4 30.5 

33.6 122.1 17.7 12.3 13.5 14.3 14.7 

31.7 109.7 19.6 13.3 14.5 15.3 15.7 

Fig. 4 and Table 1 show the deviation of Eq. (48) becomes much less than those of Eq. 

(38) and Eq. (43), showing the reliability of our theoretical model given in Eq. (47).  

4. DISCUSSION AND CONCLUSIONS  

If data for the porosity size is segmented, the following one can be considered:  

 
2/3 0

0

1

(1 ) ( ) i

N
i

r i

i im

r
F K F a

r


=

= −  , 
1

1
N

i

i

a
=

=  (49) 
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where rim is the i-th segment’s average radius, ri0  is the i-th segment’s reference radius, 

which can be the segment’s largest radius, ai is the weighting factor.  

If the pores are distributed continuously, then we have   

 
max

min

2/3 0

0 1

( )
(1 )

n
r

nr

r
F KF dr

r


+
= −    (50) 

This paper suggests some conformable formulations for estimating the strength of a 

porous concrete, making it applicable to various cases, and shedding new light on the 

optimal design of the porous concrete with a given strength. In our theory, particles’ size 

distribution might be useful for practical applications.   

Though our mathematical dimensionless model is mathematically correct and physically 

relevant, experimental verification is very much needed in future, and the fractal-fractional 

calculus [53,54] can be used for dynamical analysis of the porous concrete.  
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