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Abstract. The current research studies a fractal Duffing oscillator in the presence of 

periodic force. To find an analytic solution for this oscillator, the aspects explained in 

the following are considered. First, we obtain an alternative unforced fractal fourth-

order equation and then convert it into a continuous space. Therefore, the non-

perturbative (NP) approach is used to calculate the analytic solution for the alternate 

equation in the second-order form after reducing its rank. It is seen that the analytical 

and numerical solutions agree very well. The computations reveal that for every value of 

the fraction parameter, the approximation and numerical solutions are identical. The 

present study gives reliability in the technique of reducing the order of differential 

equations. Furthermore, the required periodic solution is also obtained by Galerkin’s 

technique. In contrast to the traditional technique, which works to transform the variable 

and is valid only in the absence of external forces, if there is an external force, it leads 

to significant mathematical difficulties. The current technique works on the operator, 

which is simple and effective when investigating fractal oscillators with external forces, 

easy to obtain analytic solutions, and doesn't lead to any mathematical difficulties. 
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1. INTRODUCTION 

Fractals have been a fascinating characteristic of many natural occurrences since the 

seventeenth century, and they have a significant impact on a wide range of applications 

[1,2]. Fractals have been widely applied in many fields, such as fluid mechanics,  materials 

design, and petroleum engineering, as well as in other engineering problems to describe 

and express them clearly and effectively [3,4]. This also appears clearly in the application 

of the theory of fractals in the investigation within the branched networks to study thermal 

conductivity [5,6]. For the electrical and mechanical properties of composite materials, the 

fractal approach offers straightforward and effective tools [7]. Moreover, the fractal 

rheological models provide a fast physical understanding of the rheological characteristics 

of the fluids [8]. 

Due to its numerous large-scale applications for modeling a variety of phenomena that 

emerge in most domains, the idea of two-scale fractals theory has recently drawn 

significant attention from scientists [9]. Where this theory enables each problem to be 

observed on two different scales, one of which is related to a continuous problem and the 

other to a discrete problem. The hidden qualities of a polymer procedure that cannot be 

exposed by other models can be determined using the fractal two-phase flow model [10-

12]. He et al. [13] used a novel fractal vibration architecture model using the two-scale 

fractals theory. Anjum et al. [14,15] also investigate two different fractional models with 

two-scale for population expansion and tsunami waves, respectively. 

An interesting topic in mechanical engineering sciences and physics is nonlinear 

oscillations. One of the most well-liked nonlinear oscillators in engineering, physics, and 

biology was first introduced in 1918 by the German electrical engineer "Georg Duffing". 

Since then, Duffing oscillators have been widely applied in nature. Using a traditional 

perturbation method, Nayfeh and Mook derived a periodic solution for the Duffing 

oscillator, which simulates a nonlinear structural vibration. Moreover, Nayfeh used the 

multiple-scale methodology to produce a periodic analytical solution for a Duffing oscillator 

in the presence of a damping coefficient [16]. The homotopy perturbation technique was later 

developed by renowned Chinese scientist Ji-Huan He [17] and utilized in several engineering 

and physics investigations to determine analytical solutions for the Duffing oscillator and 

other mechanical vibrations. On the other hand, recent years have seen an increase in interest 

in mechanical engineering applications for fractal oscillators, as a subfield of vibration 

theory. Wang [18] used a novel frequency formulation to study a fractal nonlinear oscillator. 

The same author also found an analytical solution for a fractal nonlinear oscillator in [19] by 

employing the effective He's frequency formulation. Further, Wang and Wei [20] have 

presented a newfangled, straightforward, and effective frequency formula to deal with fractal 

nonlinear oscillators. Also, two approximate solutions for the fractal Yao-Cheng and Duffing 

oscillators have been introduced in [21-23], built on the harmonic balance and antiquated 

Chinese approaches. 

Since the solution of systems related to the study of fractal oscillators plays an important 

and useful role in describing and explaining many phenomena that occur on irregular 

boundaries or in porous media. Essentially, it is usually impossible to find exact solutions for 

these nonlinear oscillators. As a result, mathematicians have been developing different 

analytical methods to solve this type of nonlinear fractal problem, such as using extended 

approximation approaches. The most prominent of these methods are perturbation and multiple-

scale techniques [16]. Sheng et al. [24] have presented a fractal model for a shale matrix 
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using a multi-scale porous structure. Miao et al. [25] investigated another fractal model for 

a fractured porous medium. Furthermore, other fractal models for describing the gas flow 

inside microfractures in layers of rocks in the depths of the oceans and underground have 

been mentioned in the literature [26-28]. On the other hand, Yang et al. [29] used the local 

fractional differential transform approach to get the precise solutions in a fractal heat 

transfer. Additionally, several efforts have been established to analyze these phenomena 

using the non-perturbative method. By using the non-perturbative method, El-Dib and 

Elgazery [30,31]  established a practical method for solving fractal models with damping 

forces. On the other hand for more relevant works focusing on different methods and models in 

the literature, the semi-analytical technique is one of the methods that play an important 

role in finding solutions of physical problems [32,33]. Furthermore, for some numerical 

solutions see sinc-Bernoulli collocation procedure [34]. 

Fractal oscillators have recently attracted more attention in mechanical engineering and 

physics. Despite this, all previous studies depended on a classical technique that works to 

transform the variable. This traditional technique is limited only by the absence of external 

forces. Here it should be noted that there were some timid attempts to deal with fractal 

oscillators under external forces, such as the attempt of Elías-Zúñiga et al. [35], where they 

faced many mathematical difficulties. Regarding our new technique, it is a different and 

distinct technique from its predecessor, as it works on the operator. It is also simple and 

effective when investigating fractal oscillators with external forces, easy to obtain analytic 

solutions, and doesn't lead to any mathematical difficulties.  

The aforementioned factors serve as an inspiration for this investigation goal, which is 

to look into the fractal Duffing oscillator in the presence of a periodic force via the non-

perturbative technique. As opposed to earlier works, with direct handling of the operator, 

the present technique is simple to deal with forced fractal problems and easy to obtain 

analytic solutions. 

2. PROBLEM STATEMENT 

Indeed, Ji-Huan He’s publications [36,37] aiming to formulate the oscillation frequency 

have considered the conservative nonlinear oscillator: 

 ( ) 0; (0) and (0) 0u f u u A u+ = = =  (1) 

Here, f(u) represents the nonlinear restoring force, u is the displacement, and A is a 

constant. 

In the mentioned publications, Ji-Huan He has used the function f (u) to established the 

oscillation frequency 2(), where  is the total frequency, in the form 

 2

1

2

( )
( ) lim

u A

df u

du


→

 =  (2) 

This formula has been well worked for the cubic polynomial of the function f (u) provided 

that this function does not contain the velocity �̇� or ü and the combination of them. For 

these shortcomings, the superior and most effective formula was developed by El-Dib [38], 

and it can be used to produce successive approximations to the solutions for non-linear 
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oscillations [39]. It is better to elongate this method to equations having damping forces 

such that  

 ( ) ( , , ) 0u g u u f u u u u+ + =  (3) 

If   is the total frequency to the above oscillator then it useful to write 

 2( ) ( ) 0u u u +  +  =  (4) 

The following procedure is used to estimate () and 2(): 

The comparison of Eqs. (3) and (4) leads to the following error:  

 2 2( , ) ( ( , , ) ) ( ) ( ( ) ) ( )E f u u u u t g u u t= − + −     (5) 

The mean square error is defined as 

 ( )
2

2 2 2

0
( , ) ( ( , , ) ) ( ) ( ( ) ) ( ) ;

2

T

E f u u u u t g u u t dt T= − + − =


   


 (6) 

The minimum value requires that    

 
2

2 2 2 2

2 2 0
(( ( , , ) ) ( ) 2( ( , , ) )( ( ) ) ) 0

( ) ( )

TdE d
f u u u u t f u u u g u uu dt

d d
= − + − − =   

 
 (7) 

 
2

2 2 2

0
(( ( ) ) ( ) 2( ( , , ) )( ( ) ) ) 0

TdE d
g u u t f u u u g u uu dt

d d
= − + − − =   

 
 (8) 

By suitable introducing trial solution in terms of the total frequency , the simplification 

leads to 

 
2 2 2

0 0
( ) ( ) ( , , ) 0

T T

u t dt u t f u u u dt − =   (9) 

 
2 2

0 0
( ) ( ) ( ) 0

T T

u t dt u t g u dt − =   (10) 

Solving both Eq. (9) and Eq. (10) yields 

 

2

2 0

2

0

( ) ( , , )

( )

( )

T

T

u t f u u u dt

u t dt

  =





 (11) 

 

2

0

2

0

( ) ( )
( )

( )

T

T

u t g u dt

u t dt
  =




 (12) 

Performing the aforementioned integrals gives the equivalent damping coefficient and the 

equivalent conservative frequency.   
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3. THE FRACTAL FORCED DUFFING EQUATION 

Ineffective modelling of the system is a major obstacle for a nonlinear oscillation 

system in the fractal space. Particularly, the distribution of the periodic property's effect 

cannot be explained by differential equation models. In order to do this, the current work 

develops a fractal-differential model, and a forced fractal Duffing oscillator is used as an 

example to show the fundamental characteristics of the fractal oscillator subjected to 

harmonic force. Whereas a lot of research articles focused on a simple oscillation in fractal 

space [40-42], this work investigates a more generalized fractal vibration system that is 

modeled by the form: 

 2 3

02
cos ; 0 1

du
u qu t

dt 
  + + =     (13) 

Here, , , q, , and  are the non-zero coefficients, fractal factor, vibration natural 

frequency, Duffing coefficient, parametric force, and amplitude, respectively.  

Assuming that the initial conditions are described as 

 
(0)

(0) , 0
du

u A
dt

= =  (14) 

The fractal theory has grown in importance in both mathematics and mechanical engineering 

because it is useful in developing a governing equation in a fractal environment. There are 

numerous definitions for the fractional derivatives. Most definitions often used ones include 

Riemann-Liouville, Caputo, Xiao-Jun Yang, and Jumarie for further justification see [43-45]. 

The He's fractal derivative is defined as [7, 46, 47]: 

 
0

0

00

( ) ( )
(1 )

( )t t t
t

u t u td u
Lim

dt t t



 


− →
 

−
=  +

−
 (15) 

In this case, the fractal factor  runs along the t dimension. If we see a motion on a vast 

size, it might alter continuously, but if we observe it on a tiny scale, it might discontinue. 

As a result, the fractal theory is an effective mathematical instrument for conducting more 

thorough global research. Moreover, this fractal derivative exhibits some of the following 

characteristics [48-50]: 

 
0 1 2

, and
→ → →

= = =
du du du

Lim u Lim u Lim u
dt dt dt    

 (16) 

Here the over-dot refers to the time classical derivative.  

The fractal derivative given in Eq. (15) has widely been used to deal with porous or 

hierarchical structures [46-50] with great success. If we see a motion on a vast size, it might 

alter continuously, but if we observe it on a tiny scale, it might discontinue. As a result, the 

fractal theory is an effective mathematical instrument for conducting more thorough global 

research. The technique of creating mathematical models and the geometric physical 

interpretation of fractal derivatives were discussed in [51].  

Defining the restoring force f (u) in the current problem as 

 2 3

0( )f u u qu= +  (17) 
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Accordingly, Eq. (13) can be written as 

 
2

( ) cos
du

f u t
dt 

+ =   (18) 

Operating 
𝑑

𝑑𝑡𝛼  on Eq. (18) one time and 
𝑑

𝑑𝑡2𝛼  another time gives 

 
3

( ) cos
du d d

f u t
dt dt dt  

+ =   (19) 

 
4 2 2

( )
cos

du df u d
t

dt dt dt  
+ =   (20) 

To estimate 
𝑑

𝑑𝑡𝛼 cos Ω𝑡 and 
𝑑

𝑑𝑡2𝛼 cos Ω𝑡 one may apply the following fractal derivative 

proposed by El-Dib and Elgazery [30,31]: 

 11 1
2 2

..
( cos( ) sin( ) ) ..n

n

d
S S D

dt

−= + 


   (21) 

Therefore, one gets 

 11 1
2 2

cos
cos( )cos sin( ) sin

d t
S t S t

dt

−
=  −   


   (22) 

 2 2 2 2

2

cos
( )( ( ) )cos 2 ( ) ( ) sin

d t
b a t a b t

dt


= −   −  


     (23) 

Here, a()
 
and b() are described by 

 11 1

2 2
( ) cot( ) and ( ) sin( )a S b S −= =      (24) 

Employing Eqs. (22) and (23) into Eqs. (19) and (20) by using Eq. (18) yields 

11 1 1
2 2 23 2

cos( ) ( ) cos( ) ( ) sin( )sin
du du d

S f u S f u S t
dt dt dt

−− + − = −    

  
     (25) 

 ( )2 2 2 2

4 2 2

( )
( ) ( ) ( ) 2 ( ) ( )sin

du df u du
b a f u a b t

dt dt dt  
    

 
+ − −  + = −   

 
 (26) 

Removing sin t
 
between Eqs. (25) and (26) yields  

 ( ) ( )2 2 21

24 3 2 2
2 cos ( ) ( ) ( ) 0

du du df du df
S b a f u

dt dt dt dt dt



    
  

   
− + + +  + + =   

   
 (27) 

This is the alternative form of the forced fractal Eq. (18) in the form of a fractal fourth-

order equation. This equation is subject to the following initial conditions: 

 1

22 3

(0 ) (0 ) (0 )
(0 ) , 0 , ( ), cos( )

du du du
u A f A S

dt dt dt
= = = − = −

  
  

  
    (28) 
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To convert Eq. (27) and its corresponding initial conditions given in Eq. (28) into 

continuous space, the transformation given in Eq. (21) may be used. Therefore, with some 

simplifications, one gets 

 4 3 2 2 2 2 2

2

1
( ) 2 ( ) ( )( ) ( ) ( ) 0a D u a a D u b a a D u D f u

b
+ − + + +  + +  + =  (29) 

The operator D represents the derivative corresponding to the variable t. Thus, Eq. (29) is 

a nonlinear fourth-order equation free of the variable coefficients  

    

(4) (3) 2 2 2 2 2 2 3 2 2

2

4 2 2 3 2 2 2 2

02

2 ( ) 2 ( ( ) ) ( 6 3 )

1
( ( ) ) 0

q
u au b a u a b a a u u u u u u

b

a b a b a u
b

+ + +  + +  − +  + +

+ − + +  +  =

 (30) 

This is the alternative form of the forced fractal Duffing Eq. (13) in continuous space. Also, 

the alternative initial conditions in the continuous space are performed in the form  

 

( ) ( )

2

2

3

2

1
(0) , (0) ( ), (0) ( ( )) ( ) ,

( )

( )
0 ( ) 4 3 ( )

( )

u A u Aa u f A a A
b

a
u a A f A

b


= = − = − + 



= − − −


  



 



 (31) 

It is noteworthy, if the initial velocity is not zero such that u(0) =A and 
𝑑𝑢(0)

𝑑𝑡𝛼 = 𝐵, the 

present approach has a good applicable so the application of the formula given in Eq.  (9) 

to the fractal initial condition has the form  

 11 1
2 2

(0)
cos( ) (0) sin( ) (0)

du
S u S u

dt

−= + 


   (32) 

Employing the non-zero initial conditions yields that �̇�(0) =
𝐵

𝑆𝛼−1𝑠𝑖𝑛(
𝝅𝛂

2
)

− 𝐴 𝑆 𝑐𝑜𝑡 (
𝝅𝛂

2
) 

and u(0)=A. Therefore, as 𝐵 → 0  the converted initial conditions given in Eq. (31) will 

arises. 

In the transformation given in Eq. (21), the fractal parameter S could be estimated by 

comparing between the linear frequency given in Eq. (30) with the linear one of the fractal 

Eq. (27). This comparison shows that 

 
3 2 2 2 2 4

4 20 0

2 2

( ) (1 )
0

( 1) ( 1)

b b b
a a

b b b b

 −  −
+ + =

− −

 
 (33) 

Here, b() ≠ 1 is considered, unless  = 1. Employing the definition of a()
 
given in Eq. 

(24) in the above equation yields 

 

2 1
2 2 2 2 4 2 2 2 2 2 42

0 0 0

tan ( )
( ) ( ) ( ) 4(1 ) (1 )

2 ( 1)
S b b b b b b

b b
  = −  +  − + −  −
  −


    (34) 
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It is worthwhile to observe that the applied frequency  can be sought in terms of the 

fractal order . This can be read from Eq. (33) to have 

 
2 2 2 2 2

2 0

3 2 2 4

0

( ( 1) )
( )

(1 )

b b a b a

b a b

− −
 =

+ −





 (35) 

The trial solution for the nonlinear fourth-order Eq. (30) may be suggested in the form 

 0 1 2 3 4( ) cos sin cos3 sin3u t k t k t k t k t   = + + +  (36) 

Here,  represents the oscillation frequency and the constant coefficients k’s can be 

estimated by using the initial conditions given in Eq. (31). Consequently,  

 

2 2 2

1 2 2

2 2 2 2

2 2 3

2 2 2

3 2 2

2 2 2 2

4 2 3

1
( ( ( ) 9 )),

8

(4 ( 3 ( ) 9 )),
8

1
( ( ( ) )),

8

(4 ( 3 ( ) ))
24

k A a f A b
b

a
k A a b f A b

b

k A a f A b
b

a
k A a b f A b

b


= + − + 




= − + − + 


= − + − +


= + − +



 


 


 


 


 (37) 

Since the original system is a second-order derivative, the fourth-order derivative in Eq. 

(30) is artificial and should be reduced to the second-order one. In addition to reducing 

rank of Eq. (29) to the second-order form, our goal is to construct a linearizing form for it. 

The linearizing method can be used to achieve this goal. The following process may be 

suggested [52]: 

Rearranged Eq. (30) in the form 

 (4) (3) 2 2 2( , , ) 2 ( ( ) ) ( , ) 0g u u u u a b a a u F u u u+ + − + =  (38) 

The above two functions g and F are defined as 

 

(4) (3) (4) (3) 2 2 2

2

4 2 2 3 2 2 2 2 2 2 2

02 2

1 3
( , , ) 2 ( ) ,

1
( , ) ( ( ) ) ( 6 )

q
g u u u u au b a u u u

u b

q
F u u a b a b a u u

b b

 
= + + +  +  

 

= − + +  +  +  +




 (39) 

Apply Caughey’s linearized approach [53] to Eq. (38) with considered the suggested trial 

solution given in Eq. (36) yields  

 2 2 2

0 1( ) 2 ( ( ) ) ( ) 0u a b a a u u+ +  − + =     (40) 

Here, 0 ()
 
and 1 ()

 
are estimated using the following formula proposed by El-Dib [38]  
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(4) (3) 2

0 0 0 0

0
0

2

0

0

( , , ) ( )
2

( ) ;

( )

T

T

g u u u u t dt

T

u t dt

= =






 


 (41) 

 

2

0 0 0

0
1

2

0

0

( ) ( , )

( )

( )

T

T

u t F u u dt

u t dt

=





   (42) 

The results of the above integrals are straightforward in their calculations and are available 

from the corresponding author. 

      It should be noticed that Eq. (40) can be expressed in the following manner: 

 22 ( ) ( ) 0u u u   + + =  (43) 

Here, the coefficients  ()
 
and 2() are constants functions of the frequency  given by 

 
2 2 2

0

( ( ) )
( )

( )

a b a a+  −
= 

 
 (44) 

 2 1

0

( )
( )

( )

 
 

 
=  (45) 

Eq.  (43) is a linear second-order equation having a damping force. The damping force 

is characterized by the coefficient  (). The solution of Eq.  (43) has a damping behavior 

unless  is equal unity. More damping behavior is found as  having a greater decrease than 

unity [30,31,54]. The solution that covers this behavior is performed in the following form:  

 ( )
1 2 3 4( ) ( cos sin cos3 sin3 )

t
u t e k t k t k t k t

−
= + + +

 
     (46) 

The above solution is obtained due to applying the normal form technique. In this approach, 

the frequency  has the form 

 2 2 2( ) ( )    = −  (47) 

4. NUMERICAL ESTIMATION 

The numerical solution of the original forced fractal nonlinear oscillator given in Eq. 

(13) at → 1 and analytical solution given in Eq. (46) were compared and shown in Fig. 1 

for the system having A = 0
 
=1, q =  =0.01, and =10. The relative error is estimated in 

this calculation to be 0.1331 which reveals that the two solutions were in accord. Further, 

the comparison of the analytical solution given in Eq. (46) of the second-order Eq. (43) 

with the numerical solution of the fourth-order Eq. (30) has been displayed in Fig. 2 for the 

case of  is close to unity. The system that is used in these calculations has A = 0
 
=1, q = 

 =0.01, and =10. The relative error is estimated in this calculation to be 0.006445 which 
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demonstrates that the analytical and numerical solutions are in good accord with one 

another. It is noted that the periodic solution is revealed in this calculation. This behavior 

is expected because → 1 the fractal parameter a() should tend to zero. Consequently, 

the damping forces in both Eq.  (30) and Eq. (43) will disappear. The damping behavior 

will appear due to the fractional order  decreasing away the unity as shown in Fig. 3. In 

the graph of Fig. 3 consequent values  are considered and collected together with the case 

of   1. The agreement between the numerical solution and the analytical solution is still 

observed even when the value of  decreases from one to zero. The comparison shows that 

the damping behavior increases with decreasing in . In a word, the computations revealed 

that for every value of the fraction parameter, the approximation and numerical solutions 

are identical. From the above figures, the present study gives reliability to the technique of 

reducing the order of differential equations. This makes us think that the alternative 

equation can be handled, discussed, and then the solutions can be used as a reliable indicator. 

 

Fig. 1 Comparison of the numerical solution of the original forced fractal nonlinear oscillator 

given in Eq. (13) with the analytical solution given in Eq. (46) at  is very close to 

unity for the system having A = 0
 
=1, q =  =0.01, and =10 

 

Fig. 2 Comparison of the analytical solution given in Eq. (46) with the numerical one of Eq. 

(30) in the case of at → 1 for the system having A = 0
 
=1, q =  =0.01, and =10 
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Fig. 3 Represents to the influence of the variation in  on the comparison of the analytical 

solution given in Eq. (46) with the numerical one of Eq. (30) for A = 0
 
=1, q =  = 

0.01, and  = 10 

In Figs. 4-6 the examinations are done for the amplitude and the frequency of the applied 

periodic force. For this purpose, the fractional order is held at  = . The calculations are 

used in the same system as given in Fig.  2, with alternative values of the parameters  and . 

It is noted that the relative error is 0.1189 when  =0.1, see Fig.  4, but this error becomes 

0.3281 as  =0.2 shown in Fig. 5. Therefore, when comparing Fig. 4 with Fig. 5, it becomes 

clear that small delta values make the solution more accurate than larger values. When  is 

held at  =0.1 with changes in  from 7 to 10 as observed in Fig. 6, the relative error has 

increased for the case of large values of . Hence, the comparison between Figs. 4 and 6 

means that the increase in  leads to improving the accuracy of the solution.  It should be 

noted that one of the most important features of these calculations is that the fourth-order 

equation can be reduced to a second-order one via the non-perturbative approach. 

 

Fig. 4 The relative error due to the comparison of the analytical solution given in Eq. (46) 

with the numerical one of Eq. (30) for A = 0
 
=1, q =0.01,  = 0.1,  = 0.9, and  = 7 
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Fig. 5 The relative error due to the comparison of the analytical solution given in Eq. (46) 

with the numerical one of Eq. (30) for A = 0
 
=1, q =0.01,  = 0.2,  = 0.9, and  = 7 

 

Fig. 6 The relative error due to the comparison of the analytical solution given in Eq. (46) 

with the numerical one of Eq. (30) for A = 0
 
=1, q =0.01,  = 0.1,  = 0.9, and  = 10 

5. PERIODIC SOLUTION 

On the other side, the periodic solution of Eq. (43) can be established, for a non-zero 

coefficient (). In this case, the frequency  will recall �̂� which is assumed to cover the 

periodic solution. To accomplish this periodic solution, Galerkin’s technique may be applied to 

establish the frequency �̂�. To construct the residual function R(�̂�;t), one can insert the 

suggested solution given in Eq. (36) into Eq. (43), which gives 

 

2 2 2 2

1 2 2 1

2 2 2 2

3 4 4 3

ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ; ) (( ) 2 )cos (( ) 2 )sin

ˆ ˆ ˆ ˆ ˆ ˆ(( 9 ) 6 )cos3 (( 9 ) 6 )sin3

R t k k t k k t

k k t k k t

= − + + − −

+ − + + − −

        

        
 (48) 

To estimate the total frequency �̂�, one may apply the following Galerkin’s formula: 

 ( )
0

ˆ ˆ ˆ ˆ ˆ( ; ) cos sin cos3 sin 3 0
T

R t t t t t dt    + + + =  (49) 
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Using the definitions given in Eq. (37) and the residual given in Eq. (48), the above integral 

leads to the following frequency equation: 

 4 3 2

4 3 2 0
ˆ ˆ ˆ 0c c c c  + + + =  (50) 

Here, the coefficients c’s are listed below: 

2

4

2 4 2 2 2 2 2

3 0

4 2 2 2 2 2 4 2 2 3 2

2 0 0

4 2 2 2 2 2

0 0

ˆ9 ( 2 ( ))

ˆ ˆ12( 2 ( ) ( ))

ˆ ˆ(9 9 12 13 ) ( ) 6( ) ( ) 3

ˆ(3 3 4 ) ( )

c Ab a

c a A A q A Aab Ab

c a A q A Ab a A A q A Aa b

c a A q A Aa b

= −


= + − − − + 


= + − − + + − − − 


= + − − 

 

     

       

   

 (51) 

Given the real roots of the frequency in Eq. (50), the periodic solution of Eq.  (43) can be 

obtained in the form 

 1 2 3 4
ˆ ˆ ˆ ˆ( ) cos sin cos3 sin3u t k t k t k t k t   = + + +  (52) 

Numerical illustration for the current state is shown in the Figs. 7-12. The calculations 

are made for the periodic solution given in Eq. (52) where the frequency �̂� is estimated 

from the frequency Eq. (50). It is noted that the coefficients k’s are depend on the frequency 

�̂� as defined by Eq. (37). The numerical system that is considered in these calculations is 

A = 0
 
=1, q =  =0.1, and =3 with the variation of the fractal order . In Fig. 7, the 

smooth periodic curve is observed when the fractal order has the value  = 0.9. The 

periodic curve due to  = 0.8 that lies in Fig. 8 appears similar to the case of the first 

successive solution in [39]. This behavior of the periodic solution has been affected by 

decreasing in the fractal order as shown in Figs. 9-12. 

 

Fig. 7 Representation of the periodic solution given in Eq. (52) for a system having A = 0
 

=1, q =  = 0.1,  = 0.9, and  = 3 
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Fig. 8 Representation of the periodic solution given in Eq. (52) for A = 0

 
=1, q =  = 0.1, 

 = 0.9, and  = 3 

 
Fig. 9 Representation of the periodic solution given in Eq. (52) for A = 0

 
=1, q =  = 0.1, 

 = 0.7, and  = 3 

 

Fig. 10 Representation of the periodic solution given in Eq. (52) for A = 0
 
=1, q =  = 0.1, 

 = 0.5, and  = 3 
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Fig. 11 Representation of the periodic solution given in Eq. (52) for A = 0
 
=1, q =  = 

0.1,  = 0.3, and  = 3 

 

Fig. 12 Representation of the periodic solution given in Eq. (52) for A = 0
 
=1, q =  = 

0.1,  = 0.1, and  = 3 

6. CONCLUSIONS  

A fractal Duffing oscillator with periodic force was investigated in the current work. 

Ultimately, the present conclusion observations are summarized as follows: 

▪ By using the rank upgrade technique, an alternative unforced fractal fourth-order 

equation was obtained and converted to its traditional derivative form in the 

continuous space. 

▪ After reducing its rank, the non-perturbative approach was used to calculate the 

analytic solution for the alternate equation in the second-order form. 

▪ It is seen that the analytical and numerical solutions agree quite well. 

▪ The computations revealed that for every value of the fraction parameter , the 

approximation and numerical solutions are identical. 

▪ 
𝑑

𝑑𝑡𝛼 cos Ω𝑡 and 
𝑑

𝑑𝑡2𝛼 cos Ω𝑡 was estimated, which is considered a new result that can 

be used in future works. 
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▪ The rank upgrade/reducing technique was introduced as a reliable approach to 

overcome difficulties. 

▪ The present study gives reliability in the technique of reducing the order of differential 

equations. 

▪ One of the most important features of these calculations lies in the fact that a fourth-

order equation can be reduced to a second-order one via the non-perturbative 

approach. 

▪ Galerkin's method was also used to find the required periodic solution. 

▪ Decreasing the fractal order has an impact on the behaviour of periodic solution. 

▪ In contrast to the traditional technique, which worked to transform the variable and 

was valid only in the absence of external forces, if there was an external force, it 

leads to great mathematical difficulties. The current technique works on the 

operator, which is simple and effective when fractal oscillators with external forces 

are investigated, it is easy to obtain analytic solutions, and the technique doesn't 

lead to any mathematical difficulties. 
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