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Abstract. The quadratic assignment problem (QAP) is an NP-hard problem with a wide 

range of applications in many real-world applications. This study introduces a discrete 

rat swarm optimizer (DRSO)algorithm for the first time as a solution to the QAP and 

demonstrates its effectiveness in terms of solution quality and computational efficiency. 

To address the combinatorial nature of the QAP, a mapping strategy is introduced to 

convert real values into discrete values, and mathematical operators are redefined to 

make then suitable for combinatorial problems. Additionally, a solution quality 

improvement strategy based on local search heuristics such as 2-opt and 3-opt is 

proposed. Simulations with test instances from the QAPLIB test library validate the 

effectiveness of the DRSO algorithm, and statistical analysis using the Wilcoxon 

parametric test confirms its performance. Comparative analysis with other algorithms 

demonstrates the superior performance of DRSO in terms of solution quality, 

convergence speed, and deviation from the best-known values, making it a promising 

approach for solving the QAP. 
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1. INTRODUCTION 

The quadratic assignment problem (QAP) is a typical combinatorial optimization 

problem and also an NP-hard problem. Since 1957, when Koopmans and Beckmann [1] 

first presented the quadratic assignment problem as a combinatorial optimization problem, 

it has attracted much attention and research from researchers in mathematics, computer 

science, and many other applications. On the one hand, quadratic assignment problems are 

widely used in practice, and many real-world problems can be formalized as quadratic 

assignment problems, such as integrated circuit wiring [2-3], factory location layout [4], 

typewriter keyboard design, task scheduling [5-6], etc. On the other hand, some classical 

NP-hard combinatorial optimization problems, such as the traveling salesman problem, the 

triangulation problem, and the Max Clique problem, can also be transformed into quadratic 

assignment problems [7-11]. 

Therefore, it is of great theoretical and practical importance to find an efficient algorithm to 

solve the quadratic assignment problem. Traditional methods for solving quadratic assignment 

problems can be divided into two categories: exact algorithms and approximate algorithms. 

Exact algorithms are able to find the global optimal solution, but the time required 

increases sharply with the size of the problem and is not suitable for practical applications.  

Approximate algorithms trade accuracy for time, seeking to find a feasible solution as 

close as possible to the optimal solution in a reasonable amount of computation time.  

Heuristics, as typical approximation algorithms, suffer from poor adaptability and as 

soon as the problem configuration changes, the original method is no longer superior.  

The potential of the problem is such that the model has to be redesigned. Moreover, for 

large-scale complex problems, traditional methods can lead to a "combinatorial explosion", 

as the problem size increases, and the temporal and spatial complexity of the computation 

grows exponentially.  

Therefore, it is still difficult to design efficient algorithms to solve quadratic assignment 

problems.  

In recent years, with the rapid development of computer science, the evolution of 

artificial intelligence technologies, and the simulation techniques of nature and predators, 

a number of new methods have emerged to solve combinatorial optimization problems 

using the modeling of predator’s behaviors in nature, such as hunting, attacking, quarreling, 

and foraging, as well as their prey, thus providing a new way of thinking to solve quadratic 

assignment problems. 

We distinguish several heuristics and metaheuristics inspired by nature and predator 

behavior [12-16], physics [17-21], humans [22-23], and evolutionary [24-28]. Moreover, 

these nature-inspired heuristics and metaheuristics have shown promising results in 

tackling complex real-world problems, spanning various domains such as logistics, 

transportation, network design, and scheduling, by mimicking the efficient and adaptive 

strategies observed in nature and predator-prey interactions, these methods offer innovative 

approaches to address combinatorial optimization problems with improved efficiency and 

effectiveness. The fusion of computer science and natural processes opens up exciting 

possibilities for the advancement of optimization techniques, paving the way for more 

sophisticated and intelligent problem-solving paradigms in the future. As researchers 

continue to explore and refine these nature-inspired approaches, we can anticipate significant 

advancements in solving quadratic assignment problems and other optimization challenges. 
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Fig. 1 The best-known metaheuristics 

In this paper, we propose a new optimizer based on the hunting and attacking behavior 

of rats in the wild. 

Rats are a species of predator known for their intelligence, they participate in group 

activities such as hunting and attacking prey. These behaviors will be defined 

mathematically to create an intelligent and robust optimizer capable of solving more than 

38 continuous and nonlinear [16] optimization problems. 

This optimizer could give excellent results in solving continuous optimization problems, 

which are better than most of the known metaheuristics in this context and also in solving the 

famous discrete traveling salesman problem [29].  

In this paper, we will introduce another version to solve the discrete combinatorial 

optimization problem by redefining the mathematical operators of this optimizer with 

discrete Maurice Clerc [30] operators, and we will add other strategies to improve the 

solutions and exploit and explore the discrete search space of the quadratic assignment 

problem to minimize the total cost of the assignment. 

The motivation and benefits of choosing this optimization are: 

▪ The algorithm has a small number of operators compared to other artificial 

intelligence-based algorithms. 

▪ This AI-based algorithm can access information from the entire search space 
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and is simple to implement. 

▪ The algorithm has fewer parameters, which reduces its storage requirements 

and complexity. 

▪ The algorithm maintains a good balance between exploration and exploitation 

during the search process. 

▪ The algorithm has been shown to be effective at solving 38 continuous and 

linear problems. 

▪ The algorithm was able to solve the well-known discrete traveling salesperson 

problem and performed well. 
The main contributions of this work are presented as follows: 

▪ This study introduces the DRSO algorithm for the first time as a solution to 

the QAP. 

▪ The study proposes a mapping strategy to convert real values into discrete 

values to address the combinatorial nature of the QAP. 

▪ The study redefines mathematical operators to solve combinatorial and 

discrete optimization problems, specifically the QAP. 

▪ The study proposes a solution quality improvement strategy based on local 

search heuristics such as 2-opt and 3-opt. 

▪ The effectiveness of the proposed algorithm is demonstrated through 

simulations and comparisons of test instances from the QAPLIB test library. 

▪ The study proposes a statistical analysis using the Wilcoxon parametric test 

to validate the performance of the proposed algorithm. 
The organization of the remaining sections of this paper is as follows: Section 2 presents 

related work. Section 3 presents the Quadratic Assignment Problem (QAP). Section 4 presents 

the presentation of the rat swarm optimizer algorithm and mathematical behavior modeling. 

Section 5 presents the proposed discrete RSO algorithm and its modification for solving the 

QAP. Section 6 presents the computer results and analysis, including a Wilcoxon validation 

test. Finally, in the final section, the concluding remarks and suggestions for future work are 

presented. 

2. RELATED WORK 

In recent years, the solution of combinatorial optimization problems by metaheuristics 

has undergone a great evolution. Metaheuristics have undergone a great evolution, which 

can be summarized by the speed of development of metaheuristic algorithms thanks to the 

evolution of the capacities of computing machines.  This evolution has allowed, on the one 

hand, to measure the impact of the search for methods on the problems and, on the other 

hand, it has had a vision of the result of the methods in a reduced time, especially for the 

future where the time to find a solution has become more and more requested.  

However, the development of metaheuristics can be seen in the appearance of recent 

methods from different sources of inspiration, such as the algorithm of the hunting 

mechanism of owls [31] and that of the hunting of anteaters [32], the algorithm of symbiotic 

interaction strategies adopted by organisms to survive and propagate in the ecosystem [33], 

the algorithm of searching for squirrels [34], and the phenomenon of food storage in crows 
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[35]. The appearance of heuristics does not indicate the absence or inefficiency of previous 

methods, but their interest in appearing is mainly based on a logic of intensification and 

diversification different from the other methods. 

 Each algorithm has its own search characteristics that are different from the others, this 

produces a large variety of metaheuristics. 

Metaheuristics are usually presented in the continuous or discrete case, and the majority 

are presented in the continuous case to solve benchmarks of a continuous function form. 

However, in our research case, which is interested in solving combinatorial problems to 

measure the quality of methods in the face of real problems, it is obvious to migrate to the 

aspect of finding a continuous algorithm in a combinatorial computational environment 

that does not admit real type values. This migration of an algorithm is known by the 

adaptation of the algorithm for the combinatorial case, which leads to indicating a logical 

formula to convey the search strategy of intensification and diversification in the 

combinatorial environment.  

Each new adaptation is applied to the richness of the combinatorial optimization 

problems in order to be compared to existing heuristic methods. 
For example, in the case of solving the quadratic assignment problem, we have seen a 

great evolution of metaheuristics to solve it, for example PeSOA [36], which is based on a 
population of penguins, and with random probability, or DCSO [37], discrete cat swarm 
optimization, which is a metaheuristic method based on the natural behavior of cats. The 
SSO swallow swarm optimization algorithm [38] is a bio-inspired algorithm based on the 
behavior of swarms of swallows, The harmony search algorithm [39] inspired by the 
analogy to music. 

In this study, we will present the RSO algorithm as a swarm intelligence algorithm that 
bases its behavior on attacking and arguing when searching for prey. This approach was 
originally created to improve continuous functions. This algorithm has been compared to 
seven continuous algorithms. In fact, the algorithm shows good efficiency when applied to 
solve various continuous optimization problems. 

Implementing and improving the original algorithm to address various challenges. In 
order to efficiently optimize the traveling salesman problem, Mzili, and Riffi added 
additional heuristics of mechanisms to this method, to improve the local search capability 
to ensure efficient exploitation of the search space and escape local minima. 

In what follows, we will redefine this optimizer to solve the quadratic assignment 
problem by taking up these mathematical operators and search mechanisms. 

3. QUADRATIC ASSIGNMENT PROBLEM (QAP) 

The Quadratic Assignment Problem (QAP) is a mathematical optimization model that 

was introduced in 1957 by Koopmans and Beckman [1]. It was originally developed to 

model a plant location problem, and its objective is to find the optimal location of a set of 

plants taking into account their interactions and distances with other plants. 

Since its introduction, the QAP has become a well-known problem in the literature, as 

it has been studied in a number of research contexts. This is because the QAP presents a 

generic case that can be applied to other problems. 

In the QAP, the data is presented in the form of matrices, the first flow matrix is F=(fi,j), 

where (fi,j) is the measure of independence between plant 𝑖 and plant 𝑗, the second matrix 
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denotes the address of the premises D=(di,j) to which the factories can be assigned, where 

di,j represents the distance between premises i and premises j. 

Formally, in a QAP problem of size 𝑛, i.e., assigning 𝑛 factories in 𝑛 location, with 

F=(fi,j)  and D=(di,j) are the flow and distance matrices, its solution amounts to optimizing 

the following function: 

▪ Sets N={1,2,3,…, n}  

▪ Sn= Ø : N → M  represents the set of all permutations. 

▪ Parameters 

▪ F=(fi,j) Matrix of flow between facilities i and j 

▪ D=(di,j) Matrix of the distance between locations i and j. 

 𝑴𝒊𝒏 ∅ ∈ 𝑺𝒏 ∑ ∑ 𝒇𝒊,𝒋 × 𝒅∅(𝒊)∅(𝒋)
𝒏
𝒋

𝒏
𝒊=𝟏   (1) 

A permutation, where i is the place to which facility i is assigned, is used to indicate 

the assignment of facilities to locations. The cost of assigning facility i to location Ø(i) and 

facility j to location Ø(j) equals the cost of each individual product fi,j × dØ(j) Ø(j). 

The solution is a permutation Ø of n elements of the search space; each element Ø(i) 

indicates the location of the proposed assignment for plant 𝑖 in the assignment  Ø. The 

interest is to find the permutation Ø(i) that minimizes the objective function. For each 

problem of size 𝑛, the number of possible permutations is 𝑛! e.g., for a problem of size 10 

the number of possible solutions is 3628800, as the size of increases, the computational 

time increases in parallel, which presents complexity in this NP-hard classified problem 

[40]. However, QAP has a variety of applications in real life, for example [41] have applied 

QAP in a university campus, the interest is to find the ideal allocation of buildings to 

decrease the traffic of steps in the campus.  

Another example is [42] to use the same concept to find an assignment of blocks of different 

departments of a hospital to decrease the patient's route, another use presented by [43] the 

detection of the right places to install the services of a city such as supermarkets and police 

stations. QAP could be applied not on geometric assignment problems but on any kind of 

assignment, for example the problem of assigning electronic components on computer panels, 

the objective is to reduce the total length of cabling used for interconnecting components. 

Example: 

Consider the possibility of an installation location issue with four installations (4 

emplacements). The following illustration depicts a potential impact: Installation 2 is 

affected at position 1, Installation 1 is affected at position 2, Installation 4 i s affected 

at position 3, and Installation 3 is affected at position 4. This impact can be written as 

the permutation p=2,1,4,3, which denotes that installations 2 and 1 are both affected 

at position 1, installations 4 and 3 are both affected at position 3, and installations 4 

and 3 are both affected at position 4.  
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Fig. 2 Facility location problem with four facilities 

Tables 1 and 2 provide descriptions of the distances between facilities and the necessary 

flows between facilities. These distance values are essential for computing the assignment 

cost of the permutation, as they help determine the overall cost associated with different 

facility assignments for the given problem. 

Table 1 The movements between facilities 

Facility i Facility j Flow (i,j) 

1 2 3 

1 4 2 

2 4 1 

3 4 1 

Table 2 Distances between sites 

Location i Location j Distance (i,j) 

1 3 53 

2 1 22 

2 3 40 

3 4 55 

The assignment cost of the permutation may then be calculated using the formula: 

Function_objective=flow(1,2)×distance(2,1)+flow(1,4)×distance(2,3)+flow(2,4)×dis

tance(1,3)+flow(3,4)×distance(3,4)= 322+240+153+455. 

The Quadratic Assignment Problem (QAP) can be used to optimize the layout of a 

manufacturing facility by assigning different machines or processes to different locations 

in the facility in a way that minimizes the total cost of the assignment. 

To use the QAP for the installation of machines in a manufacturing facility, you would 

need to define the set of facilities (machines) and the set of locations (available positions 

in the facility) and specify the cost matrix C that represents the cost of assigning each 

machine to each location. The cost matrix can include various factors that contribute to the 

total cost of the assignment, such as the distance between locations, the setup time or 

changeover time between different products, and the capacity or output of the machines. 
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It is important to note that the QAP is a combinatorial optimization problem and is 

known to be NP-hard, meaning that it is computationally difficult to solve optimally. 

Therefore, it may be necessary to use approximate solutions or heuristics to find a good, 

but not necessarily optimal, solution to the problem. 

4. RSO ALGORITHM 

The rat swarm optimization algorithm is a nature-inspired metaheuristic that mimics 

the hunting and attacking behavior of a group of rats. This algorithm is based on the 

collective intelligence of rats and their ability to adapt to their environment. To model this 

behavior, the algorithm uses a population of "rats" that move through a search space. Each 

rat has a certain position, which determines its movement in the search space. The rats are 

also assigned a fitness value, which indicates their probability of finding a solution to the 

problem at hand. The rats in the swarm are able to communicate with each other and share 

information about their position and fitness value. This allows them to collaborate and 

search for the optimal solution to the problem. When a rat finds a good solution, it becomes 

a "leader" and the other rats follow it, which increases the chances of finding a better 

solution. Rats also exhibit "offensive" behavior, that is, they aggressively search for 

solutions in areas of the search space that have not yet been explored. This combination of 

collaborative and aggressive search behavior allows the rat swarm optimization algorithm 

to efficiently explore the search space and find good solutions to complex optimization 

problems. Rats are social predators that prefer to live in groups and perform their many 

tasks together, including hunting, attacking, and foraging. 

The two behaviors that serve as the basis for this bio-inspired algorithm are: 

Hunting behavior: in which rats hunt their prey in packs. To locate the prey, the group 

members designate a captain each time they think they have located it, and they follow 

him. However, each time they change captains, they cover the entire area.  

The behavior of dispute with the prey: in order to hunt their prey, the rats enter into 

dispute with these last ones, this dispute can cause in several cases the death of certain rats 

which can translate to the cancellation of a certain solution. 

4.1.  Mathematical and logical modeling of behavior 

This section explains the chasing and fighting behavior of rats. 

▪ Prey Pursuit: 

Rats typically hunt their prey in packs due to their agonistic social behavior, which 

makes them sociable. We assume that the finest searcher knows the location of the prey in 

order to define this behavior quantitatively. The best searcher found so far can be updated 

by other searchers. The following equations are proposed to model this mechanism: 

 𝐿𝑜𝑐 = 𝛿 × 𝐿𝑜𝑐𝑖 + 𝛽 × (𝑙𝑜𝑐𝐵𝑒𝑠𝑡 − 𝑙𝑜𝑐𝑖)   (2) 

Here, locBest is the best optimal solution and loci specifies the locations of the rats, while  

the parameters δ and β are determined as follows: 

 𝛿 = 𝜃 − 𝜌 (
𝜃

𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
) , 1 ≤ 𝜃 ≤ 5, 𝜌 = 1,2,3, … , 𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛  (3) 
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Therefore, the two parameters δ and β are sensitive to good exploration and exploitation 

throughout the iteration, while δ and β are random values between [1, 5] and [0, 2]. 

▪ combating a prey 

In many cases, the chase ends with the death of some rats. The following equation was 

presented as a mathematical definition of this process: 

 𝐿𝑜𝑐𝑖+1 = |𝐿𝑜𝑐𝐵𝑒𝑠𝑡 − 𝐿𝑜𝑐𝑖|  (4) 

Where Loci+1 specifies the rat's next updated position. The best solution is preserved, 

and the positions of the other search agents in relation to the best search agent are updated. 

In general, the execution steps of the standard RSO algorithm are presented as follows: 

Algorithm 1: Basic Discrete RSO 

Output: Optimal solution  

Input: The initial rat population P,  

Initialize RSO parameters: A, C, and R. 

Initialize the rat's population Pi where i = 1, 2  

Now, calculate the fitness value of each search agent. 

Choose the best agent fitness value PBest. 

while (k < MaxIteration) do  

for each agent search do  

                Update the positions of current search agents using Equation (4)  

end for  

Update RSO parameters: A, C, and R.  

Check whether any search agent goes beyond the boundary limit 

of the search space and then amend it.  

Calculate the fitness of each search agent.  

Update PBest if there is a better solution than the previous optimal 

solution.  

k ← k + 1.  

end while 

Return PBest 

 5. PROPOSED DISCRETE RSO ALGORITHM FOR QAP 

The Quadratic Assignment Problem (QAP) is a mathematical optimization problem that 

involves finding the optimal placement of a set of machines in a manufacturing facility. 

Standard rat swarm optimization (RSO) is a continuous optimization method that is used 

to optimize continuous nonlinear functions, but it cannot be used to directly solve discrete 

problems. To address this, a modified version of RSO, called discrete rat swarm 

optimization (DRSO), has been developed to solve discrete combinatorial problems, 

including the QAP. In order to apply DRSO to the QAP, the fundamental equations of RSO 

must be modified to include position representation, position update equations, and RSO 

parameters and operators. Additionally, neighborhood search techniques are often used in 

DRSO to improve the quality of the solution for combinatorial problems. One such 

technique is the 2-exchange neighborhood function, which is appropriate for use in QAPs. 
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This function involves exchanging the positions of two machines in the current solution 

and evaluating the resulting sum of distances between the facilities and the machines. If 

the sum of distances is improved, the new solution is accepted as the current solution. By 

utilizing the 2-exchange neighborhood function, the DRSO algorithm is able to effectively 

search for the optimal solution to the QAP by making small changes to the current solution 

and evaluating the resulting improvement in the sum of distances. This allows the algorithm 

to find a high-quality solution to the QAP in a relatively short amount of time. 

The subsection that follows will go into further information about this function. 

i. Update position 

The rat swarm optimization algorithm simulates the movement of virtual rats in an n-

dimensional search space (where n is the size of the problem) according to the location 

described in the basic RSO algorithm. As the rat’s search for the optimal solution to the 

problem, they tend to move towards the best solution found so far, updating their positions 

(Pi) at each time step (t). During the search process, some rats may be eliminated due to 

conflicts with other rats. 

In the context of the Quadratic Assignment Problem (QAP), each rat represents a 

potential solution and locBest represents the best solution found by the ith rat. This solution 

represents the optimal placement of the machines in the manufacturing facility, minimizing 

the sum of distances between the facilities and the assigned machines. 

ii. Check the position quality  

During the search process, the rats may engage in "hunting and fighting" against other 

rats as they compete for the optimal solution. In some cases, this competition may result in 

the elimination of weaker rats, or solutions. This process can be modeled as follows: each 

rat represents a potential solution, and the elimination of a rat corresponds to the 

abandonment of that solution. This process is analogous to the death of a rat during the 

search process. 

iii. Operator of Discrete RSO 

In continuous optimization problems, logical and mathematical operators are applied to 

real and natural numbers. However, in discrete optimization problems, these operators 

cannot be used in the same way because they are designed for continuous scenarios. 

Discrete optimization problems, such as order, sequencing, or permutation optimization, 

require the use of discrete operators. Therefore, it is necessary to modify the operators in 

order to apply them to discrete optimization problems. 

The addition operator is used to move the current position by one step. In the discrete 

case, this operator can be represented as a set of permutations that alter the placement of 

the facilities. This allows the operator to be applied to discrete optimization problems such 

as the Quadratic Assignment Problem (QAP)  

The subtraction operator locBest – loci in the rat swarm optimization algorithm is used 

to calculate the set of permutations needed to transform the current position of a rat  𝑙𝑜𝑐𝑖  

into the position of the "best" rat 𝑙𝑜𝑐𝐵𝑒𝑠𝑡. This is done by subtracting the position of the 

"best" rat from the position of the current rat, resulting in a new position 𝑙𝑜𝑐𝐵𝑒𝑠𝑡 .This 

operator is used to guide the rats towards the optimal solution by allowing them to follow 

the movements of the "best" rat. 

The multiplication operator in the rat swarm optimization algorithm is used to reduce 

the number of permutations needed to transform the current position of a rat (𝑙𝑜𝑐𝑖).) into 

the position of the "best" rat locBest. This operator is defined as the multiplication of a real 
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number (β) with the set of permutations calculated by the subtraction operator rat (locBest – 

loci).  

By multiplying these values, the number of permutations needed to reach the "best" 

position is reduced, allowing the rats to more efficiently search for the optimal solution. 

iv. The objective function  

The objective function is used to evaluate the quality of a given solution. It is defined 

as the sum of the distances between the locations of the facilities and the machines assigned 

to them, multiplied by the flow between those locations (as seen in Eq. (4)). 

Neighborhood search techniques are often used in combinatorial optimization problems 

to enhance the quality of the solutions. The two-exchange neighborhood function is a 

reliable technique for use in the Quadratic Assignment Problem (QAP). It involves starting 

from a random placement of the machines in the facilities and repeatedly exchanging the 

positions of two machines as long as it results in a more optimized placement. 

v. The 2-opt 

The algorithm is a general-purpose optimization algorithm that can be applied to a wide 

range of problems, including the QAP. It works by iteratively improving the current 

solution by making swaps between pairs of facilities and their assigned machines. By 

making swaps that reduce the overall cost of the assignment, the algorithm is able to 

progressively improve the solution and find the optimal placement of the machines in the 

facilities. 

Here is an example of pseudo-code for the 2-opt algorithm for solving the QAP: 

Algorithm 2: 2-opt algorithm for the Quadratic Assignment Problem  

Function 2_OPT_QAP (Solution): 

- solution = initial solution  

- best_solution = solution  

- improved = True 

 while improved do  

    improved = False  

for i = 0 to n-1 do                                     // n: number of facilities  

        for j = i+1 to n do 

            if cost_of_swapping (solution, i, j) < 0 then 

                solution = swap (solution, i, j) 

                improved = True 

            end if  

        end for 

    end for 

    if cost_of_solution(solution) < cost_of_solution(best_solution) then 

        best_solution = solution 

    end if  

end while 

return best_solution 



540 T. MZILI, I. MZILI, M.E. RIFFI, D. PAMUCAR, V. SIMIC, M. KURDI 

 

The final version of the Discrete Rat algorithm presented as follows:  

Algorithm 3 Discrete Rat Swarm Optimization with 2-opt for QAP 

Require: Distance matrix D, Flows matrix F , number of rats N , maximum 

number of iterations Imax 

Initialize rats positions X randomly ·X, representing an installation of 

facility 

Calculate fitness values F for each rat using Distance matrix D and Flows 

matrix F. 

for t = 1 to Imax do 

     for i = 1 to N do 

        Update rat position using equation (3): Xnew = a·Xi+B·(Xbest−Xi) 

         Calculate new fitness value Fnew using updated position 

         if Fnew < F then 

               if  2-Opt(Xnew) < Xnew then 

                   Xnew ← 2-Opt(Xnew) 

               end if 

                   F ← Fnew 

                   Xbest ← Xnew 

         end if 

    end for 

 end for 

Output: Best solution founded Xbest 

6. EXPERIMENTAL RESULTS AND ANALYSIS 

In this study, the rat swarm optimization (RSO) algorithm was implemented in the C++ 

programming language using a quad-core Intel Core i5 processor with 4 GB of RAM. 

Objects from the QABLIB library were used for testing the algorithm on various instances 

of the Quadratic Assignment Problem (QAP). The instances used for testing ranged in size 

from 12 to 100, as indicated by the number in the instance name (e.g. the instance "els19" 

represents an instance with 19 facilities). 

To compare the performance of the RSO algorithm with other metaheuristics in the 

domain, we defined a set of parameters and comparison criteria, as shown in the Table 3: 

Table 3  Parameters of Discrete RSO 

Parameter  Value  

The population of rat size: N   60 

δ A random value between [1, 5]  

β A random value between [0, 1] 

Nb iteration 300 
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Tables 4-7 present the results of the discrete rat swarm optimization (DRSO) algorithm 

applied to 49 selected benchmark instances from the QAPLIB dataset, including some of 

the most difficult instances to solve such as tai20a, tai30a, tai40a, tai80a, and tai100a. The 

DRSO algorithm was run 20 times independently for each dataset to obtain the 

experimental results. The "Best", "Worst", "Average", and "Dev (%)" values represent the 

best, worst, average, and deviation of the solution after running the algorithm 30 times, 

respectively. The deviation of the solution, represented by Dev (%), is calculated using the 

following formula: 

 Dev (%) =
average-opt

opt 
×100 (5) 

The convergence speed of an optimization algorithm is a measure of how quickly the 

algorithm converges to a solution. A higher convergence speed means that the algorithm 

reaches a solution in a shorter amount of time. Population diversity, on the other hand, 

refers to the variation within a population of solutions. A more diverse population is 

characterized by a greater average distance between individuals, indicating a wider range 

of possible solutions. 

To test the performance of our optimizer, we will choose some of the most well-known 

metaheuristics in solving Quadratic Assignment Problem to make a comprehensive 

comparison. 

We provide tests on more than 48 instances, but to make the comparison more 

meaningful and important, we will compare only the most difficult instances, as well as the 

instances proposed in the articles of the methods, we are going to compare with them, i.e., 

the instances of the "Tai...." and "Sko..." families.   

The comparison is made with recently developed bio-inspiring metaheuristics more 

known in the solution of combinatorial optimization problems. 

DSSO: The SSO (swallow swarm optimization) [38] method is a swarm intelligence 

approach that is based on the behavior of swallow swarms. 

PHCSO: The parallel hybrid chicken swarm optimization (PHCSO) [44] method is a 

nature-inspired optimization approach that combines the behavior of chicken swarms with 

parallel computing techniques. 

GBSA: The GBSA (generalized binomial search algorithm) [45] is an optimization 

algorithm that is based on the principle of binary search. 

DBA: The discrete bat algorithm (DBA) [10] is a nature-inspired optimization method 

that is based on the behavior of bats. 

To enrich the comparison and make it real and meaningful, it is necessary to use 

parametric or non-parametric statistical tests. In this study, we will choose the parametric 

test most commonly used in this type of study, namely the Wilcoxon signed ranks test. The 

Wilcoxon signed ranks test a non-parametric statistical technique used to compare two 

related samples. The Wilcoxon signed rank test is often used when data are not normally 

distributed and can be applied in situations where parametric tests such as t-tests cannot be 

used. This article discusses the assumptions underlying this method, how it works, its 

advantages and disadvantages compared to other methods, and some examples of its 

application. 

In Tables 4-7, the sig column is added to indicate the sign of the average time difference 

of the DRSO with each other metaheuristic. 
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In Figs. 3-10 we present a comparison on of deviation and average time between DRSO 

and others methods. 

Table 4 Comparison between DRSO and PHCSO 

 PHCSO DRSO 

Instances Best-know Best Dev Time Best Dev Time Sig 

Sko42 15812 15812 0,355 31,02 15812 0.04 3.40 = 

Sko49 23386 24124 0.765 78.96 23386 0.01 5.31 + 

Sko81 90998 91113 0.567 215.91 91034 0.01 36.38 + 

Tai12a 224416 224416 0 0 224416 0 0.01 = 

Tai15a 388214 388214 0 0.33 388214 0 0.02 = 

Tai17a 491812 491812 0 0.21 491812 0 0.05 = 

Tai20a 703482 703482 0 0.12 703482 0.12 0.23 = 

Tai25a 1167256 1167256 0 8.09 1167256 0.34 0.16 = 

Tai30a 1818146 1824318 0.673 8.44 1818146 0.49 1.68 + 

Tai35a 2422002 2428322 0.563 16.19 2429278 0.23 9.03 = 

Tai40a 3139370 3139370 0.6275 17.15 3168134 0.02 12.11 = 

Tai40b 637250948 637250948 0.556 9.61 637250948 0 1.27 = 

Tai50a 4938796 5090356 0.176 12.19 4938796 0.78 17.06 + 

Tai50b 458821517 458845260 1.344 37.61 458821517 0.03 10.01 + 

Tai60a 7205962 7351256 0.837 59.87 7231162 0.57 27.13 + 

Tai80a 13499184 13657560 0.863 62.13 13505690 0.77 19.05 + 

Tai100a 21052466 21503812 0.136 86.13 21052466 0.12 69.45 + 

 

Fig. 3 Comparison of average time between DRSO and PHCSO  

http://anjos.mgi.polymtl.ca/qaplib/soln.d/tai30a.sln
http://anjos.mgi.polymtl.ca/qaplib/soln.d/tai30a.sln
http://anjos.mgi.polymtl.ca/qaplib/soln.d/tai35a.sln
http://anjos.mgi.polymtl.ca/qaplib/soln.d/tai40a.sln
http://anjos.mgi.polymtl.ca/qaplib/soln.d/tai40a.sln
http://anjos.mgi.polymtl.ca/qaplib/soln.d/tai50a.sln
http://anjos.mgi.polymtl.ca/qaplib/soln.d/tai50a.sln
http://anjos.mgi.polymtl.ca/qaplib/soln.d/tai50b.sln
http://anjos.mgi.polymtl.ca/qaplib/soln.d/tai50b.sln
http://anjos.mgi.polymtl.ca/qaplib/soln.d/tai60a.sln
http://anjos.mgi.polymtl.ca/qaplib/soln.d/tai60a.sln
http://anjos.mgi.polymtl.ca/qaplib/soln.d/tai80a.sln
http://anjos.mgi.polymtl.ca/qaplib/soln.d/tai100a.sln
http://anjos.mgi.polymtl.ca/qaplib/soln.d/tai100a.sln
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Fig. 4 Comparison of deviation between DRSO and PHCSO  

 

Table 5 Comparison between DRSO and DSSO 

 DSSO. DRSO 

Instances Best-know Best Dev Time Best Dev Time Sig 

Sko42 15812 15812 0.02 2.80 15812 0.04 3.40 = 

Sko49 23386 23386 0.09 5.50 23386 0.01 5.31 + 

Sko81 90998 91008 0.08 41.37 91034 0.01 36.38 - 

Tai12a 224416 224416 0.00 0 224416 0 0.01 = 

Tai15a 388214 388214 0.05 0.05 388214 0 0.02 = 

Tai17a 491812 491812 0.36 0.06 491812 0 0.05 = 

Tai20a 703482 703482 0.62 0.13 703482 0.12 0.23 = 

Tai25a 1167256 1167256 0.95 0.48 1167256 0.34 0.16 = 

Tai30a 1818146 1825384 0.89 1.29 1818146 0.49 1.68 + 

Tai35a 2422002 2435966 1.05 4.36 2429278 0.23 9.03 + 

Tai40a 3139370 3165320 1.17 9.67 3168134 0.02 12.11 - 

Tai40b 637250948 637250948 0.00 0.56 637250948 0 1.27 = 

Tai50a 4938796 4995292 2.00 34.88 4938796 0.78 17.06 + 

Tai100a 21052466 21044752 2.36 545.31 21052466 0.12 69.45 + 

http://anjos.mgi.polymtl.ca/qaplib/soln.d/tai30a.sln
http://anjos.mgi.polymtl.ca/qaplib/soln.d/tai30a.sln
http://anjos.mgi.polymtl.ca/qaplib/soln.d/tai35a.sln
http://anjos.mgi.polymtl.ca/qaplib/soln.d/tai40a.sln
http://anjos.mgi.polymtl.ca/qaplib/soln.d/tai40a.sln
http://anjos.mgi.polymtl.ca/qaplib/soln.d/tai50a.sln
http://anjos.mgi.polymtl.ca/qaplib/soln.d/tai50a.sln
http://anjos.mgi.polymtl.ca/qaplib/soln.d/tai100a.sln
http://anjos.mgi.polymtl.ca/qaplib/soln.d/tai100a.sln
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Fig. 5 Comparison of average time between DRSO and DSSOSO 

 

Fig. 6 Comparison of deviation between DRSO and DSSO 

Table 6 Comparison between DRSO and GBSA 

                                          GBSA                      DRSO 

Instances Best-know Best Dev Time Best Dev Time Sig 

Sko42 15812 15880 0.99 240 15812 0.04 3.40 + 

Sko49 23386 23582 1.13 240 23386 0.01 5.31 + 

Tai12a 224416 224416 0.00 0 224416 0 0.01 = 

Tai15a 388214 388214 0.00 0 388214 0 0.02 = 

Tai17a 491812 491812 0.00 0.12 491812 0 0.05 = 

Tai20a 703482 703482 0.37 32 703482 0.12 0.23 = 

Tai30a 1818146 1841180 2.22 240 1818146 0.49 1.68 + 

Tai40a 3139370 3215360 3.01 240 3168134 0.02 12.11 + 

Tai50a 4938796 5084020 3.53 240 4938796 0.78 17.06 + 

http://anjos.mgi.polymtl.ca/qaplib/soln.d/tai30a.sln
http://anjos.mgi.polymtl.ca/qaplib/soln.d/tai30a.sln
http://anjos.mgi.polymtl.ca/qaplib/soln.d/tai40a.sln
http://anjos.mgi.polymtl.ca/qaplib/soln.d/tai40a.sln
http://anjos.mgi.polymtl.ca/qaplib/soln.d/tai50a.sln
http://anjos.mgi.polymtl.ca/qaplib/soln.d/tai50a.sln
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Fig. 7 Comparison on of average time between DRSO and GBSA 

 

Fig. 8 Comparison on of deviation between DRSO and GBSA 

Table 7 Comparison between DRSO and DBA 

  DBA DRSO 

instance Best-know Best Dev Time Best Dev Time Sig 

Sko42 15812 15812 0.30 42.87 15812 0.04 3.40 = 

Sko49 23386 23421 0.34 97.71 23386 0.01 5.31 + 

Sko56 34458 34524 0.46 159.8 34458 0.01 17.33 + 

Sko64 48498 48656 0.44 265.63 48498 0.10 27.05 + 

Sko72 66256 66422 0.46 361.59 66259 0.01 38.52 + 

Sko81 90998 91252 0.45 512.73 90998 0.01 36.38 + 

Tai12a 224416 224416 0.00 0.00 224416 0 0.01 = 

Tai15a 388214 388214 0.00 0.50 388214 0 0.02 = 

Tai17a 491812 491812 0.00 0.39 491812 0 0.05 = 

Tai20a 703482 703482 0.85 0.18 703482 0.12 0.23 = 

Tai25a 1167256 1172754 1.51 12.10 1167256 0.34 0.16 + 

Tai30a 1818146 1831272 1.34 20h25 1818146 0.49 1.68 + 

Tai35a 2422002 2438440 1.79 35.43 2429276 0.23 9.03 + 

Tai40a 3139370 3139370 2.02 51.12 3168124 0.02 12.11 - 

Tai40b 637250948 637250948 0.00 14.86 637250948 0 1.27 = 

Tai50a 4938796 5042654 2.69 100 4983176 0.78 17.06 + 

Tai50b 458821517 458830119 0.11 126.34 458821517 0.03 10.01 + 

Tai60a 7205962 7387482 2.73 166.23 7231162 0.57 27.13 + 

Tai80a 13499184 13810130 2.67 420.62 13505690 0.77 19.05 + 

Tai100a 21052466 21541326 2.5 1045.27 21052466 0.12 69.45 + 

http://anjos.mgi.polymtl.ca/qaplib/soln.d/tai30a.sln
http://anjos.mgi.polymtl.ca/qaplib/soln.d/tai30a.sln
http://anjos.mgi.polymtl.ca/qaplib/soln.d/tai35a.sln
http://anjos.mgi.polymtl.ca/qaplib/soln.d/tai40a.sln
http://anjos.mgi.polymtl.ca/qaplib/soln.d/tai40a.sln
http://anjos.mgi.polymtl.ca/qaplib/soln.d/tai50a.sln
http://anjos.mgi.polymtl.ca/qaplib/soln.d/tai50a.sln
http://anjos.mgi.polymtl.ca/qaplib/soln.d/tai50b.sln
http://anjos.mgi.polymtl.ca/qaplib/soln.d/tai50b.sln
http://anjos.mgi.polymtl.ca/qaplib/soln.d/tai60a.sln
http://anjos.mgi.polymtl.ca/qaplib/soln.d/tai60a.sln
http://anjos.mgi.polymtl.ca/qaplib/soln.d/tai80a.sln
http://anjos.mgi.polymtl.ca/qaplib/soln.d/tai100a.sln
http://anjos.mgi.polymtl.ca/qaplib/soln.d/tai100a.sln
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Fig. 9 Comparison on of avg time between DRSO and DBA 

 

Fig. 10 Comparison on of deviation between DRSO and DBA 

6. DISCUSSION AND ANALYSIS 

To compare the performance of our optimization algorithm with the other metaheuristics, 

we will apply the Wilcoxon test [46] with a 95% confidence interval (α=0.05). This test 

will be conducted twice: first, to compare the difference in Dev (%) values between the 

two algorithms for comparison and ranking; and second, to compare the average execution 

time and justify the comparison of convergence speed. Instances with similar values or that 

are easy to solve for both algorithms will not be considered. 

N denotes the number of test cases, and W+ represents the scores of cases where the 

proposed algorithm performs the best. W- represents the sum of the scores of the cases 

where the proposed algorithm performs worse than the comparative algorithm. The p-value 

is compared to the critical value δ = 0.05 in the Wilcoxon signed-rank test. If the p-value 

≤ δ, it indicates a significant difference in performance between the two algorithms. 

However, if the p-value > δ, there is no significant difference in performance between the 

two algorithms.  
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In Tables 8 and 9, we conducted the Wilcoxon signed rank tests to assess and compare 

the deviation and average time of different metaheuristics. 

Table 8 Wilcoxon signed rank test applied to the deviation of metaheuristics 

Comparison N W- W+ P-value Significantly 

DRSO vs DBA 20 -16.00 173,0 <0,001 YES 

DRSO vs HPCSO 17 0 200 0,044 YES 

DRSO vs GBSA 9 0 39 0,031 YES 

DRSO vs DSSO 14 -3 99 <,001 YES 

Table 9 Wilcoxon signed rank test applied to the Avg time of metaheuristics 

Comparison N W- W+ P-value 
Significantly 

(P < 0.05)? 

DRSO vs DBA 20 -3,00 187 <0,001 YES 

DRSO vs HPCSO 17 -8 145 <0,001 YES 

DRSO vs GBSA 9 -3 42 0,020 YES 

DRSO vs DSSO 14 -54,50 50,50 0,915  NO 

In order to study the quality of DRSO, we will describe each comparison separately 

according to the tables above.  

The comparison of DRSO with other methods is based on three important factors: the 

deviation of each algorithm, the average time of convergence to the optimum, and the 

number of times each algorithm reaches the known optimum of QAPLIB. Each comparison 

will be related to the curves described above from each table. 

▪ DRSO vs HPCSO 

Starting with the comparison with PHCSO in Table 4, we found that the results found 

by DRSO are 50% better (9 out of 18 tests) than PHCSO and are 50% equal (9 out of 18 

tests), while the convergence is 100% better (18 out of 18 tests), which means that DRSO 

requires less time and iteration to converge to the optimum. On the other hand, the 

deviation of DRSO in the 18 tests is less than that of HPCSO at 100% which shows that 

the gap between the results obtained by this method and the best-known value of QABLIB 

is very large.  

Concerning the ability of the two algorithms to attract the optimum value of QABLIB: 

DRSO was able to attract the best-know value in 13 instances among the 18 test instances 

at 72.22% while HPCSO found the optimum for 8 instances among 18 i.e. at 44.44% with 

a deference of 27%. The curves of Deviation and Time in Fig. 3 and 4 show a large 

difference between the two algorithms, and also show that the Dev (%) value of DRSO is 

very close to 0 in almost all instances which justifies that the latter was able to find the 

optimum or almost in most of the tested instances.  

▪ DRSO vs DSSO 

In the comparison with DSSO in Table 5, we found that the results found by DRSO are 

35.71% better (5 out of 14 tests) than DSSO, 50% equal (7 out of 14 tests), and 14.28% (2 
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out of 14 tests) weak, while the convergence is 57% better (8 tests out of 14) than DSSO 

while it is weak at 42.85% (6 tests out of 14) which means that the methods converge quite 

close and require less time and iteration to converge to the optimum. 

On the other hand, the difference in deviation between the two methods is significant 

and we can see that the deviation values of DRSO are better in almost all instances at 92.8% 

(13 instances out of 14) which shows that the difference between the results obtained by 

these methods and the best-known value of QABLIB is very large.  

Regarding the ability of the two algorithms to attract the optimal value of QABLIB: 

DRSO was able to attract the best-known value in 13 instances among the 18 test instances 

at 72.22% while DSSO found the optimum for 8 instances among the 18, i.e. at 44.44% 

with a deference of 27%. 

The curves id Deviation and Time in Fig. 5 and 6 show a significant difference between 

the two algorithms, and also show that the value Dev (%) of DRSO is lower than those of 

DSSO in almost all the instances what justifies that this last one was able to find solutions 

in the neighborhood or equal to the optimum in the majority of the tested instances, on the 

other hand shows the curve avg time mounted that the two converge perfectly in a 

reasonable time and that the two curves are very close in almost all the test. 

▪ DRSO vs GBSA 

In the comparison with GBSA in Table 6, the results found by DRSO are 55.55% better 

(5 tests out of 9) than GBSA, 44.44% equal (4 tests out of 9). 

While the convergence is 77.77% better (7 tests out of 9) than GBSA while it is low at 

22.22% (2 tests out of 9) which means that DRSO converges quickly and requires less time 

and iterations to converge to the optimum than GBSA. 

On the other hand, the difference in deviation between the two methods is significant 

and we can see that the deviation values of DRSO are better in almost all instances at 100% 

(9 instances out of 9) which shows that the difference between the results obtained by these 

methods and the best-known value of QABLIB is very large and the solutions obtained by 

DRSO are all closer to the best-know value of QABLIB than those of GBSA this can be 

clear also in Fig. 7.  

Regarding the ability of the two algorithms to attract the optimal value of QABLIB: 

DRSO was able to attract the best-known value in 8 instances among the 9 test instances 

at 88.88% while GBSA found the optimum just for 4 instances among the 9 instances, that 

is at 44.44% with a deference of 44.44%. 

The curves of deviation and avg time of Fig. 7 and 8 show a very significant difference 

between the two algorithms, and also show that the value Dev (%) of DRSO is lower than 

those of GBSA in almost all the instances which justifies that the latter was able to find 

solutions in the neighborhood or equal to the optimum in almost the majority of the tested 

instances on the other hand the curve avg time showed that GBSA is so slow in. 

▪ DRSO vs DBA 

Finally, we compare our method with DBA in Table 7, the results found by DRSO are 

65% better (13 tests out of 20) than DBA, 30% equal (6 tests out of 20) and 5% (1 test out 

of 20) weak than DBA. 

While the convergence is 100% better (20 tests out of 20) than DBA, which means that 

DRSO converges quickly and requires fewer time and iterations to reach the optimum 

compared to DBA. 

On the other hand, the difference in deviation between the two methods is significant, 

and we can observe that the deviation values of DRSO are better in almost all cases at 95% 
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confidence level (19 cases out of 20). This indicates that the difference between the results 

obtained by these methods and the best-known value of QABLIB is substantial. Moreover, 

the solutions obtained by DRSO are all closer to the best-known value of QABLIB 

compared to those of DBA. This clarity is also evident in Fig. 10. 

Regarding the ability of the two algorithms to attract the optimal value of QABLIB: 

DRSO was able to attract the best-known value in 15 instances among the 20 test instances 

at 75% while DBA found the optimum only for 7 instances among the 20 instances, i.e. at 

35% with a deference of 40%. 

Curves of Deviation and Time in Fig. 9 and 10 show a very significant difference 

between the two algorithms, and also show that the Dev (%) value of DRSO is lower than 

those of DBA in several instances which justifies that the latter was able to find solutions 

the neighborhood or equal to the optimum in almost the majority of the tested instances; 

on the other hand, the avg time curve showed that DBA is very slow in the large instances 

which contain more facility. 

The superior performance of DRSO is attributed to the behavior of the rats and their 

ability to efficiently share and exploit information, as well as rapidly explore the entire 

search space. 

These statistical analyzes can be evaluated and confirmed by the results of the Wilcoxon 

signed rank tests carried out and cited in the Tables 8 and 9, in these tests, it will be found 

that the difference in a deviation between DRSO and the other methods is very significant. 

at α=0.05 in a 95% confidence interval, which confirms the results of the analyzes carried 

out below, and justifies that the results and the solutions obtained by DRSO are much closer 

or equal to the optimum. 

On the other hand, the WSR test described in Table 9 confirms that the difference in 

mean times between DRSO and DBA, GBSA, PHCSO are so significant at α=0.05 in a 

95% confidence interval, whereas the difference with DSSO and insignificant and almost 

zero, which confirms the analyses, and approves that the DRSO converges quickly and 

requires months of iteration time to find solutions equal to or closer to the optimum, and at 

the same level as the DSSO but just in convergence time. 

 7. CONCLUSIONS 

In conclusion, the discrete rat swarm optimizer (DRSO) algorithm has demonstrated 

great potential in solving the discrete quadratic assignment problem (QAP). The algorithm 

has shown effectiveness in finding high-quality solutions and has outperformed existing 

algorithms in numerous instances. The algorithm's advantages, such as its simplicity, 

access to the entire search space, and a balanced approach between exploration and 

exploitation, contribute to its success. Additionally, the algorithm has proven its capability 

by solving various discrete problems, including the well-known discrete traveling 

salesperson problem. 

This study's contributions are significant in several aspects. Firstly, it introduces the 

DRSO algorithm as a novel solution for the QAP, addressing its combinatorial nature. The 

study proposes a mapping strategy for converting real values into discrete values, redefines 

mathematical operators suitable for solving combinatorial and discrete optimization 

problems, and incorporates local search heuristics to enhance solution quality. The 

effectiveness of the algorithm is demonstrated through extensive simulations and 
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comparisons using the QAPLIB test library. Furthermore, the study employs statistical 

analysis, including the Wilcoxon parametric test, to validate the algorithm's performance. 

Comparisons with other algorithms, namely PHCSO, DSSO, GBSA, and DBA, further 

highlight the superiority of DRSO. The results consistently indicate that DRSO 

outperforms these algorithms in terms of solution quality, convergence speed, and 

deviation from the best-known values of QABLIB. The curves and statistical tests provide 

strong evidence supporting the superior performance of DRSO, with its convergence curve 

consistently outperforming other algorithms. 

The success of DRSO can be attributed to the efficient information sharing and 

exploitation capabilities of the rat swarm. The algorithm effectively explores the entire 

search space, allowing for rapid convergence to optimal or near-optimal solutions. The 

statistical analyses, including the Wilcoxon signed rank tests, confirm the significant 

differences in deviation between DRSO and other methods, reinforcing the notion that 

DRSO produces solutions that are closer to the optimum. 

Future research opportunities for the DRSO algorithm include incorporating additional 

heuristics or metaheuristics to improve performance, expanding its applicability to larger 

instances or other combinatorial optimization problems, and studying its behavior in 

greater detail to understand its strengths and limitations. Moreover, exploring potential 

applications in domains such as logistics, scheduling, and resource allocation could further 

contribute to the development and advancement of the DRSO algorithm. 
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