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1. INTRODUCTION  

Combinatorial optimization problems [1] are a class of complex and diverse problems that 

encompass many application domains, such as logistics, production planning, communication 

network design, and many others. Among these problems is the multistage flow shop problem 

(FSSP), a classical scheduling problem that aims at optimizing the sequence of tasks to be 

performed on a set of machines to minimize a given criterion, such as the total task completion 

time (makespan) or the sum of the completion times of all tasks (total flow time). 

Metaheuristics are high-level stochastic optimization approaches that aim at guiding the 

search process in the solution space by drawing on principles from nature, physics, or social 

systems. They have been widely used to solve large and complex combinatorial optimization 

problems because of their flexibility, adaptability, and ability to escape local optima. Among 

the most commonly used metaheuristics are genetic algorithms (GA) [2], particle swarm 

optimization (PSO) [3], rat swarm optimization [4], and ant colony optimization (ACO) [5]. 

Metaheuristics and hybrid metaheuristics offer several advantages for solving combinatorial 

optimization problems in various domains, including the flow shop problem. Some of the main 

advantages are: 

Flexibility: Metaheuristics are generic optimization methods that can be applied to a 

wide variety of combinatorial optimization problems without requiring specific knowledge 

of the problem structure. This makes them particularly useful for solving problems from 

different domains. 

Adaptability: Metaheuristics can be easily adapted to take into account the specificities 

and constraints of a particular problem. Dynamic adaptation mechanisms can be integrated 

to adjust the parameters of the algorithm during execution, thus improving the overall 

performance of the method. 

Balanced exploration and exploitation: Metaheuristics are designed to balance 

exploration of the solution space (searching for new regions of the space) and exploitation 

of promising solutions (improving existing solutions). This balance allows metaheuristics 

to converge to high-quality solutions while avoiding local optima. 

Robustness: Metaheuristics are often robust to perturbations and variations in the 

problem parameters. They can generally provide solutions of acceptable quality even in the 

presence of noise or uncertainty. 

Efficiency: Hybrid metaheuristics, which combine the strengths of different metaheuristics, 

can offer better performance than individual metaheuristics. Hybridization exploits the 

advantages of each method, such as the genetic diversity of genetic algorithms, the fast 

convergence of particle swarm optimization algorithms, and the adaptability of ant colony 

optimization algorithms. This can lead to solutions and faster convergence.  

In the field of optimization, numerous methods have been developed to solve various 

problems. These techniques are used in many fields, including engineering, economics and 

machine learning. These methods can be classified according to their principles and 

approaches. The classification presented highlights the distinct characteristics of each 

method, as well as their respective advantages and limitations. Fig.1 provides a visual 

summary of this classification, offering an overview that enables the different optimization 

methodologies to be explored in greater detail. 
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Fig. 1 Classification of Methods for solving optimization problems 

In this paper, we focus on the hybridization of two popular and efficient metaheuristics, 

namely genetic algorithms and penguin swarm optimization (PSeOA), to solve the FSSP. 

Genetic algorithms inspired by the process of natural selection and evolution of species, 

use operators such as selection, crossover, and mutation to evolve progressively towards 

optimal or near-optimal solutions. On the other hand, penguin swarm optimization (PSeOA) 

is a recent and promising metaheuristic based on the foraging behavior of penguins. PSeOA 

combines individual and collective foraging behavior to explore the solution space and 

converges to optimal solutions through a dynamic adaptation mechanism. 

The main contributions of this work can be summarized as follows: 

Proposal of an innovative hybrid approach combining genetic algorithms (GA) and 

penguin swarm optimization (PSeOA) to solve the multistage flow shop problem (FSSP). 

Exploring the hybridization of GAs and PSeOA, leveraging the strengths of each 

metaheuristic, including the genetic diversity and exploration of the solution space offered 

by GAs, and the rapid convergence and adaptability of PSeOA. 

Modifications and improvements to the basic mechanisms of GAs and PSeOA to 

strengthen their performance in the context of the FSSP, including the adaptation of 

selection, crossover, and mutation operators for GA, as well as the introduction of dynamic 

adaptation mechanisms for PSeOA. 

Extensive experimental evaluation of the proposed hybrid approach on a diverse set of 

multistage flow shop problems of different sizes and complexities, demonstrating its 

effectiveness and competitiveness over pure GAs and PSeOAs as well as other state-of-

the-art metaheuristics. 

Discussion of the findings and implications of this study for future research on 

metaheuristics applied to combinatorial optimization and, more specifically, to the FSSP, 

including the limitations of the hybrid approach and the possibilities for improvement and 

extension to address other combinatorial optimization problems and new challenges in the 

scheduling domain. 

The rest of this paper is structured as follows. Section 2 presents a review of the literature 

on metaheuristics applied to the FSSP, focusing on genetic algorithms, PSeOA, and their 

hybridizations. Section 3 provides a detailed description of the flow shop problem, as well as 

the main mathematical formulations and evaluation criteria used. Section 4 presents the genetic 
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algorithms and PSeOA, explaining the key concepts, mechanisms, and parameters involved in 

each. 

Section 5 describes the proposed hybrid approach, highlighting aspects of hybridization 

between genetic algorithms and PSeOA, as well as modifications and improvements made 

to improve the overall performance of the hybrid approach in the context of FSSP. Section 

6 presents the experimental results obtained by applying the hybrid approach to a set of 

flow shop problems of different sizes and complexities. A comparison of the performance 

of the hybrid approach with that of pure GAs and PSeOAs as well as other state-of-the-art 

metaheuristics is also provided, demonstrating the effectiveness and competitiveness of the 

proposed hybrid approach. 

Section 7 discusses the conclusions drawn from this study, as well as the implications for 

future research in the field of metaheuristics applied to combinatorial optimization and, more 

specifically, to the FSSP. We also discuss the limitations of the hybrid approach and the 

possibilities for improvement and extension to address other combinatorial optimization 

problems and new challenges in scheduling. 

2. RELATED WORK 

The field of multi-objective optimization has become an important area of research, 

especially for planning problems in manufacturing. Various algorithms for multi-objective 

planning problems have been developed over the years, such as genetic algorithms (GA), 

particle swarm optimization (PSO), and ant colony optimization (ACO). This paper focuses 

on multi-objective planning in hybrid flow shop systems where the allocation of production 

resources considers multiple objectives. 

Shao et al. [6] propose an original multi-objective evolutionary algorithm (MOEA-LS) 

for the multi-objective distributed hybrid flow shop scheduling problem (MDHFSP) with 

multiple neighborhood-based local searches, where each MDHFSP contains a set of 

factories. They solve the MDHFSP phase in a hybrid flow shop-scheduling problem using 

parallel machines. They start the solution with a sophisticated weighting mechanism and 

generate subsequent solutions using multiple local search operators. An adaptive weight 

update mechanism is also used to avoid stalling at the local optimum. Their results confirm 

the efficiency and effectiveness of the proposed algorithm in processing MDHFSP. 

Han et al. [7] considered a hybrid flow shop scheduling problem with worker constraints 

(HFSSPW) and constructed a mixed integer linear programming model. They proposed 

seven multi-objective evolutionary algorithms with heuristic decoding (MOEAHs) to solve 

the problem. The results showed that the proposed MOEAHs performed excellently in terms 

of the makespan objective and demonstrated highly effective performance compared to other 

methods. 

Amirteimoori et al  [8] presented a parallel hybrid PSO-GA method for task and carrier 

organization in a flexible flow shop environment. The researchers used the Gurobi solver, 

parallel genetic algorithm (PGA), parallel particle swarm optimization (PPSO), and hybrid 

parallel PSO-GA approach (PPSOGA) to address the problem instance. The results show 

that the PPSOGA approach outperforms the other algorithms in terms of solution quality 

and computational efficiency. 

Qiao et al.  [9] proposed a genetic algorithm to adapt the flow to a warehouse system and 

planned a two-stage hybrid with a large setup time in the first stage and stop requirements in 
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the second stage. The researchers identified feasible planning conditions and created a local 

search method to improve the accuracy of the solution. The results showed that the algorithm 

could find a satisfactory solution within 1% of the lower bound in three minutes, proving its 

effectiveness. 

Authors Vali et al. [10] introduced a flexible job shop scheduling problem with an aim 

to optimize patient flow and minimize the total carbon footprint. The authors proposed a 

metaheuristic optimization algorithm, named Chaotic Salp Swarm Algorithm Enhanced 

with Opposition-Based Learning and Sine Cosine (CSSAOS). The method was executed 

in a real-world scenario study and showed superior performance in contrast to other 

established metaheuristic algorithms. 

Miyata and Nagano  [11], in their paper "An Iterated Greedy Algorithm for Distributed 

Blocking Flow Shop with Setup Times and Maintenance Operations to Minimize Makespan," 

present the Variable Search Neighborhood (VNS) algorithm, referred to as IG_NM. This 

algorithm is designed to tackle the Distributed Blocking Flow Shop Scheduling Problem, taking 

into account sequence-dependent setup times and maintenance operations. A comparative study 

between the IG_NM algorithm and Mixed Integer Linear Programming (MILP), along with 

recent methodologies from the literature, was conducted through computational experiments. 

The outcomes indicate that IG_NM surpasses other literature-based metaheuristics. 

Cui et al. [12] introduced an improved multi-population genetic algorithm (IMPGA) for 

tackling the distributed heterogeneous flow shop-scheduling problem (DHHFSP), a complex, 

NP-hard problem. The proposed algorithm features a strategic inter-factory neighborhood 

structure based on greedy job insertion and a novel move evaluation method for efficient 

neighborhood movements. The IMPGA also incorporates a guided sub-population information 

interaction and a re-initialization procedure with an individual resurrection strategy to enhance 

convergence speed and robustness. The results demonstrated that the IMPGA outperformed 

state-of-the-art algorithms for DHHFSP, proving its effectiveness in finding optimal solutions. 

Furthermore, Hou et al.  [13] investigated the distributed blocking flow-shop sequence-

dependent scheduling problem (DBFSDSP) with the objectives of minimizing makespan, 

total tardiness, and total energy consumption. They proposed a cooperative whale 

optimization algorithm (CWOA) to solve the problem. Computational experimentation on 

an extensive benchmark demonstrated that CWOA outperforms state-of-the-art algorithms 

in terms of efficiency and significance in solving DBFSDSP. 

3. FLOW SHOP SCHEDULING PROBLEM  

The Flow Shop Scheduling Problem (FSSP) [14] is a crucial component of organizing 

tasks over a specific period while taking into account temporal constraints (like deadlines 

and chaining constraints) and limitations on resource utilization and availability. A 

scheduling problem can be defined as follows: given a set of tasks that need to be executed 

and a collection of machines (resources) available for performing these tasks, the goal is to 

identify the most efficient sequence of tasks on the machines, thereby minimizing the total 

processing time for all tasks across all machines. The majority of scheduling problems are 

classified as NP-hard optimization problems. 
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Scheduling problems are typically defined by four main elements: tasks, resources, 

constraints, and objectives [15]. Hence, it is crucial to discuss these four fundamental 

elements before delving into scheduling problems 

▪ Tasks  

The manufacturing of products in a production workshop requires the execution of a 

set of elementary operations or tasks. A task is located in time by a start date 𝑡𝑖 and/or by 

an end date 𝑐𝑖 and an execution duration pi  = ci  - ti Some technical or economic constraints 

can associate with the task’s earliest start dates ri or latest end dates di. 

▪ Resources 

A resource is anything that is used to perform a task. They are available in a limited 

quantity and time. In the manufacturing context, resources can be machines, workers, 

equipment, facilities, energy, etc. In the case of the flow shop problem, a machine represents a 

resource. 

▪ Constraint 

Constraints are the conditions that must be met when constructing a schedule for it to 

be feasible. 

▪ Objective  

The objectives of companies are diversified and the scheduling process has become 

more and more multi-criteria. The criteria that must be satisfied by a scheduling process 

are varied. There are several classes of scheduling objectives: 

Time-related objectives: for example, minimization of total execution time (Cmax), 

average completion time, total set-up time or delay to delivery dates (Lmax or  Tmax) 

Resource-related objectives: maximize the load on a resource or minimize the number 

of resources needed to complete a set of tasks. 

Cost-related objectives: minimize launch, production, storage, transportation, etc. costs. 

Energy or flow-related objectives. 

Let J={1,...,n} be a set of n jobs. Each job must be executed on 𝑚 machines in M={1,...,m} 

in the same order. Each job 𝑗 ∈ 𝐽 consists of 𝑚 ordered operations Oj1,...,Ojm, and each 

operation must be executed on one of the m machines. Let O={Oji, j∈ {1,...,n} and i ∈ 

{1,...,m}}  be the set of all operations to be ordered. Each operation 𝑂ji ∈ 𝑂 is associated with 

a fixed execution time  pji The operations are interdependent by two types of constraints. Each 

machine can only process one job at a time and each job must pass through each machine 

only once. The flow shop problem (FSSP) consists in finding a feasible order that minimizes 

the makespan Cmax, i.e., the time needed to complete all the jobs. 

An order can be represented by a vector of completion times of all operations (Cji,i ∈ 

{1,...,m} and   j ∈ {1,...,n}). By adopting the following notations: 

▪ Oji: operation i of job j, 

▪ Pji: execution time of Oji, 

▪ Cji: Completion time of Oji. 

We can propose the objective function of FSSP, which is: 

 Minimize Cmax   =  Cn×m  (1) 
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4. METHODOLOGY  

4.1. Inspiration  

Penguins are seabirds that are adapted to aquatic life and cannot fly. Their wings are 

modified to function as flippers that help them swim, and they are highly efficient in the 

water, being able to dive more than 520 meters to search for food. While swimming 

underwater is less tiring for them, penguins still need to return to the surface regularly to 

breathe. They can breathe by swimming rapidly at speeds of 7 to 10 kilometers per hour. During 

dives, their heart rate slows down, and their hunting eyes remain open, with a protective 

nictitating membrane covering their cornea. Their retina enables them to distinguish shapes and 

colors. 

Penguins primarily feed on fish and squid, and to do so, they hunt in groups and 

coordinate their dives to maximize their search for food. Penguins use vocalizations to 

communicate with one another, and each penguin's vocalizations are unique, like fingerprints 

in humans. This uniqueness allows for the identification and recognition of individual 

penguins within large colonies, where they can otherwise look quite similar. The amount of 

food required by penguins varies depending on their species, age, the variety of available 

food, and the amount of food available in their specific area. Studies have shown that a colony 

of 5 million penguins can consume up to 8 million pounds of krill and small fish daily. 

4.2. Description of the Penguin Search Optimization Algorithm (PeSOA) 

Penguin Search Optimization [16] introduces a novel metaheuristic inspired by the 

collaborative hunting strategies employed by penguins. This concept is particularly 

intriguing as penguins exhibit the remarkable ability to synchronize their diving patterns 

to enhance overall energy efficiency. The underlying foundation of optimizing feeding 

behavior typically revolves around an economic premise: if the energy acquired outweighs 

the energy expended to secure it, the pursuit becomes a fruitful endeavor. 

Penguins, as living organisms, draw from this concept to gather insights into foraging 

time, costs, and prey energy content. These factors guide their decisions on whether to 

forage in a specific area, contingent upon the available resources and travel distances. 

The algorithm's core principles are encapsulated in the following rules: 

Rule 1:A penguin population is organized into multiple groups. 

Rule 2: Each group accommodates a variable number of penguins, adaptable based on 

localized food availability. 

Rule 3: Penguins collectively hunt and wander randomly, ceaselessly seeking sustenance 

while oxygen reserves permit. 

Rule 4: Simultaneous dives to the same depth are possible. 

Rule 5: Penguins within a group initiate search from a designated position ("hole i") 

and various depths ("j1, j2, ..., jn"). 

Rule 6: Individual penguins within a group randomly forage and share findings with 

peers after several dives, fostering intra-group communication. 

Rule 7: Each level can accommodate varying numbers of penguins based on food 

availability. 

Rule 8: Inadequate food prompts a group, or even its entirety, to migrate to a different 

hole, ensuring inter-group communication. 
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Rule 9: The group with the highest fish consumption discloses the location of the 

prosperous food source, denoted by the hole and level. 

In this algorithm, the penguins are characterised by their position in the holes and levels, 

and by the number of fish they have eaten. The distribution of penguins is based on the 

probability of fish being present in the various holes and levels. The penguins are grouped 

together and start their quests from random starting positions. 

The penguins use a communication system to share information about the food they 

have found during their dives. Groups that have found little food follow those that have 

found a lot of food on their next dive. The penguins are divided into groups and search for 

food in holes at different levels. Their position is adjusted according to the previous 

solutions. After several dives, the penguins determine the best solution in terms of food 

found. The distribution probabilities of the holes and levels are then updated according to 

this best solution. 

Using Eq. (2), an updated solution is calculated for each penguin in each group. 

 Dnew = Dlastlast + rand ∗ |XlocalBest − Xlocallast| (2) 

Rand() is used to generate a random number for the distribution. There are three 

options: the best local solution, the most recent solution, and the new solution. The 

calculations of the updated solution equation (Eq. (2)) are repeated for every penguin in 

each group. After several dives, penguins communicate which solution worked best, 

represented by the number of fish consumed. Lastly, the probability of the new distribution 

of holes and levels is calculated. 

4.3. Motivations 

The effectiveness of a metaheuristic is associated with its ability to strike a balance 

between exploiting promising areas and exploring the global search space, as well as 

achieving an ideal balance between intensification and diversification. PSeOA demonstrates 

better control over local intensive search strategies and more efficient exploration of the 

entire search space. Additionally, the fewer parameters make PSeOA less complex and 

potentially more versatile. 

Comparisons between PSeOA, PSO, and GA reveal that PSeOA is more robust and 

efficient than the other algorithms due to its group-based search strategy rather than solely 

relying on updating the next best-found position. Simulations also indicate that the 

distribution of penguins in the final step is well-balanced between the global and other local 

minima. Given a sufficiently large number of penguins, the algorithm can detect all local 

minima and the global minimum in the search space. 

5. PROPOSED HYBRID AND DISCRETE PESOA  

PeSOA is a metaheuristic defined for solving continuous optimization problems. The 

application of standard PeSOA to solve discrete (combinatorial) optimization problems is 

impossible, since there is a difference in the type of variable and also in the techniques for 

finding the solution. Consider the objective function of optimization problem 𝑓(𝑥). The 

variable 𝑥 for a continuous optimization problem represents a real value but for a 

combinatorial optimization problem represents a scheduling or configuration. If we consider 

the traveling salesman problem, the variable 𝑥 represents the Hamiltonian cycle. 
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the search space in the continuous case is an interval, while for discrete optimization, 

is the set of solutions meeting the constraints of the problem. 

The work in this paper will focus on the design of the adaptation of PeSOA to 

combinatorial optimization problems. The result is a discrete version of PeSOA adaptable 

to various POCS. The adaptation process requires a decomposition of our problem into the 

set of key elements: group, penguin, position, objective function, and search space. 

a) Group 

▪ A group is a set of penguins  

▪ The number of penguins in all groups is equal to the population size 

▪ The number of groups in a population is not fixed. 

▪ Individuals in a group are not stable. 

▪ In a combinatorial optimization problem, a group represents a subset of the problem 

solutions. 

b) Penguin 

▪ A penguin is an individual of the population, the number of penguins equals the 

population size. A penguin is characterized by the position and quantity of food. 

c) Position  

▪ A position is a solution adopted by an individual in the population. 

▪ Moving from one position to another is a movement in the given problem solution 

space. 

d) Objective function  

In PeSOA, the amount of food consumed by the penguin is used as the objective 

function.  

In our problem, the objective function, or fitness, is a numerical value assigned to every 

solution in the search space. The most optimal solution is the one with the highest objective 

function value. 

e) Search space  

The search space represents the potential positions of the penguins. Generally, the 

positions are coordinates (x,y) in R2 .to move to another position, it is enough simply, to 

modify the current position by adding a real value to (d') a coordinate (or two coordinates). 

The search space in a combinatorial optimization problem can be represented by the 

given problem solutions and the neighboring solutions. 

▪ Coordinates: The coordinates are the elements that directly affect the quality of the 

solution through the objective function. This function must be well defined in order 

to simplify the representation of the coordinates. 

▪ Displacement: In the combinatorial case, the coordinates of a solution in the search 

space are changed through the properties of the problem being treated. In general, 

the change of position in the combinatorial space is done by a change in the order 

of the elements of the solution, by a combination, a permutation, or a set of methods 

or operators called perturbations or movement (purple). 
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▪ Neighborhood: The notion of neighborhood requires that the neighboring solution 

of a given solution must be generated by the smallest possible perturbation. This 

perturbation must make the minimum of changes to the current solution. It is, 

therefore, necessary to specify subsets of solutions called regions, according to the 

metric of the search space. 

▪ Step: The step is the distance between two solutions. It is based on the topology of the 

space and the notion of neighborhood. In this work, we have classified the steps 

according to their length, which is the nature and the number of successive perturbations. 

5.1. Adaptation of GA-PeSOA to FSSP 

The objective of solving the Flow Shop Scheduling Problem (FSSP) is to determine a 

feasible task sequence for a set of machines that optimizes an objective function. The 

hybrid Genetic and Penguin Search Optimization Algorithm (GA-PeSOA) adopts a search 

procedure to obtain optimal solutions when solving FSSP. GA-PeSOA has been utilized to 

solve FSSP to illustrate its superior effectiveness when compared to other metaheuristic 

algorithms. This section will demonstrate how to represent a solution in the search space 

and how to transition from the current solution to a new one. 

5.2. FSSP Solution  

In the AG-PeSOA context, the location of a penguin in a population is considered as a 

potential solution in the search space. 

Take, for example, Table 1, which illustrates a 4-task, 3-machine scheduling problem. 

Each operation is linked to a particular machine with its corresponding processing time. 

Table 1 Example for 4 × 3 FSSP Instance 

M1 M2 M3 

6 2 4 

3 6 2 

1 3 1 

2 1 5 

In the context of the FSSP, a sequence of tasks representing a solution consists of a 

permutation of tasks, which is essentially a sequence of n integers denoted by S = {1, 2, 3, 

..., n}. This sequence is symbolically represented by S = {1, 2, 3, ..., n}. Each integer "i" in 

the sequence represents a task index, which is responsible for organizing the order of tasks 

on the designated machines according to their structural arrangement within "S". For 

example, let's consider a hypothetical initial solution: 2-1-4-3, which specifies the 

sequential execution of tasks on each machine. 

The information in Table 1, together with the initial solution provided, forms the basis 

for creating a visual representation similar to a Gantt chart (as shown in Figure 2). This 

visual representation is essential for calculating the objective function (Cmax) corresponding 

to the specific sequence (2-1-4-3). This analytical process results in an important measure, 

which is a significant reflection of the solution's efficiency. In this context, the determined 

value of 20 represents the efficiency of the solution. 
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Fig. 2 An example of a Gantt chart for the initial 2-1-4-3 solution 

5.3. Moving in Space 

Moving from one solution to another in the search space involves an operation based 

on concepts of length and topology. Length is represented by the cost of the solution, and 

techniques to move through topology are performed by the operators of Equation 3. 

 𝑆𝑛𝑒𝑤 = 𝑆𝑖𝑑 + 𝑟 ∗ (𝑆𝑏𝑒𝑠𝑡 − 𝑆𝑖𝑑) (3) 

5.4. Operation Subtraction (-) 

This operation involves two solutions, S1 and S2, and yields a displacement vector Q. It 

also extracts the permutations that were applied to S2 to obtain S1:  

let S1  = {j1,j2,j3,j4,… jn-1,jn} and S2  = {j2,j3,j1,j4,… jn,jn-1} 

Q=S1-S2  then Q= {(j1,j2),(j2,j3),…,(jn,jn-1)} 

In other words,  S1-S2=Q’    S1+Q=S2     

5.5. Operation Addition ⊕ 

The operation involves solution S2 and vector Q, resulting in a new solution Snew.  

This involves applying permutations of vector Q to solution S2 to obtain a new solution 

Snew, as exemplified by: 

 Either S2 =  {j1,j2,j3,j4,j5,… ,jn}  and Q = {(3,1),(4,3),(2,5)} 

Snew =S2⊕ Q then Snew = {j4,j5,j1,j3,j2,...,jn} 

5.6. Operation Multiplication ⊗ 

The operation involves a multiplication between a real random number r (rϵ[0,1]) and 

a displacement vector Q. Its role is to decrease the number of permutations of the vector Q 

based on the value of r. 

We consider a displacement vector Q with n permutations. 

▪ Q={(c1,c2),(c3,c4),(c5,c6)…,(cn-1,cn)} and real number 0≤r≤1.  

▪ Q’=r⊗ Q then  m= n×r ≤n    , Q’={(c1,c2),(c3,c4),…,(cm-1,cm)} 

▪ The fig. 3 describe the mathematical operators. 
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Fig. 3 Illustration of the function of the GA-PeSOA operators at the FSSP 

5.7. Genetic Algorithm Operators  

In GA-PeSOA, the generation of new solutions for solving the FSSP is performed by 

combining the operators of the genetic algorithm and the PeSOA mechanism. The genetic 

algorithm operators (selection, crossover, and mutation) are used to create a new population. 

Two different solutions are chosen from the population to represent the parents of the new 

population, and crossover is applied to produce two new offspring (solutions). Crossover is 

used to recombine the genetic makeup of two solutions (parents) to produce two solutions 

that inherit the characteristics of their parent solutions. After the crossover operation, a 

mutation is applied to the solutions to maintain diversity within the population. The structures 

of the genetic algorithm operations (crossover, mutation) are illustrated in Fig. 4. 

In the example in Fig. 4, we have two parent solutions (parent1, parent2). Suppose that 

the two randomly chosen positions for the crossover are 4 and 7; we then obtain the children 

child1 and child2, but child1 and child2 are not legitimate. We consider the duplicated 

tasks in the child 1 as superfluous tasks, which are 2 and 10, and deprived tasks, which are 

3 and 9. In child 2 the duplicated tasks are 3 and 9, and the deprived tasks are 2 and 10. 

Then we exchange them to create the new legitimate children child1' and child2'. 

The mutation operator creates random changes in the order of the tasks. To do this, we 

randomly select a solution and two positions, then swap the first position of one task with 

the second position of another task. Fig. 4 shows an example of mutating a child1 solution 

with positions 6 and 10. 

To integrate the PeSOA mechanism with the genetic algorithm, we can use the PeSOA 

search process to guide the exploration of the solution space. For instance, after applying 

the genetic algorithm operators and obtaining new offspring, we can employ PeSOA to 

refine the offspring's solutions further. This can be achieved by simulating the penguins' 
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collaborative hunting strategy and synchronizing their dives to optimize global energy. By 

combining both approaches, GA-PeSOA can potentially find better solutions for the FSSP 

than using either method alone. 

 

Fig. 4 Example of application of GA operators (crossover - mutation) 

5.8. The 2-opt Local Search Technique Operator  

The 2-opt technique is a local search optimization method commonly used to solve the 

Traveling Salesman Problem (TSP). However, it can also be adapted to the shop floor 

scheduling problem (FSSP) to improve the solutions generated by the GA-PeSOA algorithm. 

In the FSSP, the objective is to find an optimal schedule of tasks to be processed on a 

set of machines. Suppose we have a current schedule (solution) represented by a 

permutation of tasks and we want to improve it using the 2-opt technique. 

Here is a step-by-step example of how to apply the 2-opt technique to update a penguin's 

solution for FSSP: 

1. Begin with the current schedule (solution) for a penguin: [1, 2, 3, 4, 5, 6] 

2. Select two random positions in the permutation (excluding the first and the last 

positions). For example, positions 2 and 4 (tasks 2 and 4). 

3. Reverse the order of the tasks between the two selected positions, resulting in a 

new schedule: [1, 4, 3, 2, 5, 6] 

4. Calculate the objective function value (e.g., makespan) for both the original and 

the new schedules. 

5. If the new schedule has a better objective function value, accept it as the new 

solution for the penguin. Otherwise, keep the original schedule. 

6. Repeat steps 2-5 for a predefined number of iterations or until a termination 

criterion is met (e.g., no improvement in the objective function value for a certain 

number of consecutive iterations). 
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By applying the 2-opt technique to each penguin's solution for the FSSP, we can 

potentially find better schedules by exploring local neighborhoods of the current solutions. 

This can be a helpful addition to the GA-PeSOA algorithm, allowing it to further refine 

and improve the generated solutions. 

The final algorithm incorporates all the mechanisms described as follows: 

Algorithm 3: Discrete PeSOA 

1:  Generate a random population of 𝑃 solutions X={x1,x2,x3,...,xp} ; 

2:  Objective function f(xi),xi  ϵ{x1,x2,x3,...,xp} ; 

3:  Select the best solution from P (xbest and xgbest). 

4:  While (t < MaxCeneration) or (the stop criterion) do 

5:        For i=0 to P do 

6:             While (reserve_oxygene > 0) do 

7:                  Calculate xi(t+1) using equation xi(t+1) = xi(t+1) + rand*(xbest -xi(t)) 

8:             End While 

9:             If (f(xi(t+1))< f(xbest(t+1))) then 

10:               xi(t+1)= xi(t) 

11:            End if 

12:            Else then  

13:                Cross-over the current solution 𝑥𝑖
𝑡  with xbest(t+1))); 

14:                Update the xi(t+1) by the best child of crossing xi(t) and xbest(t+1). 

15:            End Else  

16:           xi(t+1)= 2-opt(xi(t)) 

17:        End for 

18:     Select the best xi(t+1))) 

19:     Updating population solutions x(t) by x(t+1) 

20:  If (f(xbest(t+1))< f(xbest)) then 

21:        xbest=xbest(t+1) 

22:   End if 

23:  If (f(xbest)< f(xgbest)) then 

24:        xgbest=xbest 

25:  End if 

26:  End While. 

27:  Post-processing of results and visualization 
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6. EXPERIMENTS AND CALCULATION RESULTS 

In this section, an evaluation was carried out on the GA-PeSOA using a set of test cases 

taken from the OR library and executed in the C++ programming language. Data for these 

experiments was collected on a MacBook Air equipped with an Intel M1 processor and 

8.00 GB RAM.  

The results of this experiment are shown in Tables 4, 5, 6 and 7, revealing the numerical 

results as follows: The initial column serves to identify the instance under examination, 

called "Instance", while the "n × m" column elucidates the specific configuration involving 

n tasks spread over m machines.  

The "BKS" column gives an overview of the most optimal results, as indicated by the 

alternative algorithms. 

The "Best" columns effectively summarize the outstanding results obtained by applying 

the GA-PeSOA approach to the particular instances in question. 

The GA-PeSOA parameter values are shown in Table 2 : 

Table 2 Values of the parameters used 

Parameters Meaning values 

MaxCeneration Maximum number of iterations 1000 

P Population size 60 

RO2 Oxygenated reserve 10 

To evaluate the performance of the GA-PSeOA, we will compare its results with those 

of various existing algorithms, as listed in Table 3. In Table 4, 5, 6, and 7, we present a 

comparison between GA-PSeOA and other methods.  

Additionally, Figs. 5-8 illustrate the graphical representation of the corresponding 

results. 

Table 3 Nomenclature used 

Abbreviation Full Name Source 

ISDH Improved std dev heuristic 

[17] 
ISDH-LS Improved std dev heuristic with local search 

IBH Improved best-so-far heuristic 

GA Genetic Algorithm 

SSO Social Spider Optimization (SSO) algorithm [18] 

NS-SGDE Self-guided Differential Evolution with Neighborhood Search [19] 

HWA Hybrid Whale Optimization Algorithm [20] 

MASC Memetic Algorithm with Novel Semi-Constructive Evolution Operators [21] 

NEH Nawaz-Enscore-Ham 

[22] SGA Standard Genetic Algorithm 

NEH-NGA Nawaz-Enscore-Ham with Neighborhood Generation Algorithm 

IHSA Improved Harmony Search Algorithm [23] 

PSO Particle Swarm Optimization [17] 
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Table 4 Comparison in small instances 

Instance (nxm) Bks NEH SGA NEH-NGA IHSA PSO GA-PSeOA 

Car01 11 × 5 7038 7038 7038 7038 N/A N/A 7 038 

Car02 13 × 4 7166 7376 7166 7166 N/A N/A 7 166 

Car03 12 × 5 7312 7399 7312 7312 N/A N/A 7 312 

Car04 14 × 4 8003 8129 8003 8003 N/A N/A 8 003 

Car05 10 × 6 7720 7835 7720 7720 N/A N/A 7 720 

Car06 8 × 9 8505 8773 8505 8505 N/A N/A 8 505 

Car07 7 × 7 6590 6590 6590 6590 N/A N/A 6 590 

Car08 8 × 8 8366 8564 8366 8366 N/A N/A 8 366 

Rec01 20 × 5 1247 1320 1249 1247 17 874 19 556 1 247 

Rec03 20 × 5 1109 1116 1111 1109 15 098 17 417 1 109 

Rec05 20 × 5 1242 1296 1245 1242 17 793 19 210 1 242 

Rec07 20 × 10 1566 1626 1584 1566 25 647 28 407 1 566 

Rec09 20 × 10 1537 1583 1561 1537 24 347 26 796 1 537 

Rec11 20 × 10 1431 1550 1473 1438 22 706 25 362 1 431 

Rec13 20 × 15 1930 2002 1956 1935 33 136 36 669 1 930 

Rec15 20 × 15 1950 2025 1982 1950 33 066 35 905 1 950 

Rec17 20 × 15 1902 2019 1959 1907 31 901 35 215 1 902 

Rec19 30 × 10 2093 2185 2175 2098 51 080 59 231 2 093 

Rec21 30 × 10 2017 2131 2076 2022 48 935 57 782 2 017 

Rec23 30 × 10 2011 2110 2070 2016 47 921 56 316 2 011 

Rec25 30 × 15 2513 2644 2636 2518 65 926 76 201 2 513 

Rec27 30 × 15 2373 2505 2470 2378 63 788 73 432 2 373 

Rec29 30 × 15 2287 2391 2415 2292 59 655 N/A 2 287 

Rec31 50 × 10 3045 3171 3249 3150 118 184 N/A 3 045 

Rec33 50 × 10 3114 3241 3189 3149 125 914 N/A 3 114 

Rec35 50 × 10 3277 3313 3327 3282 124 035 N/A 3 277 

 

Fig 5. Comparison of the best-obtained solution for small instances 
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Table 5 Comparison in complex instances (50x5) from [24] 

Instance BKS ISDH ISDH-LS IBH GA SSO NS-SGDE HWA MASC GA-PSeOA 

tail31 2724 82 183 79 471 79 562 80 701 2724 2724 2724 2724 2724 

tail32 2834 90 846 88 454 86395 86 105 2839 2834 2834 2834 2834 

tail33 2621 2 738 82 218 81 122 80 561 2621 2621 2621 2621 2621 

tail34 2751 86 173 84 250 83 257 84 991 2753 2751 2751 2751 2751 

tail35 2863 87 367 85 680 85 763 86 789 2863 2863 2863 2863 2863 

tail36 2829 89 192 85 739 86 354 84 781 2832 2829 2829 2829 2829 

tail37 2725 85 884 82 335 83 010 81 998 2725 2725 2725 2725 2725 

tail38 2683 85 103 83 365 84 082 81 934 2703 2683 2683 2683 2683 

tail39 2552 80 444 79 978 77 992 77 916 2561 2552 2552 2552 2552 

tail40 2782 88 675 85 946 84 142 85 670 2782 2782 2782 2782 2782 

 

Fig. 6 Comparison of the best-obtained solution for complex instances (50x5) 

 Table 6 Comparison in complex instances (50x10) from [24] 

Instance BKS ISDH ISDH-LS IBH GA SSO NS-SGDE HWA MASC GA-PSeOA 

tail41 2991 12 0090 11 6969 11 6122 11 7654 3053 3021 3021 3024 2991 

tail42 2867 11 8203 11 3873 11 2619 11 7445 2938 2896 2891 2882 2867 

tail43 2839 11 7403 11 4235 11 4880 11 0999 2890 2888 2869 2852 2839 

tail44 3063 12 2769 11 8586 11 6836 11 7599 3071 3075 3063 3063 3063 

tail45 2976 12 0773 12 0242 11 9499 12 0528 3024 3027 3001 2982 2976 

tail46 3006 12 0201 11 6570 11 8467 11 6090 3050 3029 3006 3006 3006 

tail47 3093 12 2457 11 9751 12 0075 12 2151 3133 3124 3126 3099 3093 

tail48 3037 11 6975 11 6003 11 5720 11 8636 3046 3055 3046 3038 3037 

tail49 2897 11 8063 11 6323 11 6140 11 5648 2927 2928 2897 2902 2897 

tail50 3065 12 1804 11 8031 11 6781 11 8053 3131 3092 3078 3077 3065 
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Fig. 7 Comparison of the best-obtained solution for complex instances (50x10) 

Table 7 Comparison for complex instances (50x20) from [24] 

Instance BKS ISDH ISDH-LS IBH GA SSO NS-SGDE HWA MASC GA-PSeOA 

tail51 3850 178954 173683 172254 178630 3974 3916 3876 3889 3850 

tail52 3704 169880 166390 166792 166887 3808 3744 3715 3720 3704 

tail53 3640 175244 172739 170554 167089 3772 3702 3653 3667 3640 

tail54 3720 172895 168989 171055 167904 3849 3793 3755 3754 3720 

tail55 3610 172514 166783 169655 173415 3746 3677 3649 3644 3610 

tail56 3681 172492 169714 170539 168755 3795 3743 3703 3708 3681 

tail57 3704 177382 171602 174218 173165 3835 3784 3723 3754 3704 

tail58 3691 169268 165782 165601 173020 3829 3757 3704 3711 3691 

tail59 3743 174213 169524 171078 172826 3870 3795 3763 3772 3743 

tail60 3756 178270 173446 173635 175483 3875 N/A 3767 3778 3756 

 

Fig. 8 Comparison of the best-obtained solution for complex instances (50x20)  
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6.1. Discussion 

The following section presents a comprehensive comparison of various algorithms, 

including the Hybrid Genetic Algorithm and Penguin Search Algorithm (GA-PSeOA), on 

distinct instances and complexities of scheduling problems. The best-known solutions 

(BKS) are provided as a benchmark for each instance. 

6.1.1. Comparison of Distinct Instances of the Scheduling Problem 

Table 4 compares the performance of GA-PSeOA with other algorithms (NEH, SGA, 

NEH-NGA, IHSA, and PSO) on distinct instances of the scheduling problem. GA-PSeOA 

demonstrates exceptional performance, often matching the best-known solutions and 

consistently outperforming IHSA and PSO when results are available. Fig. 5 further 

illustrates GA-PSeOA's consistent capability to achieve high-quality solutions through a 

low curve representing the best solution values discovered across all instances. 

6.1.2. Comparison of Complex Instances (50x5) 

Table 5 presents a comparison of GA-PSeOA with other algorithms (ISDH, ISDH-LS, 

IBH, GA, SSO, NS-SGDE, HWA, and MASC) on complex instances (50x5) from Taillard 

(1993). GA-PSeOA consistently matches or closely approaches the best-known solutions for 

each instance. Fig. 6 displays GA-PSeOA's consistent ability to obtain high-quality solutions 

through a small curve representing the best solution values found across all instances. 

6.1.3. Comparison of Complex Instances (50x10) 

Table 6 compares GA-PSeOA with other algorithms (ISDH, ISDH-LS, IBH, GA, SSO, 

NS-SGDE, HWA, and MASC) on complex instances (50x10) from Taillard [24]. GA-

PSeOA again demonstrates exceptional performance, consistently matching or closely 

approaching the best-known solutions for each instance. Fig. 7 further emphasizes GA-PSeOA's 

consistent ability to obtain high-quality solutions through a small curve representing the best 

solution values found across all instances. 

6.1.4. Comparison of Complex Instances (50x20) 

Table 7 compares GA-PSeOA with other algorithms (ISDH, ISDH-LS, IBH, GA, SSO, 

NS-SGDE, HWA, and MASC) on complex instances (50x20) from Taillard [24]. GA-

PSeOA consistently matches the best-known solutions, underlining its ability to efficiently 

tackle complex scheduling problems. Fig. 8 highlights GA-PSeOA's consistent capability 

to obtain high-quality solutions through a small curve representing the best solution values 

found across all instances. 

6.2. Validation of GA-PSeOA Performance Using the ANOVA Test 

The performance of the GA-PSeOA method is validated using the ANOVA test, 

followed by Dunnett's multiple comparison tests. These tests compare the performance of 

GA-PSeOA with other algorithms by examining the average differences. The following 

information is provided for each comparison: 
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▪ Dunnett's multiple comparison tests: Algorithm pairs being compared (GA-PSeOA 

vs. another algorithm). 

▪ Mean Diff: The average difference between the two compared algorithms. 

▪ 95.00% CI of difference: The 95% confidence interval for the difference between 

the mean values. 

▪ Below threshold? Indicates if the difference is below the threshold of significance 

(Yes or No). 

▪ Adjusted P Value: The adjusted p-value for comparison. 

6.2.1. Cases of lower complexity 

In Table 8, the ANOVA test with Dunnett's multiple comparison tests is used to examine 

the mean differences in performance between GA-PSeOA and four other algorithms (NEH, 

SGA, NEH-NGA, IHSA, and PSO). The test yields a p-value, which indicates the statistical 

significance of the differences between the means. 

Table 8 ANOVA test comparison for less complex instances  

Dunnett's multiple test 
Mean 

Diff, 
95,00% CI of diff, 

Below 

threshold? 

Adjusted P 

Value 

GA-PSeOA vs. NEH -99,54 -132,5 to -66,55 Yes <0,0001 

GA-PSeOA vs. SGA -41,65 -69,07 to -14,24 Yes 0,0017 

GA-PSeOA vs. NEH-NGA -7,385 -18,56 to 3,789 No 0,2950 

GA-PSeOA vs. IHSA -47756 -69484 to -26029 Yes <0,0001 

GA-PSeOA vs. PSO -36792 -50266 to -23317 Yes <0,0001 

The test results reveal that, except for NEH-NGA, there are significant average 

differences between GA-PSeOA and all other algorithms. The average difference between 

GA-PSeOA and NEH is -99.54, with a 95% confidence range spanning from -132.5 to -

66.55. The average difference between GA-PSeOA and SGA is -41.65, with a 95% 

confidence range spanning from -69.07 to -14.24. The average difference between GA-

PSeOA and IHSA is -47,756, with a 95% confidence range of -69,484 to -26,029. The 

average difference between GA-PSeOA and PSO is -36,792, with a 95% confidence range 

between -50,266 and -23,317. The test also indicates that there is no statistically significant 

difference between the mean values of GA-PSeOA and NEH-NGA. This implies that there 

is no evidence to suggest that GA-PSeOA is more or less effective than NEH-NGA. 

In conclusion, the ANOVA test with Dunnett's multiple comparisons demonstrates that 

GA-PSeOA is significantly more effective than NEH, SGA, IHSA, and PSO, but not 

significantly different from NEH-NGA. The results suggest that GA-PSeOA is a more 

competitive approach than other algorithms for the given task. 

The QQ-Plot in Fig. 9 further illustrates the distribution of average differences between 

GA-PSeOA and the other algorithms, highlighting the distinct behavior of GA-PSeOA 

compared to other researched algorithms. 
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Fig. 9 QQ-Plot distribution displaying the distinct performance of GA-PSeOA compared 

to other algorithms for less complex instances 

6.2.2. Cases of higher complexity  

The differences in mean performance between GA-PSeOA and the other seven 

algorithms (ISDH, ISDH-LS, IBH, GA, SSO, NS-SGDE, HWA, and MASC) are compared 

using Dunnett's multiple comparison test. This test gives a p-value that indicates the 

statistical significance of the differences between the means. 

Table 9 ANOVA test comparison for the more complex instances 

Dunnett's multiple test Mean Diff, 95,00% CI of diff, 
Below 

threshold? 

Adjusted 

P Value 

GA-PSeOA vs. ISDH -120877 -143540 to -98213 Yes <0,0001 

GA-PSeOA vs. ISDH-LS -120600 -139703 to -101498 Yes <0,0001 

GA-PSeOA vs. IBH -120558 -139943 to -101174 Yes <0,0001 

GA-PSeOA vs. GA -121177 -140849 to -101505 Yes <0,0001 

GA-PSeOA vs. SSO -57,10 -85,64 to -28,57 Yes <0,0001 

GA-PSeOA vs. NS-SGDE -8,283 -27,30 to 10,73 No 0,7390 

GA-PSeOA vs. HWA -12,41 -19,40 to -5,428 Yes 0,0002 

GA-PSeOA vs. MASC -13,00 -20,98 to -5,024 Yes 0,0006 

The test results reveal that, except for NS-SGDE, there are significant average 

differences between GA-PSeOA and all other algorithms. The average difference between 

GA-PSeOA and ISDH is -120,877, with a 95% confidence interval ranging from -143,540 

to -98,213. The average difference between GA-PSeOA and ISDH-LS is -120,600, with a 

95% confidence interval spanning from -139,703 to -101,498. The average difference 

between GA-PSeOA and IBH is -120,558, with a 95% confidence interval between -

139,943 and -101,174. 

The average difference between GA-PSeOA and GA is -121,177, with a 95% 

confidence interval covering -140,849 to -101,505. The average difference between GA-

PSeOA and SSO is -57.10, with a 95% confidence interval ranging from -85.64 to -28.57. 

The average difference between GA-PSeOA and HWA is -12.41, with a 95% confidence 
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interval between -19.40 and -5.428. The average difference between GA-PSeOA and 

MASC is 13.00, with a 95% confidence interval ranging from 20.98 to 5.024. 

The test also indicates that the mean difference between GA-PSeOA and NS-SGDE is 

not significant, meaning that there is no evidence to suggest that GA-PSeOA is more or 

less effective than NS-SGDE. 

In conclusion, Dunnett's multiple comparison test demonstrates that GA-PSeOA 

performs significantly better than ISDH, ISDH-LS, IBH, GA, SSO, HWA, and MASC, but 

is not significantly different from NS-SGDE. These results suggest that GA-PSeOA is a 

competitive method in comparison to other algorithms for the given task. 

In Fig. 10 the QQ plot displays a bimodal distribution of performance differences 

between GA-PSeOA and the other algorithms, indicating that GA-PSeOA performs 

considerably better than other algorithms in some cases, while its results are significantly 

worse in others. The points furthest from the edges of the line reveal that these performance 

differences can be substantial. 

 

Fig. 10 QQ-plot distribution showing the distinct performance of GA-PSeOA compared to 

other algorithms for more complex instances 

 7. CONCLUSIONS 

In conclusion, the innovative hybrid approach presented in this paper, which combines 

the strengths of Genetic Algorithms (GA) and Penguin Search Optimization (PSeOA), has 

proven to be highly effective in solving the multistage flow shop scheduling problem 

(FSSP). By integrating the genetic diversity and solution space exploration capabilities of 

GA with the rapid convergence and adaptability of PSeOA, this hybrid method significantly 

outperforms pure GA, PSeOA, and other state-of-the-art metaheuristics in comprehensive 

experimental evaluations. 

The promising results of this study pave the way for further research in metaheuristics 

applied to combinatorial optimization, particularly in the context of FSSP, and emphasize 

the need to address the limitations of the hybrid approach while exploring avenues for 

improvement and extension to tackle other combinatorial optimization problems and 

challenges in the scheduling domain. 
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The successful application of the hybrid GA-PSeOA approach in the context of FSSP 

highlights its potential for enhancing efficiency and productivity in manufacturing systems. 

The implementation of this method can contribute to substantial advancements in 

manufacturing processes, leading to more streamlined and cost-effective operations. 

Future research will focus on several key aspects to advance the current state of 

knowledge. Firstly, refining the performance of the hybrid GA-PSeOA approach for FSSP 

will be prioritized to improve its efficiency and impact. Additionally, the exploration of 

potential applications for this hybrid optimization technique in other optimization tasks 

will expand its scope and influence across various domains. Furthermore, the development 

of hybrid optimization algorithms that blend the strengths of GA-PSeOA with other 

optimization techniques has the potential to yield significant improvements in the overall 

efficiency and effectiveness of the method. 
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