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Abstract. The radial dynamics of a single-walled zigzag carbon nanotube under pulsed 

pressure is studied. Uniform external pressure is applied instantly, then remains constant 

for a certain time, and then is instantly released. This loading scheme allows one to 

consider a carbon nanotube under plane strain conditions and replace it with a circular 

ring formed by one zigzag row of carbon atoms. The bending deformation of the ring in 

its plane is described by an equation based on the Kirchhoffs hypothesis. An effective 

parameter is used, including the bending stiffness of the ring and areal density. The 

regimes of oscillatory motion and exponential growth of radial displacements are 

investigated depending on the magnitude and duration of the applied pressure. 

Alternatively, the ring is analyzed in terms of a molecular dynamics model with a reduced 

number of degrees of freedom, taking into account the plane strain conditions. With the 

help of molecular dynamics, the limits of the thin shell theory are established. For (n, 0) 

CNTs with n > 15, in the regime of small-amplitude vibrations, the discrepancy between 

the continuum model and molecular dynamics calculations does not exceed 5% and 

decreases with increasing n. 
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1. INTRODUCTION 

Free and forced vibrations of carbon nanotubes (CNTs) have been analyzed in a number 

of studies [1-13] because they affect the operation of nano-devices such as sensors, 

actuators, etc. 

The physical and mechanical characteristics of CNTs, including their behavior under 

static and dynamic loading, are often investigated using the methods of molecular 

dynamics and continuum mechanics [1-5]. In the latter case, the effective dimensions of 

CNTs, effective elastic and mass parameters are introduced. In this work, the molecular 

dynamics and the theory of thin shells with a parameter determined from the comparison 

of natural frequencies within the framework of these models are used.  

The effect of a uniform dynamical pressure on a single-walled CNT is considered. The 

effect of pressures on CNTs is discussed in reviews [6, 7]. There are experimental studies 

of the dynamic, structural and electrical properties of single-walled and multi-walled 

CNTs, depending on the uniform static and dynamic pressure [8-13]. These works also 

consider theoretical modeling within the framework of molecular dynamics and continuum 

mechanics. The deformation of isolated CNTs under static pressure is analyzed, which is a 

necessary step in studying the complex behavior of a CNT bundle under dynamic pressure. 

It has been shown [10, 11] that with an increase in static pressure up to p1≈3D/R, the CNT 

cross-section acquires the shape of an ellipse (here D is the CNT wall bending stiffness and 

R is the CNT radius). In the elliptic state, the radial stiffness of the CNT decreases by two 

orders of magnitude [11]. Further increasing the pressure up to p2≈p1[1-ln(F2/F1)] results in 

a cross-sectional shape with two opposite points of zero curvature. With a further increase in 

pressure up to p3≈p1[1-ln(F3/F1)], the deformation of the cross-section increases and the 

electrical properties of the CNT change (transition to semiconductor state takes place). Here 

F1, F2 and F3 are the cross-sectional areas corresponding to the pressures p1, p2 and p3. For a 

single-walled armchair CNT (10, 10), p1=1.55, p2=1.75 and p3=2.2 GPa [10]. 

The static stability and deformations of thin elastic circular rings under nonuniform 

pressures p=p0(1+qcos) were studied and it was found that the ring deforms only in a doubly 

symmetric fashion, while static buckling into an asymmetric pattern was not observed [14].  

Vibrational properties of long hollow cylindrical shells interacting with the external 

medium were analyzed in the works [15, 16].  

The structural transformations in CNT bundles during laser compression and the 

resulting oscillations have been considered [8, 9, 12]. In these and other works [17, 18], 

Raman spectroscopy is widely used in experimental studies. The behavior of CNTs was 

studied experimentally at different distances between them in the bundle (from 1.5 to 1.7 

nm). In [13], the change in the properties of a single multilayer CNT under shock 

compression through the surrounding elastic material was studied. 

The radial breathing mode frequency of various zigzag and armchair CNTs with radii 

between 3.5 and 8.1 Å have been determined using the first-principles calculations [19]. 

Dispersion relations for long-wavelength phonons in graphite and achiral single-walled 

CNTs have been analyzed using a continuum model [20]. Analysis of vibration behavior 

of carbon nanomaterials is important for design of nano-mass, nano-force and strain 

sensors [21-29] as well as microelectromechanical systems for various purposes [7, 30].  

Dynamic loading of carbon nanomaterials is considered in solving important problems 

related to the damping of shocks and vibrations as well as projectile protection. Molecular 

dynamics simulations and experiments were conducted to study energy dissipation in CNT 
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films under ballistic impact [31, 32, 33]. Energy dissipation by collapsing CNTs in the 

bundle under shock loading was analyzed in the work [34].  

In this work, we analyze the response of single-walled CNTs to a uniform dynamic 

pressure within the framework of the theory of thin shells and molecular dynamics. 

2. PROBLEM STATEMENT 

It is assumed that a time-varying external uniform excess pressure p(t) is applied at time 

t=0 to a single-walled zigzag CNT, which at t<0 is under the same external and internal 

pressure p0 (for example, atmospheric pressure).  

For a uniform pressure, zigzag CNT can be considered as a ring formed by single zigzag 

chain of carbon atoms (see Fig. 1). As the length of the valence bond, we take l=1.273Å 

which is slightly less than the experimental value in graphene, 1.4 Å, due to the effect of 

curvature of the CNT wall, especially for CNTs with a small radius. In the ring, the distance 

between the carbon atoms, projected onto the xy plane, is equal to  a=lcos30º=1.102 Å.  

 

Fig. 1 (a) The structure of a zigzag CNT wall and (b) representation of the zigzag CNT by 

the chain model. The valence bond length is l=1.273Å, the distance 

a=lcos30º=1.102 Å, CNT radius is R. Cross section of the zigzag CNT (n,0) is 

presented by N=2n carbon atoms numbered with the index i=1,…,N; the case of 

N=30 is shown in (b). A ring of width b=3l/2=1.91 Å is considered with periodic 

boundary conditions along the z axis. The area per one C atom S=2.105 Å2 is shown 

by dotted lines (equilateral triangle). 

A continuum mechanics model considers a ring formed by two cross sections at a 

distance b=3l/2=1.91 Å symmetrically relative to a zigzag row of carbon atoms. The radius 

R is determined from the equality 

 2 sina R
N


= , (1) 

where N is the number of atoms forming the ring. Note that N=2n for the zigzag CNT (n,0) 

The area per atom is equal to S=2.105 Å2. The mass of a carbon atom is M=1.99×10-26 kg 

or M=12 a.m.u. Here we use angstroms, picoseconds, and electronvolt as units of measure 

for distance, time, and energy, respectively. In these units the carbon atom mass is 

M=1.244×10-3 eV·ps2/Å2. The effective area density is 
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where  and h are the effective bulk density and ring thickness. 

2. ELASTIC RING MODEL 

Before pressure p(t) is applied, a perfectly circular ring performs small-amplitude free 

oscillations in its plane. These free vibrations will be represented as a sum of a few first 

harmonics. It is assumed that the pressure begins to act at the time of the greatest deviation 

for each harmonic. Then the initial conditions with respect to the deflection function w(,t), 

where  is the central angle, are taken in the form 
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where m is the harmonic number, W2
0
 is the initial amplitude of the harmonic m=2. The 

overdot denotes the derivative with respect to time t. The uniform distribution of the amplitudes 

Wm
0
 corresponds to =0 and for >0 the amplitude decreases with the harmonic number. 

The linear equation of motion of the ring in its plane with respect to the deflection 

function w(,t) has the form [14]: 
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Here, D is the effective bending stiffness, E and  are the effective modulus of elasticity 

and Poisson’s ratio, respectively, p*
2 is the critical pressure at which the loss of stability of 

the circular shape of the ring with respect to the lowest harmonic m=2 occurs (it is indicated 

as p1 above [10]). Since the width of the ring b enters the values of masses, stiffness and 

pressure, it is canceled in Eq. (4). 

Eq. (4) does not take into account the influence of the surrounding gas environment, 

which is characterized by the parameter f R/(h), where f is the density of the 

surrounding medium,  is a complex function of the input quantities [14, 15]. The real and 

imaginary parts of  are responsible for the added mass of the medium and the radiation of 

energy from the tube. Except in special cases not covered here,  does not increase the 

value of this parameter. Therefore, the influence of the external environment on the motion 

of the tube can be judged by the dimensionless parameter f R/(h). If its value is much 

less than one, then the influence of the environment is small. Taking into account the above 

value of h and the equality 2R≈aN, this condition can be written as f R~10-6 kg/m2 or f 

N=4×104 kg/m3. For air at atmospheric pressure f =1.2 kg/m3, and this condition gives 

R~103 nm or N=3×104. We will consider the dynamics of a ring formed from atoms of 
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order 10 to 100. Therefore, we will not take into account the influence of the external 

environment. With a slow increase in pressure on the tube, the considered influence of the 

medium on the tube is absent.  

3. MOLECULAR DYNAMICS MODEL 

CNT under plane strain conditions can be simulated with the use of the chain model 

proposed in [35, 36] and adapted for simulation of CNTs in [37, 38].  

The chain model considers one zigzag row of carbon atoms moving in the xy-plane as 

shown in Fig. 1(b). The atoms are numbered with the index i=1,…,N; their positions are 

defined by the radius-vectors ri. The Hamiltonian of the chain is 
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where the  first term gives the kinetic energy of the chain and the terms UB and UA describe 

the potential energy of valence bonds and valence angles, respectively.  

The energy of valence bonds is 
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where  =25.279 eV/Å2 is the valence bond stiffness.  

The energy of valence angles is 
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where  =0.00166 eV is the valence angle stiffness.  

External forces applied to each atom were added to the equations of motion following 

from the Hamiltonian Eq. (5) to simulate a uniform conservative external pressure p(t). 

The chain model was successfully used for simulation of carbon nanostructures, in 

particular, structure and thermomechanical properties of CNT bundles were analyzed in 

the works [37, 40-45], folded and scrolled packings of carbon nanoribbons in [46], 

crumpled graphene under compression in [47]. Chain model can also be applied to the 

analysis of other two-dimensional nanomaterials [48, 49]. 

For N carbon atoms of the CNT cross section numbered by the index i (see Fig. 1(b)) 

the radial displacements can be presented as the sum of N/2+1 Fourier harmonics 
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where the coefficients of the expansion are calculated as follows 
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The following initial radial displacements are applied 
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It can be seen that initially only three first bending harmonics shown in Fig. 2 are excited 

(the harmonics m=0 and m=1 are tensile and translational, respectively). We take equal 

amplitudes for the three harmonics, Wm
0=10-3R, m=2,3,4, which is an analog of Eq. (3) for 

=0. 

 

Fig. 2 The three first radial vibrational modes of the CNT cross section 

Table 1 CNT radius R (in Å) and numerical values of  (in Å2/ps) for various N and 

m=2,3 and 4. 

N R  (m=2)  (m=3)  (m=4) 

18 3.179 54.75 52.84 52.71 

30 5.278 56.71 56.03 54.78 

42 7.382 57.55 57.09 56.45 

54 9.487 57.84 57.55 57.18 

66 11.59 57.98 57.78 57.49 

78 13.70 58.06 57.92 57.74 

90 15.80 58.12 58.01 57.86 

102 17.91 58.15 58.07 57.95 

114 20.02 58.18 58.11 58.02 

126 22.12 58.19 58.14 58.07 

138 24.23 58.21 58.17 58.11 

150 26.33 58.22 58.19 58.14 
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The amplitudes of N/2+1 Fourier harmonics are 
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Numerical examples will be given for the CNT with the number of atoms N=200. For 

such a large value of N we take =58.2 Å2/ps, see Table 1. From Eq. (1) one finds the CNT 

radius R=aN/(2)=35.08 Å and from Eqs. (2) and (4) D=2.001 eV.  

The equations of motion of the atoms representing the CNT cross section are integrated 

numerically by the symplectic Stormer method of the sixth order of accuracy [39]. Time 

evolution of the Fourier harmonic amplitudes, Wm(t), is analyzed.  

4. NATURAL VIBRATION FREQUENCIES OF CNT 

The theory of thin elastic shells gives the following expression for the natural circular 

frequencies of bending vibrations of a cylindrical shell [14] 

 
2

2 2

( 1)

1
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m m
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where m≥2 is the harmonic number and R is the shell radius. 

The numerical values of the parameter  included in Eqs. (4) and (12) were determined 

in [40, 41] by comparing the frequencies m by Eq. (12) and by the chain model; they are 

given in Tab. 1. The analytical approximation (N,m) given in [41] gives a satisfactory result 

only for the mode m=2. Here, this approximation is somewhat improved and has the form 

 5 2( , ) ( )N m A sm q N− = − − , (13) 

where A=58.2 Å2/ps, s=7.2×103 Å2/ps, q=8.4×103 Å2/ps. For N>150 and m≤4 the value 

=58.2 Å2/ps remains constant.  

In Fig. 3, the dependencies (N,m) according to Eq. (13) are given for m=2,3 and 4 

together with the numerical data (scattered) obtained with the help of the chain model. The 

value of  increases with an increase in the number of atoms N and decreases with an 

increase in the harmonic number m.  

The ratio of the wavelength around the circumference of the ring 2R/m ≈ aN/m to the 

thickness h is aN/(mh). Taking into account the value of a=1.102 Å and the value of h=3.3 

Å, which is the interlayer distance in graphite, we obtain this ratio equal to N/(3m). 

Equation of motion Eq. (4), based on the Kirchhoff hypotheses [14], is valid for N/(3m)>10. 

It was obtained without taking into account the inertia of rotation of the ring element and 

transverse shear, which affect the solution for N/(3m)<10. In this case, it is necessary to 

use the Timoshenko model, which takes these factors into account [50, 51].  

On the other hand, at N/(3m)<10, there are less than 15 atoms per half-wavelength, and 

the inaccuracy of the equations of continuum mechanics becomes noticeable. Taking into 

account the inertia of rotation and transverse shear leads to a decrease in the natural vibration 
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frequencies in comparison with the result based on Kirchhoff hypotheses. This trend is seen 

in Fig. 3. 

 

Fig. 3 Dependence of the parameter  entering Eq. (13) on the number of atoms N forming 

a single-layer ring and the harmonic number m of radial vibrations. The dots show 

the numerical values from [18]. 

5. LONG-TERM PRESSURE RESPONSE 

At t=0 the external pressure p=const is instantly applied to the CNT and acts for a long 

time. By a long duration of a pressure pulse of constant intensity, we mean a time interval 

t<, an order of magnitude or more exceeding the oscillation period 2/m. 

5.1. Analytical Treatment  

Looking for a solution to equation Eq. (4) in the form 

 
2
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from Eq. (4) and Eq. (14) we obtain 

 02 =+ mmm WW , (15) 
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Here, m is the natural frequency of the m-th harmonic at zero pressure defined by Eq. 

(12), m is the frequency under the action of excess pressure p.  

The critical pressure value for the CNT with N=200, R=35.08 Å, and D=2.001 eV, with 

respect to the harmonic m=2, in accordance with Eq. (4), is 
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From the condition m =0 one finds from Eq. (16) the critical values of pressure for other 

harmonics, 
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and hence, for the considered CNT, 
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Next, we analyze the CNT dynamics after an instantaneously applied constant external 

pressure p. In the case of an abrupt increase in pressure at time t=0 from 0 up to a constant 

value p, the solution to Eq. (15) has the form 

 ( ) m mt t
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= + . (21) 

Satisfying the initial conditions Eq. (3), we obtain for the m-th harmonic 
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Thus, depending on the ratio of the effective pressure to the critical pressure  and the 

number of the harmonic m, oscillations or/and an exponential growth of the initial 

deflections can be excited after the load is applied. For a relatively small value of  

p<pm
*=p2

*(m2-1)/3, the first, time periodic solution in Eq. (22) is realized for the harmonic 

m. For example, for harmonic m=3 this condition is p<(8/3)p2
* and for m=4 this condition 

is p<5p2
*. In the case of a large value of the effective pressure, for one or several lowest 

harmonics the second solution in Eq. (22) takes place. The harmonic number mR separating 

these lowest modes of motion is determined from the condition m=0 and is equal to 

 1 3Rm  = + 
 

, (23) 

where ⌊·⌋ denotes the round down operation.  

Solution Eqs. (14) and (22), can be written as 
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It can be seen from Eq. (24) that the first harmonics from the 2nd to mR show an exponential 

increase in amplitude with time, and the larger m, the faster the growth. Harmonics above 

mR oscillate with frequency m. 

The fastest growth of the amplitude occurs for the harmonic with the number m=mL, 

determined from the condition dm /dm=0. In the simplest case of the independence of the 
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parameter  from n (N>78) and the same initial deviation amplitudes (=0) this condition 

gives  
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where ⌈·⌉ denotes the round up operation. The mL value is somewhat less than the mR value. 

Therefore, the fastest increase in the amplitude is observed for the harmonic at the border 

of exponential growth and oscillatory motion. What has been said applies to the case of a 

uniform distribution of the initial deviation over harmonics (=0). At >0, the picture 

changes. At the beginning of the process, the harmonic with number m=2 prevails due to 

the nature of the initial conditions Eq. (3) and the presence of the factor (m-1)- in solution 

Eq. (24). With increasing time, the second term in Eq. (24), 2-cosh(3t) becomes larger 

than the first, cosh(2t), and so on.  

Thus, during dynamic deformation of a CNT with a decreasing distribution of small 

initial deflection over harmonics, a rearrangement in m occurs over time. At large time, the 

harmonic mL, which is determined approximately by Eq. (25), becomes dominant. In the 

presence of limiters of movement along the radius, for example, contacting media, the 

harmonic mL may not become dominant. Nonlinearities can also lead to this limitation.  

5.2. Chain Model Results 

Let us first check the accuracy of Eq. (16) in predicting the main frequency of CNT 

vibrations at an external pressure p<p2
*, i.e. for <1.  

Molecular dynamics modeling is carried out as follows. The initial condition Eq. (10) 

is applied to the CNT at pressure p, and the time evolution of the harmonic amplitudes 

m=2,3 and 4 is calculated from Eq. (11).  

In Fig. 4(a) time evolution of the harmonic amplitudes W2, W3 and W4 is presented for 

CNT with N=200 at pressure p=1.14×10-4 eV/Å3 = 18.2 MPa. In view of Eq. (17), one finds 

the analytical value of =p/p2
*=0.816. From the numerically obtained function W2(t) one 

finds the oscillation frequency of the second harmonic as 2=54.6 GHz. From Eq. (12) it 

follows that the natural vibration frequency of the second harmonic is 2=126.9 GHz. 

From Eq. (16), for m=2 one has =1 – (2/2)2=0.815, which is in a very good agreement 

with the analytical estimation.  

Similar numerical results were obtained for different pressure values, they are presented 

in Fig. 4(b) by black squares. The red line shows the analytical dependence 2/2=(1-)1/2, 

which follows from  Eq. (16) for m=2. It can be seen that the theory predicts very well the 

dependence of the fundamental oscillation frequency on the applied external pressure in 

the studied case of <1 amplitudes of all harmonics are periodic functions of time.  

Next, we analyze the case >1, in particular, consider =2,3 and 7.  

For =2, p>p2
* and p<pm

* for m>2. From Eqs. (23) and (25) for =2 we find mR=⌊2.6⌋ 
and mL=⌈2.0⌉. Rounded values are mR=3 and mL=2. According to the above theory, in Eq. 

(24) the first sum is taken from 2 to 3, and the second - from 4. The harmonic m=2 grows 

exponentially with time and is the fastest growing harmonic. The remaining harmonics are 

periodic in time. In Fig. 5(a), the time dependence of the harmonic amplitudes is presented. 

In line with the theoretical prediction, W2 grows exponentially, while W3 and W4 fluctuate 

over time. 
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Fig. 4 (a) Amplitudes of Fourier harmonics as the functions of time found for CNT with 

N=200 under external pressure p=18.2 MPa (=p/p2
*=0.816). (b) Frequency of the 

harmonic m=2 normalized to the natural vibration frequency at p=0 as the function 

of the applied pressure normalized to the critical value p2
*. Red line shows the 

analytical solution Eq. (16) for the elastic ring and black squares the numerical 

results for the CNT. 

For =3, p>p3
* and p<pm

* for m>3. From Eqs. (23) and (25) for =3 we find mR=⌊3.4⌋ 
and mL=⌈2.4⌉. Rounded values are mR=3 and mL=3. As can be seen from Fig. 5(b), W2 and 

W3 grow exponentially, while W4 performs oscillations. As predicted by the theory, the 

fastest growth is demonstrated by W3.  

For =7, p>p4
* and p<pm

* for m>4. From Eqs. (23) and (25) for =7 we find mR=⌊4.7⌋ 
and mL=⌈3.4⌉. Rounded values are mR=4 and mL=4.  In Eq. (24), the first sum is taken from 

2 to 4, and the second from 5. The harmonics m=2,3 and 4 grow exponentially, with the 

fastest growing harmonic m=4. The numerical results are presented in Fig. 5 (c) to confirm 

the theoretical predictions. Starting from m=5, oscillations occur with increasing frequency 

and decreasing amplitude around the motion determined by the harmonics m=2,3 and 4. 
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Fig. 5 (a) Amplitudes of Fourier harmonics as the functions of time found for CNT with 

N=200 under external pressure p corresponding to (a) =2, (b) =3, and (c) =7. 

6. REACTION TO A PRESSURE PULSE 

Below we analyze the dynamics of CNTs due to a relatively short rectangular pressure 

pulse. 

6.1. Analytical Treatment 

In the case of the pressure pulse shown in Fig. 6, one can use solution Eq. (24) within 

0≤t≤, where  is the pulse duration. For t > , when p=0, =0, n=n , the solution to 

Eq. (15) has the form 

 ( ) cos( ) sin( )m m m m mW t A t B t=  +  . (26) 

The integration constants are determined from the conditions 
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The first line in Wm(t) and ( )mW t  corresponds to the case when the effective pressure 

p<p2
*(m2-1)/3, see Fig. 6(a), and the second line is valid in the opposite case, see Fig. 6(b). 

 

Fig. 6 A rectangular pressure pulse with a height (a) less than the critical pressure p2
*, (b) 

greater than the critical pressure. The pulse duration is . 

 The dynamics of the ring after the termination of the action of the pressure pulse (t>) is 

determined by the expressions 
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where i is the imaginary unit and we have introduced the notation 

 2

2

3
1

1
m

m


 = −

−
 (29) 

in accordance with Eq. (16), so that m
2=m

2m
2. For =0 in both solutions of Eq. (28), the 

motion is a continuation of the initial motion defined by Eq. (3), w=W0mcos(mt)cos(m), 

since there is no pressure drop yet. In the case p=0 (=0, m=±1) from the first solution we 

obtain the same function, and the second solution Eq. (15) has no meaning. In the general 

case, the motion in the interval 0<t< is determined by Eq. (24), and for t> by Eq. (28). 

Thus, during the pressure action (0<t<), when 3p<p2
*(m2-1), oscillations occur with 

frequencies m and amplitudes Wm
0. After the cessation of the pressure (t>), oscillations 

for each harmonic occur with a higher frequency m than m.  

In the case 3p>p2
*(m2-1), within the pressure pulse (0<t<), an exponential growth of 

the harmonic amplitudes occurs. At t>, oscillations occur with the same frequencies m, 

but with increased amplitudes. This solution is valid within the formulation of the problem 

in the linear approximation. 



288 M. A. ILGAMOV, A. A. AITBAEVA, I. S. PAVLOV, S. V. DMITRIEV 

Example. Let us consider in more detail the dynamics of the harmonic m=2 in the CNT 

with the number of atoms N=200. According to Eq. (12), 2=0.127 rad/ps. For p=18.2 MPa 

(=p/p2
*=0.816, 2=0.429) one has from Eq. (16) 2=0.054 rad/ps. Since p<p2

*, the first 

line of Eq. (28) applies, 

 
   

2

0

2

cos(0.054 ), 0 ,

cos(0.054 )cos 0.127( ) 0.429sin(0.054 )sin 0.127( ) , ( ).

t tW

t t tW

  
= 

 −  +  −   
 (30) 

In this case, the oscillation amplitude after the termination of the pressure does not 

depend on its duration .  

Now we consider the case of >1. Let us take =1.1, then 2=(p/p2
*-1)1/2=0.316, 

2=22=0.040 rad/ps. For t< the solution is given by Eq. (24) and for t> the solution is 

given by the second line of Eq. (28): 

 
   

2

0

2

cosh(0.040 ), 0 ,

cosh(0.040 )cos 0.127( ) 0.316sinh(0.040 )sin 0.127( ) , ( ).

t tW

t t tW

  
= 

 −  −  −   
 (31) 

It is clear that for p>p2
* there is a strong dependence of the amplitude of oscillations 

after the termination of pressure pulse on its duration . 

6.2. Chain Model Results 

The time dependence of the harmonic amplitudes W2, W3 and W4, are shown for the 

CNT with N=200 for the pulsed pressure in Fig. 7.  

In Fig. 7(a) p=18.2 MPa (=0.816) and pulse duration is equal to =100 ps. This result 

should be compared with the one shown in Fig. 4(a), where the same pressure is constantly 

applied. Under the action of a pressure pulse, the CNT wall performs periodic oscillations, 

and the fundamental bending harmonic m=2 has a frequency 2=0.054 rad/ps. After the 

external pressure is removed, the amplitude of oscillations of the m=2 harmonic decreases 

somewhat, and the frequency increases in accordance with the theoretical prediction, see 

the first line of Eq. (28). Removing the pressure has little effect on the dynamics of higher 

harmonics m=3 and 4.  

In panels (b) and (c) of Fig. 7, the external pressure is greater than p2
*, namely, it 

corresponds to =2 and 3, respectively. The duration of the pressure pulse is =25 and 

20 ps, respectively. These graphs should be compared with Fig. 5(a) and (b) respectively, 

where the same pressure is constantly applied. It can be seen from Fig. 7 that after the 

removal of external pressure, the exponential growth of W2 in (b) and W2 and W3 in (c) 

turns into a periodic motion with an amplitude reached by the time . This means that the 

oscillation amplitude of these harmonics strongly depends on , as it was shown theoretically, 

see the second line of Eq. (28).  

It can be concluded that the theory of thin shells describes very well the dynamics of 

CNTs under pulsed pressure. This conclusion is supported by comparison of the critical 

pressure values calculated using molecular dynamics and the shell theory, see Fig. 4(b), 

and also by the dynamics of various harmonics under constant and pulsed pressure, see 

Fig. 5 and Fig. 7.  
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Fig. 7 (a) Amplitudes of Fourier harmonics as the functions of time found for CNT with 

N=200 under external pulsed pressure (a) p=18.2 MPa (=0.816), (b) p=36.4 MPa 

(=2.0), and (c) p=54.6 MPa (=3.0). Pressure drops to zero at time  shown by the 

vertical dashed line: in (a) =100 ps, (b) =25 ps, and (c) =20 ps. 

5. CONCLUSIONS 

At present, the static deformation of the CNT cross section under the action of external 

pressure has been studied and a strong dependence on the CNT diameter has been shown. 

The spectral properties of the nanotubes were also analyzed depending on the external 

pressure. To the best of our knowledge, the dynamic behavior of CNTs under the action of 

a pressure pulse of various durations and intensities has been less studied. In this work, to 

analyze the dynamics of CNTs under plane strain conditions, we applied a continuum 

approach based on the theory of thin cylindrical shells based on the Kirchhoff hypotheses. 

In addition, we used the molecular dynamics method based on the chain model, which 

describes the deformation of the CNT cross section under a uniform external pressure. By 

comparing the eigenfrequencies of radial vibrations of a circular ring and CNT wall 

consisting of a different number of atoms N , the parameter  is determined, which contains 

the bending stiffness and density of the ring, see Table 1. 
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The introduction of the parameter  into the analysis opens up the possibility of a wide 

application of the models and relations of the well-developed theory of elastic thin shells. 

In this case, it is not necessary to involve such parameters as effective density, elastic 

modulus, Poisson’s ratio, wall thickness, the determination of which is a difficult task. 

Determining the parameter  from such an integral characteristic as natural frequencies of 

CNT vibrations seems to be more justified than from the effective parameters, which are 

given in the literature with a wide spread. For example, the effective thickness of the CNT 

wall is given in the literature in the range 0.7-3.4 Å. 

From the analysis of the values of the parameter  for CNTs of different diameters, 

determined by the chirality index n (or number of carbon atoms in a CNT cross section 

N=2n) given in Table. 1, one can conclude that for the zigzag CNTs (n,0) with n>15, in the 

regime of small amplitude vibrations, the discrepancy between the continuum model and 

molecular dynamics calculations does not exceed 5% and decreases with increasing n. 

As a result of the theoretical analysis carried out within the framework of the linear 

theory of thin shells, the dynamics of the deflection function of the CNT wall is described 

under the instantaneous application of a time constant or pulsed external pressure. 

Theoretical results are compared with molecular dynamics calculations, where the 

expansion of the deflection function in a Fourier series was analyzed. 

In particular, it is shown that the dynamics of bending harmonics with numbers m≥2 

changes qualitatively when the external pressure exceeds the critical values pm
* determined 

from Eq. (18). At pressure in the range p*
m < p < p*

m+1, the amplitude of harmonics with 

numbers less than m+1 grows exponentially, while harmonics with higher numbers exhibit 

oscillatory motion. Interestingly, the fastest increase in the amplitude is observed for the 

harmonic at the border of exponential growth and oscillatory motion.  

Under the action of a rectangular pressure pulse of short duration (compared to the 

oscillation period of the fundamental bending harmonic), the dynamics of different modes 

depends both on the value of the applied pressure p and on the pulse duration . For 

oscillating harmonics, the amplitude of oscillations after the termination of the pressure 

pulse weakly depends on , and for harmonics whose amplitude grows exponentially with 

time, the amplitude of oscillations at t >  increases rapidly with increasing .  

The results presented in our work deepen our understanding of the dynamics of CNTs 

under the action of pulsed pressure. In the future, similar studies will be performed for 

spherical particles (fullerenes) [52-54]. 
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