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Abstract. Forest fires are one of the major causes for deforestation resulting in 

significant economic and environmental losses. The application of drones has been 

extended to various areas including disaster management. Since drones offer numerous 

advantages like real-time surveillance, task planning capabilities and autonomy, they are 

utilized in early detection systems for forest fires. The selection of a drone type for this 

purpose involves a complex system of multiple factors and conflicting information, for 

which the use of multi-criteria decision-making (MCDM) methods have been found to be 

yielding effective results. The aim of this study is to present a decision framework for 

drone selection problem in the context of forest fire surveillance and detection. This study 

contributes by (i) pointing out to the gap that the drone selection problem for forest 

surveillance and fire detection has been sparsely addressed, (ii) presenting an extensive 

literature review, (iii) extracting the relevant criteria through a literature review and 

interviews with the experts in field, (iv) assessing the alternatives by the proposed 

framework based on interval valued neutrosophic evaluation based on distance from 

average solution (IVN EDAS) method. The proposed framework is demonstrated by a 

case study consisting of four drone alternatives and 14 criteria. In accordance with the 

extant literature, the criteria related to the visual capabilities and diagnosis are 

evaluated as the most crucial features. A sensitivity analysis is carried out to check for 

the robustness by varying the criteria weights and a comparative analysis is conducted 

with interval valued neutrosophic technique for preference by similarity to the ideal 

solution (IVN TOPSIS) and interval valued neutrosophic combinative distance-based 

assessment (IVN CODAS) methods to validate the veracity of the method. 
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1. INTRODUCTION  

Forests are vital for the sustainability of the ecosystem and human life. They play a 

crucial role in counteracting climate change and its worsening effects. Among the 

deforestation causes, wildfires have been responsible for about 34% of the tree cover loss 

since 2019 [1]. Increasing wildfires and deforestation exacerbate the effects of climate 

change which lead to a vicious cycle of drier seasons followed by more frequent and intense 

fires. One of the most devastating wildfires in history occurred in the 2019-2020 Australian 

bushfire season, the burnt area had been estimated to be between 24.3 and 33.8 million 

hectares [2], which was effective from June 2019 to May 2020. In total, 33 people have 

lost lives, 3.094 houses have been destroyed and the direct economic cost has been 

estimated to be $2.5 billion in addition to $4-5 billion worth of losses on the Australian 

food and agriculture industry [3]. Deforestation substantially damages the economy and 

the ecosystem, which is avoidable to some extent. One of the ways to reduce these damages 

is to take environmental precautions and extinguish the fire as soon as they occur. As time 

passes, the destructive effect of wildfires magnifies abruptly. A rule has been mentioned 

i.e., the amount of water that is required to suppress a fire burning for a minute is multiplied 

by ten when the burning time doubles [4]. Thus, early detection and taking 

countermeasures on time are crucial to prevent significant damage.  

For this reason, various technologies have found its application for monitoring and 

detection of forest fire. The technologies used can be summarized as satellite-based, sensor-

based, camera-based, mobile biological sensing, unmanned aerial vehicle (UAV), radio-

acoustic based, neural network based and fuzzy logic based technologies according to the 

recent classification done by Chowdary et al. [5]. In practice, many of these technologies 

cannot be deployed as effective stand-alone systems, instead a combination of these 

technologies is utilized to enhance the accuracy and efficiency in detection. However, each 

of these technologies are associated with certain advantages and disadvantages. In 

comparison to the satellite-based and ground-based technologies with static topology, the 

use of drones brings several useful properties such greater maneuverability and real-time 

surveillance, especially in the areas that are difficult to access. Further, drones provide 

autonomy, task planning capabilities and self-healing properties [6]. The radical growth in 

the sensor and micro-processing technologies have facilitated their usage in different areas 

including the fire detection systems. The sensor technologies serve with improved 

preciseness and fewer false alarms notably when utilizing different types of sensors. Thus, 

the application of drones integrated with different technologies as sensors and neural 

networks can realize an effective and self-sufficient solution for the surveillance and 

detection of forest fires.  The application of drones and its potential for the respective 

problem requires more attention for the future research. 

There are several factors affecting the performance of the deployed drone type in the 

respective context. Thus, the problem of its selection contains several ambiguities, that 

arise from several sources such as multiple evaluation attributes, the uncertainty and bias 

incorporated into the human decision-making process as well as the factors and the 

characteristics affecting the performance of a drone. According to Hristozov and Zlateva 

[7], the performance of a drone is influenced by its internal attributes, which are the 

technical features, and the external attributes such as the characteristics of the area, weather 

and other environmental conditions. Some of these attributes may be in trade-off or have 

interrelationships with one and other. Such complex decision-making problems that 
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involve inexplicable and unquantifiable relationships are broadly handled by the multi-

criteria decision-making (MCDM) methods, since they yield appropriate results with 

significantly lower computation time and complexity. 

The vagueness and uncertainty present in information can be successfully represented 

by fuzzy logic introduced by Zadeh [8]. Turksen [9] extended fuzzy sets to interval valued 

fuzzy sets to enable for a range of values to be assigned in the membership information. 

Smarandache [10] introduced the neutrosophic sets, which enable the representation of 

hesitancy in addition to the membership and non-membership information, as an extension 

to intuitionistic fuzzy sets [11]. Moreover, fuzzy MCDM methods are particularly helpful 

in addressing the decision-making problems with uncertainty and ambiguity resulting from 

the subjective evaluations and vague relationships among criteria and alternatives. Among 

many proposed MCDM methods, evaluation based on distance from average solution 

(EDAS) method by Keshavarz Ghorabaee et al. [12] processes the conflicting criteria and 

performs better at considering the intangibility and vagueness in the decision-making 

process [13]. It also handles with the biased information better since its calculation is based 

on the assessment by the average solution. For this reason, this study aims to handle the 

drone selection problem for monitoring and detection of forest fires by proposing a 

framework using interval valued neutrosophic (IVN) sets to present the vague and 

uncertain linguistic information and EDAS method to evaluate the alternatives based on 

the conflicting criteria. The findings from the case study demonstrate that “the camera 

accuracy” is the most significant feature for a drone used in forest surveillance and fire 

detection. The “ingress protection rating”, “maximum flight time” are the second and third 

most significant characteristics. The rest of the criteria are ranked with the following order: 

“wind resistance”, “camera resolution”, “zoom camera”, “maximum operation altitude”, 

“maximum horizontal speed”, “maximum hover time”, “operation frequency”, “obstacle 

sensors”, “maximum takeoff weight”, “charging time” and “hovering accuracy”. 

This study contributes to literature by pointing out to the gap that the drone selection 

problem for forest surveillance and fire detection has been sparsely addressed, by 

presenting an extensive literature review on the technologies deployed in forest monitoring 

and fire detection, and by extracting the relevant criteria through an extensive literature 

review and interviews with the experts in field. As a result, four drone alternatives and 14 

criteria have been identified. The alternatives are then evaluated based on the proposed 

framework using IVN EDAS method. Moreover, a sensitivity analysis is conducted in 

order to check for the robustness of the results by varying the criteria weights. The veracity 

of the results is validated by carrying out a comparative analysis with interval valued 

neutrosophic technique for preference by similarity to the ideal solution (IVN TOPSIS) 

method and interval valued neutrosophic combinative distance-based assessment (IVN 

CODAS) method. 

The rest of this paper is structured as follows. Section 2 presents an in-depth literature 

review on the other technologies and the application of drones in the respective context 

along with the examination of drone selection problem by the MCDM methods. Section 3 

provides the methodology of IVN EDAS method with the preliminaries of interval valued 

neutrosophic sets. Then, Section 4 presents the application of the method on a case study 

that is concluded with a sensitivity analysis and a comparative analysis with IVN TOPSIS 

and IVN CODAS methods. Lastly, Section 5 gives the conclusion with the 

recommendations for future study.  



4 A.Y. GUL, E. CAKMAK, A. E. KARAKAS 

2. LITERATURE REVIEW 

Monitoring and early detection of a possible fire are as crucial as the fast response and 

suppression of wildfires to avoid irreversible damages. Several studies have examined the 

technologies used in forest fires and investigated their benefits and drawbacks. We first 

summarize these technologies and then discuss the advantages of the application of drones 

in forest surveillance and fire detection. Den Breejen et al. [14] categorized the techniques 

used in forest fire monitoring and detection into three groups as ground-based systems, 

manned aerial vehicle-based systems, and satellite-based systems. In their classification, a 

ground-based system monitors and gathers information by utilizing equipment with static 

topology. Manned aerial vehicle-based systems describe systems that use an aerial vehicle 

controlled by a human operator to patrol the area for the detection of a possible fire. In 

satellite-based systems, the imagery taken through the satellite is collected and processed 

with the image-processing techniques. Recent technological advancements in the field of 

wireless networks, microprocessors, image-processing and artificial intelligence have 

enabled a variety and a combination of these methods for the monitoring and detection 

purposes of forest fires. Alkhatib [4] generalized the detection and monitoring systems as 

suppression and detection techniques used by the authorities, satellite-based systems, 

optical sensors, and digital camera and wireless sensor networks (WSN). The suppression 

and detection techniques used by the authorities include watch towers, water tankers, 

lightning detectors, etc. Among the optical sensor and digital camera technologies, the 

video-cameras sensitive to smoke, infrared thermal imaging cameras and light detection 

and ranging systems (LIDAR) are widely applied. In WSNs, the area of interest is 

surveilled by multiple wireless nodes that are equipped with different types of sensors and 

microprocessors. Depending on the movement capability of nodes, WSNs are classified as 

WSN with static topology and WSN with dynamic topology. In WSNs with dynamic 

topology, the nodes follow a common protocol. Chowdary et al. [5] extended this 

classification by sensor-based, neural networks-based, drone/airborne-based, fuzzy logic, 

mobile biological sensing-based, and radio acoustic-based techniques. By fuzzy logic 

techniques, a fuzzy logic algorithm is created and applied to the visual data gathered from 

various sources. The proposed fuzzy logic algorithm may use instances such as 

temperature, smoke, light, humidity, and distance [15] and shape, size, and motion 

variation of the fire [16] for which membership functions are generated. Then for the 

verification, the performance of the decision-making procedure is evaluated either by 

simulations or real fire datasets. In mobile biological sensing-based detection, certain 

animal groups may be equipped with sensor and global positioning system (GPS) devices 

transmitting data and location information, which are examined for sudden environmental 

changes such as temperature or humidity or changes in animal behavior. In practice, many 

systems combine multiple techniques together for more precision in monitoring and 

detection. Many forest fire surveillance systems aim to deploy a self-sufficient system that 

require little or no maintenance or supervision. Ideally, the deployed system should 

monitor the forest and detect the fire as soon as possible with a low false alarm chance. 

Also, it should inform the authorities automatically. From the studies that have dealt with 

these technologies’ advantages and disadvantages, it has been found that the satellite-based 

techniques have a low temporal and spatial resolution [17]. The quality of imagery is highly 

affected by the terrain, time of day, and weather [5] resulting in limited coverage, limited 

precision, and a lack of real-time data reporting [6]. Radio acoustic-based methods are 
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prone to fire localization errors and a high chance of false alarms [5]. In camera-based 

technologies, immobile cameras equipped with multiple types of sensors are positioned at 

specified locations for surveillance. Immobile cameras provide a limited surveillance range 

[18] and image and video processing techniques are associated with significant pre-

processing time and effort [5]. Generally used miniaturized infrared cameras have low 

sensitivity, which leads to a high false alarm possibility [5, 19]. Neural network-based 

techniques require large datasets and heavy model sizes, which are also prone to various 

false alarms [5]. Sensor-based techniques provide more accuracy in the surveillance and 

detection of forest fires than satellite-based techniques as these are deployable in areas that 

are not observable by satellites [20]. However, WSNs with static topology require regular 

maintenance of the infrastructure and they have limited coverage and effectiveness [21]. 

As these systems operate as static infrastructure, they are prone to get destroyed in the 

event of a fire which may cause additional replacement costs. Their effectiveness in terms 

of coverage and resolution is directly determined by the investment made into the deployed 

system [6].  

Satellite-based and ground-based techniques such as camera surveillance and WSNs 

with static topology may be insufficient for precise real-time monitoring of large areas. 

Drones offer greater maneuverability and real-time surveillance capabilities in areas hard 

to access. Recent progressive improvements in micro-processing, imaging, and drone 

technologies facilitate lower costs and wider usage of these technologies. The type of 

sensors utilized in the surveillance drones can be chosen depending on the type of possible 

fire and topology of the area to increase precision in detection. In the equipment with 

different types of sensors, a similarity index of measurements helps to mitigate the chance 

of false alarms [22]. In addition, the major conveniences of drones are that they provide 

great autonomy and task-planning capabilities with efficient allocation, self-organization, 

and self-healing properties [6]. 

For the sustainability and security of the system, the selection of the drone model is as 

important as the system architecture, sensors, and its other fundamental components. 

Among a great variety of drones available on the market, a drone needs to be selected that 

is most appropriate to the characteristics of the area and can satisfy the necessary 

requirements for the tasks. 

Many factors impact the operational performance of a drone and thus its selection, these 

factors can be viewed as external factors and internal characteristics or attributes of a drone 

[7]. The external factors are the disaster type, the characteristics of the area of interest, and 

the weather and other environmental conditions. For instance, it has been found that strong 

wind and precipitation affect drones’ performance significantly [23, 24]. Under the 

influence of the strong wind, the movement capability of a drone is significantly disrupted 

which may result in the deviation from its direction and poor stabilization during hovering.  

The stabilization of a drone is especially important for the quality of imaging. Other 

environmental conditions such as temperature and altitude of the area must be considered 

since drones are not able to operate at all conditions. 

With the wide-ranging features and integrable nature of drones, they have a substantial 

role as a dynamic, deployable, and controllable component of the Internet of Things 

infrastructure [25, 26]. Drones have been manufactured and used primarily for military and 

security purposes. Their application areas are extended to natural disasters, agricultural 

fields and smart farming, cargo handling, delivery of medical goods, traffic management, 

conservation, and land monitoring, climate change and urban planning, and more. 
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Therefore, they are available with various features and attributes such as drone type, 

weight, speed, takeoff weight, hover time, charging time, flight time, operating altitude, 

etc. [27, 28]. Yet some of these attributes are in trade-off with one another. As an example, 

drones with higher speed capability have lower payload capacity [29, 30], and typically 

drones with slower speed can take shorter distances and handle higher payloads [31]. As a 

result, the drone selection problem must consider these multiple external factors and 

conflicting internal attributes, which makes it a highly complex and a challenging task. 

This study focuses on the drone selection problem for monitoring and detection of 

forest fires. The application of drones in the wildfire context is studied by many authors. 

To our best knowledge, the studies on the drone usage in wildfires are mainly gathered on 

three scopes: vision-based techniques and (deep learning) image-processing techniques 

[19, 32, 33], the system architecture with communication, data receiving, and GIS modules 

[34, 35], and the area coverage and coordination of multiple drones [5, 36, 37, 38]. Yuan 

et al. [19] presented the first thorough analysis of technologies that use drones for fire 

detection, diagnosis, prognosis, image vibration elimination, and cooperative control of 

drones. Bailon-Ruiz and Lacroix [39] reviewed a selection of studies that examine drone 

application in wildfire remote sensing based on an autonomy perspective using three 

metrics: situation awareness, decisional ability, and collaboration ability. Akhloufi et al. 

[6] presented an extensive review with a focus on onboard sensor instruments, fire 

perception algorithms, and coordination strategies. The prior studies reviewed by [6, 19, 

39] assumed that a set of drones are available and suited for their specific use and thus the 

drone selection problem has not been mentioned. Regarding the drone selection problem, 

Hristozov and Zlateva [7] introduced a performance mapping model as a concept model 

for drone selection in specific disaster conditions to aid the drone selection decision 

process. To best of our knowledge, in the literature only the study by Pamučar et al.  [40] 

dealt with the drone selection problem related to forest fire uses. Their study focused on 

determining a drone model that can be used as a physical fire suppression tool that is 

controlled by operators in a ground central system. Our study distinguishes from the prior 

study in that it deals with the drone selection problem for the monitoring and detection of 

forest fires for its application as an early warning system that requires minimum human 

assistance. Using a drone for monitoring and detection purposes and as a fire suppression 

tool require different technical characteristics. A network of drones can act as mobile 

wireless sensor network, where the drones are equipped with various sensors to collect data 

on temperature, smoke and other parameters. The collected data should be transmitted to a 

head cluster thereafter it is transmitted to gateway to get processed. The drones in a WSN 

require to follow a protocol for self-organized deployment and coverage of the area. The 

energy efficiency in WSN communication is of major concern for an effective 

communication [41, 42]. Likewise, each drone has a limited payload. The higher the 

payload of a drone, the higher is its battery consumption and shorter is its flight time. 

Therefore, the weight of a drone should be ideally kept low [43]. Thus, the energy 

consumption of a drone and of the WSN communication are two fundamental issues 

concerning the effectiveness of the whole as a fire detection system, one contributing to 

the movement capability and other to the efficient data transmission. To utilize a drone 

additionally as a firefighting tool, it should be equipped with fire extinguishing 

instruments. As a result, it would increase its payload and shorten the endurance of a drone. 

Therefore, we believe that the drone selection for monitoring and detection and for 

firefighting purpose should be examined separately. Ideally, both drone networks shall be 
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integrated to each other as first one would act as an early warning system signaling the 

latter one to counteract the starting fire timely.  

To address the drone selection problem, neutrosophic sets are preferred to represent the 

ambiguity present in the linguistic assessments of the decision makers (DMs). Different 

types of uncertainties are associated in the decision-making processes, which can be 

considered with the help of fuzzy logic introduced by Zadeh [8]. Fuzzy sets have been 

extended to intuitionistic fuzzy sets by Atanassov [11] which describe both the membership 

and the non-membership degree. To enable the representation of indeterminacy in 

information of which the intuitionistic fuzzy sets lack, neutrosophic sets have been 

developed by Smarandache [10]. Following that, different extensions of neutrosophic sets 

have been introduced such as interval-valued neutrosophic sets, type-2 neutrosophic sets, 

2-tuple linguistic neutrosophic sets. Numerous studies have applied EDAS method in 

neutrosophic environment of these extensions such as single-valued neutrosophic sets [44], 

interval valued neutrosophic sets [45], type-2 neutrosophic sets [46] and bipolar 

neutrosophic sets [47].   

The MCDM methods have found a great variety of application areas thanks to their 

beneficial aspects. In the presence of complex systems which incorporate multiple criteria 

and when the interrelationships among the systems’ elements are vague and inexplicable 

by the mathematical models, MCDM methods provide a structured (group) decision 

making process that is easy to implement, handles the uncertainty, can deal with both 

quantitative and qualitative data, and provides fast and relatively reliable solutions. It is 

basically used to select or prioritize alternatives based by assessing on a set of criteria or 

attributes.  MCDM methods are used in various types of decision making problems such 

as the selection of suppliers [48], the evaluation of potential locations for specific uses [49, 

50], but also is applied for the strategy selection [51, 52], performance evaluation [53, 54], 

and risk evaluation [55] among many others. The EDAS method is utilized by various 

recent studies with different extensions and application areas. Simic et al. [46] used a type-

2 neutrosophic number based threshold-based attribute ratio analysis (ITARA) method 

integrated with EDAS model for route selection of petroleum transportation. Menekse et 

al. [56] applied a Pythagorean fuzzy criteria importance through intercriteria correlation 

(CRITIC) method integrated with EDAS model for the selection of an additive 

manufacturing process for automotive industry. Dhumras and Bajaj [57] used a picture 

fuzzy soft Dombi EDAS model for strategy selection for sustainable and smart (robotic) 

agrifarming.  

There are several studies that dealt with the drone selection problem using MCDM 

methods in other application areas of drones. To give a few examples from the recent 

studies, for the military purposes a fuzzy weighted average algorithm is applied for group 

decision-making by Lin and Hung [58]. Hamurcu and Eren [59] proposed a methodology 

based on analytical hierarchy process (AHP) and technique for preference by similarity to 

the ideal solution (TOPSIS), and a fuzzy analytical hierarchy process-vise kriterijumska 

optimizacija i kompromisno resenje (AHP-VIKOR) hybrid model is proposed by 

Radovanović et al. [60]. The AHP-TOPSIS method is used by several studies for the 

civilian application areas [61, 62]. With the radical growth in the E-commerce, delivery by 

drones has gained significant attention as a delivery tool since delivery in conventional 

ways has become rather inconvenient due to high delivery times and increasing costs in 

transportation. In this context, Nur et al. [28] performed an interval valued inferential fuzzy 

(IVIF) TOPSIS method to find the most suitable drone for package delivery purposes in 
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urban and rural areas and Banik et al. [63] proposed a graph theory and matrix approach to 

select a drone for the delivery of medical supplies. The examination of the literature shows 

that the drone selection for the usage against forest fires has been addressed only by 

Pamučar et al. [40] in terms of selecting a drone with the capability of extinguishment. No 

prior study has focused on the drone selection solely for the purpose of forest surveillance 

and fire detection. The next section presents the proposed methodology. 

3. METHODOLOGY 

The EDAS method, introduced by Keshavarz Ghorabaee et al. [12], is a distance-based 

method similar to TOPSIS method and VIKOR method. Instead of using positive ideal and 

negative ideal solutions, EDAS method evaluates the alternatives by using the positive and 

negative distance to the average solution. This aspect reduces the impact of DMs’ bias. It 

recognizes the conflicting criteria [12, 64] and represents the ambiguity in the decision-

making process [13]. The presence of the conflicting criteria makes EDAS method more 

suitable for this problem. However, the MCDM methods are prone to the rank reversal 

phenomenon [65] and the results should be further checked against this issue. It occurs 

when the introduction or the exclusion of a non-optimal alternative modifies the optimal 

and/or the least preferred alternative. It has been found that the EDAS method performs 

better than TOPSIS in terms of robustness to the rank reversal phenomenon [66].  

The interval valued neutrosophic sets are used to represent the linguistic evaluations of 

the DMs since this set allows for an enriched representation of information since only the 

lower values of the parameters (membership, hesitancy, and non-membership) must be 

equal to or lower than 3, and the sum of upper values can exceed 3 allowing for a flexible 

information representation. Therefore, the EDAS method under the interval valued 

neutrosophic environment is selected as an appropriate method to consider the ambiguity 

in decision making and conflicting criteria.  In this section, we introduce the IVN EDAS 

method and provide the details about its implementation.  

3.1 Preliminaries for Interval Valued Neutrosophic Sets 

Definition 1: Let 𝑋 be the universe. For each element 𝑥 in 𝑋, an IVN set is be defined by 

three parameters; the truth-membership 𝑇𝑁(𝑥), indeterminacy (hesitancy)-membership 

𝐼𝑁(𝑥), and the falsity-membership 𝐹𝑁(𝑥), where 𝑇𝑁 =  [𝑇 𝐿
𝑁(𝑥)

, 𝑇 𝑈
𝑁(𝑥)

⊆ [0,1]] , 𝐼𝑁(𝑥) =

[𝐼 𝐿
𝑁(𝑥) , 𝐼 𝑈

𝑁(𝑥) ⊆ [0,1]], and 𝐹𝑁(𝑥) = [𝐹 𝐿
𝑁(𝑥) , 𝐹 𝑈

𝑁(𝑥) ⊆ [0,1]]. 

An interval valued neutrosophic number (IVNN) satisfies the following condition that 

the sum of the lower values of these three elements must be lower than or equal to 3:  0 ≤

𝑇 𝐿
𝑁(𝑥) +  𝐼 𝐿

𝑁(𝑋) + 𝐹 𝐿
𝑁(𝑥) ≤ 3. Thus, an IVN set is defined as in Eq. (1) [67]: 

  N =  {〈x, [T L

N(x)
, T

U

N(x)
] , [I L

N(x)
, I

U

N(x)
] , [F L

N(x)
, F

U

N(x)
]〉 | x∈X}. (1) 

Let 𝑎 and 𝑏 be two IVNNs represented by [𝑇 𝐿
𝑎

, 𝑇 𝑈
𝑎

], [𝐼 𝐿
𝑎

, 𝐼 𝑈
𝑎

], [𝐹 𝐿
𝑎

, 𝐹 𝑈
𝑎

] and 

[𝑇 𝐿
𝑏

, 𝑇 𝑈
𝑏

], [𝐼 𝐿
𝑏

, 𝐼 𝑈
𝑏

], [𝐹 𝐿
𝑏

, 𝐹 𝑈
𝑏

], respectively. Following mathematical operations are 

applied between two IVNNs a and b as defined below [68]: 
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 𝑎𝑐 =  〈[𝑇 𝐿
𝑎

, 𝑇 𝑈
𝑎

], [1 − 𝐼 𝐿
𝑎

, 1 − 𝐼 𝑈
𝑎

], [𝐹 𝐿
𝑎

, 𝐹 𝑈
𝑎

]〉, (2) 

𝑎 ⊆ 𝑏 if and only if 𝑎 ⊆ 𝑏 and only if  

 𝑇 𝐿
𝑎

≤ 𝑇 𝐿
𝑏

, 𝑇 𝑈
𝑎

≤ 𝑇 𝑈
𝑏

; 𝐼 𝐿
𝑎

≥ 𝐼 𝐿
𝑏

 , 𝐼 𝑈
𝑎

≥ 𝐼 𝑈
𝑏

;  𝐹 𝐿
𝑎

≥ 𝐹 𝐿
𝑏

 , 𝐹 𝑈
𝑎

≥ 𝐹 𝑈
𝑏

, (3) 

𝑎 = 𝑏 if and only if 𝑎 ⊆ 𝑏 and 𝑏 ⊆ 𝑎   (4) 

 𝑎⨁𝑏 = 〈
[𝑇 𝐿

𝑎
+  𝑇 𝐿

𝑏
− 𝑇 𝐿

𝑎
𝑇 𝐿

𝑏
, 𝑇 𝑈

𝑎
+ 𝑇 𝑈

𝑏
− 𝑇 𝑈

𝑎
𝑇 𝑈

𝑏
],

 [𝐼 𝐿
𝑎

𝐼 𝐿
𝑏

 , 𝐼 𝑈
𝑎

𝐼 𝑈
𝑏

], [𝐹 𝐿
𝑎

𝐹 𝐿
𝑏

 , 𝐹 𝑈
𝑎

𝐹 𝑈
𝑏

]
〉, (5) 

 𝑎 ⊗ 𝑏 = 〈
[𝑇 𝐿

𝑎
𝑇 𝐿

𝑏
, 𝑇 𝑈

𝑎
𝑇 𝑈

𝑏
], [𝐼 𝐿

𝑎
+  𝐼 𝐿

𝑏
− 𝐼 𝐿

𝑎
𝐼 𝐿

𝑏
, 𝐼 𝑈

𝑎
+ 𝐼 𝑈

𝑏
− 𝐼 𝑈

𝑎
𝐼 𝑈

𝑏
],

[𝐹 𝐿
𝑎

+  𝐹 𝐿
𝑏

− 𝐹 𝐿
𝑎

𝐹 𝐿
𝑏

, 𝐹 𝑈
𝑎

+ 𝐹 𝑈
𝑏

− 𝐹 𝑈
𝑎

𝐹 𝑈
𝑏

]
〉. (6) 

Definition 2: A set of IVNNs is represented by the notation 𝑥𝑘 =

⟨[T 𝑳
𝑘

, T 𝑼
k

], [I 𝑳
k

, I 𝑼
k

], [F 𝑳
k

, F 𝑼
k

]⟩, where k is the expert (𝑘 =  1,2,3, … , 𝐾). To aggregate 

multiple IVNNs, the interval valued neutrosophic weighted arithmetic operator (INNWA) 

is defined as follows [68]: 

𝐼𝑁𝑁𝑊𝐴(𝑥1, 𝑥2, … , 𝑥𝐾) = ∑ 𝑦𝐾
𝑘=1 𝑘

𝑥𝑘  =  [1 − ∏ (1 − 𝑇 𝐿
𝑘

)
𝑦𝑘𝐾

𝑘=1 , 1 − ∏ (1 − 𝑇 𝑈
𝑘

)
𝑦𝑘𝐾

𝑘=1 ],

〈
  

[∏ (𝐼 𝐿
𝑘

)
𝑦𝑘𝐾

𝑘=1 , ∏ (𝐼 𝑈
𝑘

)
𝑦𝑘𝐾

𝑘=1 ], [∏ (𝐹 𝐿
𝑘

)
𝑦𝑘𝐾

𝑘=1 , ∏ (𝐹 𝑈
𝑘

)
𝑦𝑘𝐾

𝑘=1 ]〉, (7) 

where 𝑦𝑘 denotes the weight vector of the experts. 

Definition 3: The deneutrosophication function of an IVNN 𝑎 is calculated using Eq. 

(8) [69]: 

 𝐾(𝑎)= (
(𝑇𝐿

𝑎+𝑇𝑈
𝑎)

2
+(1−

(𝐼𝐿
𝑎+𝐼𝑈

𝑎)

2
)(𝐼𝑈

𝑎)−(
(𝐹𝐿

𝑎+𝐹𝑈
𝑎)

2
)(1−𝐹𝑈

𝑎)), (8) 

where 𝑎 = 〈[𝑇 𝐿
𝑎

, 𝑇 𝑈
𝑎

], [𝐼 𝐿
𝑎

, 𝐼 𝑈
𝑎

], [𝐹 𝐿
𝑎

, 𝐹 𝑈
𝑎

]〉. 

Definition 4: Let 𝑎 and 𝑏 be two IVNNs represented by [𝑇 𝐿
𝑎

, 𝑇 𝑈
𝑎

], [𝐼 𝐿
𝑎

, 𝐼 𝑈
𝑎

], [𝐹 𝐿
𝑎

, 𝐹 𝑈
𝑎

] 

and [𝑇 𝐿
𝑏

, 𝑇 𝑈
𝑏

], [𝐼 𝐿
𝑏

, 𝐼 𝑈
𝑏

], [𝐹 𝐿
𝑏

, 𝐹 𝑈
𝑏

], respectively. The Euclidean distance between two 

IVNNs are given by Eq. (9) [70]: 

 𝑑𝐸(𝑎, 𝑏) = √
1

6
((

(𝑇 𝐿
𝑎

− 𝑇 𝐿
𝑏

)
2

+ (𝑇 𝑈
𝑎

− 𝑇 𝑈
𝑏

)
2

+ (𝐼 𝐿
𝑎

− 𝐼 𝐿
𝑏

)
2

+

(𝐼 𝑈
𝑎

− 𝐼 𝑈
𝑏

)
2

+ (𝐹 𝐿
𝑎

− 𝐹 𝐿
𝑏

)
2

+ (𝐹 𝑈
𝑎

− 𝐹 𝑈
𝑏

)
2 )). (9) 

Definition 5: The function in Eq. (10) returns the Euclidean distance if the difference 

between two deneutrosophicated IVNNs is greater than zero, otherwise it returns zero.  

 𝑍(𝑎, 𝑏) = {
𝑑𝐸(𝑎, 𝑏), if 𝐾(𝑎) − 𝐾(𝑏) > 0,

0,               if 𝐾(𝑎) − 𝐾(𝑏) ≤ 0,
  (10) 

where 𝑎 = [𝑇 𝐿
𝑎

, 𝑇 𝑈
𝑎

], [𝐼 𝐿
𝑎

, 𝐼 𝑈
𝑎

], [𝐹 𝐿
𝑎

, 𝐹 𝑈
𝑎

], 𝑏 = [𝑇 𝐿
𝑏

, 𝑇 𝑈
𝑏

], [𝐼 𝐿
𝑏

, 𝐼 𝑈
𝑏

], [𝐹 𝐿
𝑏

, 𝐹 𝑈
𝑏

] .  
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3.2 Interval Valued Neutrosophic EDAS Method 

This section presents the steps of the proposed IVN EDAS method. The proposed 

method addresses a group decision making problem that is under the assumption that there 

are the set of n alternatives 𝑋 =  {𝑋1, 𝑋2, … , 𝑋𝑖 , … , 𝑋𝑛} evaluated based on 𝑚 criteria 𝐶 =
 {𝐶1, 𝐶2, … , 𝐶𝑗 , … , 𝐶𝑚} by K DMs 𝐷 =  {𝐷1, 𝐷2, … , 𝐷𝑘 , … , 𝐷𝐾}. In the rest of this section, 

the steps of the proposed IVN EDAS method are presented. 

Step 1: The linguistic evaluations of each expert are collected regarding the 

alternatives’ performance with respect to the criteria. These linguistic evaluations are 

converted to IVNNs by using the IVN scale given in Table 1 to obtain the IVN matrix of 

each expert as presented in Table 2, where 𝑥𝑖𝑗𝑘 =  〈[𝑇 𝐿
𝑖𝑗𝑘

, 𝑇 𝑈
𝑖𝑗𝑘

] , [𝐼 𝐿
𝑖𝑗𝑘

, 𝐼 𝑈
𝑖𝑗𝑘

] [𝐹 𝐿
𝑖𝑗𝑘

, 𝐹 𝑈
𝑖𝑗𝑘

]〉 

is an IVN evaluation of the expert k on the performance of alternative i with respect to 

criterion j. Based on the knowledge and competency, the experts are assessed and assigned 

an importance weight 𝑦𝑘 .  

Table 1 IVN Scale for alternative evaluation [45]  

Linguistic Terms 〈𝑻, 𝑰, 𝑭〉 
CL Certainly Low ⟨[0.05, 0.2], [0.6, 0.7], [0.75, 0.9]⟩ 
VL Very Low ⟨[0.15, 0.3], [0.5, 0.6], [0.65, 0.8]⟩ 
L Low ⟨[0.25, 0.4], [0.4, 0.5], [0.55, 0.7]⟩ 

BA Below Average ⟨[0.35, 0.5], [0.3, 0.4], [0.45, 0.6]⟩ 
A Average ⟨[0.40, 0.6], [0.1, 0.2], [0.40, 0.6]⟩ 

AA Above Average ⟨[0.45, 0.6], [0.3, 0.4], [0.35, 0.5]⟩ 
H High ⟨[0.55, 0.7], [0.4, 0.5], [0.25, 0.4]⟩ 

VH Very High ⟨[0.65, 0.8], [0.5, 0.6], [0.15, 0.3]⟩ 
CH Certainly High ⟨[0.75, 0.9], [0.6, 0.7], [0.05, 0.2]⟩ 

Table 2 IVN decision matrix of an expert 𝑘 

Crit. 
𝑨𝑳𝟏 𝑨𝑳𝒏 

𝐶1 [𝑇11𝑘
𝐿 , 𝑇11k

𝑈 ], [𝐼11k
𝐿 , 𝐼11k

𝑈 ], [𝐹11k
𝐿 , 𝐹11k

𝑈 ] [𝑇𝑛1𝑘
𝐿 , 𝑇n1k

𝑈 ], [𝐼n1k
𝐿 , 𝐼n1k

𝑈 ], [𝐹n1k
𝐿 , 𝐹n1k

𝑈 ] 

⋮ ⋮ ⋮ 

𝐶𝑚 [𝑇1𝑚𝑘
𝐿 , 𝑇1mk

𝑈 ], [𝐼1mk
𝐿 , 𝐼1mk

𝑈 ], [𝐹1mk
𝐿 , 𝐹1mk

𝑈 ] [𝑇𝑛𝑚𝑘
𝐿 , 𝑇nmk

𝑈 ], [𝐼nmk
𝐿 , 𝐼nmk

𝑈 ], [𝐹nmk
𝐿 , 𝐹nmk

𝑈 ] 

Step 2: To obtain the aggregated IVN decision matrix, the IVN decision matrix of the 

experts are aggregated by using the INNWA operator defined in Eq. (7). Table 3 shows the 

representation of the aggregated IVN decision matrix 𝑥𝐴, where 𝑥𝐴 =  [𝑥𝑖𝑗𝐴]
𝑛∗𝑚

=

 〈[𝑇 𝐿
𝑖𝑗𝐴

, 𝑇 𝑈
𝑖𝑗𝐴

] , [𝐼 𝐿
𝑖𝑗𝐴

, 𝐼 𝑈
𝑖𝑗𝐴

] [𝐹 𝐿
𝑖𝑗𝐴

, 𝐹 𝑈
𝑖𝑗𝐴

]〉 represents the aggregated evaluation of the 

experts for the alternative i with respect to criterion 𝑗. 

Step 3: Each expert 𝑘 evaluates the criteria importance with linguistic terms. These 

evaluations are converted to IVNNs using the scale given in Table 4. The following criteria 

weights matrix is obtained for each expert 𝑘: 
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 𝑊 =  [𝑤𝑗𝑘]
1∗𝑚

 (11) 

Table 3 Aggregated IVN decision matrix  

Crit. 
𝑨𝑳𝟏                          𝑨𝑳𝒏                             

𝑪𝟏 [𝑇11𝐴
𝐿 , 𝑇11A

𝑈 ], [𝐼11A
𝐿 , 𝐼11A

𝑈 ], [𝐹11A
𝐿 , 𝐹11A

𝑈 ] [𝑇𝑛1𝐴
𝐿 , 𝑇n1A

𝑈 ], [𝐼n1A
𝐿 , 𝐼n1A

𝑈 ], [𝐹n1A
𝐿 , 𝐹n1A

𝑈 ] 

⋮ ⋮ ⋮ 

𝑪𝒎 [𝑇1𝑚𝐴
𝐿 , 𝑇1mA

𝑈 ], [𝐼1mA
𝐿 , 𝐼1mA

𝑈 ], [𝐹1mA
𝐿 , 𝐹1mA

𝑈 ] [𝑇𝑛𝑚𝐴
𝐿 , 𝑇nmA

𝑈 ], [𝐼nmA
𝐿 , 𝐼nmA

𝑈 ], [𝐹nmA
𝐿 , 𝐹nmA

𝑈 ]  

Step 4: The criteria weights are aggregated by INNWA in Eq. (7) and normalized to 

obtain the aggregated criteria weights matrix 𝑊𝐴 given in Eq. (12), where 𝑤𝑗  represents the 

aggregated weight of the criterion 𝑗. 

 𝑊𝐴 = [𝑤𝑗]
1∗𝑚

 (12) 

Step 5: The average solution matrix 𝐴𝑉 is obtained by taking the average of the 

aggregated alternative evaluations 𝑥𝑖𝑗𝐴 as given in Eq. (13): 

 𝐴𝑉 = [𝐴𝑉𝑗]
1∗𝑚

=
1

𝑛
∑ 𝑥𝑖𝑗𝐴

𝑛
𝑖=1  (13) 

Table 4 IVN Scale for criteria evaluation [45]  

Linguistic Terms 〈𝑻, 𝑰, 𝑭〉 
CLI Certainly Low Importance ⟨[0.05, 0.25], [0.6, 0.7], [0.75, 0.95]⟩ 
VLI Very Low Importance ⟨[0.15, 0.35], [0.5, 0.6], [0.65, 0.85]⟩ 
LI Low Importance ⟨[0.25, 0.45], [0.4, 0.5], [0.55, 0.75]⟩ 

BAI Below Average Importance ⟨[0.35, 0.55], [0.3, 0.4], [0.45, 0.65]⟩ 
AI Average Importance ⟨[0.40, 0.60], [0.1, 0.2], [0.40, 0.60]⟩ 
AA Above Average Importance ⟨[0.45, 0.65], [0.3, 0.4], [0.35, 0.55]⟩ 
HI High Importance ⟨[0.55, 0.75], [0.4, 0.5], [0.25, 0.45]⟩ 

VHI Very High Importance ⟨[0.65, 0.85], [0.5, 0.6], [0.15, 0.35]⟩ 
CHI Certainly High Importance ⟨[0.75, 0.95], [0.6, 0.7], [0.05, 0.25]⟩ 

Step 6: Each alternative is classified as either positively positioned or negatively 

positioned to the average solution 𝐴𝑉𝑗 with respect to each criterion. Positively positioned 

alternatives signify a superior performance than the average solution in terms of a criterion 

and contrarily, the negatively positioned alternatives indicate a worse than the average 

performance. The positive distance to average (PDA) of a positively positioned alternative 

must be positive and negative distance to average (NDA) must be zero. Contrarily, for the 

negatively positioned alternatives PDA must be zero and NDA must be positive. The 

calculation of the positive and negative distance to the average matrices (PDA and NDA) 

are modified by eliminating the neutrosophic subtraction to preserve the characteristics of 

IVNNs and to avoid negative numbers in the IVN parameters. The PDA and NDA are 
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calculated as defined in Eqs. (14) and (15) based on the criterion type, respectively. The 

Euclidian distance is calculated if the difference between the deneutrosophicated 

aggregated alternative performance 𝐾(𝑥𝑖𝑗𝐴) and the deneutrosophicated average solution 

𝐴𝑉𝑗 is positive, otherwise it assigns zero. 

 𝑃𝐷𝐴 =  [𝑝𝑑𝑎𝑖𝑗]
𝑚∗𝑛

= {
𝑧 (𝐾(𝑥𝑖𝑗𝐴) − 𝐾(𝐴𝑉𝑗))    if 𝑗 ∈ 𝐵,

𝑧 (𝐾(𝐴𝑉𝑗) − 𝐾(𝑥𝑖𝑗𝐴))   if 𝑗 ∈ 𝐶,
 (14) 

 𝑁𝐷𝐴 =  [𝑛𝑑𝑎𝑖𝑗]
𝑚∗𝑛

= {
𝑧 (𝐾(𝐴𝑉𝑗) − 𝐾(𝑥𝑖𝑗𝐴))    if 𝑗 ∈ 𝐵,

𝑧 (𝐾(𝑥𝑖𝑗𝐴) − 𝐾(𝐴𝑉𝑗))    if 𝑗 ∈ 𝐶,
 (15) 

where 𝐵 and 𝐶 denote the set of the benefit and cost criteria, respectively and 𝑧(. ) is a 

function defined in Eq. (10). 

Step 7: The weighted total positive distance and negative distance from the average 𝑠𝑝𝑖 

and 𝑠𝑛𝑖 are calculated for each alternative 𝑖 by using Eqs. (16) and (17): 

 𝑠𝑝𝑖 =  ∑ (𝑤𝑗 ∗ 𝑝𝑑𝑎𝑖𝑗),𝑚
𝑗=1  (16) 

 𝑠𝑛𝑖 =  ∑ (𝑤𝑗 ∗ 𝑛𝑑𝑎𝑖𝑗).𝑚
𝑗=1  (17) 

Step 8: The weighted total positive distance and negative distance from the average 

values are normalized as given in Eqs. (18) and (19): 

 𝑛𝑠𝑝𝑖 =
𝑠𝑝𝑖

𝑀𝑎𝑥(𝑠𝑝𝑖)
, (18) 

 𝑛𝑠𝑛𝑖 = 1 −
𝑠𝑛𝑖

𝑀𝑎𝑥(𝑠𝑛𝑖)
. (19) 

Step 9: To obtain the appraisal score 𝑎𝑠𝑖 , the average of the normalized positive 

distance and normalized negative distance is computed as follows: 

 𝑎𝑠𝑖 =  
1

2
(𝑛𝑠𝑝𝑖 + 𝑛𝑠𝑛i). (20) 

Step 10: The alternatives are ranked in descending order of the appraisal score.  

4. CASE STUDY 

The methodology of this study consists of three phases, namely the preparation process, 

the application of the IVN EDAS method and the validation of results. Figure 1 illustrates 

the flowchart of the presented methodology. This section presents the steps of the 

methodology implemented for the case study. 

4.1. Problem Definition 

The paper aims to determine the most appropriate drone for monitoring and detection 

of forest fires. The drone alternatives should be evaluated with respect to multiple and 

conflicting criteria. Although the drone characteristics and performances based on the 
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criteria are known as its own specifications, the actual performance of a drone under 

mission highly depends on the environmental circumstances. This aspect brings the need 

for the use of fuzzy logic. The criteria were established through research of articles and 

books, as well as interviews with experts in the field. The authors and the experts omitted 

the sub-criteria that have similar or the exact opposite meaning in order to avoid 

overlapping in the criteria. For instance, the charging time and the battery life have rather 

opposing denotations as one refers to the time during which a drone cannot operate while 

the other signifies its up-time. As a result, 14 sub-criteria have been identified in total and 

presented in Table 6.  

After determining the criteria and sub-criteria, a survey was conducted among expert 

DMs in the field to weigh the criteria and alternatives. All DMs were given different 

weights according to their expertise in the process of selecting a drone for detecting forest 

fires. The importance weights of the experts are assigned based on their experience by the 

authors.  Regarding the type of drones that have been selected for the evaluation in this 

study, the rotorcraft drones are examined. It has been found that rotorcraft (multirotor) 

drones tend to be better off in terms of maneuverability, hovering capability, and looser 

requirements on takeoff and landing than fixed-wing drones [71]. Therefore, four different 

drone models of multirotor type selected as potential alternatives for detecting forest fires, 

and their technical specifications are presented in Table 7. The information on the experts 

and their weights are given as follows: 

 

Fig. 1 Flowchart of the methodology 
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DM1 (40%): The first expert is a retired F16 pilot who provides drone training. He has 

been providing such training for about six years. He has a comprehensive knowledge on 

the aviation regulations, safety standards, and 10+ years of flight experience with drones. 

DM2 (25%): The second expert is a fire chief. Although not fully experienced with 

drones, he had first-hand experience with forest fires for over 15 years. Thus, he has an in-

depth knowledge of emergency response, safety protocols and fire behavior, especially 

how fires spread and the factors impacting the fire behavior. He mainly contributed by 

assessing the importance of drone attributes.  

DM3 (35%): The third expert is a commercial drone user with an experience over 10 

years. He has an in-depth knowledge of the technical features such as drone models, 

sensors, cameras, payloads, its capabilities, and the areas of drone usage. Further, he has 

an extensive knowledge on the sensor operation. 

The description of each criterion is given as follows:  

Max. Takeoff Weight (C1.1) (Benefit): It represents the maximum weight of a drone 

at which it is allowed to take off. In addition to its main body, for the needs of specific 

usage drones can be equipped with sensors, cameras, communication tools, and 

components such as fire extinction equipment.  

Max. Horizontal Speed (C1.2) (Benefit): It expresses the maximum speed at which a 

drone can fly in the horizontal plane. 

Max. Hover Time (C1.3) (Benefit): It is the maximum time during which a drone 

hovers and holds its position in the air. 

Max. Flight Time (C1.4) (Benefit): It is the criterion that shows the total flight time 

of a drone during a single takeoff and landing. 

Charging Time (C1.5) (Benefit): It indicates how long it takes a fully discharged 

battery of a drone to charge completely. 

Max. Operating Altitude (C1.6) (Benefit): It is the maximum altitude at which a 

drone can operate above sea level. 

Table 6 Criteria List for the drone selection for forest fires 

Criteria Sub-Criteria References 

C1. Technical 

Abilities 

C1.1. Max. Takeoff Weight [71, 72, 73, 74, 75]  

C1.2. Max. Horizontal Speed 
[28, 59, 60, 73, 74, 

76]  

C1.3. Max. Hover Time [71] 

C1.4. Max. Flight Time [59, 71, 73, 77]  

C1.5. Charging Time [28, 77] 

C1.6. Max. Operating Altitude 
[59, 60, 72, 73, 76, 

78] 

C1.7. Wind Resistance  [79, 80]  

C1.8. Ingress Protection Rating of Drones [77, 79]  

C1.9. Operation Frequency [74, 81, 82] 

C1.10. Hovering Accuracy [77] 

C2. Vision-

Based 

Technologies 

C2.1. Zoom Camera [72, 77, 78, 83] 

C2.2. Resolution  [77, 78, 84]  

C2.3.Thermal Camera Accuracy [19, 77, 83, 85] 

C2.4. Obstacle Sensors (Range) [28, 77, 86] 
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Wind Resistance (C1.7) (Benefit): The wind resistance of a drone can be affected by 

its weight and size. The wind resistance level is given as a value between 0 and 12. The 

greater the wind resistance level, the more stable can a drone operate in high-wind 

circumstances [80]. 

Ingress Protection Rating of Drones (C1.8) (Benefit): This criterion gives the IP 

value of a drone. IP Code (also known as International Protection Rating) categorizes the 

degrees of protection given in electrical enclosures against solid object infiltration, dust, 

accidental touch, and liquids. The IP Code consists of two digits. The first digit ranges from 

1 to 6 and signifies the protection against solids, whereas the second digit ranges from 1 to 

8 and indicates the resistance against liquids. 

Operation Frequency (C1.9) (Benefit): It represents the frequency band that a drone 

uses for communication and data download. 

Table 7 Technical specifications of drone alternatives 

Drone 

Alternative 
Matrice 30 Matrice 300 RTK 

Matrice 210 

RTK 

Phantom 4 

RTK 

Max. Takeoff 

Weight (g) (C1.1) 
238 930 1230 - 

Max. Hor. Speed 

(m/s) (C1.2) 
23 23 20 16 

Max. Hover Time 

(min) (C1.3) 
36 50 24 26 

Max. Flight Time 

(min) (C1.4) 
41 55 33 30 

Charging Time 

(min) (C1.5) 
30– 50 70 70 30 

Max. Operating 

Altitude (m) 

(C1.6) 

7000 5000 3000 6000 

Wind Resistance 

(m/s) (C1.7) 
15 15 12 10 

Ingress Protection 

(C1.8) 
IP55 IP45 IP43 IP42 

Operation 

Frequency (C1.9) 

2.4 GHz or 5 

GHz 
2.4 GHz or 5 GHz 

2.4 - 2.48 

GHz; 5.7 - 5.8 

GHz 

2.4 GHz or 5 

GHz 

Hovering 

Accuracy (C1.10) 
V:0.1m  H: 0.3m V: 0.1m H: 0.1m 

V: 

0.1m 

H: 

0.1m 

V: 

0.1m 

H: 

0.5m 

Zoom Camera 

(C2.1) 
5 m 2 m 1 m 1 m 

Resolution (C2.2) 3840x2160 1920x1080 1920x1080 3840x2160 

Thermal Camera 

Accuracy (C2.3) 
±2°Cor ±2%  ±5°Cor ±5%  ±7°Cor ±7%  - 

Obstacle Sensors 

(C2.4) 

F:0.6-

38m 

U, D, B, 

S: 0.5-

33m 

F/B/L/R:0.7-

40m 

U/D: 0.6-

30m 

F: 

0.7-40 

m  

U, D, 

B, S: 

0.7-40 

m 

0.7-30 m 
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Hovering Accuracy (C1.10) (Benefit): It indicates how stable a drone stays while 

hovering. This criterion is given in meters (m) by how much a drone deviates from its initial 

position in vertical and horizontal directions. 

Zoom Camera (C2.1) (Benefit): This criterion represents how far the embedded visual 

camera of a drone can take a clear image.  

Resolution (C2.2) (Benefit):  Each visual camera has a resolution value. The resolution 

is one of the factors that directly affect image quality. 

Thermal Camera Accuracy (C2.3) (Benefit): Thermal cameras do not need any light 

source for imaging. In the context of forest fires, thermal camera imaging is especially 

important for early detection. 

Obstacle Sensors (Range) (C2.4) (Benefit): It indicates the furthest distance from 

which a drone can detect the obstacles. 

Although the cost of a drone has been generally included as a criterion in the studies 

dealing with the drone selection problem for both military and civilian purposes, in this 

study, it has been excluded due to two reasons – first, the economic aspect must be of minor 

importance in disaster management as it is critical to human life and a cause of great 

economic and environmental losses. Second, governments do not make public procurement 

decisions solely based on the economic perspective, instead sustainable and strategic 

options are preferred. 

As mentioned previously, there are interrelationships between the technical features of 

a drone as well as some drone attributes are highly affected by certain environmental 

circumstances. To give a few examples of the tradeoffs between technical internal 

attributes of a drone, the relationship between energy consumption and flight speed is well 

known. In a lower speed range, the speed does not affect the power consumption 

significantly. Yet in a relatively higher speed range, the power consumption increases 

exponentially [29]. Increased power consumption during operation means a drone requires 

to get charged more frequently and higher downtime which lowers the overall system 

efficiency. Likewise, the payload of a drone has a significant effect on power consumption. 

Increasing the payload of a drone rises the power consumption significantly and lowers the 

maximum flight time of a drone [43]. Besides the interrelation among internal features of 

drones, their performance is also highly affected by environmental circumstances such as 

temperature, wind, and precipitation. Drones with relatively small sizes and weights are 

prone to wind disturbances [87]. Further, it has been found that high temperature has little 

effect on the flight performance of a drone, but it significantly shortens the lifetime and 

even damages the battery, whereas extremely low temperature worsens the flight and the 

battery performance [88]. It can be concluded that there is a highly complex structure (1) 

between the internal attributes of a drone, (2) between the environmental conditions and 

the internal attributes of a drone. As a result, it is hard to describe and quantify the model 

with clear and exact terms and relations.  

We conclude that the discussed problem involves uncertainties such as doubtfulness or 

vagueness, ambiguity, and inconsistency among its elements. The experts submit their 

subjective opinions based own personal experiences, background, and other individual 

characteristics. Further, the conflicting and complex relationships between the criteria, 

which were explained above, contribute to the ambiguous nature of the problem. To 

represent the vagueness in the decision-making process and the conflicting criteria in the 

problem, the IVN EDAS method is preferred. 
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4.2. Numerical Application 

The application of the method is illustrated by the evaluation of four potential drone 

models, that are identified as suitable for forest surveillance and fire detection. The drone 

models are assessed based on the pre-determined 14 criteria by the three DMs. The steps 

of the methodology are given with the obtained results as follows: 

Step 1: In the first step, the linguistic evaluations of the experts are collected (Table 8) 

and the IVN decision matrices are constructed by using the IVN scale in Table 1. 

Step 2: The IVN evaluations of the alternatives are aggregated using Eq. (7). Table 9 

presents the aggregated IVN matrix for Alternative 1. 

Steps 3-4: The linguistic evaluations for criteria weights are collected, which are 

converted to IVNNs by using Table 4. The IVN matrices of the experts are then aggregated 

by using INNWA operator. The linguistic evaluations and the average IVN weights of the 

criteria are presented in Table 10. 

Step 5: The average solution matrix is calculated by Eq. (13). Table 11 shows the 

average solution matrix. 

Table 8 Linguistic evaluations of the experts  

 DM1 DM2 DM3 

Criteria  AL1 AL2 AL3 AL4 AL1 AL2 AL3 AL4 AL1 AL2 AL3 AL4 

C1.1 H A AA L H BA AA L L CH AA BA 

C1.2 H H AA CH H H AA CH CH H AA CH 

C1.3 CH CH H AA CH H AA A H CH A A 

C1.4 CH H AA A CH H AA A H CH A A 

C1.5 H AA A A H AA A A H L BA CH 

C1.6 AA CH A H AA CH BA H H A L AA 

C1.7 AA AA AA A AA AA A BA A A BA L 

C1.8 AA CH A BA AA CH A BA H A A BA 

C1.9 AA H AA AA AA AA AA AA H H H H 

C1.10 AA H AA AA AA H A A AA A A A 

C2.1 CH H AA A H H AA A AA H A A 

C2.2 H CH H AA H CH H AA CH A BA BA 

C2.3 H CH A BA AA CH A BA H AA AA BA 

C2.4 H AA BA A H AA H A H H H A 

Step 6: The PDA and NDA matrices are obtained and presented in Table 12. The 

calculation of PDA and NDA values for Alternative 1 with respect to Criterion 3, which is 

a benefit criterion, is as follows: 

𝑝𝑑𝑎13 = 𝑧(𝐾(𝑥13𝐴) − 𝐾(𝐴𝑉3)), 𝑛𝑑𝑎13 = 𝑧(𝐾(𝐴𝑉3) −  𝐾(𝑥13𝐴)), 

𝐾(𝑥13𝐴) = 0.9120 ;  𝐾(𝐴𝑉3) = 0,7474;  𝑝𝑑𝑎13 = 𝑧(0.1646) = 𝑑𝐸 , 

(𝑥13𝐴, 𝐴𝑉3) = 0.1344;  𝑛𝑑𝑎13 = 𝑧(𝐾(𝐴𝑉3) −  𝐾(𝑥13𝐴)) = 0. 
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Table 9 Aggregated IVN decision matrix of Alternative 1 

  
[(𝑻𝑳. 𝑻𝑼). (𝑰𝑳. 𝑰𝑼). (𝑭𝑳. 𝑭𝑼)] 

C1.1 [(0.462,0.618), (0.400,0.500), (0.329,0.487)] 

C1.2 [(0.634,0.796), (0.461,0.562), (0.142,0.314)] 

C1.3 [(0.693,0.853), (0.521,0.622), (0.088,0.255)] 

C1.4 [(0.693,0.853), (0.521,0.622), (0.088,0.255)] 

C1.5 [(0.550,0.700), (0.400,0.500), (0.250,0.400)] 

C1.6 [(0.487,0.638), (0.332,0.432), (0.311,0.462)] 

C1.7 [(0.433,0.600), (0.204,0.314), (0.367,0.533)] 

C1.8 [(0.487,0.638), (0.332,0.432), (0.311,0.462)] 

C1.9 [(0.487,0.638), (0.332,0.432), (0.311,0.462)] 

C1.10 [(0.450,0.600), (0.300,0.400), (0.350,0.500)] 

C2.1 [(0.618,0.786), (0.425,0.529), (0.148,0.328)] 

C2.2 [(0.634,0.796), (0.461,0.562), (0.142,0.314)] 

C2.3 [(0.527,0.678), (0.372,0.473), (0.272,0.423)] 

C2.4 [(0.550,0.700), (0.400,0.500), (0.250,0.400)] 

Table 10 Linguistic criteria evaluations and aggregated IVN criteria weights 

Criteria DM1 DM2 DM3 

Aggregated criteria weights 

[(𝑇𝐿 , 𝑇𝑈), (𝐼𝐿 , 𝐼𝑈), (𝐹𝐿 , 𝐹𝑈)]      

C1.1 Max. Takeoff Weight VL BA BA [(0.276,0.479), (0.368,0.470), (0.521,0.724)] 

C1.2 Max. Horizontal 

Speed 
H A A [(0.465,0.669), (0.174,0.289), (0.331,0.535)] 

C1.3 Max. Hover Time L BA A [(0.331,0.532), (0.229,0.343), (0.468,0.669)] 

C1.4 Max. Flight Time H H VH [(0.588,0.791), (0.432,0.533), (0.209,0.412)] 

C1.5 Charging Time VL VL L [(0.186,0.387), (0.462,0.563), (0.613,0.814)] 

C1.6 Max. Operating 

Altitude 
L VH A [(0.427,0.644), (0.260,0.380), (0.356,0.573)] 

C1.7 Wind Resistance  H AA AA [(0.492,0.694), (0.337,0.437), (0.306,0.508)] 

C1.8 Ingress Protection 

Rating of Drones 
VH VH H [(0.618,0.821), (0.462,0.563), (0.179,0.382)] 

C1.9 Operation Frequency A BA L [(0.338,0.539), (0.214,0.328), (0.461,0.662)] 

C1.10 Hovering Accuracy VL VL L [(0.186,0.387), (0.462,0.563), (0.613,0.814)] 

C2.1 Zoom Camera A AA H [(0.469,0.672), (0.214,0.328), (0.328,0.531)] 

C2.2 Resolution  AA A H [(0.476,0.678), (0.252,0.364), (0.322,0.524)] 

C2.3 Th. Camera Accuracy VH VH VH [(0.650,0.850), (0.500,0.600), (0.150,0.350)] 

C2.4 Obstacle Sensors 

(Range) 
BA A VL [(0.300,0.503), (0.273,0.388), (0.497,0.700)] 
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Table 11 The average solution matrix 

 
[(𝑻𝑳, 𝑻𝑼), (𝑰𝑳, 𝑰𝑼), (𝑭𝑳, 𝑭𝑼)] 

C1.1 [(0.437,0.599), (0.327,0.433), (0.348,0.515)] 

C1.2 [(0.596,0.749), (0.440,0.541), (0.198,0.353)] 

C1.3 [(0.575,0.741), (0.362,0.468), (0.216,0.384)] 

C1.4 [(0.540,0.712), (0.321,0.425), (0.249,0.425)] 

C1.5 [(0.470,0.640), (0.266,0.374), (0.318,0.493)] 

C1.6 [(0.501,0.664), (0.307,0.419), (0.289,0.455)] 

C1.7 [(0.402,0.570), (0.213,0.323), (0.397,0.564)] 

C1.8 [(0.474,0.644), (0.263,0.371), (0.316,0.489)] 

C1.9 [(0.497,0.648), (0.342,0.443), (0.301,0.453)] 

C1.10 [(0.448,0.617), (0.214,0.323), (0.351,0.519)] 

C2.1 [(0.500,0.672), (0.282,0.386), (0.291,0.465)] 

C2.2 [(0.550,0.711), (0.361,0.469), (0.234,0.400)] 

C2.3 [(0.491,0.654), (0.322,0.426), (0.301,0.465)] 

C2.4 [(0.479,0.643), (0.297,0.397), (0.319,0.483)] 

Table 12 The positive distance to average and negative distance to average matrices 

 PDA NDA 

Criterion AL1 AL2 AL3 AL4 AL1 AL2 AL3 AL4 

C1.1 0.0446 0.1129 0 0 0 0 0.0191 0.1291 

C1.2 0.0392 0 0 0.1544 0 0.0459 0.1458 0 

C1.3 0.1344 0.1523 0 0 0 0 0.1111 0.1756 

C1.4 0.1718 0.1141 0 0 0 0 0.1121 0.1755 

C1.5 0.0973 0 0 0.0947 0 0.0797 0.1022 0 

C1.6 0 0.1399 0 0.0311 0.0191 0 0.1457 0 

C1.7 0.0256 0.0256 0.0089 0 0 0 0 0.0519 

C1.8 0.0397 0.1659 0 0 0 0 0.1174 0.1070 

C1.9 0 0.0298 0 0 0.0099 0 0.0099 0.0099 

C1.10 0.0483 0.0495 0 0 0 0 0.0414 0.0414 

C2.1 0.1339 0.0776 0 0 0 0 0.0722 0.1372 

C2.2 0.0903 0.0989 0 0 0 0 0.0543 0.1198 

C2.3 0.0390 0.1765 0 0 0 0 0.1186 0.1192 

C2.4 0.0828 0.0224 0.0351 0 0 0 0 0.1329 

Steps 7-10: The PDA and NDA values are weighted by the criteria weights and 

summed over the criteria to obtain the positive and negative weighted total distance to the 

average 𝑠𝑝𝑖  and 𝑠𝑛𝑖, respectively. Then they are normalized to calculate 𝑛𝑠𝑝𝑖and 𝑛𝑠𝑛𝑖. 

The appraisal score of each alternative is calculated and the alternatives are ranked in 

descending order of the appraisal score.  
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Table 13 Weighted total distances, appraisal scores and final ranking of the alternatives 

 
𝑛𝑠𝑝𝑖  𝑛𝑠𝑛𝑖 𝑎𝑠𝑖  

Rank 

AL1 0.7458 0.9785 0.8621 2 

AL2 1 0.9191 0.9595 1 

AL3 0.0299 0.1176 0.0738 4 

AL4 0.1967 0 0.0983 3 

The rankings presented in Table 13 demonstrate that Matrice 300 RTK (AL2) has been 

evaluated as the most preferable drone with an appraisal score of 0.9595 and is closely 

followed by Matrice 30 (AL1) with an AS of 0.8621. The minor difference of ranking 

scores between AL1 and AL2 should be interpreted as both drone models provide relatively 

comparable performances. The final ranking obtained is as follows: 

AL2≻AL1≻AL4≻AL3.  

4.3. Sensitivity Analysis 

An extensive one-at-a-time sensitivity analysis is conducted to check for the robustness 

of the results to the change in the criteria weights. In total 84 sets of criteria weights are 

built following the approach in Gorcun et al. [89]. In each scenario, the initial weight of a 

criterion is decreased by the predetermined modification degree 𝜐 (15%, 30%, 45%, 60%, 

75%, 90%), and the weights of the rest of the criteria are increased equally while satisfying 

that the sum of the weights equals to 1. Figure 2 illustrates the criteria weights used in the 

scenarios from SC-57 to SC-70 which are formed by a 75%-modification degree, and 

Figure 3 shows the resulting rankings of the alternatives in the generated 84 scenarios.  

 

Fig. 2 The sets of criteria weights at 75% modification of each criterion 
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Fig. 3 Rankings of the alternatives generated through 84 scenarios  

The result of the sensitivity analysis demonstrates that approximately a minimum 

modification by 30% of Criterion 1.2, which corresponds to scenarios SC-16, SC-30, SC-

44, SC-58 and SC-72, results in the third and fourth alternatives to change ranking 

positions. The same result emerges under the minimum approximate modification by 45% 

of Criterion 1.5 and Criterion 1.6. Concludingly, in 100% of the scenarios, Alternative 2 

and Alternative 1 preserved the first and second ranking positions, respectively, and in 

84.5% of the scenarios (71 out of 84 scenarios) Alternative 4 has been ranked at the third 

and Alternative 3 at the fourth position. The sensitivity analysis indicates that the results 

regarding the first two ranking positions are robust against the weight changes in all 

criteria. The latter two positions are slightly sensitive to the changes in C1.2, C1.5 and 

C1.6.  

4.4. Comparative Analysis 

In order to check for the veracity of the method, a comparative analysis is conducted 

by using two MCDM methods, the interval valued neutrosophic TOPSIS, and interval 

valued neutrosophic CODAS methods. We preferred to apply the distance-based methods 

for the comparison in accordance with the method of application in this paper. For the 

application of IVN TOPSIS, we adopted the steps given in Karasan et al. [90]. The criteria 

weights are taken as given in Table 10. The Euclidian and Hamming distance measures 

used in this section are calculated by adopting the steps presented in the study of [91] and 

both equations are modified by the summation over the criteria and the division by the 

number of criteria in the model. 

In the applied IVN TOPSIS method, first, the decision matrices are aggregated by 

weighting with the priorities of DMs to obtain the aggregated neutrosophic decision matrix. 

Then the weighted normalized decision matrix is computed by weighting the decision 

matrix with criteria weights. The positive ideal and the negative ideal solution are 
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calculated as presented in Table 14. Based on the determined ideal solutions, the Euclidian 

distance of each alternative to the PIS and NIS is computed. 

As for the second method selected for the comparative analysis, the steps of IVN 

CODAS are adopted from the study of [95] with minor changes from their method. The 

threshold parameter (θ) used in the threshold function is taken as 0.005 since the differences 

between the Euclidian distances of alternatives to the negative ideal solution are 

significantly close. To incorporate the difference of Hamming distances into the 

calculation, we adjusted the value of the threshold parameter. Table 15 shows the results 

obtained by IVN TOPSIS, IVN CODAS and IVN EDAS methods. 

The IVN EDAS method gives the same ranking with the IVN TOPSIS and IVN 

CODAS methods indicating that the proposed IVN EDAS method provides veracious and 

consistent results with other distance based MCDM methods. 

Table 14 IVN positive ideal solution and negative ideal solution of criteria. 

  PIS NIS 

C1.1 
[(0.027, 0.037), (0.012, 0.018), (0.01, 

0.02)] 

[(0.014, 0.022), (0.02, 0.025), (0.025, 

0.033)] 

C1.2 
[(0.074, 0.089), (0.03, 0.039), 

(0.005,0.02)] 

[(0.044, 0.059), (0.059, 0.069), (0.035, 

0.049)] 

C1.3 
[(0.05, 0.061), (0.011, 0.018), (0.005, 

0.017)] 

[(0.029, 0.042), (0.038, 0.045), (0.026, 

0.039)] 

C1.4 
[(0.056, 0.069), (0.008, 0.016), (0.007, 

0.021)] 

[(0.032, 0.048), (0.042, 0.05), (0.032, 

0.048)] 

C1.5 
[(0.018, 0.024), (0.005, 0.008), (0.006, 

0.013)] 

[(0.012, 0.017), (0.013, 0.016), (0.013, 

0.019)] 

C1.6 
[(0.054, 0.069), (0.018, 0.027), (0.009, 

0.024)] 

[(0.028, 0.042), (0.03, 0.038), (0.038, 

0.052)] 

C1.7 
[(0.036, 0.049), (0.017, 0.026), (0.03, 

0.044)] 

[(0.028, 0.042), (0.019, 0.028), (0.038, 

0.052)] 

C1.8 
[(0.052, 0.066), (0.008, 0.016), (0.008, 

0.023)] 

[(0.028, 0.04), (0.026, 0.036), (0.036, 

0.048)] 

C1.9 
[(0.038, 0.049), (0.024, 0.031), (0.02, 

0.031)] 

[(0.035, 0.046), (0.027, 0.034), (0.023, 

0.033)] 

C1.10 
[(0.016, 0.021), (0.005, 0.008), (0.009, 

0.015)] 

[(0.013, 0.019), (0.009, 0.013), (0.012, 

0.018)] 

C2.1 
[(0.058, 0.074), (0.009, 0.019), (0.014, 

0.031)] 

[(0.038, 0.056), (0.04, 0.05), (0.038, 

0.056)] 

C2.2 
[(0.06, 0.076), (0.027, 0.036), (0.009, 

0.027)] 

[(0.038, 0.051), (0.042, 0.051), (0.035, 

0.048)] 

C2.3 
[(0.051, 0.064), (0.011, 0.019), (0.008, 

0.021)]  

[(0.027,0.038), (0.036, 0.044), (0.034, 

0.046)] 

C2.4 
[(0.033,0.043), (0.006, 0.012), 

(0.015,0.024)] 

[(0.024, 0.036), (0.024, 0.03), (0.024, 

0.036)] 

4.5 Managerial Implications 

The criteria significant for the forest surveillance and fire detection have been 

established for the first time. In this respect, a framework has been proposed that can be 

utilized by the authorities and experts that are responsible from the safety and security of 
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forests against wildfires. On the long run, the integration of drones to the forest surveillance 

systems can significantly reduce the costs, is more reliable and effective than the other 

techniques such as satellite based and static WSNs. Therefore, the adoption of the drones 

as the state-of-the-art technology should be considered and requires a systematic 

examination with real-world applications. 

Table 15 Comparison of results obtained by IVN TOPSIS, IVN CODAS and IVN EDAS 

method 

 IVN TOPSIS IVN CODAS IVN EDAS 

 
𝐷𝑖

𝑃𝐼𝑆 𝐷𝑖
𝑁𝐼𝑆 

Closeness 

coefficient 

Rank Relative 

assessment 

score 

Rank Appraisal 

score 

Rank 

AL1 0.0103 0.0105 0.0105 2 0.0936 2 0.8621 2 

AL2 0.0084 0.0124 0.0124 1 0.1107 1 0.9595 1 

AL3 0.0122 0.0088 0.0088 4 -0.1185 4 0.0738 4 

AL4 0.0128 0.0093 0.0093 3 -0.0858 3 0.0983 3 

5. CONCLUSION 

In order to deal with forest fires, which is a major cause of deforestation, early warning 

systems play a crucial role to contain wildfires under control timely. Drones offer superior 

maneuverability and real-time surveillance capabilities in areas hard to access in 

comparison to other technologies. Due to the aforementioned benefits, the application of 

drones is utilized in the early detection systems for forest fires and the type of drones has 

a significant impact on the effectiveness of these systems. It is noteworthy that the 

performance of the detection system depends on various factors such as topological 

characteristics of the terrain, environmental conditions and features of drones [7]. These 

numerous factors have interrelationships, and some may be conflicting with one another, 

which can be taken into account through EDAS method. 

This study is aimed at addressing the drone selection problem for forest surveillance 

and fire detection by using the IVN EDAS method thanks to its convenience at handling 

the conflicting criteria and enriched information representation by the IVN sets. This study 

contributes by pointing out to the gap that the drone selection problem for forest 

surveillance and fire detection has been sparsely addressed, by presenting an extensive 

literature review on the technologies deployed in forest monitoring and fire detection, and 

by extracting the relevant criteria through an extensive literature review and interviews 

with the experts in field. As a result, four drone alternatives and 14 criteria have been 

identified. The alternatives are then evaluated based on the proposed framework using IVN 

EDAS method. Moreover, a sensitivity analysis is conducted in order to check for 

robustness by varying the criteria weights. The veracity of the results is validated by 

carrying out a comparative analysis with IVN TOPSIS method and IVN CODAS method. 

The results are in compliance with the study of Pamučar et al. [40] regarding the relative 

importance of the criteria. The criteria related to the diagnosis and monitoring are assessed 

as the most critical features in both studies. Further, the ability of stabilization during the 

flight is evaluated as the second most important in this study. The flight time and the 
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resolution for monitoring and detection are evaluated as the third and fourth most 

significant criteria. 

It is important to note that the results should be interpreted with caution. The MCDM 

methods are associated with a major limitation called the rank reversal phenomenon [65]. 

However, the methodology proposed in this study has not been examined for this limitation 

and should be checked for in future work. 

Based on the findings, the set of criteria and the results should be verified with in-the-

field applications and compared with the state of knowledge. In future studies, the 

performance of fuzzy and neutrosophic MCDM methods should be evaluated by 

comparing them with the software and simulation results. The criteria set might be 

extended by consulting more experts and representatives from the authorities. Also, the 

proposed framework could be implemented under other extensions of fuzzy sets for the 

comparison of the results. 
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