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Abstract. This paper carries out the performance analysis of three control system 

structures and approaches, which combine Reinforcement Learning (RL) and 

Metaheuristic Algorithms (MAs) as representative optimization algorithms. In the first 

approach, the Gravitational Search Algorithm (GSA) is employed to initialize the 

parameters (weights and biases) of the Neural Networks (NNs) involved in Deep Q-

Learning by replacing the traditional way of initializing the NNs based on random 

generated values. In the second approach, the Grey Wolf Optimizer (GWO) algorithm is 

employed to train the policy NN in Policy Iteration RL-based control. In the third 

approach, the GWO algorithm is employed as a critic in an Actor-Critic framework, and 

used to evaluate the performance of the actor NN. The goal of this paper is to analyze all 

three RL-based control approaches, aiming to determine which one represents the best 

fit for solving the proposed control optimization problem. The performance analysis is 

based on non-parametric statistical tests conducted on the data obtained from real-time 

experimental results specific to nonlinear servo system position control. 
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1. INTRODUCTION 

The gap between the Machine Learning (ML) and the Automatic Control (AC) fields 

is becoming a highly interesting research subject in recent years. The main reason behind 

this interest is the lack of automation in identifying the optimal parameters of controllers 

specific to AC systems. If the parameters of the controllers are not tuned systematically, 

one of the main shortcomings is their manual tuning, where a lot of experience is needed, 

but it is difficult to acquire it if no accurate process models are available or few information 

on the process is available as well. The optimal values of controller parameters are usually 

found through manual experiments and observations which take time and other resources. 

This leads to the need to conduct automatically the optimal tuning of controller parameters. 

The goal is to start the control and, based on the feedback collected from the controlled 

process, to automatically adjust (namely tune) the controller parameters so that the process 

achieves some predefined objective assessed in terms of adequately defined performance 

indices involved in performance specifications. 

Reinforcement Learning (RL) has been considered initially to belong to the field of 

ML, and it uses only information from interaction with the environment where this technique 

actually operates. As highlighted in [1], this specific feature also makes ML belong to the 

field of data-driven model-free control as part of AC. The general RL problem is usually 

formulated using the mathematical framework of Markov Decision Processes (MDPs) to 

solve an optimization problem that specifies the performance specifications, and it makes 

use of Dynamic Programming (DP) to solve that optimization problem at hand. RL operates 

with agents, which carry out actions in the environment; using the received reward signal 

(measuring the immediate effect of RL agent’s actions), the RL agents adjust their 

knowledge about themselves and the environment. As shown in [2], by applying this 

process incrementally, the RL agents will become better in setting actions that maximize 

or minimize the rewards. The techniques specific to RL represent good candidates to solve 

optimal reference tracking problems [3] and fill the gap between ML and AC. In this 

context, the RL agent is included in a control system, i.e. the RL plays the role of a controller, 

it automatically learns how to change the values of its parameters in controlling a process 

using the feedback (or reward) received from the controlled process [4]. Besides the agent, 

the environment and the reward signal, the other important elements of an RL problem are 

the policy function used by the RL agent to generate actions to be executed on the 

environment, and the value function that measures the long term effect of the actions. 

Based on the policy function, three types of RL agents are generally used leading to 

three different RL-based control system structures: Value-based, Policy-based and Actor-

Critic. The value-based agent iteratively learns a value function in terms of the technique 

called Value Iteration (VI) in RL, and stores the value of the state vector or the state-action 

pair. A concrete implementation of the VI approach is the Q-learning technique described 

in this paper where the goal is to iteratively find the Q-function, i.e. the value function. The 

policy-based agent learns a policy function which is incrementally improved and used to 

generate actions, a technique is known as Policy Iteration (PI) in RL. The Actor-Critic agent 

learns both the value function (called the critic) and the policy function (called the actor). As 

shown in [2], all types of RL agents contain a policy function to define their behavior. 

Deep Reinforcement Learning (DRL) is obtained as a combination of RL and Deep 

Learning (DL) [2]. One version of DRL-based control system structure treated in this paper 

is Deep Q-Learning (DQL) obtained by merging the DL and the Q-learning algorithm that 
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belongs to the Value-based structure [5]. The second RL structure treated in this paper is 

the Policy-based structure, namely the PI RL-based control. The third RL structure used 

for comparison in this paper is the Actor-Critic framework, which represents a combination 

of DQL and PI. 

All these RL-based structures make use of Neural Networks (NNs) and their orientation 

to control leads to NN-based control system structures. Metaheuristic Algorithms (MAs) 

are optimization algorithms that have been employed recently in order to mitigate the two 

major drawbacks of the widely used Gradient Descent (GD) algorithm to train NNs, namely 

slow convergence which often leads to relatively poor control system performance and 

impossibility to avoid local optima which can lead to unstable and unreliable systems. This 

is the motivation of the research results presented in this paper. 

The most popular MAs, also called nature-inspired optimization algorithms, involved 

in AC and RL problems are the Gravitational Search Algorithm (GSA), the Particle Swarm 

Optimization (PSO) and the Grey Wolf Optimizer (GWO) algorithms. GSA, PSO and 

GWO are also viewed as swarm intelligence algorithms. All these algorithms are used in 

[6] to carry out the optimal tuning of fuzzy controller parameters. An analysis on the usage 

of MAs in the optimal control of industrial applications is conducted in [7]. 

A brief discussion on the combinations of MAs and RL in the close relation to NN 

training is given as follows. Genetic Algorithms (GAs) are presented in [8] and [9] as an 

alternative to the GD algorithm-based training of NNs, and other GAs and other MAs are 

reported in [10]. 

The hyperparameters involved in RL are optimally tuned in [11] via PSO. The PSO 

algorithm is combined with RL in [12] to train the critic in a fault tolerant tracking Actor-

Critic RL-based control system structure, in [13] to design fault tolerant AC of nonlinear 

processes, to design fuzzy interpretable RL policies in [14], to solve noisy optimization 

problems in [15], to build a swarm of RL agents which work together for better performance in 

[16], and to find optimal actions in [17]. A Q-learning is applied in [18] in combination 

with PSO to design optimal paths for mobile robots, in [19] to improve the performance of 

positioning strategies for underwater vehicles, and in [20] to enhance the quality of 

predictions of ground responses with respect to tunneling. GWO is employed in training 

feed-forward multi-layered NNs in [21]. DQL is combined with a GSA and compared to 

GWO and PSO algorithms in carrying out the NN-based optimal reference tracking control 

of servo systems in [22]. PI RL is combined with a GWO algorithm and compared to a 

PSO algorithm in the same NN-based Optimal Reference Tracking Control Problem 

(ORTCP) in [23]. A combination of Actor-Critic RL and GWO, aiming to build a control 

structure where the progress of the NN-based actor is guided by a GWO-based critic as 

provided in [24]. The approaches presented in [22-24] are accompanied by comparisons 

with the classical GD algorithm. 

Building upon the short discussion of the state-of-the-art presented above and on the 

authors’ results given in [22-24], this paper carries out the performance analysis of three 

fresh NN- and RL-based control system structures and approaches, (i), (ii) and (iii), which 

combine RL and MAs. The approach (i): the MA is employed to initialize the parameters 

(namely, the weights and the biases) of the NNs involved in DQL by replacing the 

traditional way of initializing the NNs based on random generated values. The approach 

(ii): the MA is employed to train the policy NN in PI RL-based control. The approach (iii): 

the MA is employed to act as a critic in an Actor-Critic setup, guiding the progress of the 

NN-based actor. This contribution is advantageous and important in the context of the 
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literature discussed above as the discussed structures and approaches ensure the relatively 

simple and transparent mitigation of the GD algorithm ensuring performance enhancement. 

Seven combined algorithms are discussed, namely GSA, GWO and PSO in (i) and GWO 

and PSO in (ii) and (iii). These algorithms are also compared to the popular GD algorithm. 

The comparison is based on the real-time results and data obtained from experiments 

concerning the position control of a nonlinear servo system, and all these experiments were 

conducted in the authors’ laboratories. 

The authors avoided using too many abbreviations, which makes the readability of the 

paper poor. However, several abbreviations are used in order to keep a reasonable length 

of the paper. 

The paper treats the following topics: the RL-based control problems and the control 

system structures are described in the next section and the combined RL-MAs are briefly 

presented in Section 3. The performance comparison expressed in terms of non-parametric 

statistical tests conducted on experimental results is given in Section 4, and the concluding 

remarks are pointed out in Section 5. 

2. REINFORCEMENT LEARNING-BASED CONTROL PROBLEMS  

AND CONTROL SYSTEM STRUCTURES 

Both in RL and in control theory, in order for an agent to learn how to automatically 

control a system, it needs to come up with a solution to an optimization problem. The three 

approaches (i), (ii) and (iii) mentioned in the previous section will be briefly treated as 

follows in sections 2.1, 2.2 and 2.3, respectively. 

2.1. Optimal reference tracking control problem in the first approach 

This approach, (i), focused on DQL, is expressed as the optimization problem [22] 

 ),(minarg 1

*
aa

aa
J

D
=  (1) 

where a is the vector (represented as a column matrix) that contains the sequence of actions 

on all iterations 

 ,)]( ... )( ... )1([ max
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max...1 ttd =  is the discrete time moment, 
maxt  is the maximum number of iterations, )(1 aJ  is 

the cost function, a* is the optimal value of a, namely the solution to the optimization 

problem defined in Eq. (1), it consists of the optimal sequence of elements, i.e. actions 

)(*

dta , 
max...1 ttd = : 
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**** tT
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and 
aD  is the feasible domain of a. 

The definition of the cost function in Eq. (1), which imposes the performance 

specifications as the aggregate objective of carrying out a tradeoff to small overshoot and 

small settling time values, is [22] 
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 |,))(,1())(,(||))(,(|))((1 ddddoddd ttettettetJ aaaa −−+=  (4) 

where 
o  is the weight parameter involved in the tradeoff. 

The DQL-based control system structure is illustrated in Fig. 1. According to Fig. 1, 

which is actually a state feedback control system structure, the RL agent generates control 

actions )( dta  (they are control signals )()( dd tatu =  in the AC formulation) based on the 

new state (vector) of the controlled process )1( +dts  and on the reward )( dtr  (it is the 

controlled output )()( dd trty =  in the AC formulation), reflected in the control error )( dte , 

which depends on dy  – the desired output (or the reference input or the set-point) assumed 

to be constant. The new control signals or actions will be applied to the process until )(1 aJ  

is minimized, i.e. )( dty  tracks dy  in terms of Eqs. (1-4). As shown in Fig. 1, the RL agent 

represents actually the controller in the AC formulation, the environment is the controlled 

process in the AC formulation, the disturbance input is absent to simplify the problem 

setting, and the Q-function NN with the nonlinear map wQ  is referred to as the Q-function 

NN wQ . 

 

Fig. 1 Informational structure of DQL-based CS [22] 

2.2 Optimal reference tracking control problem in the second approach 

This approach, (ii), focused on PI RL, is expressed as the optimization problem [23] 

 ),(minarg 1

*
θθ

θρ
J

D
=  (5) 

where  is the parameter vector used to build the control policy NN, * is the solution to 

the optimization problem defined in Eq. (5), namely the optimal value of , θD  is the 

feasible domain of , and )(1 θJ  is the cost function 

 |,),1(),(||),(|)(1 θθθθ −−+= ddod teteteJ  (6) 

which is similar to that defined in Eq. (4), thus justifying the fair comparison of the two 

approaches implemented using different algorithms. 

The PI RL-based control system structure is illustrated in Fig. 2, which is similar to the 

structure in Fig. 1. The integrator with the additional state variable )( dI ts  is inserted in order 

to guarantee zero steady-state control errors in certain regimes. 
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Fig. 2 Informational structure of PI RL-based CS (adapted from [23]) 

The notation θ is used in Fig. 2 for the nonlinear map function of the policy NN. The 

rest of elements in Fig. 2 are described in relation with the control system given in Fig. 1. 

2.3. Optimal reference tracking control problem in the third approach 

This approach, (iii), focused on Actor-Critic RL, is expressed as the optimization 

problem [24] 

 ),(minarg 1

*
ωω

ωω
J

D
=  (7) 

where  represents the configuration, i.e. the parameter vector of the NN-based actor, * 

is the optimal value of  and the solution to the problem described in Eq. (7), D is the 

feasible domain of , and J1() is the cost function, which is defined similarly to Eqs. (4-

6), leading to a fair comparison between this approach and the ones discussed in sections 

2.1 and 2.2, as 

 |,)()(||)(|)( 11 ωωωω −−+= ttot eeeJ  (8) 

where the parameter o is used to control (weight) the overshoot value. 

Fig. 3 presents the Actor-Critic RL-based control system structure. The integrator is 

used for the same reason as the on described in Fig. 2. The GWO-based critic is constantly 

monitoring the NN-based actor and only step in if the actor deviates from achieving the 

predefined control objectives. 

 

Fig. 3 Informational structure of Actor-Critic RL-based CS (adapted from [24]) 

The NN-based actor is represented in Fig. 3 as  and the GWO-based critic as w. The 

rest of elements in Fig. 3 are described in relation with the control systems given in Fig. 1 

and Fig. 2. 
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3. COMBINED REINFORCEMENT LEARNING-METAHEURISTIC ALGORITHMS 

Using the presentation in [22] focusing on GSA, the steps of the DQL-based control 

approach combined with GSA are presented in Fig. 4. 

The NN architecture used for to implement the NNs involved in the algorithm is 

presented in Fig. 5. The dynamic regime considered to solve the optimization problem 

defined in Eq. (1) is set to zero external disturbances and constant reference input. The 

optimization process will stop when the control error does not decrease and its absolute 

value is under a threshold value for a certain number of consecutive steps. 

The NNs involved in the RL-based control process are initialized with all the MAs 

considered in [22]. Fig. 4 highlights the case where the parameter vector w0 of the Q-

function NN Qw and the parameter vector 0 of the target NN ρQ̂  are initialized with GSA. 

The DQL algorithm is using the experience replay buffer technique to introduce diversity 

in the training process [22]. 

Using the presentation in [23] focusing on GWO, the steps of the PI RL-based control 

approach combined with MAs are presented in Fig. 6 using the description given in [23] 

from a control perspective. 

The algorithm presented in Fig. 6 iteratively searches for better configurations, i.e. the 

parameter vector , for the control policy NN . The algorithm stops when the CP’s output 

continually follows the reference input for a number of   steps. More details about how 

the algorithm is implemented are provided in [23]. 

Using the presentation in [24] focusing on GWO, the steps of the Actor-Critic RL-based 

control approach combined with MAs are presented in Fig. 7. 

The GWO-based critic will step in only if the actor NN deviates from following the 

predefined optimal control objectives. It will reconfigure the actor NN if the control error 

value will not decrease during the RL-based control process. The algorithm will stop when 

the final iteration in the RL process is reached. 

4. EXPERIMENTAL RESULTS AND THEIR DISCUSSION 

This section presents the experimental results for the GSA-based DQL (GSA-DQL) 

algorithm, the GWO-based DQL (GWO-DQL) algorithm, the PSO-based DQL (PSO-

DQL) algorithm based on (i) and suggested in [22], the GD-based DQL (GD-DQL) 

algorithm, the GWO-based PI RL (GWO-PI RL) algorithm suggested in [23], the PSO-

based PI RL (PSO-PI RL) algorithm suggested in [17] and also applied in [23] and the GD-

based PI RL (GD-PI RL) algorithm. This section also describes the results of the GWO-

based Actor-Critic (GWO-AC), the PSO-based Actor-Critic (PSO-AC) and the GD-based 

Actor-Critic (GD-AC) algorithms discussed in [24]. Details on the design of the metaheuristic 

algorithms are given in [22-24]. 
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Fig. 4 Flow diagram of the combination of Q-learning and GSA 
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Fig. 5 Q-function NN architecture with two hidden layers [22] 

 

Fig. 6 Flow diagram of the combination of Policy Iteration and GWO 
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Fig. 7 Flow diagram of the combination of Actor-Critic and GWO 

All these algorithms are built as NN-based state feedback controllers, and the experiments 

are conducted using the nonlinear servo system laboratory equipment described in [24] and 

illustrated in Fig. 8. The process model is introduced in [25] as 
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where the significance of variables and parameters is [25]: t  0 is the continuous time, kp > 0 

is the servo system gain, T > 0 is a small time constant, the pulse with modulated control 

signal u(t) applied to the Direct Current (DC) motor has a duty cycle 1)(1 − tu , the state 

vector of the system is ,)]()([)()]()([)( 2121

TT txtxttstst === xs  and ua, ub and uc, 0 < ua < ub, 

0 < uc < ub are the parameters of the dead zone static nonlinearity variable (t) modeled in 

the first relation in Eq. (9). The parameter values related to Eq. (9), obtained by least squares 

identification, are ua = 0.15, ub = 1, uc = 0.15, kp = 140 and T = 0.92s [25]. 

 

Fig. 8 Photo of nonlinear servo system experimental setup in authors’ laboratories [22] 

Each algorithm is assessed on how well it solves an ORTCP – defined in Eq. (1) or Eq. (5) 

– in servo system position control using the following performance indices: the minimum value 

of the cost function J1min, plus the empirical performance indices the settling time ts(s), the 0-to-

100% rise time t1(s), the peak time tm(s) and the percent overshoot 1(%). 

The dynamic regime related to the optimization problems defined in Eq. (1) and Eq. (5) 

and employed as ORTCPs in the AC formulation is characterized by: yd = 40 rad step type 

modification of the set-point, randomly generated initial state variables, zero disturbance 

input, and time horizon of 30 s. These values are kept permanently during the controller 

design and tuning in order to guarantee the correct evaluation and comparison of the cost 

function values. 

Since the MAs are essentially characterized by random features, the experiments conducted 

with the algorithms that include MAs were repeated nine times (i.e. episodes) using the same 

initial conditions and averaging the results. The nine episodes were organized, as proceeded in 

[22-24], in three stages, and each stage contains three episodes. The experiments involving the 

two GD-based algorithms were run only once in each of the three stages they do not operate 

with randomly generated values. In order to ensure a fair comparison of all algorithms, the 

statistical results are obtained and formulated after processing the results of running 30 real-

time experiments with 3000 iterations/experiment for all NN-based controllers. As 

specified in [22], in the same context of random features, the initialization step in every 

experiment conducted with the algorithms based on (i) was executed three times and the 

resulted values of the parameter vectors , w and  were averaged before using them to 

train the NN-based state feedback controllers. 

As considered in [22-24], the parameters involved in the optimization problems were 

set to tmax = 1500 and o = 1.5. The sampling period for control was set to 0.01 s. The 

parameter vectors of the NN-based state feedback controllers after training contain 17 

elements (weights and biases). The augmented state vector contains randomly generated 
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values in the state space ]30,0[]100,0[]60,0[ =S  at each stage, with the first two intervals 

corresponding to the state variables in Eq. (14) and the third interval to the integrator state. 

The parameter specific to the stochastic GD-based algorithms was set to 01.0= . The 

number of agents used in the MAs was set to 10=N , the initial value of the gravitational 

constant specific to GSA was set to 9.10 =gravg , and the other parameter settings of MAs are 

described in [6]. 

The expressions and the obtained values of the parameter vectors of all algorithms are 

specified in [22-24]. In this context of ensuring full transparency, the data processed in the 

statistical analysis conducted in order to compare the performance of all algorithms is 

freely available in the Data_FUME.m Matlab file [26]. The readers are invited to examine 

several samples of CS responses in [22-24]. 

The results obtained after conducting the variance (ANOVA) test of the minimum cost 

function value J1min evaluated after running these ten algorithms are presented in Fig. 9. 

Fig. 9 shows that the best performance is achieved by the GSA-DQL algorithm, followed 

by the GSO-AC algorithm and the PSO-DQL algorithm. Table 1 summarizes the results of 

the non-parametric statistical analysis. 

 

Fig. 9 ANOVA test of minimum cost function value J1 for all algorithms 

Table 2 gives a comparison of the performance indices as far as the CS behavior is 

concerned for all seven algorithms under discussion. The bold values indicate the best 

(namely smallest) performance indices among all algorithms. 

The best algorithm as far as the settling time is concerned is GWO-AC, followed by 

PSO-AC and GWO-PI RL. The best algorithm as far as the 0-to-100% rise time is concerned 

is PSO-PI RL, followed by GD-PI RL and GD-DQL. The best algorithm as far as the peak 

time is concerned is GD-PI RL, followed by PSO-PI RL and GWO-PI RL. The best 

algorithm as far as the overshoot is concerned is GWO-AC, followed by GWO-PI RL and 

GSA-DQL. These conclusions drawn from Table 2 indicate that there are certain 

differences of the empirical performance indices, which make the control system designers 



 Q-learning, Policy Iteration and Actor-Critic Reinforcement Learning Combined with Metaheuristic 627 

choose the right algorithm in order to achieve the performance specifications imposed to 

the control system, and to ensure a convenient tradeoff to them. These conclusions will be 

different for other dynamic regimes and might also need to be subjected to a tradeoff.  

Table 1 Ranks, statistics and related p-values of ten algorithms 

Algorithm Friedman test 
Friedman 

aligned test 
Quade test 

GSA-DQL 2.2667 62.3667 2.1161 

GWO-DQL 3.2333 73.8333 2.8731 

PSO-DQL 3.1 74.9667 2.8796 

GD-DQL 5.2667 113.3667 4.7376 

GWO-PI RL 4.4333 128.4333 4.7914 

PSO-PI RL 4.6 133.6667 4.9634 

GD-PI RL 5.1 151.8667 5.6387 

GWO-AC 1.1333 17.3667 1.1484 

PSO-AC 2.3333 56.1667 2.3161 

GD-AC 2.5333 62.9667 2.5355 

Statistic 89.97 95.58 13.90 

p-value 1.6710−15 1.1110−16 2.0710−20 

Table 2 Comparison of cntrol system performance indices with controllers tuned by ten 

algorithms 

Algorithm (s) st
 (s) 1t  (s) mt

 (%) 1  

GSA-DQL 24.3027 10.89 15.8133 1.1847 

GWO-DQL 24.7913 10.466 15.6457 1.51 

PSO-DQL 25.456 9.418 14.6713 1.8077 

GD-DQL 25.7247 8.7743 13.2433 1.8287 

GWO-PI RL 23.4215 9.4544 11.9362 0.7658 

PSO-PI RL 25.259 6.7314 9.3833 4.8424 

GD-PI RL 24.0382 7.6027 6.7273 23.2914 

GWO-AC 21.7897 12.041 16.2593 0.7051 

PSO-AC 22.955 13.4543 16.9083 1.7128 

GD-AC 24.5883 13.267 16.6147 1.5147 

The integrator is introduced to ensure zero steady-state error; experimental data to 

confirm this conclusion is also included in [22-24]. A sample of control system response 

is illustrated in Fig. 10, which confirms both the zero steady-state control error and the 

effects of the dead zone static nonlinearity in the servo system model given in Eq. (9). 

The analysis part of the experimental results does not include the training convergence 

curves, in order to keep a reasonable length of the paper. However, convergence curves 

can be relatively easily derived using the information extracted from the system responses 

as those given in Fig. 10. Nevertheless, the conclusions of this comparison can be different 

if other nonlinear processes are subjected to the NN-based ORTCP approaches and 

algorithms discussed in this paper as, for instance, various representative applications that 

include decision-making processes [27], man-computer symbiosis [28], 3D printing objects 

[29], medical systems [30]–[33], drilling processes [34], fuzzy control [35]–[37], evolving 
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controllers [38], fuzzy cognitive maps [39], traffic systems [40], quantum computing [41], 

and telesurgical applications [42]. 

 

Fig. 10 Real-time experimental system responses y and u when using the PSO-PI RL 

algorithm [23] 

5. CONCLUSIONS 

This paper carried out the performance analysis of three control system structures and 

approaches, which combine Reinforcement Learning (RL) and four representative 

Metaheuristic Algorithms (MAs) resulting in seven RL algorithms that include the classical 

stochastic Gradient Descent algorithms. The algorithms, suggested in the recent authors’ papers 

[22-24], were implemented as Neural Network (NN)-based state feedback controllers and 

applied to the position control of a nonlinear servo system. 

The main benefit of these approaches is the transparency of presentation in an easily 

understandable way of the NN training and the controller implementation. The disturbance 

rejection is ensured by the presence of the integrator in the control system structures. The 

main limitation of the approaches treated in this paper is the relatively large number of 

parameters of the NN-based state feedback controllers accounting for the application 

considered in the previous section. Nevertheless, the stability analysis is a sensitive subject, 

in order to use stability conditions as constraints in the optimization problems, but it is 

discussed in [1] in the context of data-driven control. 

Future research will be focused on applying the algorithms and controllers to other 

complicated and challenging processes. The simplification of the NN architectures will be 

tackled as well, aiming the cost-effective training, design, tuning and implementation. 
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