
FACTA UNIVERSITATIS
Series: Mechanical Engineering Vol. 21, No 4, 2023, pp. 615 - 630

https://doi.org/10.22190/FUME231011044Z

© 2023 by University of Niš, Serbia | Creative Commons License: CC BY-NC-ND

Original scientific paper

Q-LEARNING, POLICY ITERATION AND ACTOR-CRITIC

REINFORCEMENT LEARNING

COMBINED WITH METAHEURISTIC ALGORITHMS

IN SERVO SYSTEM CONTROL

Iuliu Alexandru Zamfirache1, Radu-Emil Precup1,2, Emil M. Petriu3

1Politehnica University of Timisoara, Department of Automation and Applied Informatics,

Timisoara, Romania
2Romanian Academy – Timisoara Branch, Center for Fundamental and Advanced

Technical Research, Timisoara, Romania
3University of Ottawa, School of Electrical Engineering and Computer Science,

Ottawa, Canada

Abstract. This paper carries out the performance analysis of three control system

structures and approaches, which combine Reinforcement Learning (RL) and

Metaheuristic Algorithms (MAs) as representative optimization algorithms. In the first

approach, the Gravitational Search Algorithm (GSA) is employed to initialize the

parameters (weights and biases) of the Neural Networks (NNs) involved in Deep Q-

Learning by replacing the traditional way of initializing the NNs based on random

generated values. In the second approach, the Grey Wolf Optimizer (GWO) algorithm is

employed to train the policy NN in Policy Iteration RL-based control. In the third

approach, the GWO algorithm is employed as a critic in an Actor-Critic framework, and

used to evaluate the performance of the actor NN. The goal of this paper is to analyze all

three RL-based control approaches, aiming to determine which one represents the best

fit for solving the proposed control optimization problem. The performance analysis is

based on non-parametric statistical tests conducted on the data obtained from real-time

experimental results specific to nonlinear servo system position control.

Key words: Reinforcement Learning, Policy Iteration, Actor-Critic, Q-learning,

Gravitational Search Algorithm, Grey Wolf Optimizer

Received: October 11, 2023 / Accepted November 25, 2023

Corresponding author: Radu-Emil Precup
Politehnica University of Timisoara, Department of Automation and Applied Informatics, Bd. V. Parvan 2,

300223 Timisoara, Romania

Romanian Academy – Timisoara Branch, Center for Fundamental and Advanced Technical Research, Bd.
Mihai Viteazu 24, 300223 Timisoara, Romania

E-mail: radu.precup@aut.upt.ro

616 I. A. ZAMFIRACHE, R.-E. PRECUP, E. M. PETRIU

1. INTRODUCTION

The gap between the Machine Learning (ML) and the Automatic Control (AC) fields

is becoming a highly interesting research subject in recent years. The main reason behind

this interest is the lack of automation in identifying the optimal parameters of controllers

specific to AC systems. If the parameters of the controllers are not tuned systematically,

one of the main shortcomings is their manual tuning, where a lot of experience is needed,

but it is difficult to acquire it if no accurate process models are available or few information

on the process is available as well. The optimal values of controller parameters are usually

found through manual experiments and observations which take time and other resources.

This leads to the need to conduct automatically the optimal tuning of controller parameters.

The goal is to start the control and, based on the feedback collected from the controlled

process, to automatically adjust (namely tune) the controller parameters so that the process

achieves some predefined objective assessed in terms of adequately defined performance

indices involved in performance specifications.

Reinforcement Learning (RL) has been considered initially to belong to the field of

ML, and it uses only information from interaction with the environment where this technique

actually operates. As highlighted in [1], this specific feature also makes ML belong to the

field of data-driven model-free control as part of AC. The general RL problem is usually

formulated using the mathematical framework of Markov Decision Processes (MDPs) to

solve an optimization problem that specifies the performance specifications, and it makes

use of Dynamic Programming (DP) to solve that optimization problem at hand. RL operates

with agents, which carry out actions in the environment; using the received reward signal

(measuring the immediate effect of RL agent’s actions), the RL agents adjust their

knowledge about themselves and the environment. As shown in [2], by applying this

process incrementally, the RL agents will become better in setting actions that maximize

or minimize the rewards. The techniques specific to RL represent good candidates to solve

optimal reference tracking problems [3] and fill the gap between ML and AC. In this

context, the RL agent is included in a control system, i.e. the RL plays the role of a controller,

it automatically learns how to change the values of its parameters in controlling a process

using the feedback (or reward) received from the controlled process [4]. Besides the agent,

the environment and the reward signal, the other important elements of an RL problem are

the policy function used by the RL agent to generate actions to be executed on the

environment, and the value function that measures the long term effect of the actions.

Based on the policy function, three types of RL agents are generally used leading to

three different RL-based control system structures: Value-based, Policy-based and Actor-

Critic. The value-based agent iteratively learns a value function in terms of the technique

called Value Iteration (VI) in RL, and stores the value of the state vector or the state-action

pair. A concrete implementation of the VI approach is the Q-learning technique described

in this paper where the goal is to iteratively find the Q-function, i.e. the value function. The

policy-based agent learns a policy function which is incrementally improved and used to

generate actions, a technique is known as Policy Iteration (PI) in RL. The Actor-Critic agent

learns both the value function (called the critic) and the policy function (called the actor). As

shown in [2], all types of RL agents contain a policy function to define their behavior.

Deep Reinforcement Learning (DRL) is obtained as a combination of RL and Deep

Learning (DL) [2]. One version of DRL-based control system structure treated in this paper

is Deep Q-Learning (DQL) obtained by merging the DL and the Q-learning algorithm that

 Q-learning, Policy Iteration and Actor-Critic Reinforcement Learning Combined with Metaheuristic 617

belongs to the Value-based structure [5]. The second RL structure treated in this paper is

the Policy-based structure, namely the PI RL-based control. The third RL structure used

for comparison in this paper is the Actor-Critic framework, which represents a combination

of DQL and PI.

All these RL-based structures make use of Neural Networks (NNs) and their orientation

to control leads to NN-based control system structures. Metaheuristic Algorithms (MAs)

are optimization algorithms that have been employed recently in order to mitigate the two

major drawbacks of the widely used Gradient Descent (GD) algorithm to train NNs, namely

slow convergence which often leads to relatively poor control system performance and

impossibility to avoid local optima which can lead to unstable and unreliable systems. This

is the motivation of the research results presented in this paper.

The most popular MAs, also called nature-inspired optimization algorithms, involved

in AC and RL problems are the Gravitational Search Algorithm (GSA), the Particle Swarm

Optimization (PSO) and the Grey Wolf Optimizer (GWO) algorithms. GSA, PSO and

GWO are also viewed as swarm intelligence algorithms. All these algorithms are used in

[6] to carry out the optimal tuning of fuzzy controller parameters. An analysis on the usage

of MAs in the optimal control of industrial applications is conducted in [7].

A brief discussion on the combinations of MAs and RL in the close relation to NN

training is given as follows. Genetic Algorithms (GAs) are presented in [8] and [9] as an

alternative to the GD algorithm-based training of NNs, and other GAs and other MAs are

reported in [10].

The hyperparameters involved in RL are optimally tuned in [11] via PSO. The PSO

algorithm is combined with RL in [12] to train the critic in a fault tolerant tracking Actor-

Critic RL-based control system structure, in [13] to design fault tolerant AC of nonlinear

processes, to design fuzzy interpretable RL policies in [14], to solve noisy optimization

problems in [15], to build a swarm of RL agents which work together for better performance in

[16], and to find optimal actions in [17]. A Q-learning is applied in [18] in combination

with PSO to design optimal paths for mobile robots, in [19] to improve the performance of

positioning strategies for underwater vehicles, and in [20] to enhance the quality of

predictions of ground responses with respect to tunneling. GWO is employed in training

feed-forward multi-layered NNs in [21]. DQL is combined with a GSA and compared to

GWO and PSO algorithms in carrying out the NN-based optimal reference tracking control

of servo systems in [22]. PI RL is combined with a GWO algorithm and compared to a

PSO algorithm in the same NN-based Optimal Reference Tracking Control Problem

(ORTCP) in [23]. A combination of Actor-Critic RL and GWO, aiming to build a control

structure where the progress of the NN-based actor is guided by a GWO-based critic as

provided in [24]. The approaches presented in [22-24] are accompanied by comparisons

with the classical GD algorithm.

Building upon the short discussion of the state-of-the-art presented above and on the

authors’ results given in [22-24], this paper carries out the performance analysis of three

fresh NN- and RL-based control system structures and approaches, (i), (ii) and (iii), which

combine RL and MAs. The approach (i): the MA is employed to initialize the parameters

(namely, the weights and the biases) of the NNs involved in DQL by replacing the

traditional way of initializing the NNs based on random generated values. The approach

(ii): the MA is employed to train the policy NN in PI RL-based control. The approach (iii):

the MA is employed to act as a critic in an Actor-Critic setup, guiding the progress of the

NN-based actor. This contribution is advantageous and important in the context of the

618 I. A. ZAMFIRACHE, R.-E. PRECUP, E. M. PETRIU

literature discussed above as the discussed structures and approaches ensure the relatively

simple and transparent mitigation of the GD algorithm ensuring performance enhancement.

Seven combined algorithms are discussed, namely GSA, GWO and PSO in (i) and GWO

and PSO in (ii) and (iii). These algorithms are also compared to the popular GD algorithm.

The comparison is based on the real-time results and data obtained from experiments

concerning the position control of a nonlinear servo system, and all these experiments were

conducted in the authors’ laboratories.

The authors avoided using too many abbreviations, which makes the readability of the

paper poor. However, several abbreviations are used in order to keep a reasonable length

of the paper.

The paper treats the following topics: the RL-based control problems and the control

system structures are described in the next section and the combined RL-MAs are briefly

presented in Section 3. The performance comparison expressed in terms of non-parametric

statistical tests conducted on experimental results is given in Section 4, and the concluding

remarks are pointed out in Section 5.

2. REINFORCEMENT LEARNING-BASED CONTROL PROBLEMS

AND CONTROL SYSTEM STRUCTURES

Both in RL and in control theory, in order for an agent to learn how to automatically

control a system, it needs to come up with a solution to an optimization problem. The three

approaches (i), (ii) and (iii) mentioned in the previous section will be briefly treated as

follows in sections 2.1, 2.2 and 2.3, respectively.

2.1. Optimal reference tracking control problem in the first approach

This approach, (i), focused on DQL, is expressed as the optimization problem [22]

),(minarg 1

*
aa

aa
J

D
= (1)

where a is the vector (represented as a column matrix) that contains the sequence of actions

on all iterations

 ,)](...)(...)1([max

max

tT

d tataa =a (2)

max...1 ttd = is the discrete time moment,
maxt is the maximum number of iterations,)(1 aJ is

the cost function, a* is the optimal value of a, namely the solution to the optimization

problem defined in Eq. (1), it consists of the optimal sequence of elements, i.e. actions

)(*

dta ,
max...1 ttd = :

 ,)](...)(...)1([max

max

**** tT

d tataa =a (3)

and
aD is the feasible domain of a.

The definition of the cost function in Eq. (1), which imposes the performance

specifications as the aggregate objective of carrying out a tradeoff to small overshoot and

small settling time values, is [22]

 Q-learning, Policy Iteration and Actor-Critic Reinforcement Learning Combined with Metaheuristic 619

 |,))(,1())(,(||))(,(|))((1 ddddoddd ttettettetJ aaaa −−+= (4)

where
o is the weight parameter involved in the tradeoff.

The DQL-based control system structure is illustrated in Fig. 1. According to Fig. 1,

which is actually a state feedback control system structure, the RL agent generates control

actions)(dta (they are control signals)()(dd tatu = in the AC formulation) based on the

new state (vector) of the controlled process)1(+dts and on the reward)(dtr (it is the

controlled output)()(dd trty = in the AC formulation), reflected in the control error)(dte ,

which depends on dy – the desired output (or the reference input or the set-point) assumed

to be constant. The new control signals or actions will be applied to the process until)(1 aJ

is minimized, i.e.)(dty tracks dy in terms of Eqs. (1-4). As shown in Fig. 1, the RL agent

represents actually the controller in the AC formulation, the environment is the controlled

process in the AC formulation, the disturbance input is absent to simplify the problem

setting, and the Q-function NN with the nonlinear map wQ is referred to as the Q-function

NN wQ .

Fig. 1 Informational structure of DQL-based CS [22]

2.2 Optimal reference tracking control problem in the second approach

This approach, (ii), focused on PI RL, is expressed as the optimization problem [23]

),(minarg 1

*
θθ

θρ
J

D
= (5)

where  is the parameter vector used to build the control policy NN, * is the solution to

the optimization problem defined in Eq. (5), namely the optimal value of , θD is the

feasible domain of , and)(1 θJ is the cost function

 |,),1(),(||),(|)(1 θθθθ −−+= ddod teteteJ (6)

which is similar to that defined in Eq. (4), thus justifying the fair comparison of the two

approaches implemented using different algorithms.

The PI RL-based control system structure is illustrated in Fig. 2, which is similar to the

structure in Fig. 1. The integrator with the additional state variable)(dI ts is inserted in order

to guarantee zero steady-state control errors in certain regimes.

620 I. A. ZAMFIRACHE, R.-E. PRECUP, E. M. PETRIU

Fig. 2 Informational structure of PI RL-based CS (adapted from [23])

The notation θ is used in Fig. 2 for the nonlinear map function of the policy NN. The

rest of elements in Fig. 2 are described in relation with the control system given in Fig. 1.

2.3. Optimal reference tracking control problem in the third approach

This approach, (iii), focused on Actor-Critic RL, is expressed as the optimization

problem [24]

),(minarg 1

*
ωω

ωω
J

D
= (7)

where  represents the configuration, i.e. the parameter vector of the NN-based actor, *

is the optimal value of  and the solution to the problem described in Eq. (7), D is the

feasible domain of , and J1() is the cost function, which is defined similarly to Eqs. (4-

6), leading to a fair comparison between this approach and the ones discussed in sections

2.1 and 2.2, as

 |,)()(||)(|)(11 ωωωω −−+= ttot eeeJ (8)

where the parameter o is used to control (weight) the overshoot value.

Fig. 3 presents the Actor-Critic RL-based control system structure. The integrator is

used for the same reason as the on described in Fig. 2. The GWO-based critic is constantly

monitoring the NN-based actor and only step in if the actor deviates from achieving the

predefined control objectives.

Fig. 3 Informational structure of Actor-Critic RL-based CS (adapted from [24])

The NN-based actor is represented in Fig. 3 as  and the GWO-based critic as w. The

rest of elements in Fig. 3 are described in relation with the control systems given in Fig. 1

and Fig. 2.

 Q-learning, Policy Iteration and Actor-Critic Reinforcement Learning Combined with Metaheuristic 621

3. COMBINED REINFORCEMENT LEARNING-METAHEURISTIC ALGORITHMS

Using the presentation in [22] focusing on GSA, the steps of the DQL-based control

approach combined with GSA are presented in Fig. 4.

The NN architecture used for to implement the NNs involved in the algorithm is

presented in Fig. 5. The dynamic regime considered to solve the optimization problem

defined in Eq. (1) is set to zero external disturbances and constant reference input. The

optimization process will stop when the control error does not decrease and its absolute

value is under a threshold value for a certain number of consecutive steps.

The NNs involved in the RL-based control process are initialized with all the MAs

considered in [22]. Fig. 4 highlights the case where the parameter vector w0 of the Q-

function NN Qw and the parameter vector 0 of the target NN ρQ̂ are initialized with GSA.

The DQL algorithm is using the experience replay buffer technique to introduce diversity

in the training process [22].

Using the presentation in [23] focusing on GWO, the steps of the PI RL-based control

approach combined with MAs are presented in Fig. 6 using the description given in [23]

from a control perspective.

The algorithm presented in Fig. 6 iteratively searches for better configurations, i.e. the

parameter vector , for the control policy NN . The algorithm stops when the CP’s output

continually follows the reference input for a number of  steps. More details about how

the algorithm is implemented are provided in [23].

Using the presentation in [24] focusing on GWO, the steps of the Actor-Critic RL-based

control approach combined with MAs are presented in Fig. 7.

The GWO-based critic will step in only if the actor NN deviates from following the

predefined optimal control objectives. It will reconfigure the actor NN if the control error

value will not decrease during the RL-based control process. The algorithm will stop when

the final iteration in the RL process is reached.

4. EXPERIMENTAL RESULTS AND THEIR DISCUSSION

This section presents the experimental results for the GSA-based DQL (GSA-DQL)

algorithm, the GWO-based DQL (GWO-DQL) algorithm, the PSO-based DQL (PSO-

DQL) algorithm based on (i) and suggested in [22], the GD-based DQL (GD-DQL)

algorithm, the GWO-based PI RL (GWO-PI RL) algorithm suggested in [23], the PSO-

based PI RL (PSO-PI RL) algorithm suggested in [17] and also applied in [23] and the GD-

based PI RL (GD-PI RL) algorithm. This section also describes the results of the GWO-

based Actor-Critic (GWO-AC), the PSO-based Actor-Critic (PSO-AC) and the GD-based

Actor-Critic (GD-AC) algorithms discussed in [24]. Details on the design of the metaheuristic

algorithms are given in [22-24].

622 I. A. ZAMFIRACHE, R.-E. PRECUP, E. M. PETRIU

Fig. 4 Flow diagram of the combination of Q-learning and GSA

 Q-learning, Policy Iteration and Actor-Critic Reinforcement Learning Combined with Metaheuristic 623

Fig. 5 Q-function NN architecture with two hidden layers [22]

Fig. 6 Flow diagram of the combination of Policy Iteration and GWO

624 I. A. ZAMFIRACHE, R.-E. PRECUP, E. M. PETRIU

Fig. 7 Flow diagram of the combination of Actor-Critic and GWO

All these algorithms are built as NN-based state feedback controllers, and the experiments

are conducted using the nonlinear servo system laboratory equipment described in [24] and

illustrated in Fig. 8. The process model is introduced in [25] as

),(]01[)(

),(
/

0
)(

/10

10

)(

)(

,)(if,1

,)(if),/())((

,|)(| if,0

,)(if),/())((

,)(if,1

)(

2

1

tty

t
Tk

t
Ttx

tx

utu

utuuuuutu

utuu

utuuuuutu

utu

t

P

b

baaba

ac

cbcbc

b

x

x

=









+









−
=
























−−

−

−−−+

−−

=




 (9)

 Q-learning, Policy Iteration and Actor-Critic Reinforcement Learning Combined with Metaheuristic 625

where the significance of variables and parameters is [25]: t  0 is the continuous time, kp > 0

is the servo system gain, T > 0 is a small time constant, the pulse with modulated control

signal u(t) applied to the Direct Current (DC) motor has a duty cycle 1)(1 − tu , the state

vector of the system is ,)]()([)()]()([)(2121

TT txtxttstst === xs and ua, ub and uc, 0 < ua < ub,

0 < uc < ub are the parameters of the dead zone static nonlinearity variable (t) modeled in

the first relation in Eq. (9). The parameter values related to Eq. (9), obtained by least squares

identification, are ua = 0.15, ub = 1, uc = 0.15, kp = 140 and T = 0.92s [25].

Fig. 8 Photo of nonlinear servo system experimental setup in authors’ laboratories [22]

Each algorithm is assessed on how well it solves an ORTCP – defined in Eq. (1) or Eq. (5)

– in servo system position control using the following performance indices: the minimum value

of the cost function J1min, plus the empirical performance indices the settling time ts(s), the 0-to-

100% rise time t1(s), the peak time tm(s) and the percent overshoot 1(%).

The dynamic regime related to the optimization problems defined in Eq. (1) and Eq. (5)

and employed as ORTCPs in the AC formulation is characterized by: yd = 40 rad step type

modification of the set-point, randomly generated initial state variables, zero disturbance

input, and time horizon of 30 s. These values are kept permanently during the controller

design and tuning in order to guarantee the correct evaluation and comparison of the cost

function values.

Since the MAs are essentially characterized by random features, the experiments conducted

with the algorithms that include MAs were repeated nine times (i.e. episodes) using the same

initial conditions and averaging the results. The nine episodes were organized, as proceeded in

[22-24], in three stages, and each stage contains three episodes. The experiments involving the

two GD-based algorithms were run only once in each of the three stages they do not operate

with randomly generated values. In order to ensure a fair comparison of all algorithms, the

statistical results are obtained and formulated after processing the results of running 30 real-

time experiments with 3000 iterations/experiment for all NN-based controllers. As

specified in [22], in the same context of random features, the initialization step in every

experiment conducted with the algorithms based on (i) was executed three times and the

resulted values of the parameter vectors , w and  were averaged before using them to

train the NN-based state feedback controllers.

As considered in [22-24], the parameters involved in the optimization problems were

set to tmax = 1500 and o = 1.5. The sampling period for control was set to 0.01 s. The

parameter vectors of the NN-based state feedback controllers after training contain 17

elements (weights and biases). The augmented state vector contains randomly generated

626 I. A. ZAMFIRACHE, R.-E. PRECUP, E. M. PETRIU

values in the state space]30,0[]100,0[]60,0[=S at each stage, with the first two intervals

corresponding to the state variables in Eq. (14) and the third interval to the integrator state.

The parameter specific to the stochastic GD-based algorithms was set to 01.0= . The

number of agents used in the MAs was set to 10=N , the initial value of the gravitational

constant specific to GSA was set to 9.10 =gravg , and the other parameter settings of MAs are

described in [6].

The expressions and the obtained values of the parameter vectors of all algorithms are

specified in [22-24]. In this context of ensuring full transparency, the data processed in the

statistical analysis conducted in order to compare the performance of all algorithms is

freely available in the Data_FUME.m Matlab file [26]. The readers are invited to examine

several samples of CS responses in [22-24].

The results obtained after conducting the variance (ANOVA) test of the minimum cost

function value J1min evaluated after running these ten algorithms are presented in Fig. 9.

Fig. 9 shows that the best performance is achieved by the GSA-DQL algorithm, followed

by the GSO-AC algorithm and the PSO-DQL algorithm. Table 1 summarizes the results of

the non-parametric statistical analysis.

Fig. 9 ANOVA test of minimum cost function value J1 for all algorithms

Table 2 gives a comparison of the performance indices as far as the CS behavior is

concerned for all seven algorithms under discussion. The bold values indicate the best

(namely smallest) performance indices among all algorithms.

The best algorithm as far as the settling time is concerned is GWO-AC, followed by

PSO-AC and GWO-PI RL. The best algorithm as far as the 0-to-100% rise time is concerned

is PSO-PI RL, followed by GD-PI RL and GD-DQL. The best algorithm as far as the peak

time is concerned is GD-PI RL, followed by PSO-PI RL and GWO-PI RL. The best

algorithm as far as the overshoot is concerned is GWO-AC, followed by GWO-PI RL and

GSA-DQL. These conclusions drawn from Table 2 indicate that there are certain

differences of the empirical performance indices, which make the control system designers

 Q-learning, Policy Iteration and Actor-Critic Reinforcement Learning Combined with Metaheuristic 627

choose the right algorithm in order to achieve the performance specifications imposed to

the control system, and to ensure a convenient tradeoff to them. These conclusions will be

different for other dynamic regimes and might also need to be subjected to a tradeoff.

Table 1 Ranks, statistics and related p-values of ten algorithms

Algorithm Friedman test
Friedman

aligned test
Quade test

GSA-DQL 2.2667 62.3667 2.1161

GWO-DQL 3.2333 73.8333 2.8731

PSO-DQL 3.1 74.9667 2.8796

GD-DQL 5.2667 113.3667 4.7376

GWO-PI RL 4.4333 128.4333 4.7914

PSO-PI RL 4.6 133.6667 4.9634

GD-PI RL 5.1 151.8667 5.6387

GWO-AC 1.1333 17.3667 1.1484

PSO-AC 2.3333 56.1667 2.3161

GD-AC 2.5333 62.9667 2.5355

Statistic 89.97 95.58 13.90

p-value 1.6710−15 1.1110−16 2.0710−20

Table 2 Comparison of cntrol system performance indices with controllers tuned by ten

algorithms

Algorithm (s) st
 (s) 1t (s) mt

 (%) 1

GSA-DQL 24.3027 10.89 15.8133 1.1847

GWO-DQL 24.7913 10.466 15.6457 1.51

PSO-DQL 25.456 9.418 14.6713 1.8077

GD-DQL 25.7247 8.7743 13.2433 1.8287

GWO-PI RL 23.4215 9.4544 11.9362 0.7658

PSO-PI RL 25.259 6.7314 9.3833 4.8424

GD-PI RL 24.0382 7.6027 6.7273 23.2914

GWO-AC 21.7897 12.041 16.2593 0.7051

PSO-AC 22.955 13.4543 16.9083 1.7128

GD-AC 24.5883 13.267 16.6147 1.5147

The integrator is introduced to ensure zero steady-state error; experimental data to

confirm this conclusion is also included in [22-24]. A sample of control system response

is illustrated in Fig. 10, which confirms both the zero steady-state control error and the

effects of the dead zone static nonlinearity in the servo system model given in Eq. (9).

The analysis part of the experimental results does not include the training convergence

curves, in order to keep a reasonable length of the paper. However, convergence curves

can be relatively easily derived using the information extracted from the system responses

as those given in Fig. 10. Nevertheless, the conclusions of this comparison can be different

if other nonlinear processes are subjected to the NN-based ORTCP approaches and

algorithms discussed in this paper as, for instance, various representative applications that

include decision-making processes [27], man-computer symbiosis [28], 3D printing objects

[29], medical systems [30]–[33], drilling processes [34], fuzzy control [35]–[37], evolving

628 I. A. ZAMFIRACHE, R.-E. PRECUP, E. M. PETRIU

controllers [38], fuzzy cognitive maps [39], traffic systems [40], quantum computing [41],

and telesurgical applications [42].

Fig. 10 Real-time experimental system responses y and u when using the PSO-PI RL

algorithm [23]

5. CONCLUSIONS

This paper carried out the performance analysis of three control system structures and

approaches, which combine Reinforcement Learning (RL) and four representative

Metaheuristic Algorithms (MAs) resulting in seven RL algorithms that include the classical

stochastic Gradient Descent algorithms. The algorithms, suggested in the recent authors’ papers

[22-24], were implemented as Neural Network (NN)-based state feedback controllers and

applied to the position control of a nonlinear servo system.

The main benefit of these approaches is the transparency of presentation in an easily

understandable way of the NN training and the controller implementation. The disturbance

rejection is ensured by the presence of the integrator in the control system structures. The

main limitation of the approaches treated in this paper is the relatively large number of

parameters of the NN-based state feedback controllers accounting for the application

considered in the previous section. Nevertheless, the stability analysis is a sensitive subject,

in order to use stability conditions as constraints in the optimization problems, but it is

discussed in [1] in the context of data-driven control.

Future research will be focused on applying the algorithms and controllers to other

complicated and challenging processes. The simplification of the NN architectures will be

tackled as well, aiming the cost-effective training, design, tuning and implementation.

 Q-learning, Policy Iteration and Actor-Critic Reinforcement Learning Combined with Metaheuristic 629

Acknowledgement: This work was supported by a grant of the Romanian Ministry of Education and

Research, CNCS - UEFISCDI, project number PN-III-P4-ID-PCE-2020-0269, within PNCDI III,

and by the NSERC of Canada. The support of Dr. Raul-Cristian Roman in conducting the real-time

experiments on the servo system equipment is duly acknowledged.

REFERENCES

1. Precup, R.-E., Roman, R.-C., Safaei, A., 2021, Data-Driven Model-Free Controllers, 1st Edition. CRC

Press, Taylor & Francis, Boca Raton, FL.

2. Sutton, R.S., Barto, A.G., 2017, Reinforcement Learning: An Introduction, 2nd Edition. MIT Press,

Cambridge, MA, London.
3. Sutton, R.S., Barto, A.G., Williams, R.J., 1992, Reinforcement learning is direct adaptive optimal control,

IEEE Control Systems Magazine, 12(2), pp. 19-22.
4. Busoniu, L., de Bruin, T., Tolić, D., Kober, J., Palunko, I., 2018, Reinforcement learning for control:

performance, stability, and deep approximators, Annual Reviews in Control, 46(1), pp. 8-28.

5. Ganaie, M.A., Hu, M.-H., Malik, A.K., Tanveer. M., Suganthan, P.N., 2022, Ensemble deep learning: A
review, Engineering Applications of Artificial Intelligence, 115, paper 105151.

6. Precup, R.-E., David, R.-C., 2019, Nature-inspired Optimization Algorithms for Fuzzy Controlled Servo

Systems. Butterworth-Heinemann, Elsevier, Oxford.
7. Precup, R.-E., Angelov, P., Costa, B.S.J., Sayed-Mouchaweh, M., 2015, An overview on fault diagnosis

and nature-inspired optimal control of industrial process applications, Computers in Industry, 74, pp. 75-94.

8. Stanley, K.O., Clune, J., Lehman, J., Miikkulainen, R., 2019, Designing neural networks through
neuroevolution, Nature Machine Intelligence, 1, pp. 24-35.

9. Sehgal, A., La, H.M., Louis, S.J., Nguyen, H., 2019, Deep reinforcement learning using genetic algorithm

for parameter optimization, Proc. 2019 3rd IEEE International Conference on Robotic Computing, Naples,

Italy, pp. 596-601.

10. Ajani, O.S., Mallipeddi, R., 2022, Adaptive evolution strategy with ensemble of mutations for

Reinforcement Learning, Knowledge-Based Systems, 245, paper 108624.
11. Goulart, D.A., Pereira, R.D., 2020, Autonomous pH control by reinforcement learning for electroplating

industry wastewater, Computers & Chemical Engineering, 140, paper 106909.

12. Lin, H.-W., Wu, Q.-Y., Liu, D.-R., Zhao, B., Yang, Q.-M., 2019, Fault tolerant control for nonlinear
systems based on adaptive dynamic programming with particle swarm optimization, Proc 10th International

Conference on Intelligent Control and Information Processing, Marrakesh, Morocco, pp. 322-326.

13. Liu, X., Zhao, B., Liu, D., 2020, Fault tolerant tracking control for nonlinear systems with actuator failures
through particle swarm optimization-based adaptive dynamic programming, Applied Soft Computing,

97(A), paper 106766.

14. Hein, D., Hentschel, A., Runkler, T., Udluft, S., 2017, Particle swarm optimization for generating
interpretable fuzzy reinforcement learning policies, Engineering Applications of Artificial Intelligence, 65,

pp. 87-98.

15. Piperagkas, G.S., Georgoulas, G., Parsopoulos, K.E., Stylios, C.D., Likas, A.C., 2012, Integrating particle
swarm optimization with reinforcement learning in noisy problems, Proc. 14th Annual Conference on

Genetic and Evolutionary Computation, Philadelphia, PA, USA, pp. 65-72.

16. Iima, H., Kuroe, Y., 2008, Swarm reinforcement learning algorithms based on particle swarm
optimization, Proc. 2008 IEEE International Conference on Systems, Man and Cybernetics, Singapore,

Singapore, pp. 1110-1115.

17. Hein, D., Hentschel, A., Runkler, T., Udluft, S., 2016, Reinforcement learning with Particle Swarm
Optimization Policy (PSO-P) in continuous state and action spaces, International Journal of Swarm

Intelligence Research, 7(3), pp. 23-42.

18. Meerza, S.I., Islam, M., Uzzal, M.M., 2019, Q-learning based particle swarm optimization algorithm for
optimal path planning of swarm of mobile robots, Proc. 2019 1st International Conference on Advances in

Science, Engineering and Robotics Technology, Dhaka, Bangladesh, pp. 1-5.

19. Gao, Y.-Z., Ye, J.-W., Chen, Y.-M., Liang, F.-L., 2009, Q-learning based on particle swarm optimization
for positioning system of underwater vehicles, Proc. 2009 IEEE International Conference on Intelligent

Computing and Intelligent Systems, Shanghai, China, vol. 2, pp. 68-71.

20. Zhang, P., Li, H., Ha, Q.P., Yin, Z.-Y., Chen, R.-P., 2020, Reinforcement learning based optimizer for
improvement of predicting tunneling-induced ground responses, Advanced Engineering Informatics, 45,

paper 101097.

630 I. A. ZAMFIRACHE, R.-E. PRECUP, E. M. PETRIU

21. Mirjalili, S., 2015, How effective is the grey wolf optimizer in training multi-layer perceptrons, Applied
Intelligence, 43(1), pp. 150-161.

22. Zamfirache, I. A., Precup, R.-E., Roman, R.-C., Petriu, E.M., 2022, Reinforcement learning-based control

using Q-learning and gravitational search algorithm with experimental validation on a nonlinear servo
system, Information Sciences, 583, pp. 99-120.

23. Zamfirache, I. A., Precup, R.-E., Roman, R.-C., Petriu, E.M., 2022, Policy iteration reinforcement

learning-based control using a grey wolf optimizer algorithm, Information Sciences, 585, pp. 162-175.
24. Zamfirache, I. A., Precup, R.-E., Roman, R.-C., Petriu, E.M., 2023, Neural network-based control using

actor-critic reinforcement learning and grey wolf optimizer with experimental servo system validation,

Expert Systems with Applications, 225, paper 120112.

25. Precup, R.-E., David, R.-C., Petriu, E.M., 2017, Grey wolf optimizer algorithm-based tuning of fuzzy

control systems with reduced parametric sensitivity, IEEE Transactions on Industrial Electronics, 64(1),

pp. 527-534.
26. Zamfirache, I. A., Precup, R.-E., Petriu, E.M., Oct. 2022, Data obtained by 30 independent runs of all

algorithms. [Online]. Available: http://www.aut.upt.ro/~rprecup/Data_FUME.m.

27. Božanić, D., Tešić, D., Marinković, D., Milić, A., 2021, Modeling of neuro-fuzzy system as a support in
decision-making processes, Reports in Mechanical Engineering, 2(1), pp. 222-234.

28. Filip, F.G., 2021, Automation and computers and their contribution to human well-being and resilience,

Studies in Informatics and Control, 30(4), pp. 5-18.
29. Milićević, I., Popović, M., Dučić, N., Vujičić, V., Stepanić, P., Marinković, D., Ćojbašić, Ž., 2022,

Improving the mechanical characteristics of the 3D printing objects using hybrid machine learning

approach, Facta Universitatis, Series: Mechanical Engineering, DOI: 10.22190/FUME220429036M.
30. Bejinariu, S.I., Costin, H., Rotaru, F., Niţă, C., Luca, R., Lazăr, C., 2014, Parallel processing and bio-

inspired computing for biomedical image registration, Computer Science Journal of Moldova, 22(2), pp.

253-277.
31. Rigatos, G., Siano, P., Selisteanu, D., Precup, R.-E., 2017, Nonlinear optimal control of oxygen and carbon

dioxide levels in blood, Intelligent Industrial Systems, 3(2), pp. 61-75.

32. Gerger, M., Gumuscu, A., 2022, Diagnosis of Parkinson’s disease using spiral test based on pattern
recognition, Romanian Journal of Information Science and Technology, 25(1), pp. 100-113.

33. Ogutcu, S., Inal, M., Celikhasi, C., Yildiz, U., Dogan N.O., Pekdemir, M., 2022, Early detection of

mortality in COVID-19 patients through laboratory findings with factor analysis and artificial neural
networks, Romanian Journal of Information Science and Technology, 25(3-4), pp. 290-302.

34. Haber-Haber, R., Haber, R., Schmittdiel, M., del Toro, R.M., 2007, A classic solution for the control of a

high-performance drilling process, International Journal of Machine Tools and Manufacture, 47(15), pp.
2290-2297.

35. Precup, R.-E., Preitl, S., Balas, M., Balas, V., 2004, Fuzzy controllers for tire slip control in anti-lock

braking systems, Proc. 2004 IEEE International Conference on Fuzzy Systems, Budapest, Hungary, vol. 3,
pp. 1317-1322.

36. Tomescu, M.L., Preitl, S., Precup, R.-E., Tar, J.K., 2007, Stability analysis method for fuzzy control systems
dedicated controlling nonlinear processes, Acta Polytechnica Hungarica, 4(3), pp. 127-141.

37. Precup, R.-E., Preitl, S., Petriu, E.M., Bojan-Dragos, C.-A., Szedlak-Stinean, A.-I., Roman, R.-C., Hedrea

E.-L., 2020, Model-based fuzzy control results for networked control systems, Reports in Mechanical
Engineering, 1(1), pp. 10-25.

38. Škrjanc, I., Blažič, S., Angelov, P., 2014, Robust evolving cloud-based PID control adjusted by gradient

learning method, Proc. 2014 IEEE Conference on Evolving and Adaptive Intelligent Systems, Linz,
Austria, pp. 1-6.

39. Vaščák, J., Hvizdoš, J., Puheim, M., 2016, Agent-based cloud computing systems for traffic management,

Proc. 2016 International Conference on Intelligent Networking and Collaborative Systems, Ostrava, Czech
Republic, pp. 73-79.

40. Zhang, L.-Y., Ma, J., Liu, X.-F., Zhang, M., Duan, X.-K., Wang, Z., 2022, A novel support vector machine

model of traffic state identification of urban expressway integrating parallel genetic and C-means
clustering algorithm, Tehnički vjesnik - Technical gazette, 29(3), pp. 731-741.

41. Osaba, E., Villar-Rodriguez, E., Oregi, I., Moreno-Fernandez-de-Leceta, A., 2021, Hybrid quantum

computing-tabu search algorithm for partitioning problems: preliminary study on the traveling salesman
problem, Proc. 2021 IEEE Congress on Evolutionary Computation, Kraków, Poland, pp. 351-358.

42. Precup, R.-E., Haidegger, T., Preitl, S., Benyó, B., Paul, A.S., Kovács, L., 2012, Fuzzy control solution for

telesurgical applications, Applied and Computational Mathematics, 11(3), pp. 378-397.

http://www.aut.upt.ro/~rprecup/Data_FUME.m

