
FACTA UNIVERSITATIS  
Series: Mechanical Engineering Vol. 21, No 4, 2023, pp. 701 - 712 

https://doi.org/10.22190/FUME230909047Z 

© 2023 by University of Niš, Serbia | Creative Commons License: CC BY-NC-ND 

Original scientific paper 

APPLICATION OF HE’S FREQUENCY FORMULA TO 

NONLINEAR OSCILLATORS WITH  

GENERALIZED INITIAL CONDITIONS 

Jian-Gang Zhang1, Qing-Ru Song1, Jian-Qiang Zhang2, Fang Wang1 

1School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou, China    
2School of Automation and Electrical Engineering, Lanzhou Jiaotong University, 

Lanzhou, China 

Abstract. This paper focuses on the vibration periodic property of Duffing oscillator with 

generalized initial conditions. Firstly, the undamped case is solved by Ji-Huan He’s frequency 

formulation; Secondly, the formulation is extended to the damped case. Numerical verification 

shows that the frequency formulation is mathematically simple and physically insightful and 

practically applicable. This paper paves a novel way for engineers to use the formulation to 

study nonlinear vibration system with ease and reliability.  
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1. INTRODUCTION 

 Nonlinear systems are widely present in the field of mechanical engineering and hold 

significant importance in unraveling the dynamical characteristics of nonlinear vibration 

systems. In the realm of mechanical engineering, nonlinear vibration systems are 

omnipresent, encompassing nano-scale vibrations [1], atomic-level lattice vibrations [2], 

and microelectromechanical systems [3,4], among others. The most renowned nonlinear 

oscillators in these systems include pendulum oscillators [5,6], Van der Pol oscillators, and 

Duffing oscillators [7]. With the rapid development of nonlinear science, more and more 

scholars have shown great interest in nonlinear problems. Solving large-scale linear 

equation systems is no longer a challenge, however, for nonlinear equation systems, 

traditional perturbation methods [8] have been widely applied in the nonlinear analysis of 

engineering problems. However, like other nonlinear asymptotic techniques, perturbation 

methods are also affected by limitations imposed by small parameters, and this point should 
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also be taken into consideration. As is well known, most nonlinear problems do not involve 

small parameters. Even if appropriate small parameters exist, the approximate solutions 

obtained through perturbation methods are only effective for weakly nonlinear cases [9]. 

Furthermore, the approximate solutions obtained through perturbation methods often lose 

some crucial information, thereby failing to accurately reflect the important relationship 

between amplitude and frequency. The Duffing equation serves as an example of this case. 

Therefore, to solve this problem, Chinese mathematician, Ji-Huan He, inspired by ancient 

Chinese algorithms [10-12], proposed a simple method for conserving nonlinear vibrators, 

and a frequency-amplitude formulation was proposed, which is called He’s frequency 

formulation in literature [13-15]. The ancient Chinese mathematics was also further 

extended to solve nonlinear differential equations numerically [16], and in literature the 

method is called as Chun-Hui He’s iteration method [17,18].   

He’s frequency formulation [10-12] not only can quickly unveil the relationship 

between the frequency and amplitude of various vibrators but also ensures high accuracy. 

Elías-Zúñiga, et al. [19] extended the formulation by coupling Jacobi elliptic function, Ma 

[20] suggested a Hamiltonian-based modification, Alyousef, et al. [21] used the formulation to 

solve a complex nonlinear system with great success. He and Liu [22] gave a mathematical 

proof of the formulation and suggested a powerful modification.  

All of the above studies considered simple initial conditions, and there is much space 

to extend the formulation to generalized initial condition. This paper considers a damped 

Duffing oscillator with generalized initial conditions to show the effectiveness and 

simplicity of He’s frequency formulation.  

This paper is divided into three sections. The first section considers an undamped Duffing 

oscillator with generalized initial conditions and applies He's frequency formulation to solve 

the approximate frequency, which is then compared with the RK4 numerical solution. In the 

second part, He's frequency formulation is applied to a linear damped oscillator with 

generalized initial condition. In the third part, a nonlinear Duffing oscillator with damping is 

considered to show reliability of He’s frequency formulation. 

2. UNDAMPED DUFFING EQUATION 

We consider a Duffing equation 

 
3 0u u u + + =  (1) 

with the generalized initial conditions 

 (0) , (0)u A u B = =  (2) 

where A, B and ε are constants. There is much literature to study the above problem in case 

of small ε or A=0/B=0 by various methods, for examples, the homotopy perturbation method 

[23], the energy conservation principle [24] and the variational iteration method [25]. 

In this section, we will use He's frequency formulation to find the solution to Eq. (1). 

Assuming that the solution of Eq. (1) has the following form: 

 cos( )u a t= +   (3) 

where ɑ and σ are constants, ω is the frequency to be determined. The initial conditions 

lead to the following relations: 
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(0) sin

(0) cos

u a A

u a B

 = − =

= =

 


 (4) 

Substituting Eq. (3) into Eq. (1) gives the residual equation as 

 2 3 3( ) cos( ) cos( ) cos ( )R t a t a t a t= − + + + + +         (5) 

Therefore, the average residual equation is defined as 

 2

0

2
cos( )dt

T

R R t
T

 = +  (6) 

where T=2π/ω. By choosing two arbitrary frequencies ω1 and ω2, we obtain two residual 

equations, which are 

 

2 3 3

1 1 1 1 1

2 3 3

2 2 2 2 2

( ) cos( ) cos( ) cos ( )

( ) cos( ) cos( ) cos ( )

R t a t a t a t

R t a t a t a t

= − + + + + +

= − + + + + +

       

       
 (7) 

Therefore, the average residual equations as 

 

2 32
1 1 1 10

2 32
2 2 2 20

2 3
cos( )dt

2 2 8

2 3
cos( )dt

2 2 8

T
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a a
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T

a a
R R t a

T

= + = − + +

= + = − + +





   
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 (8) 

We choose the location point as cos(ω1t+σ)=cos(ω2t+σ)=√3/2, Eq. (8) becomes 

 

2 3

1 1

2 3

2 2

3 3

2 2

3 3

2 2

R a a a
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= − + +

= − + +

 
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 (9) 

according to He’s frequency-amplitude formulation, we have 

 

3 3 2 2
2 2 2 1

2 22 1 1 2

1 2 2 2

1 2

3 3
( ( ) )( )

32 2 1
43

( )
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a a
R R

a
R R

a

+ −
−
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−
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 
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 (10) 

The result depends upon the location point, to overcome the shortcoming, we use the 

following formulation 

 

2 2
2 2 1 1 2

1 2

3 2 2

2 1
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 (11) 
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From Eqs. (4) and (11), ɑ, σ and ω can be determined for given A and B. When A=0 or 

B=0, our result is the same as those obtained by the homotopy perturbation method or the 

variational iteration method.  

We compare the approximate solution based on He’s frequency formulation with the 

exact solution of the Runge-Kutta method, as shown in Fig. 1. From the figure, we can see 

that the two curves fit well, reflecting the consistency between the exact solution and the 

approximate solution. 

  
                       (A, B)=(0.01,0.01)                                            (A, B)=(0.1,0.1)  

    
(A, B)=(1.6,1)                                                (A, B)=(5.5,2) 

Fig. 1 The comparison between the exact solution and the approximate one based on He’s 

frequency formulation for different values of (A, B)  

3. LINEAR OSCILLATOR WITH DAMPING 

In the previous section, we discussed the frequency formulation for a classical Duffing 

oscillator with general initial conditions, but in reality, perfect simple harmonic motion is almost 

non-existent. In reality, the amplitude of the Duffing oscillator described above will decrease 

due to air damping and other effects, eventually reaching an equilibrium state. There are many 

types of damping in engineering, and the most commonly used damping is viscous damping. 

Therefore, in this section, the linear oscillator with viscous damping is considered first. 
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Introducing viscous damping into a linear oscillator, the equation of vibration is: 

 2 0,          (0) ,  (0)u u u u B u A+ + = = =  (12) 

where 2η is the damping coefficient. The magnitude of damping is proportional to the 

vibration rate, and the direction is opposite to the speed direction. 

Based on He's frequency formula, the approximate solution is found in the following form: 

 ( ) cos( )tu t ae t− = +    (13) 

where ω′ is the frequency to be solved later. Based on He's frequency formulation, an 

attempt is made to start from two arbitrary values of ω1′and ω2′, to obtain the following 

residual equations: 
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The residual integrals are given below 
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where T=2π/η, then the frequency equation is 
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4. NONLINEAR DUFFING OSCILLATOR WITH DAMPING 

Viscous damping is introduced in a nonlinear Duffing oscillator, its vibration equation is: 

 32 0,          (0) ,  (0)u u u u u B u A+ + + = = =   (19) 

in the first section, the frequency formula of the nonlinear oscillator ü+u+εu3=0 is given by 

 
2 23

1
4

a= +   (20) 

Therefore, the damped nonlinear oscillator can be equivalent to 

 22 0,                (0) ,  (0)u u u u B u A+ + = = =   (21) 

similarly, there are approximate solutions of the following form 

 ( ) cos( )tu t ae t− = +    (22) 

where ω′ is the frequency to be solved later. We try to get the following residual equations 

starting from two arbitrary ω1′and ω2′: 
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The residual integrals are  
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so a frequency formulation is obtained, which is 
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In addition, the frequency equation of Eq. (20) can be found by 

 ( ) cos( )tu t ae t− = +    (27) 

 (0) cos sinu a a A    = − − =  (28) 

 (0) cosu a B= =  (29) 

Combining Eq. (28) and Eq. (29) yields 

 
2

2

2 2

( cos )a A

a B

+
 =

−

 
  (30) 

In the following, we will use numerical simulation to analyze the impact of the variation 

of the damping term on nonlinear oscillators with generalized initial conditions. In order 

to better align with the actual operating conditions of the machinery, we make the values 

of A and B vary from small to large. Fig. 2-Fig. 4 show the fitting results of the exact and 

approximate solutions when the damping η is varied, respectively.  
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In Fig. 2, we choose η=0.01 and let (A, B) vary from 0.2 to 1000, where the blue curve 

denotes the exact solution and the red denotes the approximate solution based on He’s 

frequency formulation. The two curves are highly fitted as can be seen in the figure.  

 
(A, B)=(0.2,0.2)                                              (A, B)=(10,10) 

 
(A, B)=(99,100)                                            (A, B)=(1000,1000) 

Fig. 2 When η=0.01, the comparison between the exact solution and the approximate one 

based on He’s frequency formulation for taking different values of (A, B) 

When η=0.1, considering that the nonlinear vibrations in the actual working conditions 

are all large parameters, as we take (A, B) from 1 to 1000, respectively. The resulting figure 

is shown in Fig. 3. From the figure, we can not only see that the increase of damping makes 

the system amplitude gradually decrease, but also find that the exact and approximate 

solutions are in good agreement. In addition, compared to Fig. 2, the magnitude of the 

system amplitude reduction is more pronounced when the damping is increased from 0.01 

to 0.1. 
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(A, B)=(1,1)                                                      (A, B)=(10,10) 

(A, B)=(99,100)                                             (A, B)=(1000,1000) 

Fig. 3 When η=0.1, the comparison between the exact solution and the approximate one 

based on He’s frequency formulation for taking different values of (A, B) 

To further verify the conclusion, we increase the damping so that η=0.15 and (A, B) is 

varied from 25 to 2500. the image is displayed in Fig. 4. The numerical simulation shows 

that even if we increase the damping and the initial values, the approximate solution based 

on He’s frequency formulation still agrees with the exact solution from the Runge-Kutta 

method. In addition, combined with Fig. 2, Fig. 3 and Fig. 4, we can observe that a small 

change in the damping term can make the amplitude oscillation of the oscillator solution 

curve more significant, and the solution curve will gradually approach equilibrium over 

time. 
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(A, B)=(25,30)                                               (A, B)=(100,120) 

(A, B)=(1100,1300)                                       (A, B)=(2500,3000) 

Fig. 4 When η=0.15, the comparison between the exact solution and the approximate one 

based on He’s frequency formulation for taking different values of (A, B)  

5. CONCLUSION 

This article mainly utilizes the He’s frequency formula to solve the solution of the 

nonlinear Duffing oscillator with generalized initial conditions, and compares it with the 

exact solution of the Runge-Kutta method. We summarize this article in the following two 

aspects: 

(1) For the undamped nonlinear Duffing oscillator, this paper first utilizes He’s frequency 

formula to calculate the approximate frequency and derive the corresponding approximate 

solution. Subsequently, we compare the approximate solution with the Runge-Kutta exact 

solution through numerical simulation and find consistent results between them. It is worth 

noting that this study focuses on generalized initial conditions, and when we set the initial 

condition A to 0 or B to 0, our results are in complete agreement with those obtained by the 

homotopy perturbation method or the variational iteration method. 

(2) In this paper, we investigate the Duffing oscillator with viscous damping. We 

divided the Duffing oscillator into linear and nonlinear types, and used He's frequency 

formula to find approximate solutions in both cases, followed by numerical simulations. 
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The experimental results show that, even when we increase the damping and the initial 

conditions A and B in the nonlinear Duffing oscillator, the approximate solution obtained 

using He's frequency formula still matches the exact solution obtained by the Runge-Kutta 

method very closely. This fully demonstrates that He's frequency formula is equally applicable 

to nonlinear damped oscillators with general initial conditions. The He's frequency formula 

method is both simple and fast, and we also observed a gradual decrease in the amplitude of the 

Duffing oscillator's solution, eventually reaching equilibrium as the damping increased. 

These results are of great significance for a deeper understanding and application of the 

dynamical behavior of Duffing oscillators. 

In conclusion, this frequency formula possesses simple yet profound mathematical 

properties and holds significant practical value. It provides engineers with an efficient and 

reliable approach to studying nonlinear vibration systems. In future research, we aim to 

further explore the application of this frequency formula to fractional-order nonlinear 

systems with generalized initial conditions, and thoroughly examine its effectiveness. By 

applying this formula in broader domains, we can enhance our understanding and analysis 

of complex vibration systems, offering more reliable and accurate solutions for engineering 

practices and scientific investigations. 
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