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Abstract. This paper addresses the challenge of material selection for lift-based Wave 

Energy Converters (WECs) by presenting a novel methodology that integrates fuzzy 

information representation and Multi-Criteria Decision-Making (MCDM) techniques. 

The aim is to provide decision-makers with a robust framework for optimizing material 

choices despite uncertainties and limited field data. The methodology combines a 

material selection approach tailored for lift-based WECs with a new fuzzy information 

representation technique, probabilistic picture hesitant fuzzy sets (P-PHFSs). The results 

underscore the potential of these methods for reducing the risk of machine failures in 

WEC technology. The proposed method contributes to the development of WEC 

technology by providing a systematic and flexible framework for decision-makers to 

optimize material choices and improve the reliability and performance of WEC systems. 
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  1. INTRODUCTION 

Wave energy has seen commercialization in the past decade, driven by government sup- 

port, private investment, and the offshore energy sector’s efforts to combat climate change. 

Wave energy, combined with wind and wave power, can help carbonize coastal energy 

systems and achieve zero waste energy, and large-scale WECs are expected soon [1].  

 Lift-based WECs show high potential for competitiveness in the offshore sector due to 

their immersed mode capability and passive stalling in storm conditions stress and potential 

mechanical failure [2]. Numerous efforts have been made to develop methods for 

quantifying and preventing wear damage to offshore infrastructure. Offshore constructions, 

like wave energy converters, are susceptible to random loading due to the fluctuation of 

ocean waves. The WECs can be complex due to the unique structural hydrodynamic 

interactions of each wave energy converter. Accurate fatigue damage models can help 

create a durable and cost-effective structural WEC, reducing its leveled energy cost. 

Analytical models for assessing and quantifying fatigue damage in WEC structures must 

be developed during the design stage [3].  

The development of hydrodynamic models to predict electrical performance has formed 

a significant part of the research on lift-based WECs. Common risk reduction measures for 

wave energy converters include digital twins, adaptive control systems, and suitable 

materials. The development of solutions that minimize the risk of failure is crucial for 

enhancing the technical readiness level (TRL) of lift-based WECs [4]. This study focuses 

on lift-based WECs. This form of WEC generates lift forces using rotating hydrofoils. Lift-

based WECs can operate submerged and use pitch control to reduce hydrofoil load 

fluctuations, but loading variations cannot be avoided due to the unpredictable nature of 

different waves within sea states [5]. The structure of hydrofoils allows for the estimation 

of fatigue injury to lift-based WECs using a probabilistic approach, rather than a 

deterministic approach, under specific sea conditions [6].  

Multi-criteria decision-making (MCDM) is used to make complex decisions based on 

multiple factors. The objective is to identify the optimal sites for WECs based on their 

performance across various parameters [7]. Numerous studies have demonstrated the 

effectiveness of MCDM methods in identifying suitable locations for renewable energy 

sources like wind and solar electricity [8]. The study on wave energy is currently lacking 

in depth. The lift-based WEC material selection process comprises five stages: criteria 

selection, data normalization, criteria weights, alternative assessment, and outcomes 

validation. 

An MCDM, which assesses alternatives based on expert opinions and specific criteria, 

has gained popularity as a viable study area [9]. The uncertainty and ambiguity in the 

decision-making process have made it challenging for decision-makers to evaluate and 

choose the best option in MCDM challenges [10]. Interest in fuzzy sets (FSs) [11] and their 

classical expansions, including interval-valued FSs (IVFSs) [12], intuitionistic FSs (IFSs) 

[13], interval-valued IFSs [14], hesitant fuzzy sets (HFS) [15] and picture FSs (PFSs) [16]  

has been significant in research and development. The concept of hesitant fuzzy sets 

(HFSs), which enable the degree of an element’s membership to be represented by a 

collection of alternative values [17].  

Ali et al., [18] introduced the picture’s hesitant fuzzy element (PHFSs), an extension of 

HFSs consisting of positive membership degree, neutral membership degree, and negative 

membership degree functions. We introduce probabilistic picture hesitant fuzzy sets (P-
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PHFSs) to improve their effectiveness by considering the likelihood of each member in the 

PHFE. P-PHFSs are highly effective as they can represent membership degrees, their 

probabilities, and their positive, neutral, and negative probabilities [19]. The study explores 

the effectiveness and efficiency of the performance selection index (PSI) method in 

resolving machining MCDM issues [20]. 

This study uses P-PHFSs and fuzzy DNMA techniques to develop material selection 

characteristics for lift-based WECs. Material fitness-for-purpose methodologies are crucial 

in preventing the failure of innovative technologies and thereby reducing investment loss. 

The DNMA is a utility theory-based method that employs two distinct normalization 

procedures and three aggregation strategies [21]. The DNMA method has been compared 

to other utility-theory-based MCDM techniques for the first time in terms of its benefits. 

This study’s implications extend beyond lift-based WECs to other submerged marine 

energy-collecting methods operating near the ocean’s free surface. The study introduces P-

PHFSs, a tool that simplifies complex assessment information representation in decision-

making situations, including operations, score function, accuracy function, and comparison 

approach.  

The framework introduces a distinctive material selection method in lift-based WECs, 

employing fuzzy double normalized-based multiple aggregations (DNMA) as an MCDM. 

An emphasizes material fitness-for-purpose to avoid technological failure and financial 

losses. It applies to numerous stages of the product cycle, including lift-based wave energy 

converters. This study has implications for additional submerged marine energy-collecting 

devices that operate near the ocean’s surface. The sensitivity analysis is used to evaluate 

the accuracy of the scenario assessment, considering uncertainties or changes in values. 

The remainder of this study is organized as follows: The literature review is discussed 

in Section 2. The basic concepts are presented in Section 3. Section 4 provides the proposed 

methodology and an evaluation framework. A case study is applied to the method for 

material selection for lift-based WECs in Section 5. Further, the results and discussion of 

the case study are in Section 6. Finally, a summary of the findings, limitations, and future 

work is in Section 7. 

2. LITERATURE REVIEW 

The material selection architecture for lift-based WECs is based on seven criteria: 

structure dependability, hydrodynamic efficacy, offshore maintenance, corrosion 

resistance, production cost, eco-friendliness, and shelf life. The lift-based WEC 

consortium’s three-year Horizon 2020 research project, which concluded in 2023, 

identified critical criteria that significantly increased the TRL of lift-based WECs [22]. 

The device’s rotor is produced by the hydrofoils and center shaft, while the stator serves 

as the stationary component of the WEC. The lift WEC project’s final idea involves a 

floating prototype, which reduces slamming and high loads through submergence and 

passive stalls, potentially saving installation and maintenance costs [23]. 

An MCDM is a crucial operational research method in engineering fields, where 

problem solutions are determined by multiple independent and often conflicting criteria. 

Although MCDM techniques are aimed at managing quantitative values, their integration 

with fuzzy set theory can provide answers in situations where managing qualitative values 

is difficult. This paper presents an MCDM strategy for a new device’s material selection 
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challenge, assuming a team of specialists conducts the evaluation. Based on the primary 

material selection criteria and lift-based WEC development stage evaluate using P-PHFS 

and the fuzzy DNMA method. The lift-based WEC idea is explained, with hydrofoils as 

the demonstration case for the framework’s structural component [24]. 

Mzili et al., [25] developed a unique decision-support technology that combines hesitant 

linguistic term collection, the DNMA technique, and a basic decision-making process. The 

applicability of this method has been demonstrated in estimating geographic sites for retail 

shopping malls using fuzzy linguistic information.  

Farooq [26] discussed processing and connections of probabilistic hesitation fuzzy 

elements (PHFE) information, proposing a method for ranking PHFEs based on score and 

deviation values, with the comparison technique reflecting absolute priority. Tian et al., 

utilized the tomada de decisao interativa multicriterio (TODIM) approach to model 

decision-making perceptions in prospect theory, incorporating probabilistic hesitant fuzzy 

information [27]. Song and Chen have developed a new MADM technique using distance 

and the complex proportional assessment (COPRAS) method for a PHF environment [28]. 

The preference selection index (PSI) method is simpler to comprehend than other MCDM 

approaches due to its statistical calculation of total preference values without relative 

weight. The PSI technique is beneficial for assessing optimal alternatives in cases of 

controversy regarding criteria relevance and requires fewer numerical calculations [29] and 

[30]. The study presents an MCDM material selection for lift-based WECs, demonstrating 

the device’s hydrofoils to fill a research gap.  Select the best composition for the optimum 

performance of the metallic alloy [31]. Selected the rank of flexible manufacturing system 

(FMS) flexibility [32]. Determined the optimum phase combination of biodegradable 

composites [33]. The method based on the removal effects of criteria (MEREC) integrated 

PSI-MCDM approach was used to select India’s green renewable energy source [34]. 

We introduced P-PHFSs, a unique method for accurately and effectively describing 

complex assessment information for decision-makers [35] and [36]. The objective of this 

work is to use the fuzzy PSI-DNMA technique to develop an ordered material selection 

method for lift-based WECs. The fuzzy PSI-DNMA approach was utilized to rank each 

criterion and alternate material for hydrofoils, addressing uncertainty. 

3. PRELIMINARIES 

3.1. Picture Hesitant Fuzzy Set 

Let X be a fixed set, a picture hesitant fuzzy set (PHFS) M on X is defined by 

  , ( ), ( ), ( ) | M x x x x x X    (1) 

where, ϕ(x) = {σ | σ ϵ ϕ(x)} , χ(x) = {ς | ς ϵ χ(x)}, and ψ(x) = {τ | τ ϵ ψ (x)} are three sets of 

possible values in [0,1], indicating the possibility of positive (PMD), neutral (NeMD), and 

negative (NMD) membership degrees. The degrees mentioned above satisfy the 

requirement of 0 ≤ σ+ + ς+ + τ+ ≤ 1. As a convenience, m = {x, ϕ(x), χ(x), ψ(x)} PHFE, 

denoted by m = (ϕ, χ, ψ). 
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3.2. Probabilistic Picture Hesitant Fuzzy Set 

Let X be a fixed set, a probabilistic picture hesitant fuzzy set (P-PHFS) M on X is defined 

by 

  , ( ) | ( ), ( ) | ( ), ( ) | ( ) | M x x s x x t x x u x x X    (2) 

where, ϕ(x)|s(x), χ(x)|t(x) and ψ(x)|u(x) contains a number elements, ϕ(x), χ(x), and ψ(x) 

denote the possibility (PMD), (NeMD), and (NMD) of x ϵ X to the set M, respectively. 

Here s(x), t(x), and u(x) are related with probabilistic information. Furthermore, ϕ(x)|s(x), 

χ(x)|t(x), and ψ(x)|u(x)  satisfy the requirement of 0 ≤ σ+ + ς+ + τ+ ≤ 1, and si, tj, uk ϵ [0,1]. 

# # #

1 1 1

1, 1, 1
  

    i j k
i j k

s t u
  

                                            

where, si ϵ s(x), tj ϵ t(x), and uk ϵ u(x). The notation of #ϕ, #χ, and #ψ indicate the total 

number of elements in, ϕ(x)|s(x), χ(x)|t(x), and ψ(x) | u(x) respectively. For convenience, 

m = {x, ϕ(x)|s(x), χ(x)|t(x), ψ(x)|u(x)}  a P-PHFE, denoted by m = {ϕ|s, χ|t, ψ|u}. 

3.3. Basic Operations 

Let , m1 = (ϕ1|s1, χ1|t1, ψ1|u1) and m2 = (ϕ2 |s2, χ2 |t2, ψ2|u2) be three P-PHFEs, ϑ > 0, 

then m c is the complement of m, and P-PHFE operations can be defined as:  

, ,
( | , | , | ) ({ | },{ | },{ | })

  
 cm s t u u t s          
       

1 1 1 1 1 1 1 2 1 2 1 2
2 2 2 2 2 2

, ,1 2 1 2 1 2 1 2 1 2
, ,

({ | },{ | },{ | }  
  

   m m s s t t u u           
     

       

1 1 1 1 1 1 1 2 1 2 1 2
2 2 2 2 2 2

, ,1 2 1 2 1 2 1 2 1 2 1 2
, ,

({ | },{ | },{ | }m m s s t t u u           
     

           
  

     

, ,
({1 (1 ) | },{ | },{ | })

  
  m s t u  

       
   

, ,
({ | },{1 (1 ) | },{1 (1 ) | })

  
    m s t u   

       
    

3.4. Score and Accuracy Function 

Let  be a P-PHFE, then the score S(m) and accuracy functions H(m) are defined by 

 

# # #

1 1 1

1 1 1
1 ( ) ( ) ( )

# # #
( )

2

  

 
   

 


  i i i i i i
i i i

s t u

S m

  

  
  

 (3) 

  

 

# # #

1 1 1

1 1 1
1 ( ) ( ) ( )

# # #
( )

2

  

 
   

 


  i i i i i i
i i i

s t u

H m

  

  
  

 (4) 
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Let m1 = (ϕ1|s1, χ1|t1, ψ1|u1) and m2 = (ϕ2|s2, χ2|t2, ψ2|u2) be two P-PHFEs, then, if S(m1) 

> S(m2) then (m1) > (m2), if S(m1) < S(m2) then (m1) < (m2), and if S(m1) = S(m2) then (m1) 

= (m2). If H(m1) > H(m2) then (m1) > (m2), if H(m1) < H(m2) then (m1) < (m2), if H(m1) = 

H(m2) then (m1) = (m2). 

4. PROPOSED METHODOLOGY 

An integrated PSI-DNMA approach is utilized in the material selection procedure 

illustrated in Fig. 1 for parametric optimization problems. 

 

Fig. 1 Method of solving an optimization problem                      
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4.1. Preference Selection Index Method 

The PSI approach is utilized to address fuzzy decision-making issues in material 

selection, particularly in addressing debates about the relevance of attribute. The PSI 

approach to change weights, considering the contrast strength of each criterion and the 

contradictory nature of assessment criteria. 

Step 1: Create the initial decision matrix 

 

11 1

1



 
 

     
 
 

n

ij m n

m mn

 (5) 

Step 2: The normalized decision matrix is determined by calculating its elements using 

the following equations. 

 

max

min

   for beneficial criteria

          for cost criteria





 




ij

ij

ij

ij

ij

 (6) 

Step 3: Calculate the mean values of the normalized performances in response to each 

 
1

1 n

ij
in 

    (7) 

Step 4: Calculate the variation of preferences in response to each criterion. 

 
2

1

( )


  
m

j ij
i

 (8) 

Step 5: Calculate the deviations of the response preference for each criterion. 

 1 j j  (9) 

Step 6: Compute the criteria weights. 

 

1





j

j n

j
j

  (10) 

4.2. Double Normalized Based Multiple Aggregation Method 

Liao and Wu introduced the DNMA approach to the literature, which is an innovative 

method for ranking alternatives. Two normalized approaches and three distinct joining 
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functions (full compensation, incomplete compensation, and incomplete compensatory) to 

implement a compensation system.  

Step 1: The decision matrix's normalization. 

 

   
1 1

max max , min min ,


 



ij jN

ij

ij j ij j
ii

t

t t
 (11) 

 

   

2

2 2

1

1
ij jN

ij
m

ij j
i

t

t



 



 (12) 

Where dij = d(ħij, ħj), ħj represents the goal value for the criteria Cj. 

 
max         beneficialcriteria

min   non-beneficialcriteria







ij
i

j

ij
i

h  

The normalized decision matrices are represented as ħ1N and ħ2N, respectively. 

 

1 1 1

2 2 1

max

max

 





N N N

ij ij ij
i

N N N

ij ij ij
i

 

Step 2: Compute of criteria weights. The fuzzy PSI technique calculates criteria weights 

based on the decision matrix's information, using an objective method for attributes like 

entropy. The basic conceptual approach of the PSI method for solving MCDM problems is 

described in Subsection 4.1. 

Step 3: Determine the subordinate utility values and rank. 

Complete compensatory model (CCM)   1

1
1


n

N

i j ij
j

P    (13) 

Un-compensatory model (UCM)    1

2
1

max 1


  N

i j ij
j

P   (14) 

Incomplete compensatory model (ICM)    1

3 
jN

i ij
j

P


 (15) 

      Step 4: The normalized subordinate utility values 
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  
 

  
2

1





q iN

q
m

q i
i

P
P

P

 (16) 

where q=1,2,3 and i=1,2,...,m.  The subordinate rank of each alternative is determined by 

the descending order of ℧ 1(Pi) and  ℧ 3(Pi), and the ascending order of ℧ 2(Pi). 

     Step 5: Rank the alternatives. Assigning weights to the (CCM), (UCM), and (ICM) 

  

 

 

 

2
2

1
1 1 1

2
2

2
2 2 2

2
2

3
3 3 3

( ) 1
( ) / max ( ) (1 )

( )
( ) / max ( ) (1 )

( ) 1
( ) / max ( ) (1 )

        
  

  

      
 


  

    
 

N N i
i i

i

N N i
s i i i

i

N N i
i i

i

m P
P P

m

P
R P P P

m

m P
P P

m


  


  


  

 (17) 

where ξ ϵ [0, 1] indicates the relative significance of the subordinate values and is weighted 

by ω1, ω2, ω3, satisfying ωi ϵ [0, 1] . The rankings of all alternatives can be determined by 

utilizing the descending order of Rs(Pi) for i=1,2,…,m. 

5. CASE STUDY 

This case study uses a lift-based WEC with a fiberglass wave floating structure, 

consisting of feathers and an essential shaft as the rotor and a stator as the stationary 

component. Structural reliability refers to an asset’s ability to function as planned for a 

specific period under specific technical and atmospheric conditions. Evaluating these 

criteria can be challenging due to their unclear and quantitative nature. The fuzzy PSI-

DNMA approach is used to evaluate various criteria, establishing a ranking level based on 

factors. Fig. 2 illustrates the phase of the hydrofoil concept for demonstration purposes. 

Five materials, including aluminum alloys, offshore steel, high-strength steel, CFRC, 

and GFRP, have been assessed for use in wave energy converters based on seven criteria, 

including structure dependability, hydrodynamic efficacy, offshore maintenance, corrosion 

resistance, production cost, eco-friendliness, and self-life. 

Aluminum alloys (M1) - Aluminum alloys are widely used in modern industrial and 

consumer products due to their lightweight, corrosion-resistant, and versatile properties, 

including aircraft, automobiles, building materials, electrical conductors, and packaging 

materials Aluminum silicon alloys are fluid, durable, and castable, suitable for various 

applications like engine blocks. Aluminum is commonly alloyed with copper, zinc, 

zirconium, lithium, silicon, magnesium, nickel and lead in small proportions.  

High-strength offshore steel (M2) - High-strength offshore steel is specially designed 

and manufactured for use in offshore constructions including oil rigs, platforms and other 

marine applications. These steels have superior mechanical qualities, including better 
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tensile strength, yield strength, and toughness than ordinary structural steels. The steel 

industry has developed advanced, ultra-high-strength steels in the last two decades, an 

offshore- grade structural steel used in the offshore sector. 

Offshore steel (M3) - Offshore steel is a type of steel material that is developed and 

manufactured, particularly for use in offshore constructions including oil and gas 

platforms, drilling rigs, and other maritime facilities. These constructions are subjected to 

extreme circumstances such as severe weather, corrosive seawater, and the requirement to 

bear large loads and dynamics. These criteria guarantee that the steel satisfies strict 

specifications for mechanical qualities, chemical composition, and other variables. 

Carbon Fiber Reinforced Composite (CFRC) (M4) - The CFRC is a form of composite 

material in which carbon fibers are inserted in a matrix material, usually a polymer resin. 

The combination of carbon fibers and matrix results in a composite material with improved 

mechanical characteristics, such as high strength-to-weight ratio, stiffness, and durability. 

Carbon steel, a low-cost material used in refineries and petrochemical facilities for 

pipelines and valves, is primarily composed of carbon and iron compounds, but its poor 

corrosion resistance makes it less suitable for offshore conditions. 

Glass Fiber Reinforced Plastic (GFRP) (M5) - The GFRP, also known as Fiberglass 

Reinforced Plastic (FRP), is a composite material consisting of glass fibers embedded in a 

polymer matrix. This composite material combines the high strength and stiffness of glass 

fibers with the plasticity and mold ability of a plastic matrix, usually a thermosetting resin 

such as polyester or epoxy. GFRP is a fiber-reinforced plastic, similar to graphite-

reinforced plastic, made from plastic reinforced with thin glass fibers, which can be 

chopped strand mats (CSM) or woven cloth. 

5.1. Determining the Criteria Weights 

The decision matrix (H) is being initiated. The alternative (m) score, as per Table 1, 

corresponds to the attributes (n) of  the relevant P-PHF element . 

Step 1: Experts can express their material selection aspirations using P-PHF numbers, 

which are summarized in the P-PHF decision matrix using Eq. (2), as shown in Table 2.  

Step 2: Eq. (6) is used to obtain the normalized result matrix shown in Table 3.  

Step 3: The mean values of normalized performances for each criterion are computed 

using data from Table 3 and Eq. (7). ℑ  = {0.7482, 0.7274, 0.7678, 0.7240, 0.7596, 0.7940, 

0.7914} 

Step 4: Eq. (8) is used to calculate the results of the variance of preferences according 

to each criterion value shown in Table 4. 

Step 5: The preference value is obtained by dividing the deviation of each criterion 

value using Eq. (9). ℧ j = {0.8633, 0.8714, 0.8729, 0.8719, 0.8713, 0.8664, 0.8637}. 

Step 6: The criteria weights are determined using Eq. 10. wj = {0.1420, 0.1432, 0.1435, 

0.1433, 0.1436, 0.1424, 0.1419} 
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          Fig. 2 Hierarchical organization of the material selection of lift base WEC 

Table 1 The P-PHF number-based linguistic conversion scale 

Linguistic variable P-PHF Number 

Very Low (0.1, 0.2, 0.4) 

Low (0.3, 0.5, 0.7) 

Medium Low (0.4, 0.3, 0.6) 

Equal (0.5, 0.5, 0.5) 

High (0.8, 0.5, 0.3) 

Absolutely High (1, 0.4, 0.6) 

 

Table 2 P-PHF decision matrix 

 
 C1 C2 C3 C4 

 ({0.13 | 0.15, 0.18 | 0.25, 0.21 | 0.6} ({0.25 | 0.12, 0.17 | 0.32, 0.14 | 0.56} ({0.32 | 0.44, 0.1 | 0.33, 0.3 | 0.23} ({0.21 | 0.34, 0.03 | 0.43, 0.05 | 0.23} 

M1 {0.16 | 0.28, 0.25 | 0.32, 0.04 | 0.4} 

{0.05 | 0.53, 0.14 | 0.27, 0.23 | 0.2}) 

{0.1 | 0.46, 0.05 | 0.42, 0.03 | 0.12} 

{0.46 | 0.61, 0.2 | 0.39}) 

{0.13 | 0.47, 0.23 | 0.3, 0.08 | 0.23} 

{0.09 | 0.13, 0.05 | 0.4, 0.09 | 0.47}) 

{0.1 | 0.15, 0.13 | 0.25, 0.23 | 0.6} 

{0.2 | 0.32, 0.11 | 0.42, 0.43 | 0.26}) 

 ({0.56 | 0.3, 0.27 | 0.42, 0.53 | 0.28} ({0.08 | 0.25, 0.41 | 0.32, 0.23 | 0.43} ({0.15 | 0.27, 0.32 | 0.55, 0.16 | 0.18} ({0.55 | 0.19, 0.05 | 0.81} 

M2 {0.23 | 0.2, 0.2 | 0.52, 0.18 | 0.28} 

{0.14 | 0.38, 0.02 | 0.42, 0.03 | 0.2}) 

{0.31 | 0.23, 0.16 | 0.77} 

{0.21 | 0.16, 0.17 | 0.24, 0.25 | 0.6}) 

{0.43 | 0.36, 0.44 | 0.53, 0.35 | 0.11} 

{0.02|0.25, 0.09 | 0.75}) 

{0.2 | 0.16, 0.14 | 0.84} 

{0.17 | 0.18, 0.11 | 0.4, 0.16 | 0.42}) 

 ({0.28 | 0.15, 0.12 | 0.35, 0.06 | 0.5} ({0.41 | 0.44, 0.22 | 0.56} ({0.06 | 0.68, 0.12 | 0.12, 0.11 | 0.2} ({0.15 | 0.38, 0.22 | 0.36, 0.18 | 0.26} 

M3 {0.31 | 0.12, 0.17 | 0.32, 0.23 | 0.56} 

{0.05 | 0.02, 0.03 | 0.78, 0.01 | 0.2}) 

{0.3 | 0.22, 0.11 | 0.33, 0.15 | 0.45} 

{0.08 | 0.23, 0.17 | 0.43, 0.16 | 0.34}) 

{0.27 | 0.56, 0.6 | 0.34, 0.02 | 0.1} 

{0.11|0.5, 0.03|0.23, 0.07|0.27}) 

{0.04 | 0.46, 0.23 | 0.54} 

{0.1|0.4, 0.13|0.26, 0.17 | 0.34}) 

 ({0.13 | 0.9, 0.05 | 0.1} ({0.32 | 0.26, 0.21 | 0.42, 0.11 | 0.32} ({0.31 | 0.59, 0.2 | 0.11, 0.1 | 0.3} ({0.14 | 0.66, 0.1 | 0.14, 0.21 | 0.2} 

M4 {0.34 | 0.32, 0.24 | 0.42, 0.22 | 0.26} 

{0.53 | 0.13, 0.46 | 0.43, 0.36 | 0.44}) 

{0.08 | 0.45, 0.2 | 0.55} 

{0.32 | 0.74, 0.12 | 0.12, 0.22 | 0.14}) 

{0.22 | 0.11, 0.11 | 0.33, 0.3 | 0.56} 

{0.01 | 0.36, 0.27 | 0.26, 0.38 | 0.38}) 

{0.32 | 0.31, 0.22|0.43, 0.19|0.26} 

{0.42 | 0.22, 0.38 | 0.78}) 

 ({0.18 | 0.2, 0.21 | 0.31, 0.07 | 0.49} ({0.14 | 0.54, 0.21 | 0.1, 0.03 | 0.36} ({0.11 | 0.2, 0.27 | 0.55, 0.23 | 0.25} ({0.29 | 0.42, 0.16 | 0.32, 0.02 | 0.26} 

M5 {0.03 | 0.4, 0.1 | 0.12, 0.15 | 0.48} 

{0.32 | 0.54, 0.28 | 0.22, 0.29 | 0.24}) 

{0.31 | 0.83, 0.27 | 0.12, 0.29 | 0.05} 

{0.26 | 0.64, 0.19 | 0.24, 0.18 | 0.12}) 

{0.18 | 0.27, 0.17 | 0.3, 0.13 | 0.43} 

{0.32 | 0.75, 0.3 | 0.15, 0.31 | 0.1}) 

{0.14 | 0.63, 0.13 | 0.37} 

{0.07 | 0.36, 0.46 | 0.22, 0.26 | 0.42}) 
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C5 C6 C7 

({0.43 | 0.43, 0.23 | 0.23, 0.13 | 0.34} ({0.32 | 0.26, 0.15 | 0.43, 0.11 | 0.31} ({0.21 | 0.24, 0.14 | 0.11, 0.02 | 0.65} 

{0.03 | 0.24, 0.13 | 0.53, 0.11 | 0.23} {0.02 | 0.65, 0.12 | 0.35} {0.5 | 0.14, 0.3 | 0.86} 

{0.21 | 0.19, 0.17 | 0.36, 0.18 | 0.45}) {0.3 | 0.37, 0.29 | 0.22, 0.28 | 0.41}) {0.02 | 0.25, 0.01 | 0.12, 0.2 | 0.63}) 

({0.16 | 0.25, 0.12 | 0.45, 0.17 | 0.3} ({0.19 | 0.28, 0.14 | 0.32, 0.16 | 0.4} ({0.04 | 0.32, 0.3 | 0.68} 

{0.04 | 0.43, 0.23 | 0.26, 0.2 | 0.31} {0.09 | 0.57, 0.3 | 0.33, 0.15 | 0.1} {0.3 | 0.44, 0.28 | 0.13, 0.29 | 0.43} 

 {0.09 | 0.67, 0.3 | 0.12, 0.2 | 0.21}) {0.16 | 0.37, 0.11 | 0.63}) {0.23 | 0.11, 0.34 | 0.42, 0.2 | 0.47}) 

({0.32 | 0.66, 0.36 | 0.21, 0.15 | 0.13} ({0.14 | 0.78, 0.11 | 0.22} ({0.26 | 0.42, 0.29 | 0.11, 0.17 | 0.47} 

{0.19 | 0.45, 0.28 | 0.12, 0.16 | 0.43} {0.3 | 0.33, 0.21 | 0.4, 0.1 | 0.27} {0.2 | 0.55, 0.31 | 0.21, 0.27 | 0.24} 

{0.02 | 0.27, 0.05 | 0.32, 0.34 | 0.41}) {0.4 | 0.65, 0.37 | 0.22, 0.29 | 0.13}) {0.19 | 0.27, 0.14 | 0.73}) 

({0.24 | 0.54, 0.13 | 0.22, 0.02 | 0.24} ({0.15 | 0.37, 0.07 | 0.16, 0.01 | 0.47} ({0.12 | 0.33, 0.03 | 0.11, 0.04 | 0.56} 

{0.08 | 0.37, 0.34 | 0.63} {0.3 | 0.28, 0.4 | 0.28, 0.29 | 0.44} {0.07 | 0.55, 0.09 | 0.16, 0.1 | 0.29} 

{0.31 | 0.27, 0.03 | 0.73}) {0.01 | 0.48, 0.37 | 0.36, 0.38 | 0.16}) {0.34 | 0.44, 0.12 | 0.21, 0.35 | 0.35}) 

({0.14 | 0.17, 0.24 | 0.83} ({0.2 | 0.55, 0.19 | 0.3, 0.43 | 0.15} ({0.12 | 0.62, 0.15 | 0.38} 

{0.22 | 0.37, 0.16 | 0.1, 0.11 | 0.53} {0.02 | 0.27, 0.26 | 0.73} {0.16 | 0.11, 0.07 | 0.89} 

{0.04 | 0.16, 0.09 | 0.32, 0.18 | 0.52}) {0.3 | 0.51, 0.29 | 0.49}) {0.02 | 0.22, 0.3 | 0.28, 0.29 | 0.5}) 

Table 3 Normalized P-PHF score decision matrix 

 C1 C2 C3 C4 C5 C6 C7 

M1 0.9296 0.8135 1 0.8637 0.8800 1 0.8631 

M2 1 0.8707 0.8972 0.8143 0.9202 0.9979 0.9740 

M3 0.9068 1 0.8738 0.8183 0.8922 0.9292 0.9672 

M4 0.7878 0.8617 0.9231 1 1 0.9072 0.9445 

M5 0.8651 0.8184 0.9126 0.8480 0.8652 0.9295 1 

Table 4 Preference variation values 

 C1 C2 C3 C4 C5 C6 C7 

M1 0.0329 0.0074 0.0539 0.0195 0.0145 0.0424 0.0051 

M2 0.0633 0.0205 0.0167 0.0081 0.0257 0.0415 0.0333 

M3 0.0251 0.0743 0.0112 0.0088 0.0175 0.0183 0.0309 

M4 0.0015 0.0180 0.0241 0.0761 0.0577 0.0128 0.0234 

     M5 0.0136 0.0082 0.0209 0.0153 0.0111 0.0183 0.0434 

5.2. Determining Priorities of Alternatives 

Step 1: Table 5 displays the results of linear normalization using Eq. (11). Table 6 

displays the results of vector normalization using Eq. (12). 

Step 2: The fuzzy PSI method is used for determining criteria weights. 

Step 3: Table 7 presents the values obtained from Eqs. (13), (14), and (15) for 

computing the utility functions CCM, UCM, and ICM. 

Step 4: The normalized subordinate utility values are calculated using Eq. (16), as 

illustrated in Table 8. 

Step 5: The performance values of the alternative are calculated using Eq. (17). 

Experts provide ξ = 0.5, ω1 = 0.5, ω2 = 0.2, and ω3 = 0.3 as appropriate values for 

considering. 
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Table 9 displays the estimated performance values and ranking of the alternatives.  

Table 5 Linear normalized P-PHF decision matrix 

 C1 C2 C3 C4 C5 C6 C7 

M1 0.6684 0 1 0.3079 0.1252 1 0 

M2 1 0.3068 0.1859 0 0.4434 0.9779 0.8102 

M3 0.5607 1 0 0.0260 0.2247 0.2387 0.7610 

M4 0 0.2584 0.3909 1 1 0 0.5947 

     M5 0.3642 0.0261 0.3077 0.2137 0 0.2408 1 

  Table 6 Vector normalized P-PHF decision matrix 

 C1 C2 C3 C4 C5 C6 C7 

M1 0.9954 0.9873 1 0.9916 0.9924 1 0.9915 

M2 1 0.9913 0.9934 0.9878 0.9952 0.9998 0.9984 

M3 0.9940 1 0.9919 0.9881 0.9933 0.9956 0.9980 

M4 0.9860 0.9907 0.9951 1 1 0.9942 0.9966 

     M5 0.9912 0.9877 0.9944 0.9904 0.9913 0.9956 1 

   Table 7 Values of CCM, UCM, and ICM 

 CCM UCM ICM 

M1 0.4429 0.4473 0.9592 

M2 0.5306 0.4476 0.9666 

M3 0.4008 0.4481 0.9617 

M4 0.4645 0.4448 0.9633 

M5 0.3066 0.4482 0.9519 

Table 8 Normalized subordinate utility values and rank order 

Alternatives    Descending      Ascending       Descending 

                         ℧1
N(P )        rank order        ℧2

N(P )         rank order         ℧3N(P )             rank order

      

M1 0.4549 3   0.4473 4 0.4465 3 

M2 0.5449 1   0.4476 3 0.4500 1 

M3 0.4116 4   0.4481 2 0.4477 4 

M4 0.4770 2   0.4447 5 0.4484 2 

M5 0.3148 5   0.4482 1 0.4432 5 

Table 9 Performance values 

  Alternatives    Ranking values Ranking order 

M1 0.4384 3 

M2 0.6352 1 

M3 0.3675 4 

M4 0.5472 2 

M5 0.2293 5 
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6. RESULTS AND DISCUSSION 

This section analyzes the outcomes of solving the fuzzy MCDM problem for material 

selection in a lift-based WEC. The materials used include aluminum alloy, high-strength 

offshore steel, offshore steel, CFRC, and GFRP. The materials are evaluated for their 

structural dependability, hydrodynamic efficacy, offshore maintenance, corrosion 

resistance, production cost, eco-friendliness, and shelf life, as previously discussed in 

subsection 5.1. Subsection 5.2 solves the P-PHF-DNMA algorithm by reversing the actual 

ratings of total cost and environmental effect. 

The results indicate that high-strength offshore steel is a suitable material for 

hydroelectric power in lift-based WECs and serves as a viable alternative. The conceptual 

design phase utilizes weighting parameters to select materials with robust dependability 

structure and high hydrodynamic efficiency. Marine steel is a popular choice in offshore 

oil and gas because of its high exhaustion and maximum power. The material is also 

resistant to erosion and corrosion, ensuring minimal power generation loss. The study 

suggests that novel approaches must meet specific criteria such as stability and 

hydrodynamic efficacy to be considered suitable for their intended purpose and operation. 

The CFRC is criticized for its high cost and significant environmental impact, which 

outweigh its structural dependability benefits. The aluminum alloy has emerged as a 

significant competitor to offshore steel options. The findings align with numerous marine 

renewable experiments, typically conducted in-house at universities or local research 

centers, involving small-scale prototype manufacturing. 

The WEC project, based on lifts, requires more thorough scrutiny of decision-making 

weighing elements as it progresses. As the number of TRLs increases, it is possible to 

decrease danger by implementing design changes and protective mechanisms. Structural 

dependability is not equally weighted, but uncertainties in ratings are expected to decrease 

with more studies and larger-scale devices, focusing on manufacturing costs and 

environmental impact.  

The study reveals that the material options for lift-based WECs vary depending on the 

design stage, as illustrated in Fig. 3. Composites are the most cost-effective, maintenance-

intensive, and environmentally friendly materials for mass manufacturing lift-based WECs 

due to their higher environmental impact. Major wave energy businesses like Ocean 

Energy use offshore steel for devices, with weighting variables varying between 

commercialization and conceptual stages. The future material options for WEC’s hydrofoil 

may include CFRC and GFRP, evaluated for cost-effectiveness, structural reliability, and 

environmental competitiveness. 

The reduction in uncertainty in fatigue and ultimate strength properties and the 

assumption that CFRC and GFRP are more eco-friendly than offshore steel and aluminum 

options are achieved. Material selection is consistent with advances in offshore renewable 

structures such as wind turbines that demand improved structural reliability and 

affordability. Further research is needed in the comprehensive design stage, considering 

manufacturing costs, hydrodynamic efficiency, fatigue stress, and carbon footprint 

assessment, reflecting current developments in offshore renewable frameworks. 
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         Fig. 3 The material life cycle process for lift-based WEC 

6.1. Comparative Analysis of Different Ranking Techniques 

The correlation coefficient between ranking scores can be utilized for pragmatic 

confirmation and agreement. This proposed method can be considered a global approach 

for comparing decision outcomes in real-world applications. 

A comparison study is done using MCDM procedures based on several ranking 

algorithms to determine the ranking's stability. In many complicated decision-making 

situations, the robustness and reliability of alternative ranking scores are assessed by 

comparing the results of one model to those of other accessible and recognized approaches. 

The PSI-DNMA-based model’s reliability was evaluated by a comparison of various 

commonly used methods, including TOPSIS [37], VIKOR [38], WASPAS [39], COPRAS 

[40], CRADIS [41], and EDAS [42]. The chosen methods were deemed advantageous due 

to their numerous advantages, broad applicability, and ability to swiftly identify options in 

a multi-criteria selection scenario. The ranking results are given in Table 10 and Fig. 4. 

The method used slightly influenced the rankings of other quarters. The correlation 

between findings obtained through different methods is determined using WS coefficient 

and Weighted Spearman’s coefficient (rw). Figs. 5 and 6 display a comparison of ranks 

using Spearman Order Correlation. 

   Table 10 The comparison results are presented in a ranked order 

 TOPSIS VIKOR WASPAS COPRAS CRADIS EDAS 

M1 0.4224 0.5770 0.4629 0.9816 0.5596 0.3959 

M2 0.5088 0.0000 0.4734 1.0000 1.0000 0.7085 

M3 0.4863 0.5721 0.4711 0.9882 0.5490 0.5053 

M4 0.4599 1.0000 0.4325 0.9945 0.5697 0.5367 

M5 0.3364 0.5785 0.4594 0.9639 0.3822 0.1144 
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        Fig. 4 Comparison of various F-MCDM methods 

 

Fig. 5 Correlation between the ranking values of WS 

 

Fig. 6 Correlation between the ranking values of RW 
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6.2. Sensitivity Analysis 

Sensitivity analysis is a crucial decision-making technique that compares a model’s 

results to other accessible and well-structured methods to evaluate the resilience and 

reliability of alternative ranking scores. Sensitivity analysis investigates the impact of the 

δ parameter on the ranking of alternatives in the proposed PSI-DNMA technique. Table 11 

provides a concise summary of the results. The alternative’s ranking is determined to be 

M5 < M3 <M1 < M4 < M2 based on the results. We conclude that when δ changes from 0.1 

to 0.9 using proposed method, M2 is the best option. Fig. 7 depicts the graphical 

representation of the δ variation possibilities. 

The ranking of the alternatives remained the same when the relative importance of the 

parameter was changed. This effectively explains why the proposed method of ranking is 

unaffected by parameters. This demonstrates the dependability and durability of the 

suggested framework. 

Table 11 The PSI-DNMA method’s findings rank in the order of parameters 

 δ = 0.1 δ = 0.2 δ = 0.3 δ = 0.4 δ = 0.5 δ = 0.6 δ = 0.7 δ = 0.8 δ = 0.9 

M1 0.3094 0.3835 0.4028 0.4211 0.4384 0.4550 0.4709 0.4863 0.5011 

M2 0.6352 0.6604 0.6515 0.6432 0.6352 0.6277 0.6204 0.6135 0.6068 

M3 0.2382 0.2864 0.3154 0.3423 0.3676 0.3749 0.4141 0.4357 0.4563 

M4 0.5073 0.5650 0.5570 0.5514 0.5472 0.5404 0.5418 0.5402 0.5390 

M5 0.0411 0.0998 0.1484 0.1910 0.2294 0.2482 0.2972 0.3279 0.3568 

 

Fig. 7 Influence of δ parameter onto the solution 
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7. CONCLUSION 

This study introduces a novel hybrid MCDM technique for solving practical decision- 

making issues, with primary contributions listed below. We introduced a novel method, P- 

PHFSs, to enhance the comprehension of complex assessment data by decision-makers. P- 

PHFSs are more effective in managing decision-makers fuzzy judgments due to their 

ability to express positive, neutral, and negative membership degrees and provide 

accompanying probabilistic information. Optimal material selection based on our approach 

can result in cost savings with more economical materials without compromising 

performance. This innovative combination enhances the ability to handle uncertainty and 

ambiguity in decision-making processes, providing a more robust and flexible framework 

for material selection in engineering applications. 

The framework introduces a distinctive material selection method in lift-based WECs, 

employing fuzzy DNMA as an MCDM. Expert opinion was used to identify and assess key 

hydrofoil characteristics, a unique and original activity for this type of device. The team of 

experts uses fuzzy logic selecting and inability setting to assess essential hydrofoil material 

selection criteria, allowing for flexible and rigorous evaluation of lift-based WECs. The 

framework emphasizes material fitness-for-purpose to prevent technological failure and 

financial losses. This applies to various stages of the product cycle, including lift-based 

wave energy converters. The study suggests that further submerged marine energy-

collecting devices operating near the ocean’s surface may be beneficial. 

The paper presents a probabilistic picture hesitant fuzzy set-PSI-DNMA strategy for 

MCDM problem implementation, considering uncertain, indeterminate, and inconsistent 

information. The proposed strategy integrates the PSI method for objective weight and 

incorporates fundamental operations and the score accuracy function with P-PHFS for 

flexibility during the energy process. The PSI-DNMA model is utilized to evaluate the 

material selection for lift-based WECs, focusing on sustainability in P-PHFS. We discuss 

factors such as structure dependability, hydrodynamic efficiency, offshore maintenance, 

corrosion resistance, eco-friendliness, self-life, and production cost when choosing 

materials for lift-based WEC.  

Future research will explore the dependability of structures using Einstein t-norm and 

t-conorm or Hamacher t-norm and t-conorm for analyzing P-PHFS operations and 

constructing aggregation operators. The study will explore consensus-building procedures 

using P-PHFSs, a crucial aspect of group decision-making, to ensure an acceptable 

outcome for many experts. The MCDM analysis predicts that composite solutions like 

CFRP and GFRP will become more cost-effective and environmentally friendly, with 

CFRP emerging as a viable alternative. Competing with steel alternatives may require 

significant cost and environmental reduction efforts. 
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