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Abstract. In this paper, the mechanical analysis of an advanced Body Centred Cubic 

(BCC) lattice cell has been performed through a homogenisation procedure to obtain an 

equivalent set of mechanical properties. The mechanical analyses have been carried out 

with the use of ANSYS software and an original ANSYS Parametric Design Language 

(APDL) subroutine has been developed for the introduction of the double periodic 

boundary conditions. The Finite Element Method (FEM) is used for the mechanical 

model, and 3D elements with reduced integration has been employed to guarantee an 

accurate description of the lattice geometry. Different BCC cell configurations have been 

considered: standard metal BCC cell, metal BCC cell with waved struts, standard metal 

composite BCC cell. Depending on the configuration, the homogenised materials showed 

isotropic or orthotropic properties. For the evaluation of all the engineering constants, 

uniaxial traction test and in-plane shear test have been simulated along different loading 

directions. A parametric study has been conducted varying the struts diameter, the struts 

waviness and the thickness ratio of the composite struts. Finally, the homogenised 

materials have been tested through the mechanical analysis of sandwich panels with 

lattice core; a comparison between sandwich panels with homogenised core and 

sandwich panels with exact lattice cells has been carried out. The parametric study can 

be useful for the tailoring and optimisation analysis of an advanced component. 
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1. INTRODUCTION 

In recent years, the ecological trends are motivating engineers to use fewer amounts of 

resources and to improve the design of lightweight structures, especially in transportation 

systems [1, 2]. The spread of Additive Manufacturing (AM) technologies is a clear example 

response to these trends. The AM production processes show a large parameter space, 
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which highly affects the components mechanical properties without increasing 

manufacturing costs due to the material usage reduction [3, 4]. Recently AM technologies 

are quickly spreading thanks to their promising process flexibility, the implementation of 

multi-materials and the capability to modify the function, structure shape and material 

properties, limited production costs with a weight reduction by up to 50% [5]. The 

parameter space complexity of AM production processes permits to derive periodic 

structures, advantageous for their mechanical properties relative to their weight or volume 

ratios [4]. In the family of highly periodic structures is possible to collocate the lattice cells 

and the porous cellular structures; this kind of structures offers a wide applications range 

and an interesting potential property tailoring [6-8]. The most influential AM process 

parameters should be identified and incorporated into the design and modelling process. In 

order to use the AM full potential, engineers need to develop and select convenient and 

appropriate design tools [4]. 

One of the design tools well known in the literature is the Representative Volume 

Element (RVE). The RVE can be defined as the smallest volume or cellular element 

statistically representative of the whole domain with a constitutive response error lower 

than 5% [9]. The RVE should be smaller compared to the whole structural domain, and in 

the meantime large to contain defects, in order to show a realistic mechanical response [10, 

11]. Several studies have been proposed to determine the RVE size to keep computational 

costs low, [12, 13]. In the literature there are many important contributions on the topic of 

cellular materials, among others Gibson and Ashby [14], Masters and Evans [15], 

Christensen [16], and Wang and McDowell [17, 18] provided closed-form solutions to 

obtain the equivalent mechanical properties from the RVE definition. The main 

assumptions lay on the cellular components’ description through the use of Euler-Bernoulli 

beams. This approach works well for relatively simple cellular architectures but presents 

limitations for complex cellular topology. Alternative approaches are based on energy 

equivalence methods [19, 20]. The analysis of the wave propagation in lattice structures 

and associated frequency characteristics has been investigated in many works [21, 22, 23, 

24]. An equivalent continuum representation of periodic solids cellular structures can be 

investigated through homogenisation techniques. Multiscale methods have been developed 

using asymptotic expansion approaches [25, 26, 27]. Differently, Maewal [28] studied 

multiscale method with finite element approach, and in the works of McDevitt et al. [29, 30] 

the multiscale strategy has been proposed using the assumed strain method. 

It is undoubted that FEM is the most used tool to analyse continuum micromechanics 

problems. The periodic homogenisation methods are based on the study of single repeating 

volume element. The asymptotic homogenisation [31] and the Macroscopic Degrees of 

Freedom [32] can be used with FEM codes. The Mechanics of Structural Genome [33] is 

a recent Finite Element based approaches for periodic homogenisation where the structure 

is analysed and divided in basic repeating elements as genome elements, and it is possible 

to pass from the macro to micro scale descriptions and vice versa using de-homogenisation 

and homogenisation techniques. 

Several works have been made on the homogenisation of periodic cellular structures, 

among others the work of Seiler et al. [34] introduced the idea of waviness in 2D periodic 

grid cellular solids. A simplified homogenisation approach has been used for three-

dimensional lattice cells in the work Alaimo et al. [35], Mantegna et al. [36] and Tumino 

et al. [37]. 
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In this work, the mechanical analysis of an advanced Body Centred Cubic lattice cell 

has been performed through the derivation of the homogenisation procedure of periodic 

cellular structures in order to obtain an equivalent set of mechanical properties. An original 

ANSYS Parametric Design Language subroutine has been developed for the introduction 

of the double periodic boundary conditions. The originality of the work consists in the 

parametric study of different BCC cell configurations: standard metal BCC cell, metal BCC 

cell with waved struts, metal composite BCC cell. The approach used for the metal 

composite cell and the waviness struts present innovative idea for the tailoring of cellular 

solids, and it can be adapted for the study of multi-layered lattice cells or coated cellular 

structures. Results in terms of the homogenised materials are presented in tabular and figure 

forms. 

2. LATTICE CELL STRUCTURE 

Sandwich panels are one of the most used light-weight structures [38], and many 

solutions have been proposed for the material selection and the architecture of sandwich 

cores [39]. The sandwich core concept, here adopted, is based on lattice structures, in 

particular the standard BCC cell (with straight struts) has been considered, moreover the 

author proposed the use of modified BCC cell with waved struts. In order to reduce the 

computational cost, the sandwich lattice core has been modelled through homogenised 

properties. In this section, the homogenisation process, based on the use of 3D FEM 

analysis performed in ANSYS environment, is described. The standard BCC cell structure 

has been directly drawn in Design Modeller environment, as shown in Fig. 1, a cylindrical 

strut section has been considered. The waved struts concept is built sweeping the strut 

circular section on an auxiliary diagonal plane (45°) following a three-point arch path, the 

single strut is copied mirroring it in the three Cartesian directions, see Fig. 2. For both the 

cell structures, the surface boundaries have been obtained through an intersection operation 

of the struts with a virtual bounding box. The strut material is an isotropic structural steel 

with the following properties: ρ = 7850 kg/m3, E = 200 GPa, ν = 0.3 and G = 76.9231 GPa. 

The external bounding box (which defines the cells dimension) is a cube with edge length 

L = 10 mm. 

 

Fig. 1 BCC cell geometry definition, straight struts 
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Fig. 2 BCC cell geometry definition, waved struts based on circumferential arch path 

3. STRAIGHT STRUT  

After the BCC cell geometry and the structural material definitions, the 3D meshing 

has been conducted in ANSYS using tetrahedral elements with an element dimension 

around a third of the strut radius, this ratio guarantees an acceptable convergence on the 

results. In order to apply the boundary conditions, it is important to define the outer 

boundary surfaces with respect to the direction of its normal. In Fig. 3, it is possible to see 

the four top surfaces (green colour) named z+, the bottom surfaces (purple colour) named 

z-, the left and the front ones (blue and black colours) called y+ and x-; y- and x+ are not 

reported in the figure for the sake of readability. The boundaries conditions are defined 

imposing a prescribed displacement on the FEM nodes lying on the boundary surfaces. In 

order to determine the Young modulus E, a traction (or compression) has been imposed to 

the z+ surfaces through a prescribed displacement along the z direction, furthermore the 

reaction force could be obtained from the lower boundary surfaces z- where the prescribed 

displacement is set to zero only for the z component. In order to make the present 

homogenisation campaign consistent, it is mandatory to ensure the compatibility of 

displacements along the faces of the representative volume element; in other words, the 

double periodic boundary conditions are applied to the surfaces with normal different with 

respect to the loading direction, as shown in Fig. 4. 

 

Fig. 3 BCC cell with straight struts, boundary definition 
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Fig. 4 BCC cell with straight struts, constraint equations applied 

The periodicity concept implies that the representative volume element has the same 

deformation mode and there is no separation or overlap between adjacent volume elements 

[40, 41], the periodicity condition can be introduced as follows: 

 𝑢𝑖 = 𝜖�̅�𝑘𝑥𝑘 +  𝑢𝑖
∗ (1) 

where ϵ̅ik are the average strains and ui
* is the unknown periodic part of the displacement 

components on the boundary surfaces. The displacements on a pair of opposite boundary 

surfaces can be derived as follows: 

 
𝑢𝑖

𝑗+
= 𝜖�̅�𝑘𝑥𝑘

𝑗+
+ 𝑢𝑖

∗

𝑢𝑖
𝑗−

= 𝜖�̅�𝑘𝑥𝑘
𝑗−

+ 𝑢𝑖
∗
 (1) 

where the index j stands for the normal direction of the upper (+) and lower (-) boundary 

surfaces. The difference between the displacement of the upper and lower boundary 

surfaces can be defined as: 

 𝑢𝑖
𝑗+

− 𝑢𝑖
𝑗−

= 𝜖�̅�𝑘(𝑥𝑘
𝑗+

− 𝑥𝑘
𝑗−

) = 𝜖�̅�𝑘∆𝑥𝑘
𝑗
 (2) 

For a cubic representative volume element and generally for a parallelepiped volume 

element, the term Δxk
j can be considered constant; therefore, a generic periodic boundary 

condition can be defined as follows: 

 𝑢𝑖
𝑗+(𝑥, 𝑦, 𝑧) − 𝑢𝑖

𝑗−(𝑥, 𝑦, 𝑧) = 𝑐𝑖
𝑗
 (3) 

where the ci
j constants represent the stretch or contraction terms of the representative 

volume element. It is possible to define the average stresses σ̅ij and strains ϵ̅ij of the 

representative volume element as: 

 𝜖�̅�𝑗 =
1

𝑉
∫ 𝜖𝑖𝑗  𝑑𝑉

𝑉
      ; 𝜎𝑖𝑗 =

1

𝑉
∫ 𝜎𝑖𝑗  𝑑𝑉

𝑉
 (4) 

where ϵij and σij are the local strains and stresses of the volume element V constituents. In 

order to apply the double periodicity in ANSYS environment, the author wrote an APDL 

routine: after checking the same position of two nodes placed on opposite boundary 

surfaces (one node on the x+ and the other one on the x-), for every pair of outer surface 

nodes a set of constraint equations is created, as follows: 
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𝑢𝑖
+ − 𝑢𝑖

− =  ∆𝑢      ;       ∆𝑢 =  𝑢𝑟𝑒𝑓
+ − 𝑢𝑟𝑒𝑓

−

𝑣𝑖
+ − 𝑣𝑖

− =  ∆𝑣      ;       ∆𝑣 =  𝑣𝑟𝑒𝑓
+ − 𝑣𝑟𝑒𝑓

−

𝑤𝑖
+ − 𝑤𝑖

− =  ∆𝑤      ;       ∆𝑤  =  𝑤𝑟𝑒𝑓
+ − 𝑤𝑟𝑒𝑓

−

 (5) 

In Eq. 5 the basic constraint equations are expressed for a single direction, the 

mechanical displacements for each pair of ith nodes could be linked considering a ∆ term, 

which represents the stretch/dilatation property of the cell structure, calculated just 

choosing a reference pair of nodes. Applying the double periodicity condition, depending 

on the structure geometry, some nodes of the mesh could lay on two distinct boundary 

surfaces with two different normal; those shared nodes must be left free, without any 

constraint. The loading and boundary conditions applied are different in order to evaluate 

the Young modulus E, the Poisson coefficient ν or the shear modulus G, therefore a resume 

of the used boundaries is listed in Table 1. 

Table 1 BCC cell with straight struts, boundary conditions resume 

Outer 

surfaces 

x+ x- y+ y- z+ z- 

 

E 

u=periodic 

v=periodic 

w=periodic 

u=periodic 

v=periodic 

w=periodic 

u=periodic 

v=periodic 

w=periodic 

u=periodic 

v=periodic 

w=periodic 

u=free 

v=free 

w=load 

u=free 

v=free 

w=0 

       

 

ν 

u=periodic 

v=periodic 

w=periodic 

u=periodic 

v=periodic 

w=periodic 

u=periodic 

v=periodic 

w=periodic 

u=periodic 

v=periodic 

w=periodic 

u=free 

v=free 

w=load 

u=free 

v=free 

w=0 

       

 

G 

u=periodic 

v=periodic 

w=periodic 

u=periodic 

v=periodic 

w=periodic 

u=periodic 

v=periodic 

w=periodic 

u=periodic 

v=periodic 

w=periodic 

u= load 

v=free 

w=0 

u=0 

v=free 

w=0 

 

A traction test campaign has been conducted in order to evaluate the Young modulus E 

and the Poisson coefficient ν, different strut diameters has been considered, D = 1, 1.5, 2 

mm. Calling the Hooke law: σ = Eϵ, it is possible to obtain the Young Modulus E knowing 

the stress and the strain. The strain is immediately known because the traction is applied as 

a prescribed displacement on the top boundaries z+. The equivalent stress can be calculated 

starting from the reaction force, obtained from the lower boundary surfaces z- where the 

prescribed displacement is set to zero only for the z component, furthermore the equivalent 

stress can be calculated as: 

 𝜎𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡
𝑧 =

∑ 𝐹𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛
𝑧

𝐴𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡
 (6) 

where Aequivalent = L2 and L is the maximum edge dimension of the full cube cell. The 

Poisson coefficient ν is defined as: 

 𝜈 = −
𝜖𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒

𝜖𝑙𝑜𝑎𝑑𝑖𝑛𝑔
 (7) 

As mentioned before, ϵloading is known due to the prescribed loading displacement, 

differently ϵtransverse should be calculated along the x or y direction, simply as:  
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ϵxx=(ux
+−ux

-)/L or ϵyy=(vy
+−vy

-)/L. An example of a traction test results is given in Fig. 5 for 

a BCC cell with D = 1 mm strut diameter. In order to evaluate the shear modulus G a shear 

test campaign, for various strut diameters D = 1, 1.5, 2 mm, has been carried out. It is 

possible to obtain the shear modulus G knowing the stress and the strain and using the 

Hooke law: τ = Gϵ. As the previous case, the strain is known due to the prescribed 

displacement on the top boundaries z+ and the equivalent stress is obtained from the 

reaction force as: 

 𝜏𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡
𝑧𝑥 =  

∑ 𝐹𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛
𝑧𝑥

𝐴𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡
 (8) 

where the loading direction can be x or y direction. Shear test results are given in Fig. 6 for 

a BCC cell with D = 2 mm strut diameter. Due to the isotropic geometric properties of the 

BCC cell and the isotropic properties of the considered strut material, it is worth noting 

that the homogenised properties will be of an isotropic material. Finally, in order to 

completely define the homogenised properties of the standard BCC cell, the equivalent 

density has been calculated as follows: ρ = ρsteel(VBCC/Vcube cell), where VBCC is the volume 

of the considered BCC cell structure and Vcube cell is the volume of the equivalent full cube 

cell. The homogenised isotropic properties of the standard BCC cell for different strut 

diameters are reported in Table 2. 

 

Fig. 5 Total displacement for BCC cell with thin diameter, traction test 

 

Fig. 6 Total displacement for BCC cell with thick diameter, shear test 
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Table 2 BCC cell with straight struts, homogenised properties for different strut 

diameters (D) 

D [mm] 1 1.5 2 

ρ [kg/m3] 386.82 828.41 1396.99 

E [MPa] 70.764 408.59 1473.7 

ν [-] 0.492 0.479 0.46 

G [MPa] 1263.8 2927.7 5384.3 

 

In order to validate the present homogenisation approach, a static analysis of different 

sandwich panels with lattice core has been conducted. Two types of panels have been 

considered: a sandwich one with the skins made of structural steel and the lattice core based 

on standard BCC cells; a second panel with the same geometry and the same skins, but 

with a core layer based on the homogenised properties. The panels have simply-supported 

boundary conditions on all the lateral surfaces and a constant uniform pressure is applied 

on the top surface. First of all, a lattice core with 5 × 5 BCC cells has been considered; in 

Fig. 7 it is possible to note the displacement distribution on the top surface, the local effects 

of the struts are clearly visible. In Fig. 8 the displacement distribution on the bottom surface 

shows a global behaviour. The maximum displacement of the bottom surface is taken for 

comparison with the other plate model, the maximum bottom displacement for the 

sandwich with core made of 5 × 5 BCC cells is: −0.014638 mm. 

 

Fig. 7 Total displacement of the sandwich plate with lattice core made of 5×5 pattern 

BCC cells with straight struts, side and top view 

 

Fig. 8 Total displacement of the sandwich plate with lattice core made of 5×5 pattern 

BCC cells with straight struts, bottom view 
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Another sandwich configuration is taken into account, the same steel skins and a lattice 

core with 10 × 10 BCC cells, in Fig. 9 the undeformed panel geometry is depicted. The 

displacement of the loaded structure is represented in Fig. 10, it is clear that the top surface 

displacement shows a more global behaviour, differently with respect to the 5 ×5 pattern 

core. The maximum displacement of the bottom surface is taken for comparison with the 

homogenised plate model, the maximum bottom displacement for the sandwich with core 

made of 10 × 10 BCC cells is: −0.080943 mm. 

 

Fig. 9 Sandwich plate with lattice core made of 10 × 10 pattern BCC cells with straight 

struts 

 

Fig. 10 Total displacement of the sandwich plate with lattice core made of 10 × 10 

pattern BCC cells with straight struts 

Finally, sandwich panels with homogenised core have been analysed, in Fig. 11 the        

5 × 5 pattern core is represented, it has to be noticed that the local effects, due to the struts 

of the original core, on the top surface are missing. The maximum deflection of the bottom 

surface is equal to −0.013473 mm. In Fig. 12, the deformed sandwich structure with 

homogenised core is represented corresponding to 10×10 pattern cells. The displacement 

distribution of the top surface is similar to the original sandwich panel. The maximum 

deflection of the bottom surface is equal to −0.076095 mm. 
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Fig. 11 Total displacement of the sandwich plate with homogenised core made of 5 × 5 

BCC cells with straight struts 

 

Fig. 12 Total displacement of the sandwich plate with homogenised core made of 10 × 10 

BCC cells with straight struts 

Comparing the maximum deflections of the original sandwich panel with 5 ×5 cell 

pattern core and that of the sandwich one with homogenised core, the homogenised model 

leads to an error of 7.96 %. Moreover, the same comparison for the 10×10 pattern core 

leads to an error of the homogenised model equal to 6 %. It is clear that, increasing the 

number of lattice cells in the core pattern, the structural response of the sandwich panel 

with original lattice core tends to be similar to the behaviour of the homogenised structure 

(the error decrease), where its core properties have been calculated with double periodicity 

condition. This ideally means an infinite number of cells in two directions. 

4. WAVED STRUT  

The homogenisation campaign continues with a modified BCC geometry, the author 

proposes here to introduce waviness into the strut path, in particular a three-point-arch path 

has been used for its definition. Different strut diameters, D = 1, 2 mm, and various path 

curvature, R = 10, 15, 20 mm, have been considered. The maximum cell dimension is kept 

fixed as the previous standard BCC cell with L = 10 mm. It is clear that the waviness 

concept introduces a reduction of the geometrical symmetry with respect to the standard 

BCC cell, consequently the waved BCC cell cannot keep the isotropic homogenised 

properties of the standard one, and it is well described by orthotropic homogenised 
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properties. The boundary surfaces are defined as the previous subsection and, for the sake 

of brevity, the discussion is not reported. In Table 3 a resume of the used boundary 

conditions is given in order to evaluate the orthotropic homogenised properties of the 

waved BCC cell: Ex, Ey, Ez, νxy, νxz, νyz, Gxy, Gxz, Gyz. 

Table 3 BCC cell with waved struts, boundary conditions resume 

Outer surfaces x+ x- y+ y- z+ z- 

Ex 
u=load 

v=free 

w=free 

u=0 

v=free 

w=free 

u=periodic 

v=periodic 

w=periodic 

u=periodic 

v=periodic 

w=periodic 

u=periodic 

v=periodic 

w=periodic 

u=periodic 

v=periodic 

w=periodic 

Ez 
u=periodic 

v=periodic 
w=periodic 

u=periodic 

v=periodic 
w=periodic 

u=periodic 

v=periodic 
w=periodic 

u=periodic 

v=periodic 
w=periodic 

u=free 

v=free 
w=load 

u=free 

v=free 
w=0 

νyx 
u=load 

v=free 

w=free 

u=0 

v=free 

w=free 

u=periodic 

v=periodic 

w=periodic 

u=periodic 

v=periodic 

w=periodic 

u=periodic 

v=periodic 

w=periodic 

u=periodic 

v=periodic 

w=periodic 

νxz 
u=periodic 

v=periodic 
w=periodic 

u=periodic 

v=periodic 
w=periodic 

u=periodic 

v=periodic 
w=periodic 

u=periodic 

v=periodic 
w=periodic 

u=free 

v=free 
w=load 

u=free 

v=free 
w=0 

Gxy 
u=0 

v=load 

w=free 

u=0 
v=0 

w=free 

u=periodic 
v=periodic 

w=periodic 

u=periodic 
v=periodic 

w=periodic 

u=periodic 
v=periodic 

w=periodic 

u=periodic 
v=periodic 

w=periodic 

Gxz 
u=0 

v=free 

w=load 

u=0 

v=free 

w=0 

u=periodic 

v=periodic 

w=periodic 

u=periodic 

v=periodic 

w=periodic 

u=periodic 

v=periodic 

w=periodic 

u=periodic 

v=periodic 

w=periodic 

Gzx 
u=periodic 

v=periodic 
w=periodic 

u=periodic 

v=periodic 
w=periodic 

u=periodic 

v=periodic 
w=periodic 

u=periodic 

v=periodic 
w=periodic 

u=load 

v=free 
w=0 

u=0 

v=free 
w=0 

 

The Poisson coefficients νij for orthotropic materials are defined as: 

 𝜈𝑖𝑗 = −
𝜖𝑗

𝜖𝑖
 (9) 

where ϵj is the strain in the transverse direction and ϵi is the strain in the axial loading 

direction. Considering the first test of the previous subsection, the traction test with the 

load applied along the Z direction, it is possible to obtain the Young modulus Ez and the 

Poisson coefficients νzx = νzy, in Fig. 13 the test is depicted in Z direction of a D = 1 mm, 

R = 10 mm waved BCC cell. The steps for the evaluation of the Young modulus and the 

Poisson coefficients are the same of the previous subsection case, for the sake of brevity 

the discussion is not here reported. Moreover, the Poisson coefficients rule for orthotropic 

materials permits to calculate νxz and νyz as follows: 

 
𝜈𝑖𝑗

𝐸𝑖
=

𝜈𝑗𝑖

𝐸𝑗
 (10) 

The validity of this rule, applied to the waved BCC cell, has been verified by the author 

from the traction tests. Due to the geometric asymmetry of the waved BCC cell, another 

traction test is needed, in Fig. 14 the test in X direction of a D = 1 mm, R = 10 mm waved 

BCC cell is represented. Performing this test in X direction it possible to get the Young 

modulus Ex and the Poisson coefficient νxy. Due to the geometric symmetry of the waved 
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BCC cell between the X and Y directions it is possible directly to assume that Ey = Ex (for 

the sake of clarity, this assumption has been verified by the author).  

 

Fig. 13 Directional displacement of the waved cell (D = 1 mm, R = 10 mm) for the 

traction test, load applied in the Z direction 

 

Fig. 14 Directional displacement of the waved cell (D = 1 mm, R = 10 mm) for the 

traction test, load applied in the X direction 

In order to complete the homogenised properties definition, the shear moduli have to 

be defined. In Fig. 15 the shear test is represented (D = 2 mm, R = 20 mm), loading in X 

direction, it is possible to get the shear modulus Gzx. Differently from the previous standard 

BCC cell with straight struts, the geometric asymmetry of the waved BCC cell between the 

X and Z directions suggests verifying the shear response of the cell in Z direction. In Fig. 

16 the shear test is depicted (D = 2 mm, R = 20 mm) in Z direction, due to the geometric 

asymmetry the author found that, for the waved BCC cell, Gzx ≠ Gxz. 
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Fig. 15 Directional displacement of the waved cell (D = 2 mm, R = 20 mm) for the shear 

test, load applied in the X direction 

 

Fig. 16 Directional displacement of the waved cell (D = 2 mm, R = 20 mm) for the shear 

test, load applied in the Z direction 

Considering that for classical elastic material formulation, the shear contribution is 

taken into account as follows: 

 𝜏𝑖𝑗 =  𝜏𝑖𝑗 +  𝜏𝑗𝑖 = 𝐺
𝜕𝑢𝑗

𝜕𝑖
+  𝐺

𝜕𝑢𝑖

𝜕𝑗
= 𝐺 (

𝜕𝑢𝑗

𝜕𝑖
+

𝜕𝑢𝑖

𝜕𝑗
) (11) 

Rewriting Eq. 12 for the present waved BCC cell problem, it follows: 

 

𝜏𝑖𝑗 =  𝜏𝑖𝑗 +  𝜏𝑗𝑖 = 𝐺𝑖𝑗

𝜕𝑢𝑗

𝜕𝑖
+  𝐺𝑗𝑖

𝜕𝑢𝑖

𝜕𝑗
 ⇒

⇒ 𝐺 (
𝜕𝑢𝑗

𝜕𝑖
+

𝜕𝑢𝑖

𝜕𝑗
) = 𝐺𝑖𝑗

𝜕𝑢𝑗

𝜕𝑖
+ 𝐺𝑗𝑖

𝜕𝑢𝑖

𝜕𝑗
 ⇒

⇒ 𝐺 =
𝐺𝑖𝑗

𝜕𝑢𝑗

𝜕𝑖
+ 𝐺𝑗𝑖

𝜕𝑢𝑖
𝜕𝑗

(
𝜕𝑢𝑗

𝜕𝑖
+

𝜕𝑢𝑖
𝜕𝑗

)
 

 (12) 
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The homogenised properties for the shear moduli G̅xz = G̅yz have been obtained as 

discussed in Eq. (13), differently the shear modulus Gxy is calculated from a single shear 

test, due to the symmetry between the X and Y directions. The homogenised orthotropic 

properties of the waved BCC cell for different strut diameters and different curvature radii 

are reported in Table 4. 

Table 4 BCC cell with waved struts, homogenised properties for different strut diameters 

(D) and waviness radii (R) 

D [mm] 1    2   

R [mm] 10 15 20  10 15 20 

        

ρ [kg/m3] 339.38 309.01 290.66  1201.8 1115.2 1057.2 

Ex=Ey [MPa] 61.032 49.418 43.248  1379.9 1071.1 910.05 

Ez [MPa] 71.474 39.767 30.325  1845.2 915.93 659.74 

νxy [-] 0.5125 0.3564 0.2766  0.5408 0.3687 0.2802 

νxz = νyz [-] 0.4355 0.6150 0.7033  0.3432 0.5461 0.6501 

Gxy [MPa] 710.59 693.50 709.68  4487.0 4018.1 3769.6 

Gxz = Gyz [MPa] 257.45 395.26 492.22  2605.3 3104.6 3260.9 

Gzx = Gzy [MPa] 318.50 450.32 537.33  2751.4 3225.6 3366.1 

G̅xz = G̅yz [MPa] 287.97 422.79 514.77  2678.3 3165.1 3313.5 

 

In this subsection, the present 3D homogenisation approach for equivalent orthotropic 

material is validated considering an infinite sandwich panel using double-periodic 

boundary conditions. Two types of panels have been considered: a sandwich one with the 

skins made of structural steel and the lattice core based on three waved BCC cells along 

the thickness direction, see Fig. 17; a second panel with the same geometry and the same 

skins, but with a core layer based on the homogenised properties, see Fig. 18. The panels 

have double-periodic boundary conditions on all the lateral surfaces and a constant uniform 

displacement is applied on the top surface, the bottom surface has a fixed support along the 

loading direction Z, in other words w(x,y,z=0) = 0. 

 

Fig. 17 Sandwich panel section made of structural steel skins and lattice core based on 

three waved BCC cells along the thickness direction 



 Homogenised Properties of Lattice Metal Composite Cell 15 

 

Fig. 18 Sandwich panel section made of structural steel skins and homogenised lattice 

core based on waved BCC cells 

The sandwich panel with composite BCC cells shows a global structural response 

evaluated through the reaction force at the bottom surface, Fz = 10488 N. The sandwich 

panel with the homogenised core has a reaction force of Fz = 10635 N, it is clear that the 

homogenised model leads to an error of 1.5% on the global structural response. 

Considering the stress distribution, it is well known that the lattice cell structures 

introduce local stress responses. The local stresses cannot be correctly detected by the 

homogenised models. However, the qualitative stress distribution on the top sandwich 

panel surface can be well described. The von Mises stress in the top surface central point 

of the sandwich panel with waved BCC cells is 1.341E9 Pa, for the homogenised model 

the Von Mises stress in the same evaluation point is 1.453E9 Pa. The local stress response 

is described with an error of 8.3% by the homogenised model. This local qualitative 

description is acceptable because is sufficiently far from the boundary conditions and from 

the lattice core where the lattice struts introduce stress concentration, see Fig. 19. 

 

Fig. 19 Von Mises stress distribution along the sandwich panel section with structural 

steel skins and lattice core based on three waved BCC cells along the thickness direction 
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5. COMPOSITE STRUT  

The BCC geometry with straight strut is here considered. The author proposes to 

introduce metal matrix composite material with a concentric layup along the strut axis. The 

concentric multi-layered strut sequence is depicted in Fig. 20.  

 

Fig. 20 Composite BCC cell with straight strut with a concentric layup along the strut 

axis 

Different strut diameters D = 1, 2 mm as well as various thickness layup ratios     

t̄ = tAlSiC / ttotal = 0.25, 0.5, 0.75, have been considered. The maximum cell dimension is kept 

fixed as the previous standard BCC cell with L = 10 mm. The composite strut materials are 

made by an isotropic Aluminium and assumed isotropic metal matrix composite AlSiC 

with short fibres [42], the properties are resumed in Table 5, where Vf stands for volume 

fraction. 

Table 5 Elastic properties for the composite strut cells, Aluminium and AlSiC [42] for 

different volume fractions 

 ρ [kg/m3] E [GPa] G [GPa] ν [-] 

Aluminium 2610 76.8 28.8 0.333 

AlSiC Vf 0.41 % 2860 138.9 56 0.239 

AlSiC Vf 0.54 % 2940 183.9 74.4 0.235 

AlSiC Vf 0.70 % 3020 224.6 91.2 0.231 

 

The concentric material layup along the strut axis does not introduce any kind of 

asymmetry, the equivalent material has the same symmetry properties of the initial 

constituent ones, in other words the equivalent material can be assumed as isotropic. The 

boundary surfaces are defined as the first subsection and, for the sake of brevity, the 

discussion is not here reported. In Table 1 a resume of the used boundary conditions is 

given. The homogenised isotropic properties for the metal matrix composite BCC cell with 

concentric strut layup is given in Table 6. 
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Table 6 Homogenised properties of the metal matrix composite BCC cell for different 

materials thickness ratios t̄ and different strut diameters D 

   ρ [kg/m3] E [MPa] G [MPa] ν [-] 

D = 1   Aluminium 129.22 27.171 483.77 0.4914 

  AlSiC Vf 0.41 % 141.59 48.115 879.44 0.4910 

  AlSiC Vf 0.54 % 145.55 63.649 1164.6 0.4913 

  AlSiC Vf 0.70 % 149.51 77.671 1422.7 0.4914 

 t̄ = 0.25 
Aluminium + AlSiC 

Vf 0.41% 
130.05 27.595 510.05 0.4917 

  
Aluminium + AlSiC 

Vf 0.54% 
130.31 27.937 528.45 0.4918 

  
Aluminium + AlSiC 

Vf 0.70% 
130.58 28.112 544.61 0.4920 

 t̄ = 0.5 
Aluminium + AlSiC 

Vf 0.41% 
132.46 29.567 586.67 0.4921 

  
Aluminium + AlSiC 

Vf 0.54% 
133.50 30.954 658.37 0.4926 

  
Aluminium + AlSiC 

Vf 0.70% 
134.54 32.116 722.75 0.4931 

 t̄ = 0.75 
Aluminium + AlSiC 

Vf 0.41% 
136.35 34.870 709.75 0.4923 

  
Aluminium + AlSiC 

Vf 0.54% 
138.63 40.175 870.21 0.4928 

  
Aluminium + AlSiC 

Vf 0.70% 
140.92 44.861 1015.0 0.4930 

D = 2   Aluminium 465.74 565.79 2053.1 0.4611 

  AlSiC Vf 0.41 % 510.35 983.23 3765.1 0.4603 

  AlSiC Vf 0.54 % 524.63 1299.7 4988.0 0.4603 

  AlSiC Vf 0.70 % 538.90 1584.9 6095.7 0.4603 

 t̄ = 0.25 
Aluminium + AlSiC 

Vf 0.41% 
468.99 584.50 2171.3 0.4612 

  
Aluminium + AlSiC 

Vf 0.54% 
470.03 592.67 2248.2 0.4620 

  
Aluminium + AlSiC 

Vf 0.70% 
471.07 598.55 2316.0 0.4626 

 t̄ = 0.5 
Aluminium + AlSiC 

Vf 0.41% 
478.12 634.50 2502.5 0.4627 

  
Aluminium + AlSiC 

Vf 0.54% 
482.08 671.37 2805.7 0.4646 

  
Aluminium + AlSiC 

Vf 0.70% 
486.04 700.88 3075.9 0.4661 

 t̄ = 0.75 
Aluminium + AlSiC 

Vf 0.41% 
492.21 741.44 3029.9 0.4633 

  
Aluminium + AlSiC 

Vf 0.54% 
500.68 857.57 3710.5 0.4652 

  
Aluminium + AlSiC 

Vf 0.70% 
509.15 957.79 4322.8 0.4665 

 

Finally, the present 3D homogenisation approach for composite lattice structure is 

validated considering an infinite sandwich panel using double-periodic boundary 

conditions. Two types of panels have been considered: a sandwich one with the skins made 

of Aluminium and the lattice core based on three composite BCC cells, along the thickness 
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direction, made of Aluminium and AlSiC with thickness layup ratios t̄ = 0.5, see Fig. 21; a 

second panel with the same geometry and the same skins, but with a core layer based on 

the homogenised properties, see Fig. 22. The panels have the same boundary conditions of 

the previous subsection: double-periodic boundary conditions on all the lateral surfaces 

and a constant uniform displacement is applied on the top surface, the bottom surface has 

a fixed support along the loading direction Z, in other words w(x,y,z=0) = 0. 

 

Fig. 21 Sandwich panel section assembled with Aluminium skins and lattice core based 

on three composite BCC cells, along the thickness direction, made of Aluminium and 

AlSiC with thickness layup ratios t̄ = 0.5 

 

Fig. 22 Sandwich panel section assembled with Aluminium skins and homogenised 

lattice core based on three composite BCC cells made of Aluminium and AlSiC 

The sandwich panel with composite BCC cells shows a global structural response 

evaluated through the reaction force at the bottom surface, Fz = 7476.5 N. The sandwich 

panel with the homogenised core has a reaction force of Fz = 7392.3 N, it is clear that the 

homogenised model leads to an error of 1.1% on the global structural response. 
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As the previous structural example, the local stresses cannot correctly be detected by the 

homogenised models. However, the qualitative stress distribution on the top sandwich 

panel surface can be well described. The Von Mises stress in the top surface central point 

of the sandwich panel with waved BCC cells is 8.941E8 Pa, for the homogenised model 

the Von Mises stress in the same evaluation point is 8.328E8 Pa. The local stress response 

is described with an error of 6.8% by the homogenised model. For the sake of 

completeness, the Von Mises stress distribution of the top surface of the sandwich panel 

with composite BCC cells is depicted in Fig. 23, the same stress distribution of the 

homogenised model is reported in Fig. 24. 

 

Fig. 23 Von Mises stress distribution on the top surface of the sandwich panel with 

composite BCC cells 

 

Fig. 24 Von Mises stress distribution on the top surface of the sandwich panel with 

homogenised core based on composite BCC cells 
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6. CONCLUSIONS 

In this work, the mechanical analysis of an advanced Body Centred Cubic lattice cell 

has been performed through the derivation of the homogenisation procedure of periodic 

cellular structures in order to obtain an equivalent set of mechanical properties. An original 

ANSYS Parametric Design Language subroutine has been developed for the introduction 

of the double periodic boundary conditions. The originality of the work consists in the 

study of different BCC cell configurations: standard metal BCC cell, metal BCC cell with 

waved struts, metal composite BCC cell. The approach used for the metal composite cell 

and the waviness struts present innovative idea for the tailoring of cellular solids, and it 

can be adapted for the study of multi-layered lattice cells or coated cellular structures.  

A parametric study has been conducted varying the struts diameter, the struts waviness 

and the thickness ratio of the composite struts. The following conclusions can be drawn: 

 The BCC geometry configuration permits to obtain a structure with an equivalent 

shear modulus G greater with respect to the Young modulus E. 

 Increasing the struts diameter, it is possible to increase both the shear and Young 

moduli, and at the same time reducing the Poisson ratio ν value. 

 The strut waviness introduces the concept of orthotropic properties for the description 

of the equivalent Young and shear moduli and the Poisson ratios. 

 The increase of the waviness radius permits to reduce the Young moduli, the Poisson 

ratios and the Gxy shear modulus; at the same time the shear moduli G̅xz and G̅yz are 

increasing as the waviness radius. 

 The composite strut permits to add an input to the tailoring of the lattice cell 

equivalent material properties. Increasing the thickness ratio t̄, it is possible to get 

bigger Young and shear moduli and Poisson ratio. 

The parametric studies can be useful for the tailoring and optimisation analysis of an 

advanced component. Finally, the homogenised materials have been tested through the 

mechanical analysis of sandwich panels with lattice core; a successful comparison between 

sandwich panels with homogenised core and sandwich panels with exact lattice cells has 

been carried out. 
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