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Abstract. Sensitivity analyses are frequently performed to determine the robustness of 

MCDM methods, of which there are more than 200 types. In the past, rankings were 

compared to each other rather than to an external ranking. Thus, the direction and 

meaning of sensitivity can become unclear and complex. In addition, sensitivity analysis 

is usually performed only based on weight coefficients, but the effect of the normalization 

type is neglected. In this study, the most appropriate data conversion technique was 

investigated through an innovative sensitivity procedure to select the Small electric Van, 

which is an environmentally friendly logistics and transportation vehicle. Seven different 

normalization types based on the PROBID method (and two additional alternative 

MCDM methods) were used as parameters, resulting in 105 different MCDM rankings. 

According to the findings, MCDM rankings, which have low sensitivity, were also the 

performing methods that produced the highest correlation with price. What is striking is 

that careless choice of normalization type can be so effective as to manipulate the results. 

Although the most appropriate technique may vary depending on the data type, the fixed 

gold standard we recommend offers a flexible solution for all applications. A suitable 

data converter will result in the choice of a reliable electric vehicle.  
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 1. INTRODUCTION  

The transportation sector has been a sector that has especially triggered commercial 

growth since the beginning of human history. Transport has played a key role in 

determining the location of industries and cities and shaping the prosperity of regions. 

Moreover, in many industrialized countries, transportation has established itself as an 

important industry and has therefore become a complex sector. The belief that the 

increasing travel demand in the world's major cities can be met by building more highways 

has had to change due to the resulting congestion. Humanity quickly embraced the freedom 

of movement opened up by motor vehicles. But it was only realized over time that this also 

led to urban sprawl, air pollution, traffic noise and accidents. It was a known fact that the 

use of oil would not continue forever due to limited fossil fuel resources and the need to 

reduce greenhouse gas emissions. The fact that the current situation in transportation is not 

sustainable has led to the idea that fundamental changes are required in the technology of 

transportation systems [1]. This led to the production of more environmentally friendly 

electric vehicles, whose development continues to this day. However, in a short time, 

performance types of these (like gasoline-powered ones) were produced under very 

different brands. Moreover, choosing a suitable electric vehicle has become an important 

selection and ranking problem due to the abundance of different alternatives, performance 

criteria, weight methods, and normalization techniques. 

In daily life, we encounter different problems that require choosing the most suitable 

one among alternatives. It is not easy for the average person to immediately visualize, 

calculate and conclude a decision matrix to solve a multi-criteria and multi-alternative 

decision problem. Therefore, in such problems, people may make regrettable decisions 

based on only a few criteria. In addition, the Multi-Criteria Decision Making (MCDM) 

methodology is frequently used in solving such problems where the weight importance of 

the criteria is different and the approach to them can be focused on maximum benefit and 

minimum cost [2-8]. 

MCDM methods also normalize different units of different criteria and are successfully 

used in solving problems in many application areas. Moreover, the original calculation 

algorithm of each MCDM method is unique. This also means that different MCDM 

methods may produce different rankings for a given problem [9]. When the input variables 

or parameters of MCDM methods change, the ranking results may also change. For 

example, when weight coefficients and normalization techniques change, the ranking 

results produced by some MCDM methods often change depending on the situation. This 

situation is expressed by sensitivity analysis in the literature [10-14]. The MCDM holistic 

algorithm consists of some additional input parameters. And these may include data type, 

number of alternatives, number of criteria, problem type, normalization technique, 

weighting method, even threshold values and preference function in the initial decision 

matrix. The final rankings produced by the MCDM integrity are affected by different inputs 

at different rates. Of course, since there are so many parameters or input types in the 

MCDM architecture, understanding how they affect the final sensitivity of the MCDM 

method is a very complex issue and it is very difficult to solve the problem in one go. For 

example, normalization, weight coefficients and the MCDM basic equation interact 

simultaneously and affect each other to certain extent, which in turn affects the final result. 

There is no consensus on how to determine the quality of an MCDM method or the 

reliability of the results it produces, and moreover, there is no consensus on exactly what 
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the limits of sensitivity analysis are and how to determine them [15]. A classical criterion 

emphasized for sensitivity analysis in MCDM methods is that the best ranked alternative 

expresses the stability conditions [16]. In fact, we can think that this determination is a 

partial solution, that is, it is not sufficient. Because what is important is not just the change 

in the position of one alternative, but the degree to which the ranking of all alternatives 

changes, which can be easily measured with any rank correlation analysis. As it is known, 

the number of inputs of a decision-making problem is very high, and this further increases 

the complexity. Thus, it becomes difficult to verify precise model recommendations. For 

example, when it comes to alternatives with close values, changing the criterion weight 

coefficients as a parameter can easily change the position of the alternatives, which is 

natural. Thus, focusing on the stability of the ranking of all alternatives rather than the 

stability of the alternatives may provide a more holistic and robust view. 

Although there is no objective guarantee, many authors have recently described the 

comparison of the sensitivities of the results obtained using many different MCDM 

methods as "accuracy" and "robustness" analysis [17]. It is a controversial issue whether 

the concept of "accuracy" is actually measured here. On the other hand, what is meant by 

robustness is low sensitivity, that is, minimal fluctuation of the ranking results. However, 

in our opinion, this is a judgment or inference that is open to criticism in terms of the 

semantics of the methodology. Identification of classical sensitivity analysis with the 

concepts of "robustness" or "accuracy" in a direct approach without being subjected to a 

reasonable cost-benefit analysis requires evidence. Of course, excessive sensitivity can be 

harmful in the sense of "unnecessarily affecting the rankings", but in our opinion, it is a 

controversial claim that all types of sensitivity are harmful. 

According to many research results, sensitivity is actually affected by the chosen 

MCDM method, the characteristics of the problems, the data type, and many components, 

parts or parameters in the MCDM integrity such as normalization and weight coefficient. 

Because of this dependence on input variables, the results of each study are often empirical 

(i.e., relevant only to the observed sample). And it has not been possible to generalize them 

with a framework. Performing a sensitivity analysis beforehand for the selection of an 

MCDM method, which is a complex problem, of course gives an idea, which is actually 

useful. But first of all, it may be useful to objectively evaluate what the results of classical 

sensitivity analysis for MCDM methods mean from a different perspective. For example, 

it is important to consider which direction sensitivity goes and to what extent this involves 

robustness or verification. Of course, it is an expected result that an MCDM method will 

be affected by the change in input parameters. However, in order to understand change and 

give meaning to change, we need a fixed base or a solid reference point. This can be 

difficult to formulate clearly in MCDM methods. However, by taking advantage of data 

analytics and with a rational approach, we need to create a static, somewhat similar and 

natural external order against the dynamic MCDM results. Thus, we compare the dynamic 

and refreshed MCDM results with a static sequence and observe the sensitivity. This 

approach has previously been successfully applied in the comparative capacity assessment 

of MCDM methods by taking advantage of the natural relationship of financial 

performance and stock return [8,9,18]. Moreover, there are authors who suggest that this 

may mean a sensitivity analysis approach from a different perspective [19]. Essentially, 

when considered well, this type of approach can be applied to all commercial products with 

a price-performance relationship. 
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The performance of commercial products can already be calculated with MCDM using 

different criteria and alternatives. It is already known that there is a reasonable level of 

relationship between performance and price, which companies fine-tune. We can take 

advantage of the relationships that static price produces with dynamic MCDM-based 

performance. Thus, it can be easily observed how and to what extent the change in MCDM 

input parameters affects the statistical relationship with price, provided that other factors 

are kept constant. The MCDM components (criteria, alternatives, weight coefficient, 

normalization, MCDM basic algorithm, threshold values, preference function, etc.) 

essentially have the same purpose in all MCDM methods (in terms of each task type 

allocated). This means that if an MCDM component reduces or increases an existing 

relationship with the other party, it can be described as a different indicator of sensitivity. 

In this study, we measure sensitivity through the relationship with a static and external 

factor and strive to discover the degree, direction and nature of sensitivity. In our study, we 

examine normalization types as the determining parameter in sensitivity, which is rare. Not 

only that, we also measure how sensitivity is determined when we change the weight 

coefficient and MCDM basic algorithms. 

In this study, we measure how changing the input parameter of an MCDM method 

specifically for a new method, PROBID, affects the final ranking sensitivity produced, 

roughly using the "price-performance relationship". We apply the selection of the Small 

commercial transportation and logistics electric vehicle to our case. The PROBID original 

equation or method may have a special empirical situation that prevents justified 

generalization. And avoiding this risk, the well-known SAW and CODAS methods will 

also be tested in comparative analyses. It is known how normalization affects sensitivity in 

MCDM studies, but this is an issue that has not been adequately conceptualized. Generally, 

to understand sensitivity, criterion weighting coefficients are changed and the results are 

monitored. In fact, the sensitivity of the normalization method used may be a more 

determining parameter. In this study, the selection of an appropriate normalization method 

based on the sensitivity-MCDM performance special relationship will be evaluated through 

the Small Electric Van selection. 

On the other hand, we think that the findings obtained from our study can be a solution 

to the data conversion problem not only for the MCDM family but in every field (for 

example in machinery, automotive, energy and industry engineering, artificial intelligence, 

machine learning or finance, etc.) and will be remarkable. The data preprocessing phase is 

an advancement where information can be parsed more easily. Normalization is the best 

technique for pre-processing data before the data training phase. Normalization is a process 

where data within a model is categorized to increase attribute connectivity [20]. The 

interesting point is that only a few techniques, especially Min-Max and Z-Score, are widely 

used in artificial intelligence or machine learning studies. [20-24]. We think that the 

adequacy of this choice may be a research gap open to question. According to the expertise 

and insights of MCDM methods, which are known to focus more on the problem of 

normalization selection than many other disciplines, using a random or static normalization 

technique is an objectionable choice. It can greatly influence, change, and even manipulate 

the final results. For example, a statistical relationship or causality investigated between 

two factors such as x and y may increase, decrease, or become meaningless depending on 

normalization [25]. This situation will question the reliability of the analysis results. As a 

matter of fact, in this study, we will show that the normalization technique can directly 

affect or mislead the relationship between price and MCDM final rankings that measure 
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performance. In other words, the normalization method can reach a level that can 

manipulate the price-performance relationship. On the other hand, for example in machine 

learning, the subject is generally viewed in terms of prediction verification performance. 

However, we think that the results found (even if they are low or high) may be misleading 

because the wrongly chosen normalization type transforms the data incorrectly. Working 

with an arbitrary and incorrectly chosen type of normalization can be the same as working 

with a different data set. 

In this study, we focus on the literature in the first part. The literature consists of two 

parts. First, we focus on the importance of electric transport vehicles in the transportation 

and logistics industry and investigate the importance of choosing a commercial logistics 

transport vehicle with a good price-performance ratio. In the second part, we focus on the 

literature on normalization and sensitivity analysis. In the third part, the application part, 

we conduct an innovative sensitivity analysis for PROBID, VIKOR and CODAS methods 

in order to choose the most suitable/best Small e-Van among 51 alternatives. Here, we also 

try different weighting methods as in the literature. Thus, we observe how three MCDM 

basic algorithms, seven normalization techniques, and five weighting method parameters 

individually affect the sensitivity of MCDM final results. MCDM sensitivity analysis in 

this study was analyzed with a total of 105 different alternative methodological scenarios, 

based mainly on the performance-price relationship. Finally, we evaluate our findings in 

the discussion section and make final inferences and recommendations based on the 

available evidence in the conclusion section. 

2. LITERATURE OVERVIEW 

In this study, we select Small electric Van, commercial vehicle category, with MCDM 

methodology. To understand the nature of MCDM methods and, according to some, 

"sensitivity analysis", which means validation and robustness, has become popular and 

widespread in recent years. It is known that in recent years, sensitivity analysis has been 

used as a criterion in choosing a good MCDM method. However, sensitivity analysis is 

generally done by changing the weighting coefficient. Normalization methods are also a 

strong sensitivity indicator. Normalization methods can change the ranking results just like 

the weight coefficients. The individual effects of the original MCDM equation, 

normalization and weighting methods on the final result of the MCDM methods are 

significant. A comprehensive sensitivity framework for this, through a fixed external factor 

(e.g. price), has not been addressed before to such a scope as in this study. This study 

approaches classical sensitivity analysis with critical thought, improves it, and proposes an 

alternative sensitivity approach. In this study, we investigate whether an MCDM has low 

sensitivity but also shows high performance (by observing the relationship between price 

and MCDM). 

Therefore, we examine the literature in three parts. First, we emphasize the undeniable 

importance of electric vehicles in terms of transportation, logistics, environment, and 

sustainability, based on the literature. Secondly, we review past studies on Electric 

Vehicles and MCDM methods. Third, we provide a framework for the reader by 

summarizing the existing literature on sensitivity analysis and normalization, an important 

topic within the methodology of evaluating MCDM methods. 
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2.1 Sustainable Transportation 

The transportation sector is seen as the sector that contributes the most to carbon 

dioxide emissions. Because the operating system of the vehicles used on the roads is mostly 

powered by fossil fuels. The rapid development of technology significantly affects all 

countries in the world. Technological development and environmental awareness have 

given birth to electric and alternative energy vehicles in the global transportation system. 

It is estimated by the International Energy Agency that, with the more intensive use of such 

vehicles, the emission rate will drop below 50% by the 2050s, especially in developed 

countries such as the USA [26]. In the World Energy Outlook Special Report published by 

the Agency in December 2023, it was stated that if countries fully implement their national 

energy and climate commitments, oil and gas demand will be below the current level, that 

is, 45%, before 2050. It has been stated that if emissions from the sector reach net zero, oil 

and gas use will decrease by 75% by 2050 [27]. 

Sustainable transportation, also often referred to as green transportation due to its 

emphasis on sustainable transportation or environmental aspects, stems from sustainable 

development. According to the OECD's definition, sustainable transportation is defined as 

transportation that does not harm human health and the ecosystem and includes the use of 

renewable and non-renewable energy resources at an acceptable level. Sustainable 

transportation narrowly focuses only on resource depletion or air pollution problems. 

Social and economic welfare in a broad sense is also included in the content [28]. Black 

[29] claimed in his study that the transportation system is not sustainable due to reasons 

such as limited oil reserves, air quality problems, global atmospheric problems, excessive 

deaths, traffic congestion and urban sprawl. Nakamura, Hayashi [30] discussed different 

strategies used to reduce carbon emissions in the transportation sector. He compared the 

policies followed in different cities with the double classification they created. It has been 

revealed that each city has its own solutions to reduce carbon emissions. Within the strategy 

expressed as Improve, electric vehicles are mentioned as the next generation of the low-

emission vehicle class. Sustainable transportation policy covers many interrelated issues 

such as climate, air quality, safety, traffic safety and health [31]. 

Some countries in the EU tax vehicles annually based on the pollution they emit. For 

this purpose, Germany has created annual taxes for different automobile classes and has 

especially exempted electric vehicles from tax for 5 years after they enter the traffic. Tax 

rates are offered at a significant discount for environmentally friendly and energy efficient 

vehicles. On the other hand, the tax rates applied to large vehicles that do not save energy 

and cause more harm to the environment are quite high. In order to encourage the purchase 

of more efficient and cleaner vehicles, the UK taxes vehicles annually according to six-

band carbon emission figures [32]. Additionally, free charging stations have been created 

in London to encourage people to purchase electric vehicles [33]. 

2.2 Electric Vehicles and MCDM Methods 

Since batteries are used as the power source in electric vehicles, they do not create 

exhaust emissions and effectively reduce dependence on fossil fuels and air pollution. 

Since renewable energy can be used when charging electric vehicles, energy consumption 

decreases. Thus, it prevents the decrease in energy resources. However, today, efforts are 

being made to develop the technology of high-performance electric vehicles and improve 

their costs [34]. The use of electric vehicles in traffic is accepted as a part of the sustainable 
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transportation system planned in cities. Electric vehicles have many advantages compared 

to motor vehicles. It reduces operating costs, users feel less noise and vibration inside the 

car, it accelerates better at low speeds, has appropriate charging systems, and has zero 

exhaust emissions [35]. 

2022 has been a difficult year for the automobile industry due to different factors (wars, 

the ongoing impact of the coronavirus pandemic, increasing energy-fuel costs, increase in 

inflation). 14% of new cars sold in 2022 are electric vehicles. This rate is expected to reach 

18% by the end of 2023. 60% of world electric car sales occur in China. While the EU 

ranks second, it is reflected in the data as the USA third [36]. According to the statement 

of the European Automobile Manufacturers Association, alternative energy vehicles had a 

share of more than half of the EU automobile market in 2022. While petroleum-powered 

cars have a share of 36.4% and diesel-powered cars have a share of 16.4%, battery electric 

vehicles (BEV) have a share of 12.1%, hybrid electric vehicles 22.6% and plug-in hybrid 

vehicles (PHEV) 9.4% [37]. This situation was realized as 6.7% for battery electric 

vehicles, 7.2% for hybrid electric vehicles and 1.7% for plug-in hybrid vehicles in the USA 

[38]. As of the third quarter of 2023, the share of these vehicles has increased to 18% in 

total. The share of other internal combustion engine vehicles in the USA is around 82% 

[39]. 

Small electric vans are the subject of this study. Small vans have a small and 

economical structure and are the vehicles preferred by SMEs and tradesmen for product 

deliveries within the city. It moves easily through the narrow streets and bends of cities, is 

easily parked, and provides convenience by reducing costs. The biggest reason for 

choosing small vans is the need to carry loads of a certain size and weight. For this, the 

powerful engine and torque it will have and the speed and acceleration it will use when 

carrying loads in the city are important [40]. 

The sales share of electric light commercial vehicles worldwide was 3.6%, accounting 

for one quarter of passenger cars. Battery electric vehicles (BEV) constitute 98% of electric 

light commercial vehicle sales. There are reasons for this situation, such as intensive use, 

driving range, wide geographical coverage, lower maintenance and service costs, and the 

promotion of BEVs. Among light commercial vehicles sold globally, Korea had the largest 

share of electric vehicles with 27%. This situation was realized as 15% in China. In the EU 

and US markets, the share of electric light commercial vehicles in sales remained below 

10%. Countries regarding light commercial vehicles have made changes to their incentive 

plans and reduced their support per vehicle. Despite this, world light commercial vehicle 

sales have continued to increase [36]. 

Choosing the most suitable electric transportation vehicle is important, especially from 

the perspective of cost-benefit analysis and price-performance. Electric vehicles have 

different performance characteristics based on multiple criteria. A significant number of 

Multi-Criteria Decision Making (MCDM) methods have been used in the past. Moreover, 

we come across thousands of examples of modified versions of methods with the authors' 

intention of improvement. Kijewska et al. [41] evaluated the electric freight vehicles used 

in city logistics within the framework of their technical specifications using the 

PROMETHEE method. It was evaluated according to engine, battery, price and 

performance and sub-factors. Price and engine were the most influential factors. EVI Walk-

In Van and MT-EV WIV vehicles according to engine factor features; According to the 

price factor, eWolf Omega 0.7, Motorcars SUV and Zero Truck vehicles were chosen as 

the best. Ecer [42] used MCDM techniques (SECA, MARCOS, MAIRCA, COCOSO, 
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ARAS and COPRAS) to evaluate battery electric vehicles (BEV) such as battery, 

acceleration, range, price, etc. It tried to identify the best one by sorting it according to its 

technical features such as. The most important features were found to be price, allowable 

load and energy consumption, and as a result of the sensitivity analysis, Tesla Model S was 

chosen as the best BEV. 

In their study to rank electric vehicles with the MCDM method and select the best 

among them, Sonar, Kulkarni [43] used the AHP method to determine the weights of the 

criteria and the MABAC method to select electric vehicles. As a result, Hyundai Kona was 

chosen as having the best performance among all the selected alternatives. Tata Tigor 

model is also suitable for those looking for a low-priced vehicle. Chawla et al. [44] selected 

the best electric scooter according to five criteria: price, engine power, driving range, 

maximum speed and battery charging time, using the integrated MCDM model. Fuzzy 

AHP was used to calculate the weights, and the TOPSIS method was used to rank the 

alternatives. According to the results, battery charging time was determined to be the 

feature with the most weight, and engine power was found to be the feature with the least 

weight. If all criteria are weighted equally, Ola S1 Pro is found to be the best model, and 

according to AHP's weighting, Simple One is found to be the best model. Pradhan et al. 

[45] introduced a model that allows consumers to choose the most suitable electric vehicle 

based on two sets of criteria using the MCDM method. The Quality Function Distribution 

(QFD) model was used to weight the criteria. Hyundai Kona Electric was chosen as the 

most suitable model with the highest score. 

Puška et al. [46] evaluated 9 small vans according to 12 criteria using a mixed method 

consisting of Entropy, CRITIC and MEREC weight determination methods. Charging time 

and cargo volume were determined as the most important criteria. According to most 

conditions, the Toyota Proace City Verso Electric L2 model was chosen as the most 

suitable model. In the evaluation made with the MEREC method, the Renault Kangoo E-

Tech model came to the fore. Saxena, Yadav [47] used the Fuzzy Analytic Hierarchy 

Process (FAHP) to determine the importance levels of factors for the adoption of electric 

light commercial vehicles in India. A telephone survey was administered to 32 logistics 

operators and their opinions on the impact of the selected factors were obtained. High 

capital costs, driving range concerns and long charging times have been found to be the 

most important negatives in the adoption of electric light commercial vehicles. 

Tian et al. [48] determined the weights and importance levels of the criteria that are 

important in the selection of electric vehicles with the MCDM method based on sensitivity 

analysis. It made weighting by combining the best-worst method and the deviation 

maximization method. The ranking of electric vehicles was carried out with the extended 

ORESTE based on HIFS. In the evaluation made based on comfort, cost performance, 

appearance, interior space, fuel consumption, space, handling and power criteria and 

consumer comments, Toyota's LEVIN HEV E+ was determined as the most superior model 

among the alternatives. While consumers were very satisfied with the appearance criterion, 

they expressed more negative statements about fuel consumption. Wang et al. [49] tried to 

identify electric distribution vehicles with the best features in urban logistics by using 

fuzzy-coarse SWARA and MARCOS methods. According to the fuzzy-rough SWARA 

method, the most important features in choosing an electric distribution vehicle were found 

to be the range and price of the vehicle. According to the fuzzy-coarse MARCOS method, 

in line with the opinions of experts, Kangoo E-Tech Electric was determined as the vehicle 

with the best features and was confirmed by sensitivity analysis. 
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2.3 Normalization, MCDM and Sensitivity Analysis 

The word ‘sensitivity’ is derived from the Latin ‘sensibilitas’ meaning ‘capacity to 

feel’. Over time, the term has evolved in both meaning and usage. For example, this 

concept also includes some meanings related to awareness, reaction, and response. As in 

many scientific fields, sensitivity analysis in the MCDM methodology is more concerned 

with the degree to which the change of a certain input affects the final results [10,50]. So, 

in general terms, sensitivity analysis is about the relationship between the influencer and 

the affected. It is a comparative study of why the affected are affected too much, too little, 

or at average levels, rather than the influencer. The general judgment or acceptance on this 

issue is that high sensitivity for MCDM methods is considered to be a negative situation 

because it means being easily affected by an impact factor. It is claimed that an overly 

sensitive MCDM sequence also reduces quality because it deviates from the ideal more 

easily and is damaged more quickly. Although this determination seems reasonable and 

correct in general, sometimes it is useful to determine whether the sensitivity of an MCDM 

can be positive or not. A positive sensitivity cannot be considered negative. To give real-

life examples, it is sometimes desirable for a sensor device to be extremely sensitive, and 

this is beneficial. Therefore, when you change the weight coefficients of an MCDM method 

(perhaps because it is the right thing to do), it may be positive that the rankings change a 

lot. Especially if sensitivity is measured with the help of a specific reference point, the 

results can be interpreted more meaningfully. 

As explained above, sensitivity analysis for MCDM methods generally refers to the 

degree to which a final ranking is affected by one or more inputs [51]. Frequently, attempts 

have been made to measure the effect of changing weight coefficients on the sensitivity of 

the ranking [52,53]. However, for example, normalization may also be a determinant of 

sensitivity. It can be said that sensitivity has not been examined systematically and in-

depth. In studies where robustness evaluation is made, the effect of the change in weights 

on sensitivity is meant. However, the effect of other components on the change of MCDM 

results seems to be generally neglected [54]. The concept of sensitivity should not be 

understood as just changing a few MCDM components. It can be easily observed how 

changing any MCDM input component affects the results, provided that other factors are 

kept constant. These MCDM components include data type, criteria, alternatives, weight 

coefficient, normalization techniques, MCDM basic algorithm and even threshold values, 

preference function, etc. It might even happen. Moreover, changing the MCDM basic 

equation itself and evaluating the ranking results is a common sensitivity analysis. Of 

course, not every impact factor changes the rankings in the same direction and degree. For 

example, in PROMETHEE, a threshold value or preference function parameter may not 

affect MCDM results as much as changing the weight coefficients. 

The intention and purpose behind performing the sensitivity analysis of MCDM is 

related to the choice of the best of the alternatives for the decision-maker. In other words, 

decision-makers perform sensitivity analysis to make a sound decision or avoid a wrong 

choice. In this context, choosing a reliable and robust MCDM tool is useful in choosing the 

most appropriate alternative for a problem. [54,11-14]. Therefore, the health of a 

measurement can also ensure the reliability of the decision. On the other hand, the 

sensitivity level of an MCDM method may vary depending on the conditions, especially 

the data and the problem. Many influencing factors such as what the problem is, data type, 

number of alternatives and criteria, weight coefficients, normalization, and the basic 
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MCDM equation can explain this situation. Therefore, to keep the work more robust, 

authors have used more than one method simultaneously for a given problem in the past. 

Instead of choosing the most appropriate alternative using a single method, it is suggested 

to compare the procedures applied and the results obtained with the results obtained by 

other methods [55]. According to the highlighted definition, sensitivity analysis can be 

performed depending on any parameter or input change. 

As a different example, Triantaphyllou and Mann [16] also pointed out the 

normalization technique and "rank reversal", which means that the change of alternatives 

disrupts consistency. On the other hand, among the sensitivity analysis techniques for 

MCDM methods, even the Monte Carlo simulation method has been used on initial data 

[56]. On the other hand, if you look carefully, the fact that normalization techniques have 

different calculation procedures and, as a result, produce different ranking results (provided 

that other MCDM components are kept constant) is a source of concern for the decision-

maker. These procedures mean that very different sequences or alternative solutions are 

produced even when tested in a fixed MCDM method. There is almost a consensus in the 

literature that normalization or data transformation techniques directly affect the results. 

Moreover, the best method for all scenarios cannot be mentioned for now [24,57-63]. The 

findings in the literature are quite controversial in terms of whether the answer sought 

regarding the choice of normalization is correct or appropriate. Although some 

normalization techniques are rejected and some are highlighted depending on the data 

structure or statistical tools such as standard deviation and entropy, it can be said that there 

is not yet a solid, consistent, and reliable objective criterion required for normalization 

selection [24]. 

According to the general opinion in past studies, a low-sensitivity MCDM method that 

maintains the order of all alternatives by changing the weight coefficients and prevents 

drift is consistent and acceptable [54]. Even if this is generally true, it is problematic to 

understand sensitivity only by changing the best alternative. Because hypothetically, when 

you choose the wrong weighting method, there is the possibility of choosing the wrong 

alternative, and when you choose the right weighting method, there is a possibility of 

choosing a correct and different alternative. Therefore, the best alternative may change as 

the weight inputs change. We think that it is useful to observe the ranking of all alternatives 

statistically, rather than observing one alternative as in the study here. 

3. METHODS AND MATERIALS 

In this study, we provide the selection of the best Small Electric Van alternative, one of 

the environmentally friendly mobile vehicles, with MCDM, based on an innovative 

sensitivity model analysis based on the selection of an appropriate normalization. And we 

show methodologically whether this choice is a reasonable choice. As it is known, there 

are at least 200 MCDM methods available, and moreover, there is no common trend 

regarding which one to choose. Recently, many authors have been trying to legitimize their 

chosen or newly produced MCDM algorithms with sensitivity analysis. We would like to 

demonstrate the degree of verifiability of these efforts with the model we propose here. 

Additionally, in this study, we showed that classical sensitivity analysis can be objectively 

criticized, and then we focused on developing an alternative sensitivity analysis. Some 
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information about the methodological framework we used in the selection of an Small 

electric Van is included in Table 1 below.  

Table 1 Normalization methods, MCDM Methods, Performance Criteria and Weighting 

Technique used in this Study 

Normalization 

Method 

Weighting 

Method 

MCDM 

Methods 
Performance Criteria 

Sum, Vector, Min-

Max, Max, Rank 

Based, Z-Score, 

Decimal 

Entropy, Equal, 

CRITIC, SD, 

Subjective 

PROBID, 

SAW and 

CODAS 

Acceleration, Electric Range, Total 

Power, Fastcharge Time, Efficiency, 

Useable Battery, Weight Unladen, Cargo 

Volume, Total Torque, Top Speed 

 

The phases shown in Fig. 1 were used during the implementation of this research. 

 
 

Fig. 1 Flow diagram of the study 

We aim to provide a gold standard insight into which data transformation/normalization 

technique should be chosen for the best Small e-Van selection (and other MCDM 

problems) through the performance-sensitivity pattern matching proposed in Figure 1. We 

measure how the sensitivity of an MCDM method is affected by changing the weight 

coefficients and normalization techniques individually each time. 
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3.1 Performance Criteria 

Although Small e-Van have many technical features, detailed explanations based on 

the literature of the technical criteria used in the analysis part of the study are mentioned 

below. 

Acceleration (C1 Criteria): It shows how many seconds the vehicle can reach 100 

kilometers. As it is known, in current technology, "acceleration" is a factor that increases 

energy consumption. A small amount of acceleration increases energy consumption by 

several hundred percent [64]. In their study, Sovacool et al. [65] found that, as an 

interesting finding, male participants gave more importance to "acceleration" than women. 

Electric Range (C2): The Range criterion is an element that shows how many 

kilometers the electric vehicle can travel with a full battery. Electric vehicles find a place 

in the market mostly due to their high level of acceleration. However, this reduces energy 

efficiency and shortens the range distance [64]. The issue of range is expressed as the 

biggest problem in electric vehicles. It is estimated that the range limitation problem will 

be solved by developing battery technology [66]. 

Total Power (C3): Total Power is the motive power of the vehicle, which expresses the 

horsepower in internal combustion engine vehicles [66]. As the weight of the battery in 

electric vehicles increases, it increases the total power demand and decreases its efficiency 

[65,64]. 

Fastcharge Time (C4): As a feature that increases the preference for electric vehicles, 

"fastcharge time" ensures that the range barrier is ignored in the purchasing choice. [67], 

who examined the relationship between daily driving distance and standard and fast 

charging mechanisms, found that fast charging is more effective. Nilsson, Nykvist [68] 

stated that charging technology should be improved, long-range vehicles should be charged 

very quickly, and this will reduce the current charging time by half. 

Efficiency (C5): It refers to the fuel efficiency of electric vehicles, that is, the efficiency 

of the battery system. Therefore, the performance of batteries is very important for electric 

vehicles. The efficiency of the battery is also expressed by power density. It shows the 

amount of power the battery can transmit without being damaged [69]. In the study by 

Egbue, Long [66], participants stated that electric vehicles save fuel and are more efficient 

than motor vehicles. 

Useable Battery (C6): The battery technology of electric vehicles continues to be 

developed today. The usable battery is the capacity that indicates that 95%-99% of it can 

be used even though it shows 100% on the vehicle's dashboard. Vehicle manufacturing 

companies use software that prevents the battery from charging up to 100% to keep it 

healthy [70]. Agrawal et al. [71] described the useable battery as “the duration within which 

the maximum EV battery capacity gradients below a certain threshold of its original 

capacity and needs to be replaced for regular use”. 

Weight Unladen (C7): It refers to the weight of the vehicle without a load. Curb weight 

is the weight of a vehicle that includes all its equipment, tires, other in-vehicle accessories, 

and at least 90% energy filling required during production [72]. The share of batteries in 

the weight of electric vehicles is large. As electric vehicle technology develops, the weight 

of the battery should be reduced without reducing the performance of the vehicle [42]. 

Cargo Volume Max. (C8): It refers to the load that the vehicle can carry if the rear seats 

are folded or completely removed. The highest cargo volume affects the vehicle's energy 

consumption. Therefore, the range that the vehicle can travel may vary depending on the 
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battery capacity [73]. Aiello et al. [74] stated that the maximum carrying capacity should 

be taken into account when comparing vehicles that will perform urban distribution 

activities. 

Total Torque (C9): It refers to the rotational power of the vehicle's engine. Direct-

current electric motors are used for the movement of electric vehicles. Although these 

engines have different features, the torque required in the vehicles is the same. Torque 

constitutes part of the power that enables the wheels and also the vehicle to move [75]. 

Top Speed (C10): It refers to the highest speed level reached by the electric vehicle. 

Jensen et al. [76] found that participants' opinions about top speed changed before and after 

using an electric vehicle. Electric vehicles with a maximum speed below 120 km/h were 

not accepted by the participants. 

3.2 Normalization Methods 

The sensitivity of an MCDM method to the type of data normalization is not an issue 

that is often addressed in sensitivity analyses. We propose a rare use case in sensitivity 

analysis. Below is information about normalization types and equations [77,78,61,25].  

For Sum normalization: 

 Fij=
fij

∑ fkj
m
k=1

     i∈{1,2,…,m}; j∈{1,2,…,n} (1) 

For Vector normalization: 

 Fij=
fij

√∑ fkj
2m

k=1

     i∈{1,2,…,m}; j∈{1,2,…,n} (2) 

For Minimum-Maximum normalization: 

 Fij=
fij-mini∈mfij

maxi∈mfij-mini∈mfij
     i∈{1,2,…,m}; j∈{1,2,…,n} for benefit objectives 

               Fij=
maxi∈mfij-fij

maxi∈mfij-mini∈mfij
      i∈{1,2,…,m}; j∈{1,2,…,n} for cost objectives 

(3)
 

For Maximum normalization: 

 Fij=
fij

maxi∈mfij
     i∈{1,2,…,m}; j∈{1,2,…,n} for benefit objectives 

                Fij=
mini∈mfij

fij
     i∈{1,2,…,m}; j∈{1,2,…,n} for cost objectives  

(4)
 

For Ranking based data conversion: 

For each criterion, the best value is assigned first rank, while the worst value is assigned 

n rank. Thus, the weighted preference function for the unit cell in each criterion column is 

calculated as follows: 

 Fij= rij×wj  (5) 

where rij is the rank of solution i for criteria j. This data conversion method is recommended 

as an alternative to the normalization method. This method is used instead of normalization 

techniques in the FUCA method. 
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For Z-score normalization: 

 nij= 
xij- μj

σj
 = 

xij- 
∑ xij

m
i=1

m

√
∑ (xij- μj)

2m
i=1

m

    nij=- 
xij- μj

σj
 (6) 

Z-score refers to the measurement of the standard deviation of a value from the mean 

of a given distribution. 

For decimal normalization: 

This method moves the decimal point of series values. The movement of decimal points 

depends on the number of digits of the maximum value in the series. Decimal scaling 

produces a normalized series with values in the range 0 to 1; where d is the number of 

digits of the maximum value. 

 Fij=fij/10d         i∈{1,2,…,m}; j∈{1,2,…,n} (7) 

3.3 MCDM Methods 

3.3.1 Preference Ranking on the Basis of Ideal-Average Distance (PROBID) Method 

In this study, a new MCDM method, PROBID, (and CODAS as an alternative) were 

used. In 2021, Wang et al. [77] developed the PROBID method, which follows a similar 

methodology to the distance-based TOPSIS and VIKOR methods. The mathematical stages 

of the PROBID method can be followed below. The basic idea of the PROBID method is 

that it covers ideal solutions from the most positive ideal solution (PIS) to the most negative 

ideal solution (NIS). In this respect, PROBID is actually similar to methods such as 

TOPSIS and VIKOR. The PROBID calculation comprises six steps [77]: 

Phase 1. By applying Vector transformation, an initial decision matrix containing m 

rows and n columns is obtained. 

 Fij=
fij

√∑ fkj
2m

k=1

     i∈{1,2,…,m}; j∈{1,2,…,n} (8) 

Phase 2. A weighted decision matrix is obtained by multiplying each column by a 

determined weight coefficient: 

 𝑣𝑖𝑗 = 𝐹𝑖𝑗 × 𝑤𝑗     𝑖 ∈ {1,2, … ,𝑚};  𝑗 ∈ {1,2, … , 𝑛}  (9) 

Phase 3. The highest value PIS is determined (A(1)), 2nd PIS (A(2)), 3rd PIS (A(3)), …, 

and mth PIS (A(m)) (i.e., the most NIS). 

 A(k)={ (Large(vj,k)|j∈J),  (Small(vj,k)|j∈J') }={v(k)1, v(k)2,v(k)3, …,v(k)j,…, v(k)n} (10) 

Where, k ∈ {1,2,...,m},  J= set of benefit objectives from {1, 2, 3, 4, …, n}, J’ = set of 

cost objectives from {1, 2, 3, 4, …, n}, Large (vj,k ) means the kth largest value in the jth 

weighted normalized objective column (i.e., vj) and Small (vj,k) means the kth smallest 

value in the jth weighted normalized objective column (i.e., vj). Then, find the average value 

of each objective column.  

 v̅j=
∑ v(k)j

m
k=1

m
     for  j∈{1,2,…,n} (11) 
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The average solution is then: 

 A̅={v̅1, v̅2, v̅3,…,v̅j, …, v̅n } (12) 

Phase 4. Calculate the Euclidean distance of each solution to each of the m ideal 

solutions as well as to the average solution: 

 Si(k)=√∑ (vij-v(k)j)
2n

j=1      i∈{1,2,…,m}; k∈{1,2,…, m} (13) 

Then, the distance to average solution is found as: 

 Si(avg)=√∑ (vij-v̅j)
2n

j=1  i∈{1,2,…,m} (14) 

Phase 5. At this stage, the overall positive-ideal distance, which is the weighted total 

distance of a solution to the first half of the ideal solutions, is determined: 

 Si(PIS)=

{
 

 ∑  
1

k
S

i(k)

m+1

2

k=1
i∈{1,2,…,m} when m is an odd number

∑  
1

k
S

i(k)

m

2

k=1
 i∈{1,2,…,m} when m is an even number

 (15) 

And, determine the overall negative-ideal distance, which is essentially the weighted 

sum distance of one solution to the second half of ideal solutions.  

 Si(NIS)={

∑  
1

m-k+1
Si(k)

m

k=
m+1

2

i∈{1,2,…,m} when m is an odd number

∑
1

m-k+1
Si(k)

m

k=
m

2
+1

 i∈{1,2,…,m} when m is an even number
 (16) 

Here, weight is increasing with the ideal solution number (i.e., k increasing to m). 

Overall positive-ideal and negative-ideal distances of each solution (i = 1, 2, ..., m) are thus 

calculated by equations 8 and 9 respectively. 

To better visualize the calculations of ideal and non-ideal distances, a small dataset with 

4 Pareto-optimal solutions (S1, S2, S3, S4) and 2 objectives (F1 and F2) is plotted in Fig. 2. 

As shown, the green (continuous) arrowed line S4(3), for example, represents the Euclidean 

distance between optimal solution S4 to the 3rd PIS (A(3)). Following equations (8) and (9), 

S4(pos-ideal) = S4(1) + (1/2) S4(2) and S4(neg-ideal) = (1/2) S4(3) + S4(4). 

Phase 6. Calculate the PIS/NIS ratio (Ri) and then performance score (Pi) of each 

solution as follows: 

 Ri=
Si(pos-ideal)

Si(neg-ideal)   
     i∈{1,2,…,m} (17) 

 Pi=
1

1+Ri
2 +Si(avg)     i∈{1,2,…,m} (18) 

On the other hand, the MCDM method called sPROBID is a simple variation of 

PROBID. The first 4 steps of sPROBID are the same as those of PROBID. In stage five, 

instead of using the first half of ideal solutions to find Si(PIS) and the second half of ideal 

solutions to find Si(NIS), sPROBID considers only the top and bottom quarters of ideal 

solutions for finding Si(PIS) and Si(NIS), respectively.  
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 Si(pos-ideal)= {
∑  

1

k
S

i(k)

m\4
k=1 i∈{1,2,…,m} when m≥4

Si(1) i∈{1,2,…,m}      when 0<m<4
 (19) 

Here, m\4 is the integer quotient of m divided by 4, which discards the remainder and 

retains only the integer portion. In case the number of Pareto-optimal solutions is smaller 

than 4, only the Euclidean distance between optimal solution Si and the most PIS is taken. 

 Si(neg-ideal)= {
∑  

1

m-k+1
Si(k)

m
k=m+1-(m\4) i∈{1,2,…,m}  when m≥4

Si(m) i∈{1,2,…,m}                                 when 0<m<4
 (20) 

Where, m+1-(m\4) gives the starting position of calculating negative-ideal distance. If 

fewer than 4 non-dominated solutions exist, only the Euclidean distance between optimal 

solution Si and the mth PIS (i.e., most NIS) is taken.  

In step six of sPROBID, the final score is simplified to the ratio of negative-ideal 

distance over positive-ideal distance.  

 Pi=
Si(NIS)

Si(PIS)   
     i∈{1,2,…,m} (21) 

The farther a solution is from NIS and the closer it is from PIS, the higher the 

performance score 𝑃𝑖. The solution with the highest 𝑃𝑖 is recommended to the decision 

maker. 

3.3.2 Combinative Distance-Based Assessment (CODAS) 

In the CODAS method, which has become popular in the last five years, the ranking 

performance of an alternative is measured by its distance from the negative ideal point [77]. 

Each pair of alternatives is compared according to their distance from this ideal value. 

Here, the superiority of the alternatives over each other can be determined by two criteria. 

The priority criterion is the Euclidean distance of the considered alternatives to the negative 

ideal (in cases where the Euclidean distance cannot be used, taxi distance is preferred as an 

alternative). This distance-based method, somewhat similar to TOPSIS, is actually 

preferred in cases where the best alternative has the farthest distance from the negative 

ideal [79]. 

3.3.3 Simple Additive Weighting (SAW) 

The score for each alternative is calculated as follows: The final score is the sum of the 

normalized value multiplied by the predetermined weight coefficient across the entire row 

for each criterion. In other words, it represents the weighted total score for each alternative. 

Among the selected alternatives, the one with the highest score is considered the best 

solution [80]. 

3.3.4 Weighted Methods 

The most common use of sensitivity analysis is the sensitivity of an MCDM to weight 

coefficients. Below is information about five different weight coefficient assignment 

methods [77,80,81]. 

The Entropy approach involves the subsequent three stages.  
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Stage 1. Normalize the first decision matrix: 

 Fij=
fij

∑ fkj
m
k=1

     i∈{1,2,…,m}; j∈{1,2,…,n} (22) 

Stage 2. Calculate the Entropy of values of each criterion: 

 Ej=-
1

ln(m)
∑ (Fij ln Fij) 

m
i=1      j∈{1,2,…,n} (23) 

Stage 3. Determine the weight for each criterion: 

 wj=
1-Ej

∑ (1-Ej)
n
j=1

          j∈{1,2,…,n} (24) 

for benefit and cost criteria 

 Fij=
fij-mini∈mfij

maxi∈mfij-mini∈mfij
, Fij=

maxi∈mfij-fij

maxi∈mfij-mini∈mfij
 (25) 

According to that, calculate the Standard Deviation method of values of each criterion: 

 σj=
√∑ (Fij-Fj

m
i=1 )

2

m
 (26) 

CRITIC Weighted Method (Criteria Importance Through Intercriteria Correlation) has 

three phases. 

Phases 1: “m” is the number of rows and “n” is the number of columns; 

 Fij=
fij-mini∈mfij

maxi∈mfij-mini∈mfij
     i∈{1,2,…,m}; j∈{1,2,…,n} If it is beneficial (27) 

 Fij=
maxi∈mfij-fij

maxi∈mfij-mini∈mfij
      i∈{1,2,…,m}; j∈{1,2,…,n} If it is cost-oriented (28) 

Phases 2: A binary correlation matrix is created to measure the dependency/correlation 

between two criteria. 

 ρ
jk

=
∑ (Fij-Fj

m
i=1 )(Fik-Fk)

√∑ (Fij-Fj
m
i=1 )

2√∑ (Fik-Fk
m
i=1 )

2
     j,k∈{1,2,…,n} (29) 

Phases 3: The standard deviation of the criteria is calculated. 

 σj=
√∑ (Fij-Fj

m
i=1 )

2

m
     j∈{1,2,…,n} (30) 

Here, 𝐹𝑗 =
1

𝑚
∑ 𝐹𝑖𝑗
𝑚
𝑖=1 . It is the arithmetic mean of the jth normalized objective values. 

Finally, the weight coefficients for each criterion are determined as follows. 

 cj=σj∑ (1-n
k=1 ρ

jk
)   j∈{1,2,…,n}, wj=

cj

∑ ck
n
k=1

      j∈{1,2,…,n} (31) 

Mean/Equal Weighting Method: The equal weighting method is the simplest way to 

create weights for each criterion. It is based on the assumption that all n criteria are of equal 
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importance. It is based on the assumption that all n criteria are of equal importance and 

therefore equal weight coefficients are assigned to each:   wj= 1/n    j = ∈{ 1, 2, .....n} 

Finally, subjective weighting was also used in practice. Weight coefficients are 

assigned high by the author, especially for some criteria, to better understand the sensitivity 

of MCDM and to show it to the reader. 

3.3.5 Statistical Method Used 

In this study, the relationship between MCDM performance results and price was 

obtained by Spearman Rank Correlation. We should emphasize that our aim here is part of 

sensitivity analysis. We would like to remind you that as MCDM results change, the 

existing relationships with the fixed reference point also change. This change means 

sensitivity. The Spearman rank correlation coefficient measures the statistical dependence 

between two ranking-based variables [82,83]: 

 rs=1- 
6 ∑di

2
 

n (n2  -1)
   

Here, rs is the symbol for Spearman's Rho coefficient. di is the symbol for the difference 

between pairwise rankings. And n represents the number of alternatives in the formula. 

4. APPLICATION 

When purchasing an small e-van in transportation and logistics, people also pay 

attention to the technical features of the vehicles. This situation becomes more prominent 

when purchasing an electric vehicle because it is difficult to choose the best alternative for 

matrix problems where the alternatives and criteria are numerous. Moreover, evaluation 

methodologies such as weighting coefficient, normalization selection and sensitivity 

analysis are also used for this selection. We rather help them by guiding them to make a 

reasonable decision. There are 51 Small e-Van categories for our study. The data regarding 

the brands, models, 10 different criteria and price amounts of the vehicles in this category 

were obtained from the open access web address ‘https://ev-database.org/’ [84]. The price 

of each Small electric Van is in euro currency.  

It is a known fact that normalization affects MCDM results [85,86]. We show how this 

affects sensitivity in the following application from an innovative gold standard 

perspective. The matrix in Table 2 shows the alternatives (Small electric Van models and 

brands), criteria (performance dimensions), and price information. 

The small e-van used in the study are all brands and models between 2020-2023. Tables 

3-5 show the Spearman Correlation (rho) results between price and MCDM rankings for a 

total of 105 different scenarios with PROBID, SAW, and CODAS methods. While reading 

the table, we can read from two different perspectives: row and column. If we read along 

the lines, this means that we must first assume that the normalization method will be 

constant. On the other hand, when we read from the column, this means that we act with 

the assumption that the weight assignment method will be constant. Thus, we can see from 

the table that the relationship levels with price always change. In other words, provided 

that all components remain constant, either the weight coefficient or the normalization type 

is changed and the correlation results are monitored. 
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Table 2 Alternatives (A), performance criteria (C) and price information for Small 

Electric Van selection 
 

C1 C2 C3 C4 C5 C6 C7 C8 C8 C10 PRICE 

A1 135 11.7 205 100 26 226 46.3 1739 2126 260 32790 

A2 135 11.7 205 100 26 226 46.3 1813 2693 260 43640 

A3 130 12.1 185 100 26 250 46.3 1969 3061 260  51940 

A4 130 13.3 265 100 38 257 68 2131 3061 260 57940 

A5 130 12.1 180 100 26 257 46.3 1989 3497 260 52730 

A6 130 13.3 260 100 38 262 68 2161 3497 260  58730 

A7 130 12.1 185 100 26 250 46.3 1969 3061 260  53640 

A8 130 13.3 265 100 38 257 68 2131 3061 260 59640 

A9 130 12.1 180 100 26 257 46.3 1989 3497 260  54430 

A10 130 13.3 260 100 38 262 68 2161 3497 260 60430 

A11 130 12.1 185 100 26 250 46.3 1969 3061 260  55990 

A12 130 13.3 265 100 38 257 68 2140 3061 260 61990 

A13 130 12.1 180 100 26 257 46.3 1989 3497 260 56990 

A14 130 13.3 260 100 38 262 68 2167 3497 260 62990 

A15 180 9.2 345 180 50 261 90 2385 2179 350 68990 

A16 132 12.6 225 90 40 200 45 1874 1979 245 49445 

A17 160 12 210 150 44 286 60 2531 5010 362 68949 

A18 160 12 210 150 44 286 60 2501 4630 362 68056 

A19 160 12.1 310 150 41 290 90 2660 5010 362 72519 

A20 160 12.1 310 150 41 290 90 2635 4630 362 71626 

A21 160 12 205 150 28 293 60 2405 4990 366  61571 

A22 160 12 305 150 41 295 90 2555 4990 366 65140 

A23 160 12 210 150 28 286 60 2380 4630 366  60678 

A24 160 12 310 150 41 290 90 2530 4630 366 64248 

A25 132  12.6  225 90 40  200 45 1872 1730 245 39990 

A26 135 11.7 205 100 26 226 46.3 1739 2126 260 43050 

A27 135 11.7 200 100 26 232 46.3 1813 2693 260 44750 

A28 130 12.1 180 100 26 257 46.3 1989  3497 260 51825 

A29 130 13.3 260 100 38 262 68 2161 3497 260 57775 

A30 130 12.1 185 100 26 250 46.3 1969 3061 260 50992 

A31 130 13.3 265 100 38 257 68 2131 3061 260 56942 

A32 130 12.1 180 100 26 257 46.3 1989 4900 260 64075 

A33 130 13.3 260 100 38 262 68 2161 4900 260 70075 

A34 130 12.1 185 100 26 250 46.3 1969 4900 260 63250 

A35 130 13.3 265 100 38 257 68 2131 4900 260 69250 

A36 130 13.1 185 100 26 250 46.3 1989 3497 260 52730 

A37 130 14.3 260 100 38 262 68 2161 3497 260 58730 

A38 130 13.1 185 100 26 250 46.3 1969 3061 260 51940 

A39 130 14.3 265 100 38 257 68 2131 3061 260 57940 

A40 135 11.7 200 100 26 232 46.3 1841 2693 260 42440 

A41 135 11.7 205 100 26 226 46.3 1765 2126 260  41240 

A42 130 13.1 185 100 26 250 46.3 1989 3497 260  54430 

A43 130 14.3 260 100 38 262 68 2161 3497 260 60430 

A44 130 13.1 185 100 26 250 46.3 1969 3061 260 53640 

A45 130 14.3 265 100 38 257 68 2131 3061 260  59640 

A46 132 12.6 220 90 40 205 45 1870 2500 245  39300 

A47 135 11.2 210 100 26 220 46.3 1739  2126 260 37800 

A48 135 11.2 205 100 26 226 46.3 1813 2693 260 40150 

A49 130 13.1 260 100 38 262 68 2161 3497  260 65385 

A50 130 13.1 265 100 38 257 68 2131 3061 260  64530 

A51 145 10.2 345 150 30 223 77 2459 2123 310  64581 
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If the correlation results are very volatile or have high variability, it means that the 

sensitivity of that MCDM ranking will be high. So, the table below primarily shows that 

each of the 7 different normalization types and 5 weighting methods are used in different 

scenarios together with CODAS, PROBID, and SAW. In addition, the degree of 

relationship between 105 different MCDM rankings and price was obtained. The variation 

of all correlations in the table (on a methodological basis) can be measured by “standard 

deviation”, thus providing an innovative measure of sensitivity. What we mean by the 

concept of average here is the average correlations between price and a method or 

technique. Standard deviation is the measure of the degree of change in the correlations 

produced by the same MCDM sequence, that is, it expresses the degree of sensitivity of the 

PROBID, CODAS, and SAW methods. Table 3 shows the Spearman Correlation (rho) and 

standard deviation results between price and PROBID rankings for a total of 35 different 

scenarios. 

Table 3 Sensitivities of the PROBID Method to Weights and Normalization Types 

 Entropy SD CRITIC Equal Subjective StDv Average 

Sum 0.918 0.93 0.24 0.92 0.329  0.314 0.667 

Vector 0.917 0.929 0.24 0.92 0.329  0.314 0.667 

Min Max 0.897 0.877 0.863 0.878 0.762  0.048 0.855 

Max 0.889 0.875 0.847 0.876 0.843  0.018 0.866 

Rank Based 0.765 0.73 0.742 0.159 0.21  0.276 0.521 

Decimal 0.917 0.891 0.877 0.909 0.892  0.014 0.897 

Z-Score 0.762 0.318 0.021 0.207 0.277  0.245 0.317 

StDv 0.066 0.204 0.338 0.325 0.275    

Average 0.866 0.793 0.547 0.696 0.520    

Table 3 clearly shows that in general, low sensitivity (standard deviation) in an MCDM 

ranking is matched to produce high correlation (rho) with price. For example, when we 

change the weight method, provided that the other components are constant, we see that 

the methods that provide the lowest standard deviation and the highest relationship with 

the price are the Decimal and Maximum methods. On the contrary, it is clear that Sum, 

Vector, Rank Based and Z-Score methods produce high sensitivity and low correlation 

with price. On the other hand, when we take a reading from the column, that is, when we 

keep the weight method constant and change the normalization method, we see that the 

Entropy method clearly produces the lowest sensitivity and the highest correlations with 

price. On the other hand, it can also be seen that the CRITIC method produces high 

sensitivity and low correlation with price. In other words, Decimal achieved the highest 

correlation average and the lowest sensitivity degree in normalization and Entropy in 

weighting. Additionally, when we create a combination of successful techniques, we notice 

that the Decimal/Entropy/PROBID combination produces one of the highest correlations 

with 92 %. While this is the case for the PROBID method, it is a matter of curiosity what 

the findings are for other methods. Because the MCDM basic algorithm may have special 

cases that prevent us from generalizing, we wanted to test the pattern matching (low 

sensitivity-high MCDM performance) we obtained here in other methods. For this purpose, 

we added the distance-based CODAS and the aggregation-based SAW method to this 

study. As can be clearly seen in the tables below, low sensitivity-high performance (or vice 

versa) patterns match here. Although the MCDM basic equation changes the results 
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slightly, the general trend is the same. Table 4 shows the rho and standard deviation results 

between price and CODAS rankings for a total of 35 different scenarios. Also, shows that 

for CODAS, in general, the low sensitivity (standard deviation) in an MCDM ranking is 

matched by producing a high relationship (rho) with price. Accordingly, it can be said that 

Entropy techniques are more successful in weighting and Sum and Vector techniques are 

more successful in normalization. On the other hand, it can also be seen that the CRITIC 

method and the Subjective weight coefficient assignment by the authors produce high 

sensitivity and low correlation with price. Additionally, when we create a combination of 

the most successful techniques, we note that it is not a coincidence that the Sum&Vector 

/Entropy/CODAS combination produces the highest correlation with 92.5%. 

Table 4 Sensitivities of the CODAS Method to Weights and Normalization Types 

 Entropy SD CRITIC Equal Subjective StDv Mean 

Sum 0.925 0.916 0.881 0.919 0.845  0.030 0.897 

Vector 0.925 0.916 0.881 0.919 0.837  0.033 0.896 

Min Max 0.773 0.384 0.289 0.359 0.105  0.219 0.382 

Max 0.832 0.569 0.098 0.429 0.273  0.251 0.440 

Rank Based 0.732 0.55 0.186 0.519 0.163  0.221 0.43 

Decimal 0.924 0.905 0.884 0.912 0.898  0.013 0.905 

Z-Score 0.911 0.907 0.887 0.907 0.82  0.034 0.886 

StDv 0.075 0.210 0.346 0.241 0.335    

Mean 0.860 0.735 0.587 0.709 0.563    

Table 5 shows the rho and standard deviation results between price and SAW rankings 

for a total of 35 different scenarios. The same seems to be true for the SAW method. Table 

5 clearly shows for the SAW method that in general the low sensitivity (standard deviation) 

of an MCDM ranking is matched by producing a high correlation (rho) with price. 

Accordingly, it can be said that Entropy techniques are more successful in weighting and 

Sum and Vector techniques are more successful in normalization. On the other hand, it can 

also be seen that the CRITIC method and the Subjective weight coefficient assignment by 

the authors produce high sensitivity and low correlation with price.  

Table 5 Sensitivities of the SAW Method to weights and normalization types 

 Entropy SD CRITIC Equal Subjective  StDv Mean 

Sum 0.913 0.908 0.886 0.911 0.89  0.011 0.902 

Vector 0.913 0.907 0.886 0.911 0.89  0.011 0.901 
Min Max 0.932 0.867 0.363 0.754 0.254  0.274 0.634 

Max 0.935 0.896 0.378 0.82 0.328  0.263 0.671 

Rank B 0.726 0.546 0.284 0.507 0.226  0.182 0.458 

Decimal 0.909 0.914 0.889 0.912 0.899  0.009 0.905 

Z-Score 0.909 0.908 0.893 0.907 0.835  0.028 0.890 

StDv 0.068 0.125 0.272 0.139 0.303    

Mean 0.891 0.849 0.654 0.817 0.617    

When we create a combination of successful techniques, we notice that the 

SUM&Vector/Entropy/CODAS combination produces one of the highest correlations with 

91.3%. Although the general trend points to this combination, the actual record was 



22 Ž. STEVIĆ, M. BAYDAŞ, M. KAVACIK, E. AYHAN, D. MARİNKOVİĆ 

produced by a specific slightly different combination: the Max/Entropy/CODAS 

combination produced the best correlation at 93.5%. Although entropy is effective, the 

interaction seems to extract the first one from a different combination. 

5. RESULTS AND DISCUSSION 

In this study, low sensitivity and high correlation production with price (and vice versa) 

seem to be a kind of “pattern matching”, which we encounter in the three methods used. In 

fact, we can see and interpret the above findings better by means of Fig. 2 (for PROBID). 

 

Fig. 2 Normalization, sensitivity and performance relationship for PROBID method 

The better MCDM rankings have lower sensitivity and develop a good relationship with 

price. This situation emerges as an infallible feature in all possible scenario sets, as can be 

observed in Fig. 2 and Fig. 3 (for CODAS). 

 

Fig. 3 Normalization, sensitivity and performance relationship for CODAS method 
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An MCDM method with low sensitivity has higher performance. In this study, we 

adjusted the sensitivity by the weight coefficient and by changing the normalization 

techniques. So, as a result, decimal-based MCDM methods gave better results. This 

interesting aspect can be easily observed in the Figs. 2 and 3, and in Fig. 4 (for SAW). 

 

Fig. 4 Normalization, sensitivity and performance relationship for SAW method 

As can be clearly seen from the graphs above, one of the determinants of sensitivity, 

regardless of the MCDM method, is the normalization techniques used. We can summarize 

other findings as follows: 

 The lowest sensitivity and highest performing data transformation tool for all three 

MCDM methods is the Decimal scaling technique. 

 On the other hand, in the opposite case, the data conversion technique that improves 

the highest sensitivity and lowest performance for an MCDM is Z-Score for PROBID, 

Min-Max for CODAS and Rank Based conversion technique for SAW. This shows that 

the interaction of the basic MCDM equation with normalization techniques also affects 

the result to some extent. 

 Max, Rank Based or Min-Max techniques appear to reduce the performance of the 

SAW method, while others result in high performance. A similar situation also applies 

to the CODAS method. For both methods, Decimal, Sum and Vector seem to be the 

best techniques. 

 It is noteworthy that the Min-Max method, which is most commonly used in the data 

pre-processing stage in artificial intelligence and machine learning algorithms, fails in 

the CODAS and SAW methods. This shows that the interaction of a calculation format 

with the type of normalization is important. In addition, although the other commonly 

used Z-Score technique performs relatively better, it is not the data conversion 

technique that produces the best performance. In fact, the worst case scenario for 

PROBID is produced with Z-Score. This shows that we need to question the widespread 

use of Min-Max and Z-Score techniques, especially in AI and ML applications. Sum 

and Vector techniques, which are two successful methods even though they are not used 

much in AI and ML studies, produced almost the same result, which is interesting. 
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 Undoubtedly, the best method for weighting was determined to be Entropy. Because 

Entropy produced the lowest sensitivity and highest correlation with price. 

 When we cluster among 105 matrices, it can be seen that the most efficient results are 

as above. However, when we only search for the combination that provides high 

correlation without classifying or clustering the 105 matrices, we reach an interesting 

result. The Max/Entropy/SAW combination was able to produce a record correlation 

of 93.5%. Let us remind here that the Entropy method generally provides the lowest 

sensitivity and highest correlation average. Thus, we can say that general trends and 

record results may differ to a certain extent. 

 As a result, it can be said that the Decimal method is the best data converter in terms of 

average relationship generation performance and low sensitivity, and on the other hand, 

the Entropy method is the best weighting method. 

 It is clear that the normalization method can bring the price-performance relationship 

to a level that can be manipulated. For example, when you choose the Decimal 

technique, it can be seen that all three MCDM methods produce a statistical relationship 

of over 90% with the price. On the other hand, tragically, when you use Z-Score for 

PROBID, you may not even produce a relationship that is significant on average. When 

you use Min-Max converter for CODAS or Rank Based converter for SAW, low 

correlations such as 38.2% and 45.78% are produced on average. 

 A much more tragic situation is this: If the CRITIC/Z-Score/PROBID combination is 

used, almost no relationship with the price can be produced (0.021%). In other words, 

if the normalization technique is chosen correctly, you will get a 90% relationship with 

the price, and if it is chosen incorrectly, you will get a 0% relationship. This shows how 

normalization and weighting coefficient combined manipulate the results. 

 Another meaning of this is the following: If we look at the situation in the example of 

ML or AI studies, to look for a relationship between two variables such as x and y, let 

us assume that the relationship is detected in the first case. In another normalization 

case, there may be no relationship at all. This strange situation will also affect causality 

analyses. 

 The sensitivity rating-performance level coupling for MCDM in this study appears to 

be a unique pattern matching discovery. 

 We propose an alternative framework on how to determine the best alternative for 

PROBID, SAW and CODAS: If we look at the overall performance results, it is a fact 

that the three methods jointly produce the most efficient results with Decimal scaling 

& Entropy weight coefficient. In this case, the best alternative for all three MCDMs is 

common: the “Mercedes EQV 300 Extra-Long”, which is the A19 alternative. 

 When we look at the ranking of other alternatives for PROBID, the second alternative 

is the A22 model and the third alternative is the A24 model. The A46 alternative is in 

last place. 

 When we look at the ranking of other alternatives for CODAS, the second alternative 

is A22 and the third alternative is A20. The A26 alternative is in last place. 

 When we look at the ranking of other alternatives for the SAW method, the second 

alternative is A8 and the third alternative is A31. A1 and A26 are in the last place. 

 The second option we recommend for the selection of the best alternatives is this: The 

MCDM rankings that provide the highest correlation among 105 matrices, regardless of 

sensitivity, is the Sum&Vector/SD combination for PROBID. The best alternative here is 
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“Mercedes eVito Tourer Extra-Long 90 kWh” (A22). For CODAS, 

Sum&Vector/Entropy is the most performant. And the best alternative here is the 

“Mercedes EQV 300 Extra-Long” (A19). For SAW, Sum&Vector/Entropy is the most 

performant. The best alternative here is “Mercedes EQV 300 Extra-Long” (A19). The 

common best alternative for CODAS and SAW is the same. We obtained the same results 

in the evaluation above. But it is noteworthy that the result changed for PROBID here. 

 The most striking finding of this research is that we recommend that decision-makers 

be careful when choosing an electric vehicle, as choosing an incorrect or random 

normalization/data transformation technique may distort the ranking results.  

 Wrong selection of the most suitable small e-Van may mean increased costs for the 

decision-maker. A good and low-risk choice can be possible with a good methodology 

selection. It should be noted that the choice of a good normalization technique is highly 

dependent on the data, MCDM method, weight coefficient and conditions.  

 The choice of normalization technique is dynamic. A suitable MCDM configuration 

with all its components will result in a good electric vehicle choice.  

6. CONCLUSION 

In this study, a sensitive MCDM evaluation methodology was made to find the best 

alternative among Small electric Van types, which is an electric environmentally friendly 

transportation and transport vehicle. As it is known, sensitivity analysis in terms of the 

selection and robustness of MCDM methods is a subject that has been studied extra in 

recent years. The research gap in these studies is multifold. First, precision is often 

measured by weighting methods. However, the results of this study also showed that 

normalization also affects sensitivity. Second, there is no external reference point for 

sensitivity in other studies. A controversial benchmarking methodology is used as there is 

no reference point, meaning that the sentiment measurement in the MCDM rankings 

produced is novel. Thirdly, sensitivity analysis is generally done by only looking at whether 

the best alternative has changed. However, the entire ranking needs to be evaluated from a 

holistic perspective. On the other hand, sensitivity can also affect an MCDM's external 

relationships. In other words, normalization or weighted method sensitivity is decisive. 

Normalization-based sensitivity can distort or even manipulate correlations between 

MCDM performance and prices of Small electric Van alternatives when we approach the 

issue in this study example. At this point, choosing the appropriate weight coefficient and 

normalization technique is extremely critical. According to the findings obtained in this 

study, the relationship between price and performance can vary between ninety percent and 

zero percent, depending on the choice of normalization technique. In other words, while 

there is a very strong relationship between two factors, the relationship disappears with an 

incorrect normalization choice. This interesting result clearly showed decision-makers that 

the type of normalization can have a manipulative aspect if not chosen carefully in all data 

processing procedures. The selection of normalization technique is dynamic. A suitable 

data converter with all its components will result in the choice of a reliable electric vehicle. 

Finally, so far the selection of optimal components for e-vehicles was mainly based on 

established engineering criteria, such as demonstrated by Kalmaganbetov et al. [87] 

regarding the selection of planetary transmission for light e-vehicle main gearbox. In the 

future work, the methods presented here should be applied for this purpose as well.  
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