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Abstract. This study explores the influence of advanced continuum mechanics 

frameworks, specifically strain gradient theory (SGT), nonlocal theory (NLT), and 

Gurtin-Murdoch surface/interface theory (GMSIT), on the nonlinear vibrational 

characteristics of a piezoelectric nanoresonator (PENR). These findings are then 

juxtaposed with those derived from conventional continuum mechanics. The PENR is 

driven by a nonlinear electrostatic force, incorporating both static and dynamic voltage 

components, and is situated within a viscoelastic foundation of the Pasternak type. To 

dissect the nonlinear frequency response and stability of the PENR, a methodology 

combining Hamilton’s principle, Galerkin’s method, complex averaging techniques, and 

arc-length continuation is utilized. The analysis reveals that disregarding nanoscale and 

interfacial effects results in significant deviations from the actual vibrational response of 

the PENR. Notably, under diverse boundary constraints, the material length scale 

parameter (associated with SGT) induces a reduction in the PENR's rigidity, whereas the 

nonlocal scale parameter (associated with NLT) yields the opposite effect, enhancing 

stiffness. Moreover, the oscillation amplitude and the extent of instability predicted by 

the advanced theories (NLT and SGT) surpass those obtained via classical analysis. 

Fluctuations in the surface/interface parameters are demonstrated to exert a 

considerable influence on the PENR's normalized natural frequency, resonance 

frequency, resonance amplitude, nonlinear dynamics, and system stability, manifesting 

as either augmentations or diminutions contingent upon the specific parameter under 

consideration. 
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  1. INTRODUCTION  

The relentless march of technological innovation has spurred the proliferation of 

intelligent materials and adaptable structural systems [1, 2]. Within this domain, 

piezoelectric nanostructures, endowed with exceptional attributes, have garnered 

substantial interest, promising transformative applications across diverse sectors [3, 4]. 

Notably, piezoelectric shell architectures are extensively deployed in sensing and actuation 

technologies [5, 6]. Precise dynamic analysis and mathematical modeling of these 

nanoscale systems necessitate the incorporation of scale-dependent parameters. 

Consequently, advanced continuum theories, encompassing nonlocal [7], strain gradient 

[8], and Gurtin-Murdoch surface/interface [9] frameworks, are employed to probe their 

nonlinear vibrational and dynamic behaviors. 

Drawing upon nonlocal elasticity principles, Feng et al. explored the axial vibrational 

characteristics of single-walled carbon nanotube-based mass sensors [10]. Soltani et al. 

[11] leveraged nonlocal elasticity to analyze the lateral-torsional buckling behavior of 

axially functionally graded nonlocal beams. Furthermore, Arefi demonstrated that an 

increase in the nonlocal parameter amplifies rotations, in-plane displacements, and 

transverse deflections within a piezoelectric nanoshell exhibiting double curvature [12]. 

Employing nonlocal strain gradient theory, Boyina et al. [13] investigated wave 

propagation in viscoelastic Timoshenko nanobeams under the influence of surface and 

magnetic field effects. Similarly, Liang et al. explored wave dispersion characteristics in 

lipid tubules, modeling them as shells, within the framework of nonlocal strain gradient 

theory [14]. Nonlinear vibration responses of piezoelectric nanosensors and nanoresonators 

have been addressed by Hashemi Kachapi et al. [15, 16] considering nonlocal and 

surface/interface effects. 

Adopting the Gurtin-Murdoch approach to surface elasticity, Fang et al. [17, 18] 

investigated the nonlinear buckling, post-buckling, and vibration characteristics of 

piezoelectric nanostructures. Hashemi Kachapi et al. [19, 20] employed surface/interface 

and nonlocal strain gradient effects to investigate the effects of the small scale on the 

natural frequencies, nonlinear vibration, and stability analysis of piezoelectric 

nanostructures subjected to electrostatic and harmonic excitations. 

It is noteworthy that, beyond the work of Hashemi Kachapi et al. [20], studies that 

consider simultaneously both surface and small-scale effects in piezoelectric materials 

remain scarce. Farrokhian et al. [21] investigated the vibration and damping behavior of 

smart sandwich nanotubes using nonlocal and surface piezoelasticity theories. 

Additionally, Ghorbani et al. [22] revealed that the material length scale (MLS) parameter 

augments natural frequency, while the nonlocal (NL) parameter diminishes it. Lovisi [23] 

explored the bending response of functionally graded cracked nanobeams, incorporating 

surface and nonlocal effects. Sun et al. [24] employed nonlocal and surface effects to 

analyze the buckling of piezoelectric nanoshells under external voltages and compressive 

loads. It is worth noting that in other works by Hashemi Kachapi et al. [25, 26], nonlinear 

vibration and stability analyses considering nonclassical effects were investigated for 

double-walled cases of piezoelectric nanostructures. 

While prior research has extensively explored the vibrational and stability 

characteristics of piezoelectric nanostructures, a notable gap persists in studies that 

concurrently incorporate strain gradient, Gurtin-Murdoch surface/interface, and nonlocal 

effects. The present investigation extends the research trajectory initiated by Hashemi 
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Kachapi et al [20]. However, it distinguishes itself through a distinct subject matter, 

particularly regarding the excitation forces and resulting findings, which are entirely 

independent of our previous work. Unlike the earlier study, this analysis examines a 

nanostructure subjected to a complex nonlinear electrostatic excitation, encompassing both 

direct (DC) and alternating (AC) voltage components, while also considering the influence 

of a visco-Pasternak medium. 

The primary objective of this study is to elucidate the impact of these combined effects 

on the nonlinear vibration and stability behavior of a piezoelectric nanoresonator, in 

comparison to predictions derived from classical continuum theory. To achieve this, a 

comprehensive analytical framework is employed, integrating Hamilton’s principle, the 

Galerkin method, and a hybrid complex averaging technique coupled with arc-length 

continuation. This methodology facilitates a direct comparison of three nonclassical 

theories- strain gradient theory (SGT), nonlocal theory (NLT), and Gurtin-Murdoch 

surface/interface theory (GMSIT)- with classical continuum theory (CT). Consequently, 

the study investigates the influence of nanoscale and surface/interface effects, the elastic 

medium, electrostatic and piezoelectric voltages, and other relevant parameters on the 

dimensionless natural frequency (DNF), pull-in voltage, nonlinear frequency response, and 

stability of the piezoelectric nanoresonator. 

2. MATHEMATICAL FORMULATION 

Fig. 1 depicts the configuration of a cylindrical nanoshell-based piezoelectric 

nanoresonator subjected to a visco-Pasternak medium and nonlinear electrostatic excitation. 

 

Fig. 1 A piezoelectric nanoresonator subjected to nonlinear electrostatic excitation 

The nanoresonator is actuated by a superimposed electrostatic field, consisting of an 

alternating voltage component, 𝑉𝐴𝐶 , and a direct voltage component, 𝑉𝐷𝐶. The geometric 

configuration of the piezoelectric nanoresonator is defined by the following parameters: 

mid-surface radius, 𝑅; axial length, 𝐿; piezoelectric material layer thickness, 2ℎ𝑝; and 

cylindrical shell thickness, 2ℎ𝑁. A Cartesian coordinate system is established with its 
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origin positioned at the mid-surface of the nanoshell, where 𝑥, 𝜃, and 𝑧 denote the 

coordinates in the axial, circumferential, and radial directions, respectively. The supporting 

medium is characterized by a visco-Pasternak foundation, with 𝐾𝑤 representing the 

Winkler foundation stiffness coefficient, 𝐾𝑝 denoting the shear layer stiffness of the 

Pasternak foundation, and 𝐶𝑤 signifying the damping coefficient of the viscous medium 

for transverse motion. Additional physical and geometric properties of the nanostructure 

are detailed in Hashemi Kachapi et al. [19]. 

2.1. Governing Equations 

This section delineates the derivation of the governing equations of motion and 

associated boundary conditions for the piezoelectric shell, utilizing Hamilton's principle: 

 ∫ (𝛿𝑇 − 𝛿𝜋 + 𝛿𝑤𝑣𝑓 + 𝛿𝑤𝑒)𝑑𝑡 = 0,
𝑡

0
 (1) 

In this expression, 𝛿𝑇, 𝛿𝜋, 𝛿𝑤𝑣𝑓 and 𝛿𝑤𝑒 represent the first variations of strain energy, 

kinetic energy, work done by the viscoelastic foundation, and work done by the nonlinear 

electrostatic excitation, respectively. It is crucial to note that all constitutive relations, 

coefficients, and expressions related to nonlocal strain gradient theory, surface/interface 

theory, nonlocal strain gradient surface/interface theory, nanoscale stress-strain 

relationships, and the physical and geometric properties employed herein are 

comprehensively detailed in Hashemi Kachapi et al [20]. The first variation of strain 

energy, 𝛿𝜋, is expressed as: 

 𝛿𝜋 = ∫ ∫
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2𝜋

0

𝐿

0
𝑅𝑑𝜃𝑑𝑥 (2) 

The first variation of kinetic energy can then be expressed as: In Eq. (2), the force 

resultants, 𝑁, and moment resultants, 𝑀, are defined as specified in Hashemi Kachapi et 

al. [19]. The first variation of kinetic energy is given by: 

 𝛿 ∫ 𝑇𝑑𝑡
𝑡2
𝑡1

= −∫ ∬{𝐼 ((
𝜕2𝑢

𝜕𝑡2
) 𝛿𝑢 + (

𝜕2𝑣

𝜕𝑡2
) 𝛿𝑣 + (

𝜕2𝑤

𝜕𝑡2
) 𝛿𝑤)}𝑅𝑑𝜃𝑑𝑥𝑑𝑡

𝑡2
𝑡1

 (3) 

where 

 𝐼 = ∫ 𝜌𝑁
ℎ𝑁
−ℎ𝑁

𝑑𝑧 + ∫ 𝜌𝑝
−ℎ𝑁
−ℎ𝑁−ℎ𝑝

𝑑𝑧 + ∫ 𝜌𝑝
ℎ𝑁+ℎ𝑝
ℎ𝑁

𝑑𝑧 + 𝜌𝑆,𝐼 = 2(
𝜌𝑁ℎ𝑁 + 𝜌𝑝ℎ𝑝

+𝜌𝑆 + 𝜌𝐼
) (4) 

The first variations of the work done by the viscoelastic foundation and the nonlinear 

electrostatic excitation, are expressed as [19, 20, 27]: 

 𝛿𝑊𝑣𝑓 = −∫ ∫ ∫ (𝐾𝑤𝑤 − 𝐾𝑝𝛻
2𝑤 + 𝐶𝑤

𝜕𝑤

𝜕𝑡
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0
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0
𝑅𝑑𝜃𝑑𝑥, (5) 
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 𝛿𝑊𝑒 = ∫ ∫ ∫
𝜋𝛶(𝑉𝐷𝐶+𝑉𝐴𝐶 cos(𝜔𝑡))

2

(√(𝑏−𝑤)(2𝑅+𝑏−𝑤)
 

[cosh−1(
1+
𝑏−𝑤

𝑅
)]

2

)

𝛿𝑤
𝑤

0

2𝜋

0

𝐿

0
𝑅𝑑𝜃𝑑𝑥 (6) 

The explicit definitions of all coefficients and expressions presented in Eqs. (5) and (6) are 

provided in Hashemi Kachapi et al. [19, 20].  

Substituting Eqs. (2-6) into Eq. (1) results in the derivation of the governing equations 

of motion and associated boundary conditions for the piezoelectric nanoresonator (PENR), 

as comprehensively documented in Hashemi Kachapi et al. [19, 20]. By employing the 

dimensionless parameters defined in Hashemi Kachapi et al. [19], and subsequently 

incorporating nonlocal and material length scale effects, along with nonlocal strain gradient 

surface/interface effects (as detailed in Hashemi Kachapi et al [20]), the dimensionless 

governing equations are obtained. 
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, (8) 
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 and the coefficients of 𝛼𝑖𝑢(𝑖 = 1. .7), 𝛼𝑗𝑣(𝑗 = 1. .7) and 

𝛼𝑘𝑤(𝑘 = 1. .33) are defined in Hashemi Kachapi et al [20]. the corresponding boundary 

conditions, expressed in dimensionless form, are given by: 
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 �̅� = 0: 
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 𝛿�̅� = 0: 
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𝑏𝑐 𝜕𝑢

𝜕𝜉

𝜕�̅�

𝜕𝜉
+ 𝛼2𝑤

𝑏𝑐 𝜕𝑢

𝜕𝜃

𝜕�̅�

𝜕𝜃
+ 𝛼3𝑤

𝑏𝑐 𝜕�̅�

𝜕𝜉

𝜕�̅�

𝜕𝜃
+ 𝛼4𝑤

𝑏𝑐 𝜕�̅�

𝜕𝜃

𝜕�̅�

𝜕𝜉

+𝛼5𝑤
𝑏𝑐 �̅�

𝜕�̅�

𝜕𝜉
+ 𝛼6𝑤

𝑏𝑐 𝜕�̅�

𝜕𝜉
+ 𝛼7𝑤

𝑏𝑐 𝜕3�̅�

𝜕𝜉3
+ 𝛼8𝑤

𝑏𝑐 𝜕3�̅�

𝜕𝜉𝜕𝜃2

+𝛼9𝑤
𝑏𝑐 𝜕�̅�

𝜕𝜉
(
𝜕�̅�

𝜕𝜉
)
2

+ 𝛼10𝑤
𝑏𝑐 𝜕�̅�

𝜕𝜉
(
𝜕�̅�

𝜕𝜃
)
2

+ 𝛼11𝑤
𝑏𝑐 𝜕3�̅�

𝜕𝜉𝜕𝜏2 )

  
 
𝛿�̅�𝜉

|

|

0

1

= 0, (12) 

 
𝜕�̅�

𝜕𝜉
= 0:

(

 
 

𝛼23𝑤
𝑏𝑐 𝜕2�̅�

𝜕𝜉2
+ 𝛼24𝑤

𝑏𝑐 𝜕2�̅�

𝜕𝜃2

+𝛼25𝑤
𝑏𝑐 + 𝛼26𝑤

𝑏𝑐 𝜕2�̅�

𝜕𝜉2

+𝛼27𝑤
𝑏𝑐 𝜕2�̅�

𝜕𝜃2
+ 𝛼28𝑤

𝑏𝑐 𝜕2�̅�

𝜕𝜏2)

 
 
𝛿 (

𝜕�̅�𝜉

𝜕𝜉
)
|

|

0

1

+ (𝛼29𝑤
𝑏𝑐 𝜕2�̅�

𝜕𝜉𝜕𝜃
) 𝛿 (

𝜕�̅�𝜃

𝜕𝜉
)|
0

2𝜋

= 0, (13) 

 
𝜕�̅�

𝜕𝜃
= 0: (𝛼30𝑤

𝑏𝑐 𝜕2�̅�

𝜕𝜉𝜕𝜃
) 𝛿 (

𝜕�̅�𝜉

𝜕𝜃
)|
0

1

+

(

 
 

𝛼31𝑤
𝑏𝑐 𝜕2�̅�

𝜕𝜉2
+ 𝛼32𝑤

𝑏𝑐 𝜕2�̅�

𝜕𝜃2

+𝛼33𝑤
𝑏𝑐 + 𝛼34𝑤

𝑏𝑐 𝜕2�̅�

𝜕𝜉2

+𝛼35𝑤
𝑏𝑐 𝜕2�̅�

𝜕𝜃2
+ 𝛼36𝑤

𝑏𝑐 𝜕2�̅�

𝜕𝜏2)

 
 
𝛿 (

𝜕�̅�𝜃

𝜕𝜃
)
|

|

0

2𝜋

= 0. (14) 

The coefficients of 𝛼𝑙𝑢
𝑏𝑐(𝑙 = 1. .9), 𝛼𝑚𝑣

𝑏𝑐 (𝑚 = 1. .9) and 𝛼𝑛𝑤
𝑏𝑐 (𝑛 = 1. .36) are defined in 

Hashemi Kachapi et al [20].  

Utilizing the lsqcurvefit function within the MATLAB Toolbox, a nonlinear least-

squares curve-fitting technique, the electrostatic force in Eq. (6) is approximated as a 

polynomial. Consequently, the dimensionless work performed by the electrostatic force 

can be represented as: 

 𝛿𝑊𝑒 = ∫ ∫ {∫ (
�̅�𝑒(�̅�𝐷𝐶 + �̅�𝐴𝐶 cos(Ω𝜏))

2 ×

(𝐶1̅ + 𝐶2̅�̅� + 𝐶3̅�̅�
2 +⋯+ 𝐶�̅��̅�

𝑛−1)
)

�̅�

0
𝛿�̅�}

2𝜋

0

𝐿

0
𝛿𝜃𝛿𝜉 (15) 

which 𝐶1̅ − 𝐶�̅� are constant. 

2.2. Solution Procedure 

To transform the governing partial differential equations into a set of ordinary 

differential equations, the Galerkin method is employed. The displacement field is 
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approximated using a series expansion of generalized coordinates and mode functions, as 

follows [28]: 

 

[

𝑢(𝑥, 𝜃, 𝑡)

𝑣(𝑥, 𝜃, 𝑡)

𝑤(𝑥, 𝜃, 𝑡)
] = ∑ ∑

[
 
 
 
 
 
 [
𝑢𝑚,𝑗,𝑐(𝜏) cos(𝑗𝜃)

+𝑢𝑚,𝑗,𝑠(𝜏) sin(𝑗𝜃)
] 𝜒𝑚𝑗(𝜉)

[
𝑣𝑚,𝑗,𝑐(𝜏) sin(𝑗𝜃)

+𝑣𝑚,𝑗,𝑠(𝜏) cos(𝑗𝜃)
] 𝜙𝑚𝑗(𝜉)

[
𝑤𝑚,𝑗,𝑐(𝜏) cos(𝑗𝜃)

+𝑤𝑚,𝑗,𝑠(𝜏) sin(𝑗𝜃)
] 𝛽𝑚𝑗(𝜉)

]
 
 
 
 
 
 

𝑁
𝑗=1

𝑀1
𝑚=1 +

∑ [

𝑢𝑚,0(𝜏)𝜒𝑚0(𝜉)

𝑣𝑚,0(𝜏)𝜙𝑚0(𝜉)

𝑤𝑚,0(𝜏)𝛽𝑚0(𝜉)

]
𝑀2
𝑚=1 = ∑ [

𝑢𝑖(𝜏)𝜒𝑖(𝜉)𝜗𝑖(𝜃)

𝑣𝑟(𝜏)𝜙𝑟(𝜉)𝛼𝑟(𝜃)

𝑤𝑠(𝜏)𝛽𝑠(𝜉)𝜓𝑠(𝜃)
]

𝑀2+𝑀1×𝑁
(𝑖,𝑟,𝑠)=1

 (16) 

In the Galerkin method, the trial functions, 𝜒𝑖(𝜉), 𝜙𝑟(𝜉) and 𝛽𝑠(𝜉), must satisfy all 

geometric and natural boundary conditions. Substituting Eq. (16) into Eqs. (7-14) and 

applying the Galerkin procedure yields the reduced-order equation of motion: 

 
[(𝐾)𝑢

𝑢 + (𝐾𝑏𝑐)𝑢
𝑢]{�̅�} + [(𝐾)𝑢

𝑣 + (𝐾𝑏𝑐)𝑢
𝑣 ]{�̅�} + [(𝐾)𝑢

𝑤 + (𝐾𝑏𝑐)𝑢
𝑤]{�̅�} +

[(𝑁𝐿)𝑢
𝑤 + (𝑁𝐿𝑏𝑐)𝑢

𝑤]{�̅�2} = [(𝑀)𝑢
𝑢]{�̈̅�} + �̅�𝑢𝑝

𝑏𝑐,
 (17) 

 
[(𝐾)𝑣

𝑢 + (𝐾𝑏𝑐)𝑣
𝑢]{�̅�} + [(𝐾)𝑣

𝑣 + (𝐾𝑏𝑐)𝑣
𝑣]{𝑣} + [(𝐾)𝑣

𝑤 + (𝐾𝑏𝑐)𝑣
𝑤]{�̅�} +

[(𝑁𝐿)𝑣
𝑤 + (𝑁𝐿𝑏𝑐)𝑣

𝑤]{�̅�2} = [(𝑀)𝑣
𝑣]{�̈̅�} + �̅�𝑣𝑝

𝑏𝑐 ,
 (18) 

 

[(𝐾)𝑤
𝑢 ]{�̅�} + [(𝐾)𝑤

𝑣 ]{�̅�} + [(𝐾)𝑤
𝑤 + (𝐾𝑏𝑐)𝑤

𝑤 − (𝐾𝑣𝑝)𝑤
𝑤
− (𝐾𝑒2)𝑤

𝑤] {�̅�} +

[(𝑁𝐿)𝑤
𝑢 + (𝑁𝐿𝑏𝑐)𝑤

𝑢 ]{�̅��̅�} + [(𝑁𝐿)𝑤
𝑣 + (𝑁𝐿𝑏𝑐)𝑤

𝑣 ]{�̅��̅�} +

[(𝑁𝐿)𝑤2
𝑤 + (𝑁𝐿𝑏𝑐)𝑤2

𝑤 − (𝑁𝐿2𝑒)𝑤2
𝑤 ]{�̅�2} +

[(𝑁𝐿)𝑤3
𝑤 + (𝑁𝐿𝑏𝑐)𝑤3

𝑤 − (𝑁𝐿3𝑒)𝑤3
𝑤 ]{�̅�3} =

([(𝑀)𝑤
𝑤 + (𝑀𝑏𝑐)𝑤

𝑤]){�̈̅�} + ([(𝐶)𝑤
𝑤] + [(𝐶𝑏𝑐)𝑤

𝑤]){�̇̅�}) + �̅�𝑤𝑝 + �̅�𝑤𝑝
𝑏𝑐 − �̅�𝑤𝑒 −

�̅�𝑒 {
((�̅�𝐴𝐶cos�̅�𝜏)

2 + 2�̅�𝐴𝐶�̅�𝐷𝐶cos�̅�𝜏) ×

(𝐶4̅(𝑁𝐿𝑒)𝑤3
𝑤 + 𝐶3̅(𝑁𝐿𝑒)𝑤2

𝑤 + 𝐶2̅(𝐾𝑒)𝑤
𝑤 + 𝐶1̅�̅�1)

}

 (19) 

where all coefficients and phrases of Eqs. (17-19) are defined by Hashemi Kachapi [20] 

and only coefficients of visco-pasternak medium , (𝐾𝑣𝑝)𝑤
𝑤
, are presented in following Eq. 

(20) of current work: 

 (𝐾𝑣𝑝)𝑤
𝑤
= ∬

(

  
 

�̅�𝑤 (𝛽𝑟𝛽𝑜𝜓𝑠𝜓𝑝 − �̅�(𝛽𝑟𝛽𝑜
′′𝜓𝑠𝜓𝑝 +𝑚0

2𝛽𝑟𝛽𝑜𝜓𝑠𝜓𝑝
′′))

−�̅�𝑝(𝛽𝑟𝛽0
′′𝜓𝑠𝜓𝑝 +𝑚0

2𝛽𝑟𝛽𝑜𝜓𝑠𝜓𝑝
′′)

+�̅�𝑝�̅� (
𝛽𝑟𝛽0

′′′′𝜓𝑠𝜓𝑝 + 2𝑚0
2𝛽𝑟𝛽0

′′𝜓𝑠𝜓𝑝
′′

+𝑚0
4𝛽𝑟𝛽𝑜𝜓𝑠𝜓𝑝

′′′′ )
)

  
 
𝑑𝜉 𝑑𝜃, (20) 

To solve the nonlinear equations of the system (Eqs. 17-19), the complex averaging 

method combined with arc-length continuation is employed [19, 20, 29]. 
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3. RESULTS AND DISCUSSIONS 

Validation studies for piezoelectric nanostructures are documented in Hashemi Kachapi 

et al. [19, 20]. This section examines the influence of diverse material and geometric 

parameters, both with and without the inclusion of nonlocal, strain gradient, and 

surface/interface effects, on the dimensionless natural frequency, stability characteristics, 

and frequency response. Analyses are performed for clamped-clamped (CC), simply 

supported-simply supported (SS), clamped-simply supported (CS), and clamped-free (CF) 

boundary conditions. The surface and bulk material properties of the aluminum (Al) 

nanoshell and PZT piezoelectric layer are tabulated in Tables 1 and 2, respectively [19, 20]. 

Table 1 Surface and bulk properties of Al 

𝐸𝑁[𝐺𝑃𝑎] 𝜐𝑁 𝜌𝑁[𝑘𝑔 𝑚3⁄ ]  𝜆𝐼[𝑁 𝑚⁄ ] 𝜇𝐼[𝑁 𝑚⁄ ]  𝜏0
𝐼 [𝑁 𝑚⁄ ] 𝜌𝐼[𝑘𝑔 𝑚2⁄ ] 

70 0.33 2700 3.786 1.95 0.9108 5.46 × 10−7 

Table 2 Surface and bulk properties of PZT-4 

𝐶11𝑝[𝐺𝑃𝑎]  𝐶22𝑝[𝐺𝑃𝑎] 𝐶12𝑝[𝐺𝑃𝑎]  𝐶21𝑝[𝐺𝑃𝑎] 𝐶66𝑝[𝐺𝑃𝑎] 𝐸𝑝[𝐺𝑃𝑎]
 
 

139 139 77.8 77.8 30.5 95 

𝜐𝑝 𝜌𝑝[𝑘𝑔 𝑚
−3] 𝜂33𝑝[10

−8 𝐹 𝑚⁄ ] 𝜆𝑆[𝑁 𝑚⁄ ] 𝜇𝑆[𝑁 𝑚⁄ ] 𝜏0
𝑆[𝑁 𝑚⁄ ] 

0.3 7500 8.91 4.488 2.774 0.6048 

𝑒31𝑝[𝐶 𝑚2⁄ ] 𝑒32𝑝[𝐶 𝑚2⁄ ]  𝑒31𝑝
𝑆 [𝐶 𝑚⁄ ]  𝑒32𝑝

𝑆 [𝐶 𝑚⁄ ] 𝜌𝑆[𝑘𝑔 𝑚2⁄ ]  

−5.2 −5.2 −3 × 10−8 −3 × 10−8 5.61 × 10−6  

The remaining physical and geometrical parameters of the PENR used in the following 

results are listed in Table 3 [19, 20, 22]. 

Table 3 The material and geometrical parameters 

𝑅[𝑚] 𝐿 𝑅⁄    ℎ𝑁 𝑅⁄   ℎ𝑝 𝑅⁄    𝑏 𝑅⁄   𝐶𝑤[𝑁. 𝑆/𝑚] 

1 × 10−9 10 0.01 0.005 0.1 1 × 10−3 

 𝐾𝑤[𝑁 𝑚3⁄ ]  𝐾𝑝[𝑁 𝑚⁄ ] 𝑉𝑝[𝑉] 𝑉0 𝑉𝐷𝐶[𝑉] 𝑉𝐴𝐶[𝑉] 

9 × 1017 2.07 1 × 10−5 1 1.5 0.5 

𝜇[𝑚2] 𝜂[𝑚2]     

(1 × 10−10)2 (1 × 10−11)2     

3.1. Nonlinear Frequency Response and Stability Analysis  

This section compares the predictions of three nonclassical continuum theories-nonlocal 

theory (NLT), strain gradient theory (SGT), and Gurtin-Murdoch surface/interface theory 

(GMSIT)- with those of classical continuum theory (CT). The analysis investigates the 

impact of various geometric and material parameters, incorporating and excluding strain 

gradient, nonlocal, and surface/interface effects, on the dimensionless natural frequency 

(DNF), stability, and nonlinear frequency response of the piezoelectric nanoresonator 

(PENR). Arc-length continuation is employed as the numerical solution method, utilizing the 

PENR specifications provided in Tables 1-3. Specifically, the NLT analysis considers the 

nonlocal parameter, �̅�; the SGT analysis considers the material length scale parameters, the 

�̅� and �̅� parameters; and the GMSIT analysis incorporates surface/interface (S/I) effects. 
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Recognizing the substantial influence of surface/interface densities on nanostructure 

vibration, two distinct surface density cases, as defined in Table 4, are presented. 

Table 4 Two case of surface density 

Case 1 Case 2 

𝜌𝐼[𝑘𝑔 𝑚2⁄ ] 𝜌𝑆[𝑘𝑔 𝑚2⁄ ] 𝜌𝐼[𝑘𝑔 𝑚2⁄ ] 𝜌𝑆[𝑘𝑔 𝑚2⁄ ] 
5.46 × 10−7 5.61 × 10−6 5.46 × 10−8 5.61 × 10−7 

Figs. 2 and 3 illustrate the dimensionless natural frequencies of the piezoelectric 

nanoresonator (PENR) as a function of the dimensionless nonlocal scale parameter �̅�and the 

dimensionless material length scale parameter �̅�, respectively, both with and without 

surface/interface effects. As depicted in Fig. 2, surface/interface densities corresponding to 

case 1 result in a reduction of PENR stiffness, leading to a lower dimensionless natural 

frequency compared to the absence of surface/interface effects. Conversely, surface/interface 

densities associated with case 2 induce an increase in PENR stiffness, consequently yielding 

a higher dimensionless natural frequency. 

 

Fig. 2 Natural frequency vs. dimensionless nonlocal scale parameter �̅� with �̅� = 0.01: 

influence of surface/interface effects for different boundary conditions 

In all cases, the dimensionless natural frequency (DNF) decreases with increasing 

nonlocal scale parameter �̅� with �̅� = 0.01, attributable to the reduced stiffness of the porous 

elastic nanorod (PENR). As shown in Fig. 3, the DNF increases with the dimensionless 

material length scale parameter �̅� with �̅� = 0.1 across all scenarios, owing to the enhanced 

PENR stiffness. These results align with the previously discussed effects of surface/interface 

densities. The trends in Figs. 2 and 3 demonstrate that the nonlocal scale parameter �̅� and 
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material length scale parameter �̅� inversely influence PENR stiffness: �̅� reduces stiffness, 

thereby lowering the DNF, while �̅� enhances stiffness, increasing the DNF. Additionally, the 

dimensionless natural frequency associated with the CC boundary condition consistently 

exceeds those of CS, SS, and CF configurations. This disparity arises from the greater 

structural rigidity inherent to the CC boundary condition compared to others. 

 

Fig. 3 Natural frequency vs. dimensionless material length scale parameter �̅� with �̅� =
0.1: Influence of Surface/Interface Effects for Different Boundary Conditions 

Fig. 4 illustrates the influence of the length to radius ratio (𝐿 𝑅⁄ ) on the dimensionless 

natural frequency (DNF) as a function of the dimensionless nonlocal scale parameter (�̅�) 

for SS PENR. The results incorporate all surface/interface effects, with �̅� = 0.01. As 

evident from Fig. 4, the dimensionless natural frequency (DNF) decreases with increasing 

values of both the length to radius ratio (𝐿/𝑅) and the nonlocal scale parameter (�̅�). This 

trend is attributed to the reduction in stiffness of the PENR. 

Fig. 5 depicts the variation of the DNF as a function of the dimensionless material 

length scale parameter (�̅�) for SS PENR under different 𝐿/𝑅 ratios. The analysis 

incorporates all surface/interface effects, with �̅� = 0.1. As shown in the figure, the 

dimensionless natural frequency increases with the nonlocal parameter but decreases with 

the 𝐿/𝑅 ratio. 
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Fig. 4 Natural frequency vs. dimensionless nonlocal scale parameter �̅�:  

influence of 𝐿 𝑅⁄  ratio with all surface/interface effects and �̅� = 0.01 

 

Fig. 5 Natural frequency vs. dimensionless material length scale parameter �̅�:  

influence of 𝐿 𝑅⁄  ratio with all surface/ interface effects and μ̅ = 0.1 

Fig. 6 compares the dimensionless natural frequency predicted by three nonclassical 

theories, NLT, SGT, and GMSIT, against the classical theory CT for SS PENR under 

varying piezoelectric thickness to radius ratios (ℎ𝑝 𝑅⁄ ). As evident from the figure, the 
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GMSIT (Case 2) yields the highest DNF, indicating greater structural rigidity in this 

configuration compared to other cases. The lowest natural frequency is observed when 

GMSIT (case 1) is considered in combination with SGT, i.e. GMSIT+SGT (�̅� = 0.1, �̅� =
0.01), indicating that this combination results in the lowest system stiffness. Additionally, 

the natural frequency predicted by classical theory is higher than those predicted by NLT 

and SGT, demonstrating a reduction in system rigidity when these nonclassical theories are 

considered. Nonlocal theory predicts a higher natural frequency than strain gradient theory 

due to its greater rigidity. Surface/interface effects, depending on the surface/interface 

densities, can result in natural frequencies higher or lower than those predicted by classical 

theory. However, the combined application of NLT and SGT consistently yields a lower 

natural frequency than classical theory. Furthermore, the ℎ𝑝 𝑅⁄  ratio significantly 

influences the dimensionless natural frequency (DNF). An increase in this ratio leads to a 

decrease in PENR stiffness and, consequently, a decrease in the natural frequency. 

 

Fig. 6 Dimensionless natural frequency vs. piezoelectric thickness to radius ratio ℎ𝑝 𝑅⁄ : a 

comparison of non-classical and classical theories  

Fig. 7 compares the dimensionless natural frequency predicted by three nonclassical 

theories, NLT, SGT, and GMSIT, with classical theory (CT) at various piezoelectric 

actuation voltages (�̅�𝑝) for SS PENR. It reiterates the effects of the various theories on 

natural frequencies, confirming the previous findings. The impact of piezoelectric voltage 

on the natural frequency varies across the different theories. GMSIT cases 1 and 2, as well 

as the combined GMSIT+SGT, exhibit the most significant changes, particularly at low 

surface density. In these instances, increasing voltage leads to increased system rigidity 

and, consequently, an initial rise in frequency, followed by a plateau with a slight slope. In 

contrast, other theories show minimal sensitivity of the PENR's natural frequency to 

piezoelectric voltage variations. 
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Fig. 7 Dimensionless natural frequency vs. piezoelectric voltage V̅p: comparison of 

nonclassical and classical theories  

Fig. 8 presents a comparison of the dimensionless natural frequency predicted by NLT, 

SGT, GMSIT, and CT as a function of direct pull-in voltage (DC) for an SS nanoshell. The 

inclusion of surface/interface effects is known to enhance system rigidity, thereby 

necessitating a greater DC voltage to achieve pull-in. In contrast, the reduced stiffness 

associated with NLT, SGT, and CT leads to a lower pull-in voltage, with these theories 

predicting pull-in at roughly the same voltage level. 

 

Fig. 8 Dimensionless natural frequency vs. direct pull-in voltage (DC) of SS PENR: a 

comparison of non-classical and classical theories  
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The nonlinear frequency response of SS and CC PENRs, as obtained from NLT, SGT, 

GMSIT, and CT, is compared in Figs. 9 and 10, respectively, for �̅�𝐷𝐶 = 1.7 and �̅�𝐴𝐶 = 0.5. 

As depicted in Fig. 9, the frequency analysis indicates that the incorporation of 

surface/interface effects in GMSIT case 2 (case 1) leads to a hardening (softening) of the 

SS PENR. This, in turn, results in an increase (decrease) in the resonant frequency and a 

corresponding decrease in the resonance amplitude. 

 

 

Fig. 9 Nonlinear vibration and stability analysis of SS PENR: comparison of 

non-classical and classical theories  

 

The GMSIT model does not predict instability under the applied voltage conditions. 

Conversely, CT, NLT, and SGT exhibit instability, manifested as saddle-node bifurcations 

and nonlinear hardening behavior. The nonclassical theories, NLT and SGT, predict a 

larger oscillation amplitude and a wider instability range than the classical theory (CT). 

Moreover, an increase in 𝜏̅ and �̅� results in an amplified oscillation amplitude and an 

expanded instability range, accompanied by a reduction in resonance frequency. 
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As depicted in Fig. 10, an increase in the dimensionless nonlocal parameter results in a 

decrease in the resonance amplitude. This suggests that small-scale effects, as captured by 

the nonlocal model, enhance the flexibility of the CC PENR. Generally, the CC boundary 

condition yields result comparable to those of the SS boundary condition. However, a 

notable exception is observed in the SGT model, where an increase in 𝜏̅ and �̅� induces 

nonlinear softening instability in the CC boundary condition, while the SS boundary 

condition exhibits nonlinear hardening instability. 

 

 

Fig. 10 Nonlinear vibration and stability analysis of CC PENR: comparison of 

nonclassical and classical theories  

 

The frequency response and stability characteristics of the PENR, subjected to different 

direct (�̅�𝐷𝐶) and alternating (�̅�𝐴𝐶) voltages, are illustrated in Figs. 11-16. These figures 

compare the predictions of CT, NLT, SGT, GMSIT, and the combined theories 

GMSIT+NLT and GMSIT+SGT for SS boundary conditions. 
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Fig. 11 Frequency response and stability analysis of SS PENR (CT) under varying DC 

and AC Voltages  

 

Fig. 12 Frequency response and stability analysis of SS PENR (NLT) under varying DC 

and AC Voltages  
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Fig. 13 Frequency response and stability analysis of SS PENR (SGT) under varying DC 

and AC Voltages  

 

Fig. 14 Frequency response and stability analysis of SS PENR (GMSIT) under varying 

DC and AC Voltages  
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Fig. 15 Frequency response and stability analysis of SS PENR (GMSIT+NLT) under 

varying DC and AC Voltages  

 

Fig. 16 Frequency response and stability analysis of SS PENR (GMSIT+SGT) under 

varying DC and AC Voltages  
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It can be concluded from Figs. 11-16 that the lowest resonance frequency for the 

unstable amplitude is related to Fig. 12 for the NLT theory (of course, in the absence of 

GMSIT case1, which has the lowest resonance frequency for the unstable amplitude) and 

the maximum value is related to Fig. 14 for the GMSIT (case2). As already mentioned, the 

three theories of CT, NLT, and SGT (respectively for Figs. 11-13), due to the softening of 

the system in these cases reach the unstable amplitude at lower voltages from DC and AC 

and in order to reach the unstable amplitude in the GMSIT theory, more voltages of DC 

and AC are needed. For example, according to the data in this work, CT, NLT and SGT 

theories in �̅�𝐴𝐶 = 0.5 and �̅�𝐷𝐶 = 1.45 reach unstable amplitude, while GMSIT theory and 

the simultaneous use of this theory with two non-classical theories, GMSIT + NLT (Fig. 

15) and GMSIT + SGT (Fig. 16), are required to reach the unstable amplitude to �̅�𝐴𝐶 = 2 

and �̅�𝐷𝐶 = 4 voltages. Furthermore, the results show that in all cases, with increasing of 

AC and DC voltages, the frequency amplitude is increased and the nanostructure shows 

nonlinear hardening behavior with saddle-node bifurcations. 

Also, Figs. 17-22 present frequency response and stability analysis PENR for different 

values of direct (�̅�𝐷𝐶) and alternating (�̅�𝐴𝐶) voltages based on different theories of CT, 

NLT, SGT, GMSIT, GMSIT combined with NLT and SGT for CC boundary conditions. 

The results of Figs. 17-22 for CC PENR approximately are similar to Figs. 11-16 for SS 

PENR. It is clear from Figs. 11-22 that boundary condition SS than condition CC, in some 

approaches and under equal loading conditions, earlier reaches the instability region. 

 

Fig. 17 Frequency response and stability analysis of CC PENR (CT) under varying DC 

and AC Voltages  
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Fig. 18 Frequency response and stability analysis of CC PENR (NLT) under varying DC 

and AC Voltages  

 

Fig. 19 Frequency response and stability analysis of CC PENR (SGT) under varying DC 

and AC Voltages  
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Fig. 20 Frequency response and stability analysis of CC PENR (GMSIT) under varying 

DC and AC Voltages  

 

Fig. 21 Frequency response and stability analysis of CC PENR (GMSIT+NLT) under 

varying DC and AC Voltages  
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Fig. 22 Frequency response and stability analysis of CC PENR (GMSIT+ SGT) under 

varying DC and AC Voltages  

4. CONCLUSION 

This study investigates the influence of surface/interface parameters, specifically, 

Lamé's constants (𝜆𝐼,𝑆, 𝜇𝐼,𝑆), residual stress (𝜏0
𝐼,𝑆), piezoelectric constants (𝑒31𝑝

𝑠𝑘 , 𝑒32𝑝
𝑠𝑘 ), and 

mass density (𝜌𝐼,𝑆) on the pull-in instability, dimensionless natural frequency, and 

nonlinear dynamic response of a piezoelectric nanosensor. The nanosensor is subjected to 

two piezoelectric layers, a nonlinear electrostatic force, harmonic excitations, and 

structural damping. To achieve this, Hamilton's principle, assumed mode and Lagrange-

Euler theories, along with arc-length continuation and complex averaging methods, are 

employed. The following conclusions are drawn from this investigation: 

 Under conditions of lower surface/interface densities, an augmentation of stiffness is 

observed, resulting in an elevated natural frequency compared to scenarios lacking 

surface/interface effects. Conversely, higher surface/interface densities lead to a 

reduction in stiffness and a corresponding decrease in natural frequency. 

 CF (CC) boundary condition with S/I case 1 has the lowest (highest) natural frequency: 

This indicates that when one end of the nanoresonator is clamped and the other is free, 

and the surface/interface properties correspond to case 1, the nanoresonator will vibrate 

at its slowest natural frequency. 

 An increase in surface/interface Lamé's constants 𝜆𝐼,𝑆 and 𝜇𝐼,𝑆, surface/interface 

residual stress 𝜏0
𝐼,𝑆

, and the magnitude of negative surface piezoelectricity constants 

𝑒31𝑝
𝑠𝑘  and 𝑒32𝑝

𝑠𝑘 , results in an augmentation of the piezoelectric nanosensor (PENS) 
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stiffness. Consequently, this stiffness increase leads to a higher pull-in voltage in both 

the dimensionless natural frequency (DNF) and nonlinear dynamic response (NDR) 

analyses. 

 An increase in surface/interface mass density 𝜌𝐼,𝑆 leads to a reduction in the 

piezoelectric nanosensor (PENS) stiffness, resulting in a significant decrease in the 

dimensionless natural frequency (DNF). However, this increase in mass density does 

not significantly impact the pull-in voltage or the nonlinear dynamic response (NDR). 

 In the dimensionless natural frequency (DNF) analysis, when surface/interface density 

𝜌𝐼,𝑆 and surface piezoelectric constants (𝑒31𝑝
𝑠𝑘 , 𝑒32𝑝

𝑠𝑘 ) are disregarded, the simply 

supported (SS) piezoelectric nanosensor (PENS) exhibits the maximum pull-in voltage 

across all surface/interface (S/I) configurations. However, in the nonlinear dynamic 

response (NDR) analysis of the SS PENS, the maximum pull-in voltage is observed in 

the absence of all surface/interface effects. 

 In the nonlinear dynamic response (NDR) analysis, variations in surface/interface 

parameters lead to the system exhibiting either stable or unstable equilibrium points, 

with transitions occurring through saddle-node bifurcations. 
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