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Abstract. The study investigated the turning of C45 steel in a dry environment. The input 

parameters that were varied were cutting speed, feed, depth of cut, corner radius and 

insert type. The experimental investigations were carried out according to a custom 

experimental design using the D-optimality criterion. The measured output parameters 

were dimensional deviation, flank wear and surface roughness, while the material 

removal rate was calculated. A detailed analysis and evaluation of the effects of the input 

parameters on the output parameters was carried out. The model was diagnosed and 

appropriate regression equations were established. Based on the obtained regression 

equations, multi-objective optimisation was performed using particle swarm optimisation. 

The objective function was to simultaneously minimise dimensional deviation, flank wear 

and surface roughness and maximise material removal rate. The optimisation was 

carried out for different weighting coefficients of each output function for different 

production requirements. The obtained models and optimal values were verified by 

additional confirmation experiments. 
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1. INTRODUCTION 

Turning is a machining operation that can be carried out under dry or wet conditions 

and using alternative techniques such as minimum coolant and lubricant quantities, 

cryogenic cooling, etc. [1,2]. All previous methods of cooling and lubrication have their 

advantages and disadvantages. The main problems with dry turning are short tool life and 

poor surface quality [3]. Dry turning is associated with high temperatures and is therefore 

not suitable for machining difficult-to-cut materials [4]. The positive aspects of dry turning 

are that no cooling lubricant is used and it is therefore environmentally friendly. There are 

also no additional costs for cutting fluid, equipment, disposal, recycling, reuse, etc. Therefore, 

dry turning can be used when the materials are characterized by good machinability but the 

problems mentioned above need to be solved. This can be achieved through the use of 

stable machines, reliable locating and clamping, the use of coated inserts and, of course, 

the obligatory optimisation of all the machining parameters entered [5]. C45 steel is a 

medium carbon steel with a wide range of industrial applications. It is used for the 

manufacture of various products such as gears, shafts, axles, equipment, tools, etc. It can 

be used for the manufacture of complex products that need to be machined with high 

accuracy and precision. It is characterized by good hardness and wear resistance as well as 

high tensile strength, which makes it the ideal choice for products that need to withstand 

strong forces. It is not resistant to moisture and aggressive chemicals, so it has low 

corrosion resistance. It has good machinability when turned, i.e. it does not belong to the 

group of difficult-to-machine materials and can therefore be turned economically under 

certain conditions, even in dry conditions. 

In the previous period, a large number of researches dealt with the process of turning 

C45 steel workpieces. Grzesik [6] proposed analytical models for estimating the average 

and maximum temperatures at the tool–chip interface. The models for a three-layer coating 

agreed well with both the experimental data and the finite element (FE) predictions. Piska 

et al. [7] presented wear morphology. The decohesion between the phases and the different 

size of the phases led to a weakening of the structural integrity, rapid wear of the coating 

and a short tool life. Stachurski et al. [8] evaluated the influence of cutting parameters on 

surface roughness. Wiper inserts led to a reduction in surface roughness. Increasing the 

feed and corner radius contributed to an increase in surface roughness and cutting force. 

Nieslony et al. [9] presented the influence of constitutive model parameters on the results 

of FEM-based modelling. A sensitivity analysis of the material flow stress in the power 

constitutive model was performed. Sergeto et al. [10] used several digital signals from 

sensor monitoring to identify and monitor the chip shape. Different neural network training 

algorithms were compared as a decision support system. Michal et al. [11] investigated the 

influence of cutting speed, feed and depth of cut on surface roughness using regression 

analysis. The results showed that feed and cutting speed had a dominant influence on 

surface roughness. Selvam and Senthil [12] studied and optimised the effect of corner 

radius and turning parameters on surface roughness using the Taguchi method and genetic 

algorithm. Corner radius had a greater influence on the surface roughness followed by feed 

and spindle speed and depth of cut. Horvath and Lukacs [13] determined prediction models 

for estimating the cutting force components based on the undeformed chip cross-section. 

The results showed that the influence of the effective length of the tool cutting edge on 

specific cutting force components is not negligible. Necpal et al. [14] compared 

experimentally determined cutting forces and those predicted by FE simulation. Stress and 



 Comprehensive Evaluation of Dimensional Deviation, Flank Wear, Surface Roughness... 549 

temperature predictions were made for certain values of cutting speed, feed and depth of 

cut. Vereschaka et al. [15] investigated the mechanisms of the formation of longitudinal 

cracks and delamination in coatings on rake and flank surfaces. The properties of the 

coatings and the nature of their failures were presented. Vereschaka et al. [16] investigated 

two multilayer nanostructured coatings with the same thickness, elemental composition 

and basic mechanical properties but different sub-nanolayer thicknesses. A coating with 

thicker sub-nanolayers was more prone to delamination. A tool with a coating characterized 

by a thinner sub-nanolayer thickness had the longest tool life. Klocke et al. [17] developed 

mathematical relationships considering strain hardening, dynamic forces and shear strain 

rate. The external and internal friction during the chip formation process was analysed. 

Dragicevic et al. [18] presented an application of a combined Taguchi and fuzzy logic 

approach for the optimisation and analysis of surface roughness. Feed and cutting speed 

were the main parameters influencing the variation of surface roughness. Gjelaj et al. [19] 

optimised cutting speed, feed, depth of cut as a function of tool path length and cutting 

force using a genetic algorithm. Zmarzły [20] analysed the influence of feed and cutting 

speed on surface roughness, roundness and cylindricity. Increasing the feed causes an 

increase in the deviation of cylindricity. The cutting speed had a negligible effect on the 

shape of the cylindrical workpieces. Zajac et al. [21] focused on predicting the durability 

of cutting materials using the Taylor model. Optimal cutting speeds were determined in 

order to achieve maximum tool life. Usman et al. [22] investigated the effects of cutting 

speed, feed, depth of cut and ultrasonic vibration amplitude on surface properties using 

surface function indices. The results showed that the surface function indices obtained in 

vibration-assisted turning were significantly higher than those obtained in conventional 

turning. Mikołajczyk [23] presented the investigation of the minimal uncut chip thickness. 

The main cutting edge angle had a significant influence on the process, especially in the 

range of small uncut chip thickness range. Titu et al. [24] simulated the effect of rake and 

clearance angles on temperature distribution, effective stresses and cutting forces using FE 

analysis. Oleksik et al. [25] analysed vibrations using Fourier transform methods. The 

influence of vibrations on surface roughness was investigated for two design variants of 

cutting tools. Abidi [26] investigated the flank wear of ceramic cutting tools as a function 

of cutting speed and feed. The results show that the flank wear was more strongly 

influenced by the cutting speed than by the feed. Zaida et al. [27] proposed a method for 

monitoring flank wear based on the analysis of vibration signals. The method enables 

estimation of flank wear based on the wavelet transform. Ivchenko et al. [28] developed a 

method for determining the intensity of tool wear by analysing the cutting edge to 

determine the change in forces. The method was developed based on a simulation of the 

machining process, taking into account the tribological interaction of the tool and 

workpieces as well as the corner radius. Kovalčík et al. [29] proposed a mathematical 

cutting force model based on the cutting speed and the coating correction factor as well as 

the cutting edge geometry. Jurko et al. [30] performed optimisation of flank wear and 

diameter deviation by using Grey Relation Analysis (GRA) in combination with the 

Taguchi method. Cutting speed was an important factor influencing the multiple responses 

on the effect of insert wear on average diameter deviation. Vukelic et al. [31] modelled 

surface roughness in finish turning as a function of corner radius, approach angle, rake 

angle and inclination angle. The surface roughness improved with increasing corner radius, 

increasing approach angle, increasing rake angle and decreasing inclination angle. 

Niemczewska-Wojcik et al. [32] focused on the surface topography of workpieces under 
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dry and wet conditions. The mineral oil-based lubricant had a positive influence on tool 

wear and surface quality. Kuruc et al. [33] analysed the plastic deformation and chip 

compression. Plastic deformation decreased with increasing feed and cutting speed. Chip 

compression decreased with increasing cutting speed. Moravčíková et al. [34] presented 

the influence of the heat treatment (soft annealing, normalisation, hardening, quenching 

and tempering) of C45 steel on roughness, cylindricity and circularity. The heat treatment 

had a major influence on all output parameters. Slusarczyk and Franczyk [35] presented a 

method for determining the feed and tangential components of the cutting force. The 

method was based on the assumptions that the tool is perfectly sharp, that the chip formation 

process is continuous, that the chip thickness is constant and that there are no heat losses.  

In general, the main disadvantage of experimental research is the high time expenditure 

and the associated costs, therefore the modelling of the turning process and its optimisation 

is an increasing topic. In previous research, the most common input parameters were 

cutting speed, feed rate, depth of cut, geometric parameters of the cutting tool, type of 

coating, etc., while the most common output parameters were surface roughness, wear 

mechanisms of the cutting tool, cutting forces, tool life, material removal rate, etc. In order 

to reduce the number of experiments and significantly reduce costs, modelling and 

optimisation are carried out. The problem with modelling and optimisation is the choice of 

method, as there are no universal and generally accepted rules. Only confirmation of 

unknown values of input parameters and comparison with measured values can influence 

the validity of the applied modelling and optimisation method. If the process is modelled 

and optimised correctly and acceptable errors are achieved, costs and time are reduced. The 

general validity and independence of the results from the knowledge and experience of the 

technologists is also greater. 

In contrast to the previous work, this study shows the influence of a larger number of 

input parameters on a larger number of output parameters in dry turning of C45 steel. So 

far, the comprehensive evaluation of the influence of cutting speed, feed, depth of cut, 

corner radius and insert type on surface roughness, dimensional deviation, flank wear and 

the material removal rate has not been performed. The influence of the interactions of the 

input parameters on the output parameters was also investigated. A detailed analysis of the 

input parameters and an evaluation of their effect on the output parameters of the process 

were carried out. In addition, the modelling and optimisation of the process and the 

verification of the solutions obtained were carried out. 

2. RESEARCH METHODOLOGY 

The research methodology is shown in Fig. 1. The tests were carried out on samples of 

C45 steel with the following properties: Young's modulus 205 GPa, hardness 255, tensile 

strength 560 MPa and density 7.85 g/cm3. The chemical composition of the steel is as 

follows: 0.42–0.50 % C, max 0.40 % Si, 0.50–0.80 % Mn, max 0.40 % Ni, max 0.030 % 

P, max 0.035 % S, max 0.40 % Cr and max 0.10 % Mo. 

Dry turning was carried out on a CNC lathe. A three-jaw chuck and rotary centre were 

used for locating and clamping. Based on the recommendations of the cutting insert 

manufacturer and in accordance with the characteristics of the workpiece material, the 

geometry of the workpiece, the type of sequence, the characteristics of the technological 

equipment and stability, the machining parameters and the cutting inserts were selected. 
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Both types of inserts (standard and wiper) with the following characteristics were used for 

the study: rhombic shape (80°), thickness 4.8 mm, diameter of the inscribed circle 12.7 

mm, effective length of the cutting edge 11.7 mm and fixing hole 5.2 mm. The inserts were 

coated using CVD coating technology (TiCN+Al2O3+TiN coating of 5 μm thickness). The 

turning parameters were as follows: cutting speed vc = 300–400 (mm/min), feed f = 0.1–

0.25 (mm/rev) and depth of cut ap = 2–3 (mm). 

 

Fig. 1 Research methodology 

After the experimental investigation, the output parameters were measured and 

calculated. The measurements of dimensions, surface roughness and flank wear were 

carried out under controlled microclimatic conditions. The measured output parameters 

were dimensional deviation (ΔD), surface roughness (Ra) and flank wear (VB) while the 

material removal rate (MRR) was calculated.  

The surface roughness was measured using a Talysurf measuring device. The 

measurements were taken in the feed direction with a sampling length of 0.8 mm and an 

evaluation length of 4 mm using a Gaussian filter.  

The diameter of the workpiece before and after turning was measured using a 

CRYSTA-Apex S 9106 coordinate measuring machine, resolution 0.0001 mm and 

accuracy of 1.7 + measuring length/1000 μm, with a probe in the form of a ruby ball with 

a diameter of 5 mm. The large diameter of the probe was chosen to reduce the influence of 

surface roughness on the relative error of the diameter change. The diameter change 

represents the difference between the nominal diameter and the measured diameter of the 

machined surface.  

The measurement of flank wear was carried out with a Leitz Orthoplan light optical 

microscope using the ImageJ software.  
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The fourth output parameter, the material removal rate, was calculated using the equation: 

 𝑀𝑅𝑅 = 𝑣𝑐 ∙ 𝑎𝑝 ∙ 𝑓 (1) 

After measurement and calculation, the process was analysed and modelled. The 

experimental investigations were carried out according to the custom experimental design, 

which enables the creation of an optimal experimental design with a lower number of trials 

(minimising costs) and the achievement of reliable and relevant results. The customised 

experimental design was created using the D-optimal criterion. The experimental design 

was determined based on the previously defined input and output parameters. In determining 

the experimental design, an a priori model was defined that includes main effects, their 

quadratic effects and two-factor interactions as expected influences of the input parameters 

on the output parameters. The number of experimental points was chosen depending on the 

complexity of the process and the desire for an accurate estimation of the output parameters 

of the model. In evaluating the experimental design, it was determined that 72 trials had 

sufficient statistical power to determine the effects of the input parameters. The experimental 

design was randomised to eliminate system bias and ensure the reliability of the results.  

After modelling phase, a multi-objective optimisation was conducted using particle 

swarm optimisation (PSO) algorithm. PSO is a global optimisation algorithm suitable for 

multi-objective optimum search. It is based on behaviour imitation of living beings moving 

in groups (swarms, flocks, …) and operates with the set of individuals (particles), called 

swarm. In simple words, particles are moving throughout the search space searching for the 

point that achieves the best value of objective function. The search is iterative, and is 

conducted until the defined stopping criterion is fulfilled. Each particle in the swarm is 

defined by its “position“ y, which represents the vector of variables in the optimisation 

problem, or „coordinates“ in the search space, and by its current “velocity“ v. In other words, 

particle’s position is the potential solution of the optimisation problem, containing the values 

of variables, and the velocity determines the way of modification of these values in order to 

obtain global optimum. In this study, the position of the particle (vector y) is defined by values 

of input parameters, namely cutting speed vc, depth of cut ap, feed f and corner radius r. Also, 

during the search process, each particle is capable of memorizing its “personal“ best position 

p, as well as the “global“ best position g achieved by the entire swarm, which is the 

information “shared“ between all particles. The particle is basically guided by three velocity 

components: inertia (forces the particle to move in the same direction as in previous iteration), 

cognitive component (the particle is motivated by its personal experience and guided by its 

personal best position p), and social component (guides the particle according to global 

knowledge of the swarm, i.e. towards the global best position g). Accordingly, the particle’s 

position is updated using the following expression: 

 𝐯(𝑘+1) = 𝑤 ∙ 𝐯(𝑘) + 𝑐𝑝 ∙ 𝑟𝑝(𝑘) ∙ (𝐩(𝑘) − 𝐲(𝑘)) + 𝑐𝑔 ∙ 𝑟𝑔(𝑘) ∙ (𝐠(𝑘) − 𝐲(𝑘)) (2) 

 𝐲(𝑘+1) = 𝐲(𝑘) + 𝐯(𝑘+1) (3) 

where k is the number of the current iteration, factors w, cp and cg determine the influence 

of inertial, cognitive and social components respectively, and factors rp and rg are random 

numbers uniformly distributed in range [0,1], providing the stochastic nature of the 

algorithm. In each iteration, personal best position p and global best position g are updated 

according to the values of objective function. The initial positions of particles are chosen 

randomly, within the boundaries of the search space. The initial velocities are either set to 
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zero or chosen randomly, depending on the variant of the algorithm. The iterative process 

is repeated until the specified stopping criterion is fulfilled, which is mainly the total 

number of iterations or, alternatively, the number of successive iterations in which the 

value of objective function does not change (stalls). 

Finally, the models, regression equations and optimum values of the input and output 

parameters were validated by additional confirmation tests. 

3. RESULTS 

3.1. Experimental Research 

The D-optimality criterion was used for the experimental design, as it ensures an accurate 

estimation of the effects of the input parameters. The optimum number of experimental points 

was selected by analysing experimental designs with different numbers of trials. The 

comparison was carried out using the compare designs function for designs with 32, 48, 64, 

72 and 96 experimental points. The minimum number of experimental points required, the 

performance and characteristics of experimental designs as well as the availability of 

resources, time and costs of experiment execution were then taken into account using the 

power analysis. The power analysis makes it possible to determine the ability of the experiment 

to recognise real effects, i.e. to identify the existence of effects. In the power analysis, the 

following reference values were defined for evaluating the power of the model: significance 

level 0.05 and anticipated root mean square error (RMSE) 1. The obtained evaluation 

parameters of different experimental designs (ranging from 0 to 1 and referring to the main 

effects, their quadratic effects and two-factor interactions) show that the experimental designs 

for 72 and 96 trials have the statistical power to detect real effects (Fig. 2). 

 

Fig. 2 Power analysis 
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In view of the small differences in power between these two experimental designs, the 

design with 72 test points was chosen as it consumes significantly fewer resources. Of the 

total 72 trials, 63 are different trial points and 9 are replicates. 

The selected levels of the input parameters are listed in Table 1. 

Table 1 Input parameters and the selected levels 

Input parameter 
Level 1 

(Minimum) 

Level 2 

(Middle) 

Level 3 

(Middle) 

Level 4 

(Maximum) 

Cutting speed vc (mm/min) 300 350 / 400 

Feed f (mm/rev)  0.1 0.15 0.2 0.25 

Depth of cut ap (mm) 2 / / 3 

Corner radius r (mm) 0.4 0.8 1.2 1.6 

Insert type Standard / / Wiper 

The results of the measurement and calculation of the output parameters is shown in 

Table 2. 

Table 2 Results of experiments  

No. 
vc 

(mm/min) 

ap 

(mm) 

f 

(mm/rev) 

r 

(mm) 

Insert 

type 

ΔD 

(mm) 

VB 

(mm) 

Ra 

(µm) 

MRR 

(mm3/min) 

1 300 2 0.2 1.2 Wiper 0.054 0.102 0.659 120 

2 300 3 0.25 1.6 Standard 0.111 0.130 2.768 225 

3 300 2 0.25 1.6 Wiper 0.106 0.097 1.294 150 

4 400 3 0.25 0.4 Standard 0.289 0.211 7.236 300 

5 400 3 0.15 0.8 Standard 0.052 0.184 1.303 180 

6 400 2 0.25 1.6 Wiper 0.111 0.141 1.354 200 

7 300 3 0.1 1.6 Wiper 0.017 0.090 0.210 90 

8 350 2 0.2 0.4 Standard 0.178 0.162 4.449 140 

9 300 2 0.1 1.6 Standard 0.017 0.111 0.435 60 

10 300 2 0.15 1.6 Standard 0.039 0.115 0.978 90 

11 400 3 0.2 1.6 Standard 0.074 0.170 1.853 240 

12 300 2 0.25 1.6 Standard 0.109 0.123 2.717 150 

13 300 2 0.1 0.8 Standard 0.022 0.129 0.543 60 

14 400 3 0.25 0.4 Standard 0.291 0.213 7.237 300 

15 400 2 0.25 0.4 Standard 0.284 0.205 7.109 200 

16 400 3 0.25 1.6 Wiper 0.112 0.147 1.379 300 

17 400 3 0.1 0.4 Wiper 0.045 0.172 0.643 120 

18 400 3 0.2 0.4 Wiper 0.182 0.180 2.573 240 

19 300 3 0.1 1.6 Standard 0.019 0.118 0.442 90 

20 300 2 0.25 0.4 Wiper 0.266 0.134 3.773 150 

21 400 2 0.1 0.4 Standard 0.046 0.192 1.138 80 

22 300 3 0.15 1.2 Wiper 0.031 0.104 0.377 135 

23 400 3 0.25 0.4 Wiper 0.284 0.184 4.020 300 

24 300 2 0.1 1.6 Wiper 0.017 0.084 0.207 60 

25 400 3 0.1 1.2 Standard 0.015 0.171 0.386 120 

26 350 2 0.25 1.2 Standard 0.093 0.141 2.317 175 

27 300 2 0.25 0.4 Standard 0.272 0.160 6.792 150 

28 400 2 0.25 0.4 Wiper 0.279 0.178 3.950 200 

29 300 2 0.1 0.4 Standard 0.040 0.148 1.087 60 

30 300 3 0.2 0.4 Wiper 0.174 0.136 2.460 180 

31 350 2 0.1 1.2 Standard 0.015 0.129 0.371 70 
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32 350 3 0.25 1.6 Wiper 0.111 0.114 1.348 262.5 

33 400 2 0.25 1.6 Standard 0.114 0.168 2.844 200 

34 400 2 0.15 0.4 Wiper 0.100 0.170 1.422 120 

35 400 2 0.1 1.2 Wiper 0.014 0.138 0.172 80 

36 300 3 0.25 0.4 Standard 0.277 0.167 6.919 225 

37 350 3 0.25 0.8 Standard 0.142 0.155 3.539 262 

38 300 3 0.1 0.4 Standard 0.044 0.154 1.107 90 

39 300 3 0.1 0.4 Standard 0.043 0.153 1.106 90 

40 300 3 0.2 1.2 Standard 0.059 0.135 1.476 180 

41 400 2 0.1 0.4 Wiper 0.045 0.165 0.632 80 

42 300 3 0.1 0.4 Wiper 0.043 0.127 0.615 90 

43 400 2 0.2 0.8 Standard 0.091 0.182 2.275 160 

44 300 3 0.25 1.6 Wiper 0.108 0.103 1.318 225 

45 350 2 0.25 0.4 Wiper 0.273 0.142 3.862 175 

46 350 2 0.15 0.8 Wiper 0.048 0.117 0.624 105 

47 400 3 0.25 1.2 Wiper 0.091 0.157 1.096 300 

48 300 3 0.25 1.6 Standard 0.112 0.131 2.766 225 

49 400 2 0.25 1.6 Standard 0.115 0.169 2.843 200 

50 400 3 0.1 0.8 Wiper 0.022 0.153 0.289 120 

51 400 2 0.15 1.6 Standard 0.041 0.159 1.024 120 

52 400 3 0.1 1.6 Standard 0.019 0.161 0.463 120 

53 350 2 0.2 1.6 Wiper 0.070 0.104 0.848 140 

54 350 3 0.1 1.6 Standard 0.019 0.126 0.453 105 

55 400 3 0.25 1.6 Standard 0.116 0.174 2.895 300 

56 400 3 0.1 1.6 Wiper 0.018 0.135 0.221 120 

57 400 2 0.1 1.6 Wiper 0.018 0.128 0.217 80 

58 400 2 0.25 0.8 Wiper 0.137 0.160 1.777 200 

59 400 3 0.1 0.4 Standard 0.044 0.196 1.157 120 

60 400 2 0.1 1.6 Wiper 0.017 0.126 0.216 80 

61 350 3 0.15 0.4 Standard 0.102 0.164 2.548 157.5 

62 300 2 0.1 0.4 Wiper 0.043 0.121 0.604 60 

63 300 2 0.1 0.4 Wiper 0.042 0.119 0.602 60 

64 300 2 0.25 0.4 Standard 0.271 0.158 6.790 150 

65 350 3 0.1 0.4 Wiper 0.044 0.136 0.629 105 

66 400 3 0.15 1.6 Wiper 0.041 0.139 0.496 180 

67 300 2 0.25 1.6 Wiper 0.108 0.099 1.292 150 

68 400 2 0.1 1.6 Standard 0.018 0.155 0.455 80 

69 300 3 0.25 0.4 Wiper 0.271 0.140 3.844 225 

70 400 2 0.1 0.4 Standard 0.047 0.193 1.140 80 

71 300 3 0.1 1.6 Wiper 0.019 0.091 0.212 90 

72 300 3 0.25 0.8 Wiper 0.133 0.121 1.730 225 

3.2. Process Analysis and Modelling 

The statistical analysis of the experimental results was carried out using SAS JMP 14 

software. The statistical analysis was performed separately for each output parameter in 

order to better interpret the results and determine the specific effects of each input 

parameter. In the statistical analysis, a model was chosen that includes main effects, their 

quadratic effects and two-factor interactions. The selected regression model consists of 20 

terms and defines the variances of ΔD, VB and Ra using the minimum number of required 

variations. Given the irregularities in the distribution of the data and the excessive 

deviations between the values, a logarithmic transformation (ln) of ΔD and Ra was 

performed to facilitate the application and interpretation of the statistical method. 
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Fig. 3 shows the evaluation of the quality of the fitting the regression models to the 

experimental data (actual) by comparing the dependence of the actual on the predicted 

output parameters. The resulting plots show a good predictive power of the model as the 

data points follow a diagonal line, which is an ideal arrangement when the actual output 

parameters are identical to the predicted output parameters. The proximity of the points to 

the diagonal indicates a narrow confidence interval, i.e. a high degree of accuracy in the 

model predictions. 

 

Fig. 3 Actual by predicted plot 

Table 3 shows a summary of the fit, which provides key statistical data on the quality 

of the selected regression models for each output parameter. The coefficient of 

determination (RSquare) values for all output parameters are close to 1, indicating a high 

degree of fit between the model and the data. The coefficients of determination mean that 

more than 99% of the variability of the responses is explained by the specified input 

parameters. The difference between the values of RSquare and RSquare Adj is small, which 

means that additional parameters in the model do not contribute to improving the 

explanation of variability. Low values of RMSE (0.039579, 0.001286 and 0.028794) 

indicate that the difference between the actual and predicted values is low. 

Table 3 Summary of fit 

Parameter ln ΔD VB ln Ra 

RSquare 0.998399 0.998371 0.999257 

RSquare Adj 0.998224 0.998193 0.999188 

Root mean square error 0.039579 0.001286 0.028794 

Mean of response -2.71538 0.145361 0.181747 

Table 4 shows the analysis of variance of the regression models, which provides an 

assessment of the effectiveness of the selected models in explaining the variability of the 

data. Low values of Prob>F (<0.0001) suggest that the models are significant, i.e., there is 

a real influence of input parameters, that is, they indicate the presence of at least one 

significant effect in the model. 

Table 5 shows the lack of fit of the model to the data. Since the Prob>F values for all 

three output parameters are greater than 0.05, it can be concluded that there is no 

statistically significant lack of fit. In other words, the models fit the data well and there is 

no need for further adjustments. 
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Table 4 Analysis of variance 

Output parameter Source DF Sum of Squares Mean Square F Ratio Prob > F 

ln ΔD 

Model   7 62.538877 8.93413 5703.154 <.0001 

Error 64 0.100258 0.00157   

C. Total 71 62.639134    

VB 

Model   7 0.06487678 0.009268 5604.625 <.0001 

Error 64 0.00010583 1.65410-6   

C. Total 71 0.06498261    

ln Ra 

Model   6 72.433757 12.0723 14561.24 <.0001 

Error 65 0.053890 0.000829   

C. Total 71 72.487647    

Table 5 Lack of fit 

Output 

parameter 
Source DF 

Sum of 

Squares 
Mean Square F Ratio Prob > F Max RSq 

ln ΔD 

Lack of Fit 54 0.09138242 0.001692 1.9068 0.1346 0.9999 

Pure Error 10 0.00887509 0.000888    

Total Error 64 0.10025751     

VB 

Lack of Fit 54 0.00009333 1.7284e-6 1.3827 0.3008 0.9998 

Pure Error 10 0.00001250 1.25e-6    

Total Error 64 0.00010583     

ln Ra 

Lack of Fit 23 0.02598929 0.001130 1.7010 0.0665 0.9996 

Pure Error 42 0.02790028 0.000664    

Total Error 65 0.05388956     

Table 6 shows the summary of effects of the model sorted by statistical significance for 

each output parameter. High Log Worth values indicate a larger effect. Regarding the 

regression model for dimensional deviation, the P-values indicate that the linear effects of 

all input parameters and the quadratic effects of corner radius and feed are significant, 

while the interaction terms are not significant. Statistically significant terms for flank wear 

are the linear effects of all input parameters and the quadratic effects of cutting speed and 

corner radius. For surface roughness, the main effects of feed, corner radius and insert type, 

the quadratic effects of corner radius and feed and the interaction of the corner radius with 

insert type are statistically significant.  

Table 6 Effect summary 

ln ΔD VB ln Ra 

Source 
Log 

Worth 
P Value Source 

Log 
Worth 

P Value Source 
Log 

Worth 
P Value 

f(0.1,0.25) 86.957 0.00000 vc(300,400) 79.370 0.00000 f(0.1,0.25) 96.952 0.00000 

r(0.4,1.6) 67.751 0.00000 r(0.4,1.6) 72.975 0.00000 r(0.4,1.6) 79.872 0.00000 

r×r 46.141 0.00000 Insert 67.429 0.00000 Insert 71.682 0.00000 
f×f 23.093 0.00000 f(0.1,0.25) 45.031 0.00000 r×r 55.108 0.00000 

vc(300,400) 4.785 0.00002 vc×vc 40.134 0.00000 f×f 32.008 0.00000 
Insert 2.498 0.00318 ap(2,3) 29.385 0.00000 r×Insert 13.908 0.00000 

ap(2,3) 1.699 0.02002 r×r 17.689 0.00000    
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The least squares estimates of the regression coefficients in regression models for each 

output parameter are shown in Table 7. The P-value (Prob>|t|) is a statistical measure that 

indicates whether the regression coefficient is statistically significant. Regression 

coefficients for which the P-value is less than 0.05 (at a significance level of 0.05) are 

statistically significant, which means that they have a measurable influence on the output 

parameters. Based on the t-test for each regression coefficient, it can be concluded from 

Table 7 that all regression coefficients make a significant contribution to the model for 

each output parameter. 

Table 7 Parameter estimates 

Output parameter Term Parameter Estimate Std. Error t Ratio Prob>|t| 

ln ΔD 

Intercept -4.248929915 0.01394 -212.63 <.0001 

vc(300,400) 0.0004741868 0.005086 4.66 <.0001 

ap(2,3) 0.0222581906 0.004665 2.39 0.0200 

f(0.1,0.25) 24.923894213 0.00521 176.07 <.0001 

f×f -36.26807853 0.012883 -15.84 <.0001 

r(0.4,1.6) -3.61217157 0.005208 -87.96 <.0001 

r×r 1.4243724919 0.012883 39.80 <.0001 

Insert [Standard] 0.01430008923 0.004665 3.07 0.0032 

Insert [Wiper] -0.01430008923 0.004665 -3.07 0.0032 

VB 

Intercept 0.6515022469 0.000479 268.80 <.0001 

vc(300,400) -0.003352888 0.000165 133.91 <.0001 

vc×vc 5.421798 10-6 0.000427 31.72 <.0001 

ap(2,3) 0.0062934453 0.000152 20.74 <.0001 

f(0.1,0.25) 0.0862505098 0.000169 38.18 <.0001 

r(0.4,1.6) -0.058217909 0.000169 -106.28 <.0001 

r×r 0.0141088 0.000415 12.24 <.0001 

Insert [Standard] 0.0131866107 0.000152 86.93 <.0001 

Insert [Wiper] -0.0131866107 0.000152 -86.93 <.0001 

ln Ra 

Intercept -1.109854932 0.010118 -5.34 <.0001 

f(0.1,0.25) 25.493860539 0.003788 241.16 <.0001 

f×f -38.0339955 0.009377 -22.82 <.0001 

r(0.4,1.6) -3.651190406 0.003788 -131.51 <.0001 

r×r 1.4103920332 0.009365 54.21 <.0001 

Insert [Standard] 0.3334098556 0.003393 98.25 <.0001 

Insert [Wiper] -0.3334098556 0.003393 -98.25 <.0001 

r×Insert [Standard] 0.0376169575 0.003793 9.92 <.0001 

r×Insert [Wiper] -0.0376169575 0.003793 -9.92 <.0001 

Fig. 4 shows that the residuals are randomly distributed along the horizontal axis (row 

number, according to Table 2) for each output parameter, indicating no trend or systematic 

irregularities in the distribution of the residuals. 

Fig. 5 shows the normal quantile plots of the residuals. The residual normal quantile 

plots allow an assessment of the normality of the residuals in the model. The distribution 

of the points on the plots follows the diagonals and the points are not outside the range, 

which indicates a normal distribution of the residuals. 
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Fig. 4 Residual by row plot 

 

Fig. 5 Residual normal quantile plot 

Statistical analysis of the data for the selected models yields the following regression 

equations for dimensional deviation, flank wear and surface roughness, respectively: 

 𝑙𝑛 ∆𝐷 = −4.248929915 + 0.0222581906 ∙ 𝑎𝑝 + 24.923894213 ∙ 𝑓 − 3.61217157 ∙ 𝑟 +

0.0004741868 ∙ 𝑣𝑐 − 36.26807853 ∙ 𝑓2 + 1.4243724919 ∙ 𝑟2 +

𝑀𝑎𝑡𝑐ℎ (𝐼𝑛𝑠𝑒𝑟𝑡) (
"𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑" ⇒ 0.01430008923

"𝑊𝑖𝑝𝑒𝑟" ⇒ −0.01430008923
𝑒𝑙𝑠𝑒 ⇒ .

)  
(4) 

 𝑉𝐵 = 0.6515022469 + 0.0062934453 ∙ 𝑎𝑝 + 0.0862505098 ∙ 𝑓 − 0.058217909 ∙ 𝑟 −

0.003352888 ∙ 𝑣𝑐 + 0.0141088 ∙ 𝑟2 + 5.421798 ∙ 10−6 ∙ 𝑣𝑐
2 +

𝑀𝑎𝑡𝑐ℎ(𝐼𝑛𝑠𝑒𝑟𝑡) (
"𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑" ⇒ 0.0131866107

"𝑊𝑖𝑝𝑒𝑟" ⇒ −0.0131866107
𝑒𝑙𝑠𝑒 ⇒ .

)  
(5) 

 ln 𝑅𝑎 = −1.109854932 + 25.493860539 ∙ 𝑓 − 3.651190406 ∙ 𝑟 − 1.666666667 ∙

𝑀𝑎𝑡𝑐ℎ(𝐼𝑛𝑠𝑒𝑟𝑡) (
"𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑" ⇒ 0.0376169575

"𝑊𝑖𝑝𝑒𝑟" ⇒ −0.0376169575
𝑒𝑙𝑠𝑒 ⇒ .

) − 38.0339955 ∙ 𝑓2 + 1.4103920332 ∙

𝑟2 + 1.666666667 ∙ 𝑟 ∙ 𝑀𝑎𝑡𝑐ℎ(𝐼𝑛𝑠𝑒𝑟𝑡) (
"𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑" ⇒ 0.0376169575

"𝑊𝑖𝑝𝑒𝑟" ⇒ −0.0376169575
𝑒𝑙𝑠𝑒 ⇒ .

) +

𝑀𝑎𝑡𝑐ℎ(𝐼𝑛𝑠𝑒𝑟𝑡) (
"𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑" ⇒ 0.3334098556

"𝑊𝑖𝑝𝑒𝑟" ⇒ −0.3334098556
𝑒𝑙𝑠𝑒 ⇒ .

)  

(6) 
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For the surface roughness, Fig. 6 shows a statistically significant interaction between 

the corner radius and the insert type. The influence of the interaction is most pronounced 

for the smallest corner radius (r=0.4 mm) and for the standard insert. The influence of the 

interaction is lowest for the corner radius r=1.2 mm and for the wiper insert. 

 

Fig. 6 Interaction profiles 

The prediction profilers shown in Fig. 7 visually display the optimal values for each 

output parameter as a function of each input parameter. 

 

Fig. 7 Prediction profiler 

As shown in Fig. 7, the minimum value of the dimensional deviation (ΔD=0.014 mm) 

is achieved at the minimum value of the cutting speed (vc=300 mm/min), the minimum 

value of the depth of cut (ap=2 mm), the minimum value of the feed (f=0.1 mm/rev), the 

value of corner radius r=1.2 mm and for the wiper insert. The minimum value of the flank 

wear (VB=0.084 mm) is achieved at the minimum value of the cutting speed (vc=300 

mm/min), the minimum value of the depth of cut (ap=2 mm), the minimum value of the 

feed (f=0.1 mm/rev), the maximum value of the corner radius (r=1.6 mm) and for the wiper 

insert. The minimum value of the surface roughness (Ra=0.172 µm) is achieved at the 

minimum feed value (f=0.1 mm/rev), the value of corner radius r=1.2 mm and for the wiper 

cutting insert and does not depend on the cutting speed and the depth of cut. The maximum 
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value of the material removal rate (MRR=300 mm3/min) was achieved at the maximum 

value of the cutting speed (vc=400 mm/min), feed (f=0.25 mm/rev) and depth of cut (ap=3 

mm) and does not depend on the corner radius and insert type. 

Given the conflicting requirements of the individual objective functions and in order to 

find a compromise solution for different production conditions and requirements, it is 

necessary to perform a multi-objective optimisation. 

3.3. Process Optimisation 

The objective function is defined as follows: 

 𝐹𝑐 = 𝑤∆𝐷 ∙ min 𝑥∆𝐷 + 𝑤𝑉𝐵 ∙ min  𝑥𝑉𝐵 + 𝑤𝑅𝑎 ∙ min 𝑥𝑅𝑎 + 𝑤𝑀𝑅𝑅 ∙ max  𝑥𝑀𝑅𝑅 (7) 

where 𝑤∆𝐷, 𝑤𝑉𝐵, 𝑤𝑅𝑎, 𝑤𝑀𝑅𝑅   are weight coefficients determining the significance of each 

output parameter in objective function, and 𝑥∆𝐷 , 𝑥𝑉𝐵, 𝑥𝑅𝑎 , 𝑥𝑀𝑅𝑅  are normalized values of 

output parameters (expression 8). In other words, the problem is defined as multi-objective 

optimisation seeking for minimum of ∆D, VB and Ra, and maximum of MRR. 

In order to eliminate the influence of the absolute values of the output parameters, their 

values were normalised using the following expressions:  

 𝑥𝑅𝑎 =
𝑅𝑎−𝑅𝑎𝑚𝑖𝑛

𝑅𝑎𝑚𝑎𝑥−𝑅𝑎𝑚𝑖𝑛
, 𝑥∆𝐷 =

∆𝐷−∆𝐷𝑚𝑖𝑛

∆𝐷𝑚𝑎𝑥−∆𝐷𝑚𝑖𝑛
, 𝑥𝑉𝐵 =

𝑉𝐵−𝑉𝐵𝑚𝑖𝑛

𝑉𝐵𝑚𝑎𝑥−𝑉𝐵𝑚𝑖𝑛
, 𝑥𝑀𝑅𝑅 =

𝑀𝑅𝑅−𝑀𝑅𝑅𝑚𝑖𝑛

𝑀𝑅𝑅𝑚𝑎𝑥−𝑀𝑅𝑅𝑚𝑖𝑛
 (8) 

where indices min and max determine the lowest and highest permitted value of each output 

parameter. As already mentioned, the “coordinates“ of particle’s position vector y in PSO 

algorithm are the input parameters vc, ap, f and r. Maximum number of iterations was 1000, 

and as alternative stopping criterion the number of 100 stall generations was used. The 

recommendations for adopting these values are not strictly defined in the literature, i.e. 

they depend on the particular optimisation problem. In practice, these values are 

determined experimentally, using trial and error procedure, which was also applied in this 

research. 

In accordance with experimental research, the following limitations for input 

parameters were defined: 

▪ vcmin ≤ vci≤ vcmax; 300 ≤ vci ≤ 400 ∀i∈[1,…,n]; continuous input parameter, 

▪ fmin ≤ fi ≤ fmax; 0.1 ≤ fi ≤ 0.25 ∀i∈[1,…,n]; continuous input parameter, 

▪ apmin ≤ api ≤ apmax; 2 ≤ ap ≤ 3 ∀i∈[1,…,n]; continuous input parameter, 

▪ rimin ≤ ri ≤ rimax; ri = 0.4 ∨ 0.8 ∨ 1.2 ∨ 1.6; categorical input parameter, 

▪ IT= Standard ∨ Wiper; categorical input parameter. 

The optimisation results for different values of the weighting coefficients are shown in 

Table 8. 

Table 8 Optimisation results 

No. 

Weighting coefficients Optimal input parameters 

wΔD wVB wRa wMRR 
vc 

(mm/min) 

ap 

(mm) 

f 

(mm/rev) 

r 

(mm) 
Insert type 

1 1 1 1 1 340 3 0.2 1.2 Wiper 

2 1 0 1 1 400 3 0.25 1.2 Wiper 

3 1 0 1 0 328 2.1 0.1 1.2 Wiper 
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3.4. Confirmation Experiments 

The models obtained were verified by seven additional confirmation experiments. The 

confirmation experiments were carried out to check the generalisability of the models formed 

and the validation of the optimal values. The confirmation experiments were carried out both 

with combinations of input parameters with which the modelling of the turning process was 

not carried out (experiments 1–4, Table 9) and with combinations of input parameters for 

which optimal output parameters were determined (experiments 5–7, Table 9). The results 

obtained for the seven combinations mentioned above are shown in Table 9. The performance 

evaluation was carried out by calculating the absolute and percentage errors. The graphical 

interpretation of the obtained minimum, mean and maximum values of the absolute and 

percentage errors for ΔD, VB and Ra is shown in Fig. 8. 

Table 9 Confirmation experiments results 

No. 
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Predicted Measure 

ΔD 

(mm) 

VB 

(mm) 

Ra 

(µm) 

ΔD 

(mm) 

VB 

(mm) 

Ra 

(µm) 

1 325 2.5 0.125 1.2 Standard 0.023 0.125 0.593 0.024 0.128 0.606 

2 325 2.5 0.125 1.2 Wiper 0.022 0.098 0.297 0.023 0.096 0.303 

3 375 2.5 0.175 1.2 Standard 0.048 0.151 1.198 0.05 0.154 1.216 

4 375 2.5 0.175 1.2 Wiper 0.046 0.125 0.601 0.047 0.129 0.609 

5 340 3 0.2 1.2 Wiper 0.062 0.112 0.795 0.063 0.114 0.807 

6 328 2.1 0.1 1.2 Wiper 0.015 0.094 0.192 0.016 0.097 0.195 

7 400 3 0.25 1.2 Wiper 0.098 0.156 1.191 0.099 0.158 1.207 

 

Fig. 8 Absolute and percentage errors 

4. DISCUSSION 

The results of the experiments, statistical analysis, modelling, optimisation and confirmation 

showed that the different input parameters have a different influence on the output parameters. 

As the cutting speed increases, the flank wear increases. An identical tendency was 

found in [26], but some of the studies showed the opposite, i.e. that when the cutting speed 

is decreased, the wear becomes more intense due to the generation of smaller cutting forces 
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[16], but when using multilayer composite nano-structured modified coatings. When the 

cutting speed increases, the temperature in the machining zone increases, which leads to 

higher flank wear. The consequence of the higher flank wear is a slight deterioration in the 

dimensional deviation. It can also be observed that the flank wear has not reached a critical 

level, so that it does not significantly affect the surface roughness. 

As the feed increases, surface roughness and flank wear increase. A similar dependence 

of surface roughness on feed was found in earlier studies [8, 11, 12, 18, 31]. The results 

differ slightly because different cutting tools/inserts are used, but the trends are very 

similar. As the feed increases, the cutting forces increase, which contributes to higher flank 

wear. The intensification of flank wear contributes to an increase in waviness and a 

deterioration in cylindricity, which in turn leads to an increase in dimensional deviation. A 

larger feed creates wider valleys on the workpiece, which contributes to an increase in 

surface roughness. 

As the corner radius increases, flank wear decreases. As the corner radius increases, the 

length of the cutting edge in contact with the workpiece increases, dissipating heat from 

the longer cutting edge and reducing flank wear. Several researchers were studying the 

connection between surface roughness and the corner radius. In previous studies, it was 

found that the surface roughness can decrease [12, 31] or increase [8] with an increase in 

the corner radius. In this study, as the corner radius increases, the dimensional deviation 

and surface roughness initially decrease and then increase slightly. Larger corner radii 

produce smaller peaks on the surface of the workpiece and at the same time less waviness. 

Therefore, a reduction in dimensional deviation and surface roughness up to a certain 

corner radius value can occur. After reaching this critical corner radius value, small 

vibrations obviously occur, which have an effect on the deterioration of the dimensional 

deviation and surface roughness, with the exception of flank wear. 

The flank wear decreases slightly with increasing depth of cut, similar to [30]. As the 

depth of cut increases, greater forces are required to break and remove the chips. As a 

result, the strength of the cutting edge decreases and flank wear increases. Higher flank 

wear contributes to an increase in dimensional deviation. 

Wiper inserts improve surface roughness, which is consistent with the results of an 

earlier study [8]. Wiper inserts are designed with a larger number of wipers and therefore 

contribute to a significant reduction in surface roughness. In addition, wiper inserts have a 

longer cutting edge so that they wear more slowly, i.e. the use of wiper inserts reduces 

flank wear. 

The optimisation results (Table 9) show that it is always advantageous to turn C45 steel 

with wiper inserts and with a corner radius r = 1.2 mm, regardless of the weights of the 

output parameters. This is due to the fact that these two input parameters have no influence 

on the MRR and have a positive effect on ΔD, VB and Ra. 

In the first case (Table 8), where all output parameters are given the same importance 

(wΔD=wVB=wRa=wMMR=1), the cutting speed was close to the average level (vc=340 

mm/min), the depth of cut was at the maximum level (ap=3 mm) and the feed was close to 

the average level (f=0.2 mm/rev). Increasing the depth of cut had a positive effect on MRR 

and the least negative effect on ΔD, Ra and VB. Increasing the cutting speed and feed had 

a positive effect on MRR and a negative effect on ΔD, Ra and VB. The negative influence 

of cutting speed and feed was compensated by the corner radius r=1.2 mm and the wiper 

insert, which resulted in the best values for ΔD and Ra and almost the best values for VB. 
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In the second case shown in Table 8, where equal importance was given to ΔD, Ra and 

MRR (wΔD=wRa=wMMR=1) and no importance was given to VB (wVB=0), the cutting speed 

was at the maximum level (vc=400 mm/min), the depth of cut was at the maximum level 

(ap=3 mm) and the feed was at the maximum level (f=0.25 mm/rev). This is due to the fact 

that the MRR is highest when the cutting speed, depth of cut and feed are at their maximum. 

In addition, the negative influence of these three parameters on ΔD and Ra was 

compensated with a corner radius of r=1.2 mm and a wiper insert, and the best values for 

ΔD and Ra were achieved. 

In the third case of Table 8, where equal importance was given to ΔD and Ra 

(wΔD=wRa=1) and no importance was given to VB and MRR (wVB=wMMR=0), the cutting 

speed was close to the minimum value (vc=328 mm/min), the depth of cut was close to the 

minimum value (ap=2.1 mm) and the feed was at the minimum value (f=0.1 mm/rev). This 

is due to the fact that ΔD and Ra decrease with a reduction in cutting speed, depth of cut 

and feed. 

5. CONCLUSION 

In this study, a scientific approach has been proposed and proven that allows the process 

of dry turning of C45 steel for defined input parameters to be comprehensively evaluated, 

modelled and optimised based on the results of experimentation, statistical analysis, 

modelling, optimisation and confirmation. 

For different combinations of input parameters, the values of the output parameters vary 

over wide ranges, namely: 

▪ ΔD in the range of 0.014–0.291 mm and with a ratio of 20.79, 

▪ VB in the range of 0.084–0.213 mm and with a ratio of 2.54, 

▪ Ra in the range of 0.172–7.237 µm and with a ratio of 42.08, 

▪ MRR in the range of 60–300 mm3/min and with a ratio of 5. 

This shows that it is possible to optimise the dry turning of C45 steel for various reasons 

in order to achieve the required quality characteristics, which is very important with regard 

to the possibility of practical application of the developed methodology. 

The most influential input parameters on ΔD are feed and corner radius, while cutting 

speed, insert type and depth of cut had a slightly smaller influence. The most influential 

parameters on VB are cutting speed, corner radius and insert type, while feed and depth of 

cut have a slightly lower influence. The parameters with the greatest influence on Ra are 

feed, corner radius and insert type. The parameters influencing MRR are cutting speed, feed 

and depth of cut. 

The optimal combinations of input parameters vary with the requirements for the 

defined importance of the output parameters. Different combinations of optimal input 

parameters resulted from the different importance (weighting coefficients) of the output 

parameters. The results obtained show that dry turning with corner radius of r=1.2 mm and 

a wiper insert is suitable to be performed independently of other production requirements. 

The percentage optimisation errors were in the range of 1.01-6.25 % for ΔD, in the range 

of 1.27-3.10 % for VB and in the range of 1.31-2.15 % for Ra. These percentage errors 

correspond to absolute errors in the range of 0.001-0.002 mm for ΔD, in the range of 0.002-

0.004 for VB and in the range of 0.003-0.018 µm for Ra. The values of the percentage 
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errors and especially the absolute errors show the possibility of practical implementation 

of the developed models in a real production environment. 

The limitations of the applied methodology are reflected in the fact that the models are 

applicable under the conditions under which the experiments were conducted. Therefore, 

it is planned to consider a larger number of input parameters as well as wider ranges and 

additional input parameters in future research. 
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