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Abstract. This study delves into the intriguing realm of nonlinear responses exhibited by 

porous functionally graded (FG) 3D shell structure. A power law approach is formulated 

to simulate the mechanical behavior of FG materials, considering two distinct porosity 

distributions. This approach provides a comprehensive exploration of porosity 

phenomena in FG materials. The finite element (FE) formulation is based on an improved 

first-order shear deformation theory (FSDT) with the inclusion of thickness stretching 

parameters. This improved theoretical framework provides a more accurate 

representation of the transverse shear stress distribution within the structure, capturing 

the complexities of its behavior under loading conditions. This research enriches 

understanding by integrating porosity into FG materials, whether distributed evenly or 

unevenly, thereby contributing to advancements in the field. 
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1. INTRODUCTION 

Functionally Graded Materials (FGMs) have garnered increasing interest in modern 

technologies over the last decades due to their unique composition, synthesized from a 

blend of two distinct material phases in specific volume ratios. These materials exhibit 

gradual variations in properties along specified directions, typically through-thickness, 

thereby mitigating abrupt changes in thermal or mechanical properties and reducing 

interlaminar stresses. Leveraging the remarkable advantages of FGMs in industrial and 

engineering applications, numerous researchers have focused on analyzing the behaviors 

of FGM plates and shell structures using finite element (FE) methods [1]. Recent studies 

have also explored the integration of FGM materials with piezoelectric materials to create 

smart structural components. For instance, Mallek et al. [2] investigated the piezoelastic 

response of FGM shells embedded with intelligent materials under mechanical and 

electrical loads, highlighting the potential for advanced multifunctional applications in 

structural engineering.  

The materials industry has witnessed a significant evolution, with porous materials 

gaining prevalence owing to their distinct characteristics, including lightweight nature, 

excellent energy absorption, and heat resistance [3]. These attributes have motivated the 

emergence of a novel category of lightweight materials known as Functionally Graded 

Porous (FGP) materials, characterized by a graded distribution of internal pores within the 

microstructural section [4]. FGP materials, offering unique mechanical properties, have 

recently found applications in various domains, including static, free vibration, and 

dynamic analysis. Numerous studies have investigated both linear and nonlinear behaviors 

of FGP beams [5-7]. For instance, Wang and Wu [8] conducted free vibration analysis of 

cylindrical porous FG shells, combining sinusoidal shear deformation theory with the 

Rayleigh-Ritz method to discern the effect of graded porosity on structural characteristics. 

Additionally, Nguyen et al. [9] proposed an efficient approach based on the polygonal finite 

element (FE) method to predict static and free vibration responses of FGP plates reinforced 

with graphene platelets (GPLs), considering various porosity distributions. Subsequent 

works by other authors [10-12] have explored the bending, buckling, and vibration 

behaviors of FGP structures, highlighting the influence of porosity distributions and 

mechanical properties. Notably, Zghal and Dammak [13, 14] investigated buckling 

responses and vibrational behavior of FGP plates and shells with varying mechanical 

properties using a mixed FE formulation, emphasizing the critical role of porosity 

percentages and distributions. The literature review underscores the importance of 

considering porosity effects and distributions in predicting the mechanical behavior of FGP 

materials. Indeed, Wattanasakulpong et al. [5] demonstrated the emergence of porosity and 

micro-voids during the multi-step infiltration technique in layered FGMs, attributed to 

solidification temperature differences among material phases. Two models for studying the 

mechanical behaviors of FGP materials have been proposed: one based on mixture rules, 

assuming continuous variation of effective material properties and even or uneven 

dispersion of porosities [15], and another employing a specific continuous function to 

determine porous material properties throughout the structure's thickness [16]. 

While considerable attention has been devoted to analyzing the mechanical behavior of 

FGP beams and plates, there is a notable dearth of investigations concerning porous FG 

shell structures, as noted by Wang and Wu [8]. Thus, it is imperative to explore the 

behaviors of porous FG shells to unveil the effects of porosity. Shell structures find 
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widespread applications [17] in various industrial fields, including pressure vessels, roll-

forming, and deep drawing, often undergoing large deformations [18] and finite rotations 

where linear models prove inefficient. Consequently, accounting for geometric 

nonlinearities becomes crucial in shell modeling, given the significant influence of 

nonlinear parameters in numerous analysis fields, particularly in porous FG structural 

design. Within this framework, Abid et al. [19] examined the geometrically nonlinear static 

responses of porous FG ring and cylindrical panels, considering even and uneven porosity 

distributions along the thickness direction. The High-order Shear Deformation Theory 

(HSDT) employing double directors' vectors was utilized with an isoparametric concept, 

highlighting the disparities between linear and nonlinear deflections of FGP shell 

structures. It was deduced that under high loading conditions, linear shell modeling may 

yield inaccurate predictions, emphasizing the importance of geometric nonlinearity in FE 

formulations. Moreover, when modeling moderate or thick shell structures under the Plane 

Stress Assumption (PSA), neglecting the thickness stretching effect of normal deformation 

may lead to inaccuracies, especially for thick structures. In this regard, evolving an efficient 

FE formulation capable of accommodating arbitrary three-dimensional constitutive laws 

without condensation is crucial. To achieve this objective, the standard FSDT shell 

formulation with five parameters is extended to a 6-parameter theory, including the full set 

of stress and strain fields. This extension involves considering an extensible director vector, 

acknowledging the sixth degree of freedom as a scalar stretching component. The 

exploration of mechanical behaviors using the 3D theory of elasticity was pioneered by 

Simo and Rifai [20] employing a 6-parameter shell model, which avoids displacement 

formulation errors and thickness locking phenomena. Various methods have been proposed 

to address thickness locking, including quadratic displacement distribution through the 

thickness direction and enriching the thickness strain via methods like the Enhanced 

Assumed Strain (EAS) method. Recent efforts by Beheshti and Ramezani [21] introduced 

a nonlinear extensible shell model to investigate the large deformation of FG shell 

structures, incorporating seven parameters to account for thickness stretch, while 

employing the EAS concept to mitigate numerical instability issues and enhance strain 

components. 

Triply Periodic Minimal Surface (TPMS) structures are currently renowned for their 

exceptional energy absorption capabilities, which make them highly suitable for 

applications requiring efficient mechanical performance. In this regard, several recent 

studies have explored advanced approaches such as nonlocal strain gradient-based 

isogeometric analysis for functionally graded TPMS nanoplates reinforced with graphene 

platelets. These studies aim to improve the accuracy of mechanical behavior predictions 

for such complex materials. Furthermore, new computational frameworks [22, 23] have 

been proposed for modeling 3D-printed graphene-reinforced functionally graded TPMS 

plates, emphasizing multiscale techniques to better capture the mechanical properties and 

performance in additive manufacturing contexts. These advancements offer a deeper 

understanding of the behavior of graphene-based composites and present innovative 

computational strategies for their analysis. 

From the literature review, it is evident that previous studies primarily focused on 

analyzing the responses of FG plates and shell structures with internal pores, employing 

the Plane Stress Assumption (PSA) model, which neglects thickness stretch. However, a 

comprehensive investigation into the large elastic deformations and finite rotations of FG 

shell structures with internal pores, considering three-dimensional constitutive equations 
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and through-the-thickness stretching, remains unexplored. This paper aims to address this 

research gap. Our work introduces a 3D extensible shell model utilizing six independent 

kinematic parameters, including thickness stretching, and incorporates the EAS method. 

Considering the limitations of conventional theories like FSDT and HSDT, an efficient 

finite element shell model is proposed based on an improved FSDT theory, ensuring a 

realistic parabolic distribution of Transverse Shear Strains (TSS) across the structure's 

thickness. Additionally, the importance of thickness stretching is highlighted by 

incorporating linear variation through the thickness via the EAS concept to analyze large 

elastic deformations. Moreover, locking problems inherent in extensible models are 

addressed by applying the Assumed Natural Strain (ANS) method to improve membrane 

behavior. The subsequent sections of this paper delve into the materials modeling and 

geometrically nonlinear analysis methods considered herein. The proposed finite element 

method necessitates an effective elastic part, including offsetting the neutral surface, 

accounting for geometric nonlinearity in stiffness matrices, enhancing quantities for 

bending and membrane deformations using the EAS method, and improving TSS using a 

modified FSDT theory and ANS method. 

2. GENERALIZED FORMULATION AND FE MODELING OF FGP SHELLS 

The study of shell structures is significant in several fields of structural mechanics. With 

the expansion of FE methods, various theories have been proposed to examine shell issues. 

In this work, the extensible director shell approach is used to develop the governing 

mathematical expressions for the elastic case to evaluate the large deflection performance 

of porous functionally graded structures. Three essential concepts underpin the extensible 

FSDT shell theory. The first concept illustrates the position of the director dispersion in the 

deformed state. The second concept, called parabolic TSS, assumes that the distribution of 

TSS across the structure's thickness is formulated as polynomial of degree two. The 

inclusion of the thickness stretching parameter in shell elements is established in 

accordance with the third concept. 

2.1 FGP Properties’ Estimation 

The increasing application of functionally graded materials in thin-walled structures 

necessitates the development of accurate predictive models to characterize their material 

behavior. In this investigation, the rule of mixture (ROM) is employed to analyze the 

performance of these advanced materials. FGMs can be categorized into two classes: 

perfect and imperfect. Perfect FGMs are composed of two phases: ceramic and metal where 

the composition and properties change gradually within the material. Imperfect FGMs, on 

the other hand, are characterized by the presence of internal pores within their 

microstructure (see Fig.1). 
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Fig. 1 Perfect and imperfect FGM 

2.1.1 Perfect FGM Material Properties 

FGMs are composite materials composed of distinct phases, typically metals and 

ceramics, which vary gradually in volumetric fraction along the thickness direction. This 

gradual variation results in material properties that smoothly transition from one 

constituent to another. Typically, the top surface consists of ceramic while the bottom 

surface is made of metal. In this study, the mechanical properties of the material evolve 

according to a power law distribution (where n denotes the power low index), considering 

the specific material properties of the ceramic and metal phases (as illustrated in Fig. 2 with 

the porosity volume fraction α set to 0). 

It is worth mentioning that when n equals zero, the material is entirely ceramic, and as 

n tends to infinity, the material transitions to being entirely metal. In situations where there 

are asymmetrical variations in material properties, particularly in terms of E, the offset 𝑧̅ 
of the neutral surface from the discretized mid-plane is defined as detailed in reference 

[24]. 
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where �̅� and �̅�1 are the effective moduli for membrane and bending, respectively. 

Subsequently, the analytical representation of 𝑧̅ /h  is approximated as [24]: 
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In this study, the modified rule of mixture (MROM) refers to an enhancement of the 

traditional rule of mixture used in composite materials analysis. The rule of mixture (Fig. 

2) also entitled the FGM homogenization schema, is used to predict the overall properties 
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of an FGM based on the properties of its individual constituents and their volume fractions. 

In the context of Wattanasakulpong and Ungbhakorn's work [25], the modified rule of 

mixture extends this concept by incorporating additional factors or adjustments to more 

accurately predict the behavior of functionally graded materials (FGMs). These factors 

may firstly refer to the porosity volume fraction α  that defines the proportion of the FGM's 

volume that is occupied by voids or pores. These porosities can be distributed either evenly 

or unevenly (as shown in Fig. 2) across the thickness of the structure. It is assumed that the 

top surface is predominantly ceramic, while the bottom surface is primarily metal, with a 

continuous variation of the material composition throughout the thickness. The material 

properties of the porous FGM follow the rule of mixtures, where the porosities are 

distributed uniformly across the thickness, as described by: 
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c m c m c m

z
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where α (0≤ α ≤1) represents the porosity volume fraction, 𝑃𝑚 and 𝑃𝑐 denote the material 

properties of the metal and ceramic respectively such as the Young’s modulus E, the 

Poisson’s ratio υ and the density ρ. Further,  𝑉𝑚 and  𝑉𝑐 indicate the volume fractions of 

metal and ceramic respectively assuming the condition of  𝑉𝑚 + 𝑉𝑐 = 1 and h denotes the 

structure’s thickness.  

 

Fig. 2 FGM homogenization scheme 

When α is zero, it indicates that the FGM is completely dense without any voids or 

pores. Increasing this factor results in more voids along the FGM’s volume. Secondly, the 

factor b represents the uneven parameter. When setting b to zero, the porosity is evenly 

distributed throughout the material. Conversely, setting b to unity indicates an uneven 

distribution of porosity within the FGM (Fig. 2). Not forgetting the power law index n of 

the FGM that determines the rate at which the material composition and properties change 

along the material's gradient. In fact, the volume fraction of the ceramic phase varies along 

the structure's thickness, denoted as: 
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As the power law index n increases, the FGM structure becomes richer in metal phase, 

while lower values of n result in a structure that is predominantly ceramic. When n is set 

to zero, the structure is entirely ceramic, and as n increases, the structure shifts towards a 

higher metal content. 

2.1.2 Imperfect FGM Material Properties 

Porosities arise as a consequence of the manufacturing process, manifesting as defects 

within the microstructure. It is imperative to account for these porosities when studying the 

mechanical behavior of FGMs. In this study, two distinct porosity distributions along the 

thickness direction are examined: even and uneven, as depicted in Fig. 1. In contrast to the 

even distribution of porosity, where the distribution is uniform across the thickness, the 

uneven distribution reveals a concentration of porosities primarily within the middle zone.  

Fig. 3 illustrates the evaluation of effective FGP material properties along the thickness, 

considering both even and uneven distributions of porosities. The exponent n represents 

the material power-law index describing the material profile gradation. When n is set to 

zero, a single-phase ceramic material is obtained. The porosity volume fraction α varies 

from zero to 1, Setting α to zero implies a perfect FGM shell, while increasing   introduces 

porosity and micro-voids, rendering the FGM imperfect. Further, b represents the uneven 

parameter. When it is set to zero, an evenly distributed porosity is achieved, whereas setting 

it to unity indicates an uneven porosity distribution. 

It is important to acknowledge that the variations of porous FG material properties 

along the thickness direction are asymmetric. In mixed finite element formulations, this 

asymmetry can pose challenges during simulation due to the coupled nature of bending and 

membrane effects. To address this issue, the concept of a neutral surface can be employed. 

All effective quantities are then evaluated relative to this neutral surface. The analytical 

expression for the offset of the neutral surface from the discretized mid-plane is given as 

follows [26]: 
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The distribution of the offset  𝑧̅/ℎ along with the variation of the material exponent n 

and the porosity volume fraction α is plotted in Fig. 3. 
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a)  

b)  

Fig. 3 Variation of the offset 𝑧̅/ℎ  versus different values of the material exponent n and 

porosity volume fraction α for the (a) Even; (b) Uneven configuration 

2.2 Extensible Shell Kinematics and Fundamental Equations 

This section provides a brief overview of the kinematics underlying the nonlinear 

extensible director shell model. The initial and deformed configurations are denoted as C0 

and Ct, respectively. The present research utilizes curvilinear dimensions (𝜉1, 𝜉2, 𝜉3 = 𝑧) 

to characterize the location and placement of physical parameters. 
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2.2.1 Extensible Director Shell Kinematics 

In the following, FSDT, sometimes denoted as 5-parameter model, is here enhanced 

with an extensible director, being able to depict the shell thickness stretch during its 

deformation. According to the cited theory, the displacement field of an arbitrary point (q) 

on the shell, in both its initial state and its current configuration can be expressed using 

curvilinear coordinates: 
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in which the in-plane curvilinear coordinates (𝜉1, 𝜉2) are tangent to the mid-surface, 

whereas the thickness coordinate 𝜉3 is perpendicular to this mid-surface, as depicted in Fig. 

4. Xp and xp represent the position vector located on the mid-surface in C0 and Ct, 

respectively. ho refers to the initial thickness of the structure and D designates the director 

shell vectors in C0. 

  

Fig. 4 Geometry and kinematics of the shell element 

The initial improvement to the shell's kinematic properties involves incorporating an 

extensible director vector using an extra variable known as the shell thickness stretch. 

Consequently, the deformation of the director within Ct is characterized by both an 

inextensible unit vector t and a thickness stretch parameter represented as λ: 

        1 2 1 2 1 2 1 2, 1 , , ; , 1           
 

d t t  (7) 

According to Eq. (4), the vectors xq and d are treated as independent quantities, with xq 

expressed by three components, while d is described by only two. The shell thickness can 

be determined in relation to the thickness stretching parameter  λ (𝜉1, 𝜉2)  as follows [27]: 

  0 01 / , 1h h h h      (8) 
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It is worth mentioning that for the reference configuration C0 where there is no 

thickness stretch, the scalar function λ is initially defined as zero. The derivative of the 

director vector d is expressed as below: 

  , , ,1 , 1,2k k k k    d t t  (9) 

For the ease of defining the shell deformation gradient, the covariant basis vectors are 

determined in the initial and actual configurations as: 
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where (𝑨1, 𝑨2, 𝑨3) denote the tangent basis vectors of the mid-surface in the undeformed 

reference configuration and  (𝒂1, 𝒂2, 𝒂3) are their image at the actual configuration. 

The Riemannian metric at the initial configuration C0 is designated by G, that of the 

current configuration Ct by g, having the following expressions: 
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Introducing the expressions of the covariant basis vectors and the Riemannian metric 

(Eqs. (10) and (11)) yields the covariant components of the 3D metric tensor in Ct  as: 
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where  𝑎𝑘𝛽,  𝑏𝑘𝛽, 𝑐𝑘
0 and 𝑐𝑘

1 represent the kinematic variables, which are expressed as: 
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For later use, geometrical variables are also added in the initial state C0 as: 
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2.2.2 Green Compatible Strain Tensor 

A suitable strain measure, accommodating arbitrarily large rotations and displacements, 

is provided by the Green compatible strain tensor 𝑬𝑐, given as: 

      
 

  

2

c 0 1

ij ij 3

2c

33 33

ˆ
1 1

ˆ,      ,      2 +z , , 1,2
2 2

1 1 / 2

c

kβ kβ k

c c

ij k k k

E e zχ O z

E g G E k

E e



  



   



     


   

E g G  (15) 



 Porosity Effects on Nonlinear Static Performances of FG Shells Considering Thickness Stretching 11 

The components of strain field, including membrane  𝑒𝑘𝛽, transverse normal  𝑒33, bending 

 𝜒𝑘𝛽  and shear (𝛾𝛼
0, 𝛾𝛼

1 )  strains, are defined as energetically conjugate parts to the 

kinematic variables. 
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By utilizing these relations, the variation of the corresponding strains can be evaluated 

as: 
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Whereby, the variation of the extensible shell director is computed as follows: 
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The cited quantities are condensed obtaining the following matrix form: 
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Next, these strain vectors are organized into a generalized strain 𝞢𝑐  as follows: 
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2.2.3 Improved FSDT Theory 

The Mindlin's First-Order Shear Deformation Theory (FSDT) is based on the 

assumption of a linear shear strain distribution 𝐸𝑘3
𝑐   across the thickness of the shell. 

However, it is well established that shear strain follows a parabolic distribution across the 

thickness, vanishing at the top and bottom surfaces of the shell. To correct this discrepancy, 

several studies have introduced constant shear correction coefficients. Additionally, Tanov 

and Tabiei [28] incorporated a shear function in the FSDT formulation, resulting in a 

parabolic distribution of transverse shear stresses. Building on the work of Shi [29], the 

present study improves the FSDT theory by assuming a parabolic shear strain distribution 

through the thickness, using a quadratic function f(z) as detailed in the following: 
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        
2

0 1

3 2

5
ˆ2 , 1 4 , 1,2

4

c

k z

z
E f z z f z k

h

 
     

 
γ γ  (21) 

2.3 Shell Variational Formulation 

The Enhanced Assumed Strain (EAS) method is employed for defining the strain 

tensor, aiming to prevent numerical locking problems and enhance the deformation 

gradient. According to this technique, the Green strain field E comprises the compatible 

strain field 𝑬𝐶  and the enhanced incompatible strain field �̃�: 

    
c E E E  (22) 

The EAS formulation is employed to represent the three-dimensional equilibrium 

equations in terms of three independent variables: the Green strain tensor E, the 2nd Piola-

Kirchhoff stress tensor S, and the deformation field Φ. As demonstrated in the work of 

Simo and Rifai [20], the following variational formulation is articulated: 

     int int0 ; : c

ext
V

W W W W dV      S E E  (23) 

where 𝑊𝑒𝑥𝑡 represents the virtual work of the external loading and dV expresses the shell 

initial volume element. 

Note that the stress tensor S is considered to be orthogonal to the enhanced strain tensor 

�̃� over the element as outlined by Simo et al. [30]. This assumption of orthogonality is 

expressed as: 

    0
V

dV  E S  (24) 

Moreover, no additional shear enhancement components are included in �̃�. Thus, the 

internal virtual work, upon integration across the thickness of the shell, can be expressed 

as: 

        0 1

int 0 1z
A

W dA           N e e M χ χ T γ T γ  (25) 

where the terms (N, M, 𝑻𝑘(k=0,1)) represent the membrane, bending, and shear stress 

resultants expressed in vector form as: 

    

11 11

1 122 22

0 1

0 12 233 33

0 1

12 12

N M

T TN M
,     ,

T TN M

N M

   
   

                  
   
      

N M T T,  (26) 

where its constituents are defined as following: 
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
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 (27) 

To simplify the expression of the internal work as shown in Eq. (23), the stress and strain 

resultants are organized in a generalized vector form, yielding: 

    
0

0

1

1 12 1

, ,c

 

 
 






     
     
       
     
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    

N e e

M χ χ
R Σ Σ

T γ 0

T γ 0

 (28) 

Thus, Eq. (25) can be expressed as follows: 

     
T

c

int
A

W dA   Σ Σ R  (29) 

2.4 Governing Equations of FGP Shell 

A linear relationship is assumed between the generalized stress resultant R and the 

generalized strain 𝞢 as follows: 

    T .R H Σ  (30) 

where 𝑯𝑇  represents the material tangent modulus, described in terms of the linear elastic 

in-plane H and out-of-plane 𝑯𝜏 sub-matrices: 

    

   

        

11

22

33 34

44

2
2

11 12 22
2

2
2 2 2 2

33 34 44
2

1

T

h /
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
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 (31) 

For isotropic materials, the matrices H and 𝑯𝜏 are specified as follows: 

    
 

  
 
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H H  (32) 
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2.5 FE Modelling of FGP Shell 

In this section, the FE implementation of the current theoretical formulation based on a 

nonlinear four-node shell element is established according to the extensible director theory 

to predict the static FGP responses of plate and shell structures. Thus, the development of 

an isoparametric FE, which involves rotation-displacement-thickness-stretch, can be 

achieved. This extensible shell element according to the director model encompasses a total 

of six degrees of freedom at each node I: including 3 displacements, 2 rotational degrees 

and the stretching parameter presented in the generalized displacement vector as             

𝜱𝑰 = (𝒖𝑰, 𝒕𝑰, 𝜆𝑰).    

The displacement vector, written in the form u=x-X and its variation are approximated 

using the standard finite element bilinear shape functions 𝑁𝐼, as: 

       
4

1

I
I I I

I

, , N , ,



  X u u X u u  (33) 

The unit director vector t and the λ parameter are discretized using the same functions: 

       
4

1

I
I I I

I

, , N , ,



    t t t t  (34) 

As the approximation of the different fields is assessed in the Local Cartesian system, 

Eq. (35) defines the Jacobian matrix J to facilitate the transformation from curvilinear 

coordinate vectors to the Local Cartesian system {𝒏1
0, 𝒏2

0, 𝒏𝟎}. Here, 𝒏𝟎 represents the 

normal field to the mid-surface in the initial configuration, computed as 𝒏𝟎 = 𝑨𝟏 ∧
𝑨𝟐/‖𝑨𝟏 ∧ 𝑨𝟐‖: 

    

0 0
1 1 2 1

0 0
1 2 2 2

. .

. .

 
  
  

n A n A
J

n A n A
 (35) 

Subsequently, the derivatives of the Cartesian standard shape functions defined at node 

I are converted to the global Cartesian basis as follows: 

     
1,1 ,1

,2 ,2

I I

I I

N N

N N

      
   

      
J  (36) 

2.5.1 Compatible Membrane and Transverse Normal Strain 

As detailed in the study by Bischoff and Ramm [31], to mitigate the occurrence of 

parasitic strain distribution, the Assumed Natural Strain (ANS) method is employed to 

interpolate the compatible thickness strain   defined at the sampling points instead of the 

Gauss points (refer to Fig. 5). 

     
4

33 33 33

1

, 1I I I

I I

I

e N e e    


    (37) 
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The interpolated compatible membrane strains (𝑒11, 𝑒22 and  𝑒33) and transverse 

normal strain  𝑒33 are connected to the node’s kinematic variables 𝛿𝜱𝑛 through the discrete 

operator matrix  𝑩𝑚, as outlined in Appendix A 

    .m n e B Φ  (38) 

 

Fig. 5 Presentation of transverse normal and shear strain interpolation points 

2.5.2 Compatible Bending Strain 

The linearized compatible bending strain is written in term of the node’s kinematic 

variables 𝛿𝜱𝑛 and the discrete bending operator matrix  𝑩𝑏   (detailed in Appendix A), as 

follows: 

    .b n χ B Φ  (39) 

2.5.3 Compatible First Term of the Transverse Shear Strain 

It is hypothesized that the shear locking issue, which hampers the effectiveness of the 

displacement Finite Element (FE) formulation, particularly for thin shells, can be 

effectively mitigated by the Assumed Natural Strain (ANS) method [32, 33]. The 

compatible first term of the TSS 𝜸0 is computed within the element at sampling points (A, 

B, C and D) as follows: 

    
   

   

2 0 2 00
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(1 ) (1 )1

(1 ) (1 )2

B D

A C


   


   

     
    

     
γ  (40) 

Here, (A, B, C and D) represent a set of mid-points along the boundaries of the element, as 

illustrated in Fig. 5. This interpolation technique safeguards against unreasonable modes 

of compatible shear strains, enabling deformations without parasitic shear strains during 

pure bending. 

Next, the variation of the constant TSS is interpolated within the element as: 

    0 0 .s n γ B Φ  (41) 
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in which, 𝑩𝑠
0 is the discrete first shear strain operator matrix, illustrated in Appendix A. 

2.5.4 Compatible Second Term of the Transverse Shear Strain 

The calculation of the compatible second TSS follows the same procedure as the first 

shear strain, utilizing the ANS method. 
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
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

   

     
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     
γ  (42) 

The variation of the second TSS strain is presented in the matrix form as follows: 

    1 1.s n γ B Φ  (43) 

Here, the discrete operator matrix for the second shear strain-displacement 𝑩𝑠
1 is 

depicted in Appendix A.  

Ultimately, the virtual compatible strain tensor is obtained using Eqs. (39), (40), (42), 

and (43) as follows: 

    0 1 .
T

c

n        Σ e χ γ γ B Φ  (44) 

2.5.5 Enhanced Transverse Normal Strains Approximation 

The enhanced strain field �̃� according to the EAS method is expressed as following: 

    
0 0

E

G

G
E T Mα  (45) 

where α refers to the internal variable vector. �̃� denotes the interpolation function matrix 

and the index ‘0’ represents its evaluation at the center of the element. Four configurations 

of enhancement for the �̃�  matrix are developed with one, four, five, or eight parameters. 

In Eq. (18), a linear distribution is assumed along the shell thickness for the in-plane 

normal strains 𝐸𝛼𝛽
𝑐  and 𝐸𝛼3

𝑐 , while the transverse normal strain �̃�33 is presumed constant 

with respect to the thickness coordinate z. This constant distribution may result in artificial 

stresses in the thickness direction. To address this issue, the transverse normal strain 𝐸33
𝑐   

should be augmented by an additional linear strain �̃�33. This enhancement component is 

introduced discretely using the Enhanced Assumed Strain (EAS) concept. According to the 

EAS approach, the interpolation of �̃�33 is treated independently for each element and is 

introduced via additional parameters, which are condensed within the element. The 

following enhancement is achieved using either one or four additional parameters. The 

expression of the interpolation matrix when considering one additional parameter, �̃�1 is 

introduced as follows: 

     1

2
0 0 0 0 0

T z
,

h
  M  (46) 
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Next, the variation of the generalized incompatible strain 𝛅�̃�  is determined using the 

interpolation matrix �̃�1 defined in the curvilinear basis (refer to Appendix B), as follows: 

    1 Σ B   (47) 

If four strain-supplemented parameters are taken into account, the expression of the 

interpolation matrix  �̃�4 can be described as outlined in Appendix B. 

2.5.6 Enhanced Membrane Strains Approximation 

To tackle membrane locking, the EAS method is employed. Within this approach, the 

membrane strains are enhanced through incompatible strains. Hence, selecting the 

additional enhanced strain modes is crucial. Four bilinear enhanced strain components can 

be incorporated to form a complete polynomial, resulting in: 
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 (48) 

This technique was initially explored by Bischoff and Ramm [31] to improve the 

compatible membrane strains. The interpolation for the enhanced strains can now be 

articulated as follows: 
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 (49) 

where 𝑇𝟎 is the following matrix evaluated at the center of the element as: 
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 

  
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T  (50) 

Here, 𝐽𝛼𝛽 represent the Jacobian components expressed in Eq. (36). The fifth and eighth 

strain parameters are then derived, considering not only the enhanced thickness strain 

component but also the membrane strains, allowing for the matrices  �̃�5 and  �̃�8, as 

illustrated in Appendix B. It is now appropriate to summarize the relations between strain 

and kinematic variables at the node for the compatible and enhanced strains in matrix 

notation as follows: 

    . , .n    Σ B Φ Σ B α  (51) 



18 H. MALLEK, H. MELLOULI, L. BEN SAID, M. WALI, F. DAMMAK, M. ALHADRI 

2.5.7 Linearization 

Eq. (24) delineates the nonlinear shell model, which is solved using the Newton 

iterative algorithm. The consistent tangent operator for the Newton procedure can be 

derived from the directional derivative of the weak form in the direction of the increment 

ΔΦ: 

      0
T int ext

T n

nW DW


 


     
         

     

ΦK L f f
Φ α

αL H h
 (52) 

where K, L and H  are given by:  

    
,

,

T

D G D T
A

T T

T T
A A

dA

dA dA

  

 



 

K K K K B H B

L B H .B H B H B
 (53) 

𝑲𝐷 and 𝑲𝐺 are the material and geometric tangent matrices. The components of the 

geometric tangent matrix 𝑲𝐺  are given in the Appendix C. In Eq. (50),  𝒇𝑖𝑛𝑡 and h, are 

given by the following expressions 

    ,int T T

A A
dA dA  f B R h B R  (54) 

Removing the internal variable vector α from Eq. (53) at the element level yields the 

element tangent matrix 𝑲𝑇 , expressed as: 

    1T

T D G

  K K K L H L  (55) 

and the residual vector R defined as: 

    1T ext int R L H h+ f f  (56) 

At the element level, transitioning from the generalized displacement vector 

𝜱𝑛 = (𝒖, 𝒕, 𝜆)𝑛 to the nodal variable vector 𝜞𝑛 = (𝒖, 𝜣, 𝜆)𝑛, where 𝜣 represents the two 

rotations vector in material description, is significant. At node I, the relationship between 

the generalized displacement vector  𝜱𝑛 = (𝒖, 𝒕, 𝜆)𝑛 and the nodal variable vector 

𝜞𝑛 = (𝒖, 𝜣, 𝜆)𝑛 is elucidated by: 
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Φ 0 Λ    (57) 

For all element nodes, the transformation matrix Π is expressed as: 

     1 2 3 4diag , , ,      (58) 

For further insights into nodal transformation, refer to Mallek et al. [34]. 
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3. NUMERICAL TESTS AND DISCUSSION 

This work investigates geometrically nonlinear performances of FGP shells via the 

formulated extensible director shell approach. The 3D shell structure is examined for its 

nonlinear responses taking into account the thickness-stretch. Existing literature lacks such 

results, necessitating model verification. Through numerical examples, the approach 

proves versatile for analyzing nonlinear structural responses of 3D shell structures, 

including Porous Functionally Graded materials. Verification tests and simulations validate 

the methodology's reliability and accuracy. New numerical results are presented showing 

the influence of porosity dispersion on the large deformation responses of the semi-

cylindrical shell structure made by FGP. This research provides crucial insights into the 

geometrically nonlinear behavior of 3D shell structures with considering the phenomenon 

of the thickness-stretch. 

3.1 Linear Behavior of Simply Supported Rectangular Plate 

The first example, the static bending analysis was performed for a simply supported 

rectangular plate with the edges a = 7.5 and b = 5 and with thickness h = 0.2. Material 

properties are listed as: elastic modulus E = 1 and Poisson’s ratio υ = 0.3. All parameters 

are given in a system of coherent units. This plate is subjected to uniformly distributed 

transverse load q = 1, as shown in Fig. 6. In this example, all quantities are considered 

dimensionless. Only one quarter of the plate is modeled with various meshes in order to 

study the convergence of the proposed model with thick plate. 

 

Fig. 6 Simply supported rectangular plate 

Table 1 Central deflection results of simply supported plate 

Mesh 2x2 4x4 8x8 16x16 32 x 32 

Piltner and Joseph [35] 6503.6 6591.2 6612.3 6617.9 6619.4 

Present 6488.8 6587.7 6613.6 6620.1 6621.8 

Table 1 presents a comparison between the central transverse deflection w obtained 

with current developed element with those of published literature [35]. In his study, they 

use a mixed enhanced finite plate bending element. The reference solution used for 
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comparison is 6624.4 which is obtained with an exact 3-D solution given by Piltner [36]. 

As can be seen, with increasing the elements number, the structure becomes more refined 

achieving more accurate solutions. Moreover, it is observed that the present model appears 

to give the best overall performance with maximum convergence using 32x32 meshes. 

3.2 Nonlinear Behavior of FGP Square Plate under Uniformly Distributed Load 

This example examines the deformation of a simply supported square plate under a 

uniform load. The plate has a width of L=100 mm and a thickness of h=1mm. The material 

properties include the Poisson’s ratio υ = 0.3 and the Young modulus of aluminum and 

Zr/O2: 𝐸1= 70 GPa and 𝐸2= 151 GPa, respectively. To simplify analysis, only one quarter 

of the plate is discretized using 16×16 enhanced four-node elements due to symmetry. The 

plate surface is subjected to a uniform load q. The normalized parameters considered in 

this test are the load parameter P= 
𝑞𝐿4

𝐸1ℎ4  and normalized central deflection �̅� = 𝑤/ℎ. 

a)  

b)  

Fig. 7 Results of normalized central deflections of the porous FG plate versus the load 

parameter using the material exponent n=0.1 at the (a): even; (b) uneven configuration 
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Fig. 7 illustrates the load parameter-normalized central deflection curves for various 

porosity volume fractions, considering a material exponent of n=0.1. The response of the 

FGP plate closely aligns with findings from Nguyen et al. [37]. Notably, configurations 

with evenly distributed pores exhibit higher deflections compared to uneven configurations 

due to reduced bending stiffness. Additionally, an increase in porosity volume fraction, 

particularly with even distribution, results in higher deflections, whereas this effect is less 

pronounced with uneven distribution due to pores vanishing at the plate's surfaces. 

3.3 Nonlinear Behavior of FGP Cantilever Plate under Uniformly Distributed 

Load 

This test investigates tip deformation of a cantilever plate subjected to a shear line load 

at the end. This example shows the significance of the enhanced thickness strains �̃�33. The 

plate, with dimensions L=10 mm, b=1 mm, and h=0.1mm is clamped at one end and 

subjected to a distributed transverse line load of the magnitude -1N/mm, as shown in Fig. 8. 

     
a)                   b)  

Fig. 8 Plate’s geometry: a) underformed; b) deformed 

In this problem, enhanced four-node elements are employed for modeling. The 

functionally graded material plate is fabricated using transition alloys of metals and 

ceramics to enhance the ductility of the structure. It is assumed that the top surface is rich 

in ceramics, while the bottom surface is rich in metals. The material properties of the FGM 

vary continuously in the thickness direction following a power law distribution. The 

Poisson’s ratio of the FG material is denoted by υ = 0.3 and the Young’s modulus of the 

ceramic and metal phases are represented by 𝐸𝑐= 3.8 × 105 GPa and 𝐸𝑚= 2.1 × 105 GPa, 

respectively, as reported by Beheshti and Ramezani [21]. 

In Fig. 9, the nonlinear tip displacement of the FGM plate is presented using the 

extensible director shell model, with enhancements of membrane and transverse strains, 

across various values of the material exponent. It is observed that as the material exponent 

n transitions from ceramic to metal, the tip deflection increases, with metallic plates 

exhibiting greater deflection due to the higher bending stiffness of ceramic plates. 
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Fig. 9 Load-deflection curves of the FGM cantilever plate for various values of the 

material exponent 

 

Fig. 10 Linear and nonlinear deflection curves of cantilever plate made of ceramic and 

metal, respectively 
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and metal is depicted. It is evident that the displacement magnitudes are consistently 

overestimated in linear analysis. This discrepancy arises because linear analysis 

predominantly considers bending stiffness, while nonlinear behavior, influenced by 

membrane stiffness, contributes to more efficient deformation of the structure than 

estimated in the linear analysis. Furthermore, the nonlinearity effect is more pronounced 

for metallic plates, which exhibit lower stiffness compared to ceramic plates. 

3.4 Nonlinear Behavior of Hinged FGM Cylindrical Panel 

The subsequent example involves the cylindrical panel problem, often referred to as the 

roof-like panel, as depicted in Fig. 11. This example aims to assess the accuracy of the 

presented enhanced element in nonlinear analysis. The geometrical characteristics of the 

panel include a length L=508 mm, a radius R=2540 mm, a thickness h=12.7 mm and a span 

angle θ = 0.1 rad. The shell is free at its straight edges, hinged on the two other sides, and 

subjected to a concentrated force F. Due to the structure's symmetry, one quarter of the 

panel is discretized into 4×4 enhanced elements, and it is composed of a mixture of two 

material phases with the following mechanical properties: elastic modulus 

𝐸𝑚=3102.75 MPa and 𝐸𝑐=3615.77 MPa, for metal and ceramic, respectively, and a 

Poisson’s ratio υ =0.3. 

     
 a) b)  

Fig. 11 (a) Undeformed and (b) deformed shapes of the FGM hinged cylinder 

The nonlinear deflections at the loaded point, obtained using the developed extensible 

3D director shell model, are depicted in Fig. 12 for various values of the material exponent 

n, and are compared with models available in the literature [21]. It is evident that the 

obtained results closely align with the numerical solutions presented by Beheshti and 

Ramezani [21], particularly in the case of the fully metallic shell, displaying good 

agreement across different material exponent n. This underscores the high accuracy of the 

developed FE shell model in predicting large displacements. Furthermore, as illustrated in 

Fig. 11, the load required to deform a metallic panel is significantly lower than that required 

for a ceramic panel due to the lower rigidity of metal. 
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Fig. 12 Load-deflection diagram of the hinged FGM cylindrical panel for various values 

of the material exponent at loaded point 

3.5 Nonlinear Behavior of FGM Ring Shell under Shear Force at the End 

The slotted circular plate serves as a sensitive benchmark to assess the capability and 

accuracy of the finite element formulation in handling large deformations. As illustrated in 

Fig. 13 (a), the structure is subjected to a distributed vertical shear force with a magnitude 

of q=2120 N/m at one edge, while a clamped boundary condition is applied at the other 

edge. The geometric parameters of the plate include the inner radius r = 6 mm, the outer 

radius R =10 m, and the thickness h=0.03 m. 

Regarding material properties, the Young's modulus of the metal and ceramic phases 

are denoted as 𝐸𝑚= 21 × 103MPa and 𝐸𝑐= 38 × 103 MPa, respectively, with a Poisson 

coefficient ν assumed to be zero. The ring is discretized into 8×46 enhanced elements. 

Initially, the planar structure undergoes deformation upon the application of q=2120 N/m, 

transforming into a doubly crooked structure subjected to large displacements and 

rotations, as depicted in Fig. 13 (b). 

 a)   b)    

Fig. 13 Geometry of the ring plate: a) undeformed shape; b) deformed shape 
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The current nonlinear deflection at point A on the outer circle of the functionally graded 

(FG) ring is compared to models developed by Beheshti and Ramezani [21]. The first 

model is a displacement-based four-node model, while the second model is an enhanced 

model incorporating the enhanced assumed strain formulation and accounting for thickness 

change. Fig. 14 displays the load–nonlinear deflection curves at point A for different 

material exponents n. It is evident from the plotted curves that the present nonlinear 

deflections of the studied structure closely align with the enhanced model of Beheshti and 

Ramezani [21], despite the authors employing a completely different numerical approach 

based on strain enhancements and thickness stretch. Therefore, this test serves as a highly 

sensitive benchmark for assessing the prediction efficiency of finite rotation analysis. 

 

Fig. 14 Load-deflection diagram of the FGM ring shell for various values of the material 

exponent at point A 

3.6 Parametric Study of a Porous Semi-Cylinder 

In this section, a semi-cylindrical shell structure (Fig. 15) is presented to analyze its 

large deflection response subjected to an end pinching force at point A equal to F=2000. 

Since the symmetry of the structure, the quarter of the cylinder is modelled using 40×32 

finite elements. The geometrical characteristics of the semi-cylinder are considered as: 

Length L=3.048, Radius R=1.016 and thickness h=0.03. The first step, with this problem, 

is to validate the nonlinear response of the isotropic semi-cylinder compared to the 

solutions of Mallek et al. [2]. The isotropic material, considered for the validation part, has 

the following material properties: Young’s modulus E =2.068×107 and Poisson’s 

coefficient υ=0.3. In this example, all quantities are considered dimensionless. Fig. 16 

depicts results of large deflections at the point A of the isotropic semi-cylinder versus the 

load parameter. As may be seen in this figure, a good accuracy is associated for the present 

model where present results coincide with the referenced solutions. 
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 a) b)  

Fig. 15 (a) Undeformed and (b) deformed shapes of the porous FGM semi-cylinder 

Once the nonlinear response of the isotropic semi-cylinder is validated, the subsequent 

phase involves applying porous Functionally Graded Material (FGM) to the analyzed 

structure. This FGM comprises a blend of two materials characterized by mechanical 

properties, 𝐸𝑚= 21 × 109 Pa, 𝜐𝑚=0.3 and  𝐸𝑐= 38 × 109 Pa,  𝜐𝑐=0.3. Fig. 16 illustrates 

deflection outcomes at point A of the porous semi-cylinder, considering an FGM material 

exponent (n=0.1) for various porosity distributions: perfect, even, and uneven 

configurations. 

Fig. 16 demonstrates that increasing the porosity volume fraction α results in significant 

deflections of the semi-cylinder for both even and uneven configurations. This is due to the 

reduced bending stiffness caused by a higher density of pores within the structure. 

Moreover, the even distribution of porosity exhibits greater deflections compared to other 

configurations with the same porosity volume fraction, especially at higher values of α due 

to its impact on the bending stiffness of the structure. In an even distribution, pores are 

uniformly spread throughout the material, affecting its mechanical properties consistently 

across its volume. This results in a more pronounced reduction in bending stiffness 

compared to uneven distributions where pores may cluster or be concentrated in specific 

 

Fig. 16 Load-deflection diagram of the FGM ring shell for various values of the material 

exponent at point A 
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areas. When the porosity is evenly distributed, a larger portion of the material experiences 

a reduction in stiffness, leading to more significant deformations under loading conditions. 

Essentially, the even distribution creates more consistent weakening of the structure's 

resistance to bending, allowing for greater overall deflections. Conversely, in uneven 

distributions, the concentration of pores in certain regions may lead to localized reductions 

in stiffness, but other areas may remain relatively unaffected. This can result in a less 

uniform reduction in bending stiffness throughout the structure, leading to comparatively 

lower deflections than those observed with even distributions for the same overall porosity 

volume fraction. 

Furthermore, the influence of the FGM material exponent n on the large deflection 

response at point A, considering the porosity volume fraction α, is highlighted in Fig. 17 

for even and uneven configurations of pores. Fig. 17 indicates that increasing the FGM 

material exponent n leads to higher deflections due to a decrease in bending stiffness 

resulting from a greater proportion of the metal phase in the structure. 

a)  

b)  

Fig. 17 Results of deflections at point A of the porous semi-cylinder for the material 

exponent of the FGM n=0.1 for the (a): even; (b) uneven configuration 
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a)  

b)  

Fig. 17 Results of deflections at point A versus different material exponent n of the 

porous semi-cylinder for the porosity volume fraction at the (a): even; (b) uneven 

configuration 

Additionally, Fig. 18 depicts the impact of the ratio R/h on the nonlinear bending 

response at point A of the cylindrical structure, considering the FGM material exponent 

(n=0.1) for various pore configurations. High values of the ratio R/h correspond to 

increased deflections of the porous semi-cylinder. This is expected from the geometric 

influence, flexibility, and reduced bending stiffness associated with higher R/h ratios. With 

a larger radius relative to thickness, the shell becomes geometrically less stiff, allowing for 
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greater deformation under applied loads. Additionally, the thinner profile in relation to 

curvature enhances flexibility, making the structure more susceptible to bending. 

Consequently, the shell experiences reduced resistance to bending moments, resulting in 

more significant deflections under the same loading conditions. 

 

Fig. 18 Influence of the ration R/h on the large deflections at point A of the porous semi-

cylinder considering the material exponent n=0.1 of the FGM for the different 

configurations of porosity with various values of α 

Finally, Fig. 19 illustrates the distributions of normal 𝜎𝑥𝑥 and transverse shear   stresses 

𝜎𝑥𝑧  at point A for different configurations of the porous FGM, considering the material 

exponent (n=0.1). These stress distributions underscore the influence of porosity volume 

fractions, as an increase in pore density weakens the structure's stiffness and leads to higher 

stress values. As evident from Fig. 19 (b), a notable parabolic variation of transverse shear 

stress throughout the thickness of the structure is observed, owing to the utilization of an 

enhanced FSDT. This improved theoretical framework provides a more accurate 

representation of the transverse shear stress distribution within the structure, capturing the 

complexities of its behavior under loading conditions. 
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a)  

b)  

Fig. 19 Stress distributions at point A along the thickness of the porous semi-cylinder 

with a material exponent n=0.1 for (a) 𝜎𝑥𝑥; (b) 𝜎𝑥𝑧 

4. CONCLUSIONS 

This study introduces an innovative finite element-based model, incorporating 

enhancements to the standard FSDT, to investigate large deformation behaviors in 

porosity-containing Functionally Graded (FG) shell structures. Emphasizing thickness 

stretching through the enhancement of third bending strain, with additional parameters 
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facilitated by the EAS method, and augmentation of membrane strains with enriched 

parameters, a comprehensive six-degree-of-freedom shell model is developed. The 

investigation evaluates the model's performance through simulations of various boundary 

conditions and different types of perfect FGMs, demonstrating convergent and accurate 

results compared to existing literature. A parametric study explores the impact of porosities 

on FGM characteristics, particularly focusing on cylindrical shell structures. The presence 

of pores weakens the structure's stiffness, resulting in significant deformations, particularly 

notable in unevenly distributed porosity configurations. Moreover, an increase in porosity 

volume fraction exacerbates the deflection of porous FGM shell structures, underscoring 

the structural implications of porosity in FGM materials. This research significantly 

advances the understanding of 3D PFG shell structures, offering valuable insights into their 

nonlinear behavior under diverse loading conditions. Appendix A: Strain-Displacement 

Interpolation. 
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APPENDIX A: STRAIN-DISPLACEMENT INTERPOLATION 
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APPENDIX B: THE INTERPOLATION MATRIX FOR ENHANCEMENT OF MEMBRANE AND 

TRANSVERSE NORMAL STRAIN 
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Transverse normal strain with four additional parameters : 
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APPENDIX C: GEOMETRIC TANGENT MATRIX COMPONENTS 
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