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Abstract. Machining chatter is a self-excited vibration between the cutting tool and the 

workpiece, which can reduce surface quality and tool life, and even endanger the safety 

of operators in severe cases. Considering that milling chatter has multi-scale features 

and the debugging of neural network hyperparameters heavily relies on experience, a 

milling chatter monitoring method based on an optimized hybrid neural network with an 

attention mechanism (MISSA-MSCNN-BiLSTM-ATM) is proposed. Firstly, the harmonic 

of the spindle rotation frequency is filtered out using the spindle rotation frequency 

removal technique (SFT). Then, an improved sparrow search algorithm (MISSA) is 

proposed based on multiple strategies including improved circle chaotic mapping, 

golden sine strategy, and enhanced Lévy flight. Subsequently, MISSA is utilized to 

optimize the hyperparameters of the milling chatter classification hybrid neural network 

model, combining multi-scale convolutional neural networks (MSCNN), bidirectional 

long short-term memory (BiLSTM), and attention mechanism (ATM). In numerical 

simulations with CEC2005 complex functions, MISSA demonstrates better optimization 

accuracy, stability, and shorter computation time compared to other intelligent 

algorithms. Compared with other milling chatter classification models, the proposed 

method exhibits significant improvements in accuracy and stability. 
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1. INTRODUCTION 

Aerospace components, such as turbine blades, are characterized by thin-walled 

structures, complex geometries, and are predominantly manufactured from difficult-to-

machine materials such as titanium alloys. Chatter frequently occurs during the milling 

process, resulting in deteriorated surface quality and accelerated tool wear. Recent research 

has demonstrated that chatter monitoring is crucial for ensuring both the integrity of the 

cutting system and workpiece quality in aerospace manufacturing processes.  

Chatter monitoring consists of four primary components: signal acquisition, signal 

processing, feature extraction, and pattern recognition. Various signal types employed for 

chatter monitoring include vibration signals [1-3], cutting force signals [4-7], current signals [8-

10], sound signals [11-12], and multi-sensor information [13-15]. Among these, acceleration 

signals are particularly advantageous due to their non-intrusive nature, high reliability, and 

sufficient response bandwidth [4]. However, experimental data acquisition through sensors is 

characterized by limited processing conditions, high costs, and significant time requirements. 

To address these limitations, scholars have generated simulated cutting force signals covering 

a wide range of machining parameters based on dynamic milling process models [16], or used 

generative adversarial networks to generate rich training data [17]. Current multi-sensor fusion 

approaches for chatter detection lacks comprehensive theoretical frameworks for sensor 

selection, sampling strategies, and fusion mechanisms. Consequently, these methods 

predominantly rely on empirical parameter settings and case-specific validation, creating 

significant challenges in establishing unified evaluation criteria and generalized solutions. 

Sensor data acquisition in machining processes encompasses multiple signal components, 

including spindle rotation frequency with its harmonics, chatter frequencies, local outliers, 

and measurement noise. In chatter monitoring systems, the presence of local outliers and 

noise can result in both false alarms and missed detections [18]. While stable components, 

particularly the spindle rotation frequency and its associated harmonics, do not contribute to 

chatter phenomena, their removal can significantly enhance chatter monitoring sensitivity 

[19]. To address these issues, scholars have conducted extensive research. Albertelli et al. 

[18] used order tracking and synchronous averaging methods to eliminate noise and cutting 

periodicity effects. Yan et al. [19] removed periodic components related to spindle rotation 

using a designed time-frequency filter. Wan et al. [20] used a matrix notch filter to filter out 

the harmonics of the spindle rotation frequency and color noise components. Matthew et al. 

[21] used an adaptive threshold method to reduce the impact of noise, rotation frequency, and 

harmonics. Subsequently, a wavelet based adaptive filter was constructed to reduce the 

impact of noise [4]. Kuo et al. [17] employed fractional-order convolutional kernels to 

eliminate local outliers in training data. Li et al. [22] added an artificial offset after filtering 

out stable frequency components, avoiding zero division operations. Wan et al. [23] used 

their proposed variable forgetting factor recursive least squares algorithm to filter out chatter-

independent components composed of environmental noise and periodic components.  

Feature extraction methodologies in machining processes can be categorized into three 

primary domains: time-domain, frequency-domain, and time-frequency domain approaches. 

Time-domain feature extraction offers computational efficiency and straightforward 

implementation. These primarily comprise dimensionless features, including statistical 

measures such as mean [10,19], standard deviation [10,19], root mean square [4,5,19,24], 

shape factor [19,23,25], and kurtosis [4,19,23,25]. In the frequency domain, features are 

derived through discrete Fourier transform analysis and non-parametric power spectral 



 A MONITORING METHOD OF MILLING CHATTER BASED ON OPTIMIZED HYBRID...  3 

 

density estimation. Key metrics in this domain include spectral mean [19,25] and spectral 

centroid frequency [19,25]. Time-frequency domain methods have gained significant 

prominence due to their capability to simultaneously capture temporal and spectral 

characteristics. These methods encompass short-time Fourier transform [1,10,21], continuous 

wavelet transform [1,26], wavelet packet transform [9,14,27,28], variational mode 

decomposition (VMD) [29,30,31], and multi-synchronous compression transform [4,19,31]. 

Jauhari et al. [30] introduced Bayesian optimization to the VMD parameter selection process, 

achieving automatic optimization of decomposition parameters. In addition to the above 

features, some special features have also been applied to chatter monitoring and achieved 

good results. Thaler et al. [24] found that deterministic features extracted from recurrence 

plots can effectively monitor chatter. Whether the recurrence plot can accurately reflect the 

dynamic characteristics of the cutting system depends on the setting of its hyperparameters. 

To address this issue, Chen et al. [32] proposed an adaptive particle swarm optimization 

algorithm to calculate the hyperparameters and automatically obtain the recurrence plot. 

Threshold methods or intelligent classification algorithms are often used to identify chatter. 

Many chatter indicators have been proposed to detect chatter, such as entropy [14, 23,30], 

energy ratio [19], and statistical indicators [18,28,29,33]. However, most existing indicators are 

directly or indirectly related to machining parameters, leading to changes in the indicators with 

changes in machining parameters and making early chatter detection difficult. Albertelli et al. 

[18] developed an automated chatter threshold determination method based on statistical 

process control theory. Lu et al. [29] selected the correlation coefficient between chatter-

sensitive intrinsic mode functions as a chatter indicator. This indicator is not easily affected by 

machining parameters. Zhao et al. [33] accumulated the information content in the maximum 

information entropy features calculated from the sequence to obtain a chatter indicator. The 

threshold based on two risk levels overcomes the limitations of a single threshold and improves 

the reliability of monitoring. Yang et al. [28] established a fractional-order energy entropy 

probability model for chatter detection, overcoming the difficulty of manually adjusting 

thresholds.  

The most widely used intelligent classification algorithms are support vector machines 

[15,23,25,29], logistic regression [34], and random forest [19,14,34]. Wan et al. [25] 

improved the support vector machine using the adaptive boosting algorithm, which improved 

the accuracy of chatter monitoring. Deep learning has demonstrated powerful feature learning 

and classification capabilities, attracting widespread attention and gradually being applied to 

the field of chatter detection. Sener et al. [26] proposed a chatter detection method based on 

a deep convolutional neural network. This method introduced cutting parameters such as 

cutting depth and spindle speed into the DCNN model, effectively improving the test 

accuracy. Transfer learning approaches [34,35,36] have been successfully applied to chatter 

detection to leverage knowledge from source domains to target domains. Kounta et al. [35] 

proposed a transfer learning framework based on pre-trained VGG16 and ResNet50 models, 

which achieves high-precision detection of chatter in industrial machining processes through 

the extraction and classification of FFT image features.  

The SFT is employed to filter out the spindle rotation frequency and its multiples. Then, 

by combining time-frequency domain methods, time-domain features, frequency-domain 

features, and time-frequency domain features related to the machining state are obtained. 

Subsequently, the MISSA algorithm is derived by optimizing the sparrow search algorithm 

through a combination of strategies including improved circle chaos mapping, golden sine 

strategy, and enhanced Levy flight. A MSCNN module integrated with spatial attention 
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mechanism is constructed to adaptively extract critical spatial feature information at different 

scales. Next, BiLSTM is utilized to handle long-term dependencies in sequences and capture 

temporal feature information. Then, by integrating the multi-head attention mechanism 

(MSA), the contribution degree of extracted features is effectively grasped, and the features 

are emphasized and strengthened, leading to the MSCNN-BiLSTM-ATM chatter 

identification model. Finally, the MISSA algorithm is used to optimize the hyperparameters 

in the model, thereby improving the accuracy of chatter recognition. 

2. SIGNAL PREPROCESSING AND FEATURE EXTRACTION 

2.1 Signal Preprocessing 

The periodic components (spindle rotation frequency and its multiples) generated by 

spindle rotation and intermittent contact between the tool and workpiece are the main 

components of the machine tool processing acquisition signals. However, when chatter 

occurs in the system, non-periodic components caused by regenerative effects will be 

generated, and these components will gradually approach the natural frequency of the 

machine tool. But in the early stages of chatter, the frequency amplitude is very small and 

often submerged in the rotation frequency, making it impossible to detect it from the signal 

in time. For example, in the initial stage of chatter, the energy proportion of periodic 

components at low frequencies still accounts for more than 80% [24], greatly increasing 

the difficulty of monitoring the initial stage of chatter. Therefore, in order to achieve high-

precision and efficient identification in the initial stage of chatter, it is particularly 

important to remove the spindle rotation frequency and its multiples. 

Compared to traditional notch filters that only remove a single frequency, the proposed 

SFT can eliminate multiple related frequencies, effectively highlighting the initial chatter 

frequency submerged in the frequency spectrum. Firstly, the spindle rotation frequency and 

its multiples that need to be removed are identified. Secondly, a Fast Fourier Transform 

(FFT) is applied to the collected signal, and the sections of the spectrum corresponding to 

the spindle rotation frequency and its multiples are removed. Finally, an inverse Fast 

Fourier Transform (IFFT) is conducted on the defrequenced spectrum. The specific 

algorithm steps are outlined below. 

Step 1: Perform FFT on time series {x{k}, k=1,2,…,M} to obtain spectrum X(i) as 

shown in Eq. (1). The length of the spectrum is M=length(X) 
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Step 2: Set the spindle rotation frequency fz that needs to be removed. Its doubling 

frequency is cfz (c=1,2,…,N). The calculation of spindle rotation frequency is shown in Eq. 

(2). 

 60z sf n  (2) 

where, ns is the spindle speed. 
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Step 3: Considering the fluctuation of FFT transformation frequency, introduce c1 

floating constant with a value of 0.5. Set the spectral amplitude of the interval 

corresponding to frequency (fz-c1,fz+c1) in the spectrum to zero, and the specific calculation 

is shown in Eq. (3). 
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Step 4: If i a is greater than c∙fz+c1 and less than N/2, make c=c+1 and repeat steps 2 to 

step 4. Otherwise, proceed to the next step. 

Step 5: Because the spectrum is symmetric about the center, let X(M+1-i)=X(i), 

i=1,2,…,M/2, to obtain the complete spectrum after removing the frequency. 

Step 6: Perform IFFT on the spectrum to obtain the time-series after frequency 

reduction, and calculate as shown in Eq. (4). 
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2.2 Feature Extraction 

Comprehensively and accurately obtaining the state characteristics during the 

machining process is the prerequisite to precise identification of milling chatter. Currently, 

time-domain methods, frequency-domain methods, and time-frequency domain methods 

are commonly used to obtain state characteristics during the machining process. The 

vibration signals, cutting force signals, and torque signals of the milling process have 

nonlinear and non-stationary characteristics [13]. These signals contain a large amount of 

state information from the machining process and are a comprehensive reflection of various 

excitation signals. Since time-domain and frequency-domain features are only calculated 

from one domain of the data, important features with high resolution are discarded, while 

time-frequency domain methods such as wavelet analysis can solve the above problems. 

In this paper, time-domain features, frequency-domain features, and time-frequency 

domain features are selected as state features, as shown in Table 1. 

3. MISSA 

The traditional sparrow search algorithm (SSA) has the problem of being easily trapped 

in local optima. This article optimizes the sparrow search algorithm by improving the circle 

chaotic mapping, golden sine strategy, and enhanced Lévy flight strategy to improve the 

optimization accuracy. 

3.1 Improving the Circle Chaotic Mapping 

The SSA population is initialized using the improved circle chaotic mapping to ensure 

a uniform distribution, as follows: 
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where, xn+1 is the value of introducing Singer chaotic mapping, n is the dimension of the 

solution. 

Table 1 Time frequency domain characteristics 

Category Feature Expression Feature Expression 
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3.2 Golden Sine Strategy 

Add the golden sine strategy when updating the discoverer's position, and the update 

formula is shown in Eq. (6). 
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where, t is the current iteration number, r1[0,2], r2[0,], respectively determine the distance 

and direction of individual position iteration movement, x1 and x2 are the gold coefficients.  

3.3 Enhanced Lévy Flight Strategy 

The Lévy flight step size factor is usually a fixed value. When its value is set to a larger 

number, although the global search ability is enhanced, a high-precision solution cannot be 

obtained. When its value is set to a smaller number, more iterations are required to find the 

theoretical value of the algorithm, resulting in reduced efficiency. To address this issue, a 

Lévy flight mechanism with enhanced search is proposed as follows. 

The calculation of the dynamic step size factor is given below: 

 
max max

( ) sinh(1 )
t t

t r
T T
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where, t is the current iteration number, Tmax is the maximum iteration number, r is the 

adjustment parameter. By plotting the function curve of Eq. (8), we can observe that the 

range of α(t) is [0, 0.261]. Multiple experimental results have shown that when r=3.86, the 

variation condition of α(t) at [0,1] can be met, and the enhanced Levi flight strategy can 

find the optimal value. 

Although the new positions generated through Lévy flight search can escape from local 

optima, it cannot be guaranteed that the updated positions are evenly distributed around the 

optimal position. Therefore, a Gaussian random distribution function is added as a constraint 

factor in the Lévy mechanism to make the particle population more evenly distributed in the 

exploration space. The definition of the constraint factor is shown in the following equation: 

 (0, )N   (9) 

where, δ is a scale parameter with a value of t/Tmax.  

The final enhanced Levi's flight expression is shown below: 
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where, β is 1.5, μ and v follow a normal distribution. 
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The position update of the joiner is shown in Eq. (12). 
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4. CHATTER MONITORING MODEL 

4.1 MSCNN 

CNN is a feedforward neural network inspired by biology that is mainly composed of 

convolutional layers, pooling layers, and fully connected layers. The convolutional layer 

mainly extracts implicit feature information from the data through convolutional operations 

and then uses activation functions to introduce nonlinear factors into the features, 

enhancing the expressive ability of the features. The operation process of the convolutional 

layer is shown in Eq. (13). 
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where, Xl+1
 

i,j is the feature of layer l+1 after convolution calculation, w
l 

i,j is a convolutional 

kernel, X
l 

i,j is the j-th feature value of the i-th feature map, b is the bias term, and L is the 

size of the convolutional kernel. 

The time-domain vibration and cutting force signals in cutting machining often show 

the characteristics of multiple time scales. When the cutting chatter occurs, its 

characteristics usually also show the nature of multi-scale. To effectively extract the 

milling chatter component and enhance the recognition model effect, this paper designs a 

model based on the Inception module and optimizes its model structure. The feature 

extraction ability under different scales is enhanced, as shown in Fig. 1. 

 

Fig. 1 MSCNN structure 
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The size of the convolution kernel in each layer of the multi-scale convolutional neural 

network is fixed, and the number of channels is a parameter to be optimized. A channel 

attention mechanism is added to each convolutional neural network module to generate 

weights for each channel and continuously optimize and update the network parameters 

during the training process. The multi-scale convolutional neural network can continuously 

optimize the processing status data to obtain the importance of different features, 

strengthen key features based on their importance, suppress interference information, and 

improve the diagnostic efficiency and effectiveness of the model. 

4.2 BiLSTM 

BiLSTM fully considers the relationship between the past and future of time series data 

and can effectively extract the temporal characteristics of signals for time series data with 

high correlation and strong periodic changes. 

The data enters the BiLSTM through the input layer, and a value is obtained through 

forward calculation of LSTM, while another value is also obtained through backward 

calculation of LSTM. Therefore, the value in the hidden layer is determined by these two 

values. The specific calculation process is shown in Eq. (14). 

 

1

1

( )

( )

( )

t x t t h n

t x t t h n

t y t y t y

h f w X h w b

h f w X h w b

Y f w h w h b





     


    


    

 (14) 

where, f is the activation function, w is the weight and bias term, th  is the output of the 

forward layer, th  is the output of the backward layer, and Yt is the final output. 

4.3 Attention Mechanism 

4.3.1 Channel Attention Mechanism 

The channel attention mechanism mainly consists of squeeze and excitation operations, 

as shown in Fig. 2. Firstly, the feature map undergoes the squeeze operation, compressing 

the two-dimensional feature map into a real number through global pooling to obtain global 

features. Then, the excitation operation is performed on the global features, and a weight 

value is generated by passing the obtained global features through two fully connected 

layers and a sigmoid function. Finally, the weight value is multiplied by the original feature 

map to obtain the final feature. The calculation process is as follows. 
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Fig. 2 Channel attention mechanism 

4.3.2 Multihead Self-Attention (MSA) 

The multi-head attention mechanism is composed of multiple self-attention structures 

and is used to simultaneously process the same feature information. Its output is the 

concatenation of multiple self-attention results. The formula is as follows. 

 
1( , , ) ( , , ) o

hMultiHead Q K V Concat head head W   (18) 
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where, W
Q 

i , W
K 

i  and W
V 

i  are the weights of the mapping matrix, and Wo is the output weight 

matrix.  

4.4 MISSA-MSSNN-BiLSTM-MSA Chatter Monitoring Model 

The structure of the MSCNN-BiLSTM-ATM chatter monitoring model constructed in 

this paper is shown in Fig. 3. 

There are many hyperparameters in the MSCNN-BiLSTM-ATM model, such as 

learning rate, regularization parameter, number of neural network layers, number of 

convolutional layers, and batch size, which will affect the training effect of the model. 

Therefore, the MISSA algorithm is introduced to optimize the hyperparameters in the 

model so as to improve its accuracy. 

The accuracy of the validation set samples is used as the fitness function maxf for the 

MISSA algorithm to optimize the hyperparameters of the MSCNN-BiLSTM-ATM model. 
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Fig. 3 MSCNN-BiLSTM- ATM structure 

5. MILLING EXPERIMENT 

5.1 Experimental Setup 

The VDL-1000E three-axis CNC machine tool produced by Dalian Machine Tool is 

used. The tool is a flat-bottomed milling cutter with four teeth and a diameter of 10mm. 

The workpiece material is TC4 titanium alloy, and the workpiece size is 200×200×5mm. 

A PCB accelerometer with a sensitivity of 10.42mv/g is used, and the Donghua DH5922 

acquisition system is used to collect the acceleration signals during the machining process. 

The sampling frequency is 5000Hz. The milling mode is down milling and dry cutting. The 

experimental site is shown in Fig. 4. The simulation experiment uses the Windows10 (64-

bit) operating system, with hardware platform parameters of Intel(R) Core(TM) i9-12900k 

CPU, NVIDIA GeForce RTX3080, 3.2 GHz clock speed, and 32 GB memory. The 

computing environment is Matlab R2023b. 
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(a) Experimental site                            (b) Vibration data acquisition 

Fig. 4 Experimental setup 

5.2 Experimental Parameter Settings 

The modal test was conducted using a force hammer with a sensitivity of 3.41 pC/N to 

obtain the natural frequency of the titanium alloy thin-walled component, which was 864 

Hz. The cutting parameters and machining conditions selected based on the stability lobe 

diagram drawn in reference [13] are shown in Table 2. The radial cutting depth is 0.5 mm, 

and the feed rate is 0.1 mm/tooth. 

Table 2 Machining state with different conditions 

 Cutting parameters 

Machining 

state 

 Cutting parameters 

Machining 

state No. 

Rotating 

speed 

(r/min) 

Axial 

depth 

(mm) 

No. 

Rotating 

speed 

(r/min) 

Axial 

depth 

(mm) 

1 750 6.8 

Stable 

13 1050 7.2 

Slight 

Chatter 

2 750 7.2 14 1050 7.5 

3 900 5.9 15 1200 5.1 

4 900 6.3 16 1200 5.4 

5 1050 6.0 17 750 8.2 

Severe 

Chatter 

6 1050 6.4 18 750 8.5 

7 1200 4.3 19 900 7.6 

8 1200 4.7 20 900 7.8 

9 750 7.9 

Slight 

Chatter 

21 1050 8.0 

10 750 8.0 22 1050 8.2 

11 900 7.0 23 1200 5.8 

12 900 7.1 24 1200 6.5 
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(a) Stable cutting original signal (b) Slight chatter original signal (c) Severe chatter original signal 

   
(d) Stable cutting filtered signals (e) Slight chatter filtered signals (f) Severe chatter filtered signals 

   
(g) Spectrum of stable cutting (h) Spectrum of slight chatter (i) Spectrum of severe chatter 

   
(j) Spectrum of stable filter Signal (k) Spectrum of slight chatter filter 

Signal 

(l) Spectrum of severe chatter filter 

Signal 

Fig. 5 Comparison of data preprocessing results 
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6. RESULT ANALYSIS 

6.1 Data preprocessing results 

The SFT technique is adopted to filter the time-frequency signals obtained from milling, 

removing the signal components related to the rotational speed and obtaining other 

disturbance components. The filtering results of the acceleration signals in the X direction 

under the conditions of N3, N12, and N20 are shown in Fig. 5. Fig. 5(a), (b) and (c) display 

the original vibration signals. Fig. 5(d), (e) and (f) display the filtered vibration signals. 

Fig. 5(g), (h) and (i) display the FFT spectra of the original vibration signals. Fig. 5(j), (k) 

and (l) display the FFT spectra of the filtered vibration signals. 

As can be seen by comparing Fig. 5(a), (b), and (c), the machining vibration gradually 

increases with unstable machining conditions. As shown in Fig. 5(d), (e) and (f), the 

amplitude of the filtered time-domain signals decreases to varying degrees. Fig. 5(g), (h), 

and (i) indicate that the spectra of the original stable cutting signals and slight chatter are 

mainly concentrated around the spindle rotational frequency and its multiples. The 

maximum spectral value of severe chatter is concentrated near the natural frequency of the 

cutting system. As shown in Fig. 5(j), (k), and (l), the SFT technique can effectively 

eliminate periodic components. After removing the periodic components, the chatter 

frequency becomes more prominent. 

The Harr wavelet is selected as the basic wavelet function for wavelet packet 

decomposition. The original signal is decomposed into 8 frequency bands through 3-level 

wavelet packet decomposition. The wavelet packet decomposition results of the 

acceleration signal in the X direction under the N12 condition before and after signal 

processing are shown in Fig. 6. 

As can be seen from Fig. 6, the wavelet packet coefficients of each frequency band are 

inconsistent. The energy of the original signal is mainly concentrated in the frequency 

range of (625, 937.5], accounting for 44.94%. The energy of the original signal after 

removing the main frequency and its multiples is still concentrated in the frequency range 

of (625, 937.5], accounting for 62.20%. Removing the main frequency and its multiples 

from the signal enhances the significance of chatter characteristics. 

The time-frequency domain analysis is conducted on the vibration signals with the main 

frequency and its multiples removed to obtain the time-frequency domain characteristics 

under different working conditions (See table 2 in detail). The box plot of some time-

frequency domain characteristics is shown in Fig. 7. 

It can be seen from Fig. 7 that the five indicators of STD, RMS, ABS, SKE, MFA, SKE 

and KUR basically follow the same pattern, with their mean values gradually increasing as 

chatter occurs. The data for stable cutting and slight chatter are relatively more 

concentrated, while the data for severe chatter are more scattered. The two indicators of 

FSV and GFFS follow basically the same pattern, with their mean values gradually 

decreasing as chatter occurs. The data for slight chatter are relatively more scattered. The 

values of WAF, PTP and PAF under slight chatter and severe chatter conditions are 

basically similar, and are all larger than those under stable milling conditions. Therefore, 

based on the extracted signal characteristics and distribution patterns, it is theoretically 

possible to identify these three milling conditions through machine learning. 
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(a) Original signal wavelet packet coefficients           b) Filtered wavelet packet coefficients 

 

 
(c) Proportion of original signal energy   (d) Proportion of filtered signal energy 

 

Fig. 6 Comparison of results before and after signal processing 
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Fig. 7 Distribution pattern of time-frequency domain characteristics  

6.2 Performance Analysis of MISSA 

To validate the optimization performance of the MISSA algorithm, simulations were 

conducted on benchmark functions in comparison with Sparrow Search Algorithm (SSA) 

[37], Improved Grey Wolf Optimizer (IGWO) [38], Improved Sparrow Search Algorithm 

(ISSA5) [39], Aquila Optimizer (AVOA) [40], and Snake Optimization Algorithm (SO) 

[41]. This study selected F1, F2, F4, F8, F17, F18, and F22 from the CEC2005 test suite as 

the benchmark functions. The population size was set to 30, and the maximum number of 

iterations was 500. The dimensions of F1, F2, F4, and F8 were 30, while the dimensions 

of F17 and F18 were 2, and the dimension of F22 was 4. Each experiment was 

independently conducted 30 times, and three indicators, namely the optimal value (OPV), 

mean, and standard deviation (STD), were used to evaluate the solution accuracy and 
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stability of the proposed algorithm. The comparison results are presented in Table 3. The 

computational time of each algorithm is shown in Fig. 8. 

Table 3 Comparison of algorithm accuracy and stability 

Function Index SSA ISSA5 IGWO AVOA SO MISSA 

F1 

OPV 
1.34E-

153 
1.52E-182 5.61E-63 0 

1.72E-

195 
0 

Mean 6.46E-84 
2.106E-

180 
3.80E-61 0 

2.34E-

192 
0 

STD 1.94E-83 0 5.98E-61 0 0 0 

Rank 4 3 5 1 2 1 

F4 

OPV 3.5E-80 6.32E-78 5.39E-13 0 3.31E-87 
6.75E-

148 

Mean 2.27E-41 3.52E-76 
1.512E-

11 

3.59E-

298 
2.94E-85 

3.74E-

130 

STD 6.73E-41 3.52E-76 2.19E-11 0 3.80E-85 
1.12E-

129 

Rank 5 4 6 1 3 2 

F8 

OPV -1063.29 -938.03 -980.2 -1063.29 -1062.52 -1063.36 

Mean -1063.29 -870.55 -831.51 -1063.29 -1034.05 -1063.30 

STD 6.46E-4 38.32 80.83 0 34.60 2.278E-2 

Rank 3 6 5 2 4 1 

F17 

OPV 
397.89E-

3 
397.89E-3 

397.89E-

3 

397.89E-

3 

397.89E-

3 

397.89E-

3 

Mean 
397.89E-

3 
397.89E-3 

397.89E-

3 

397.89E-

3 

397.89E-

3 

397.89E-

3 

STD 0 0 0 0 0 0 

Rank 1 1 1 1 1 1 

F18 

OPV 3 3 3 3 3 3 

Mean 3 3 3 3 3 3 

STD 0 0 0 9.53E-8 0 0 

Rank 1 1 1 1 1 1 

F22 

OPV -10.40 -10.40 -10.40 -10.40 -10.40 -10.40 

Mean 
-

10.40293 
-10.40294 

-

10.40294 

-

10.40294 

-

10.40133 

-

10.40294 

STD 4.34E-5 0 0 0 2.62E-3 0 

Rank 2 1 1 1 3 1 

 

According to the simulation experimental results in Table 3, the MISSA algorithm 

demonstrates the best performance in terms of optimization stability and solution accuracy 

on the benchmark test functions F1, F4, F8, F17, F18, and F22. On the F1 test function, the 

MISSA algorithm has the same optimization capability as the AVOA algorithm, but its 

average computational time is only 40.41% of the AVOA algorithm (as shown in Fig. 8). 

On the F17 test function, all six algorithms exhibit the same optimization performance. The 

average computation time of the MISSA algorithm is only 25.03%, 78.16%, 5.71%, 

38.15%, and 98.17% of the SSA, ISSA5, IGWO, AVOA, and SO algorithms, respectively. 

On the F18 test function, all six algorithms also exhibit the same optimization performance. 

The average computation time of the MISSA algorithm is only 26.83%, 76.84%, 5.32%, 
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35.01%, and 90.68% of the SSA, ISSA5, IGWO, AVOA, and SO algorithms, respectively. 

On the F22 benchmark test function, the MISSA algorithm has the same optimization 

capability as the ISSA5, IGWO, and AVOA algorithms. The average computation time of 

the MISSA algorithm is only 59.47%, 8.52%, and 53.18% of the ISSA5, IGWO, and 

AVOA algorithms, respectively. On the F4 test function, although the MISSA algorithm 

ranks second, its optimization capability is not significantly different from the AVOA 

algorithm. The average computation time of the MISSA algorithm is only 50.98% of that 

of the AVOA algorithm. Based on the comprehensive comparison of the experimental 

results, it can be concluded that the MISSA algorithm has higher convergence accuracy, 

better stability, and shorter computation time, which significantly outperforms the other 

five algorithms. 

 

Fig. 8 Computational time of different algorithms 

6.3 Detection of Milling Chatter 

With a population size of 30 and a population iteration count of 15, the MISSA 

algorithm was used to solve Eq. (20). The optimal learning rate for the MSCNN network 

was found to be 0.043949. The numbers of channels for the convolutional kernels were 

determined to be 16, 18, 16, 32, and 32, respectively. The regularization parameter was set 

to 6.7562×10-4, and the number of hidden layer neurons in the BiLSTM was set to 31. All 

data were divided into a training set and a test set, with proportions of 80% and 20%, 

respectively. The recognition results for the training set and test set under the three states 

are shown in Fig. 9. 

According to Fig. 9(a) and (b), the recognition accuracy of the test set is 99.5413%, 

with only one slightly chatter data being recognized as stable cutting. From Fig. 9(c) and 

(d), the recognition accuracy of the test set is 96.4286%, with one slightly chatter being 

recognized as stable cutting and one severe chatter being recognized as slightly chatter. 
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(a)Training data (b)  The confusion matrix of the training 

set 

 

 
(c)Test data (d)  The confusion matrix of the test set 

Fig. 9 Identification results of different processing states 

The t-SNE algorithm was used to visualize the features extracted from different 

network layers of the MISSA-MSCNN-BiLSTM-ATM model, and the results are shown 

in Fig. 10. Fig. 10(a) demonstrates the t-SNE visualization effect of the test set data samples 

at the input layer of the model. It can be seen that various data samples are mixed with each 

other, resulting in poor clustering effects. Fig. 10(b) presents the visualization results after 

feature extraction by the MSCNN layer. Although the data is basically separated, there are 

still many data points mixed together, indicating poor convergence. Fig. 10(c) shows the 

visualization results after feature extraction by the BiLSTM layer. It can be observed that 

data samples of the same class have basically converged together, but there are still a few 

data points mixed in. Fig. 10(d) is the visualization result after feature extraction by the 

Atten layer. It is evident that all data samples have been completely classified into three 
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categories, corresponding to the three processing states. Therefore, the MISSA-MSCNN-

BiLSTM-ATM model can effectively classify milling states. 

 
 

(a) Input layer (b) MSCNN layer 

  
(c) BiLSTM layer (d) MSA layer 

Fig. 10 Visualization results of classification model 

To validate the reliability and superiority of the model, comparisons were made with 

DCNN [26], Adaboost SVM [25], MSST-RF [19], and ILR-DNN [7]. Accuracy, precision, 

recall, F1 score, and specificity were used as performance indicators to evaluate the state 

classification model. To avoid errors, the average results of ten repeated experiments were 

taken as the final evaluation results. The comparison results for the training set are shown 

in Fig. 11, and the comparison results for the test set are shown in Fig. 12. 

According to Fig. 11, the proposed method achieved an average accuracy of 99.48%, 

which was a 2.1% increase compared to DCNN, a 1.57% increase compared to Adaboost 

SVM, a 2.62% increase compared to MSST-RF, and a 1.05% increase compared to ILR-

DNN. Additionally, the average precision of the proposed method was 99.59%, which 

represented a 1.83% improvement over DCNN, a 1.24% improvement over Adaboost 

SVM, a 2.43% improvement over MSST-RF, and a 1.2% improvement over ILR-DNN. 

Furthermore, the average recall rate of the proposed method was 99.43%, an increase of 

2.3% compared to DCNN, 1.69% compared to Adaboost SVM, 2.73% compared to MSST-

RF, and 0.9% compared to ILR-DNN. The average F1 score of the proposed method was 

99.51%, showing a 2.11% improvement over DCNN, a 1.53% improvement over Adaboost 

SVM, a 2.6% improvement over MSST-RF, and a 1.08% improvement over ILR-DNN. 

Finally, the average specificity of the proposed method was 99.69%, representing a 1.11% 
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increase compared to DCNN, a 0.86% increase compared to Adaboost SVM, a 1.36% 

increase compared to MSST-RF, and a 0.44% increase compared to ILR-DNN. 

 

Fig. 11 Comparison of training set results 

 

Fig. 12 Comparison of test set results 
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According to Fig. 12, the proposed method achieved an average accuracy of 97.38%, 

representing a significant improvement of 6.47% compared to DCNN, 6.29% compared to 

Adaboost SVM, 8.49% compared to MSST-RF, and 4.85% compared to ILR-DNN. 

Additionally, the average precision of the proposed method was 97.76%, an increase of 

7.35% over DCNN, 4.21% over Adaboost SVM, 10.26% over MSST-RF, and 7.28% over 

ILR-DNN. Furthermore, the average recall rate of the proposed method was 97.13%, a 

notable enhancement of 5.94% compared to DCNN, 9.87% compared to Adaboost SVM, 

4.82% compared to MSST-RF, and 2.26% compared to ILR-DNN. The average F1 score 

of the proposed method was 97.4%, showing a substantial improvement of 6.96% over 

DCNN, 9.93% over Adaboost SVM, 9.44% over MSST-RF, and 5.73% over ILR-DNN. 

Finally, the average specificity of the proposed method was 98.58%, representing a notable 

enhancement of 2.81% compared to DCNN, 3.58% compared to Adaboost SVM, 3.12% 

compared to MSST-RF, and 1.61% compared to ILR-DNN. Based on the comprehensive 

analysis of both the training and test sets, the method proposed in this paper achieved the 

best performance in terms of machining state classification. 

7. CONCLUSIONS 

This research first obtained the sensitive features of machining status based on SFT 

technology and time-frequency domain analysis methods. Then, an MISSA algorithm 

integrating improved circle chaos mapping, golden sine strategy, and enhanced Lévy flight 

strategy was proposed. Subsequently, an MSCNN-BiLSTM-ATM machining status 

monitoring model was constructed. Finally, the MISSA algorithm was used to optimize the 

hyperparameters in the monitoring model. The test and experimental results show that the 

proposed methods have achieved high recognition accuracy. The specific conclusions are 

as follows. 

Using SFT technology to remove the spindle rotation frequency and its multiples from 

the vibration signal can effectively improve the significance of chatter features. 

In the numerical experiments of CEC2005 complex functions, compared with other 

intelligent algorithms, the MISSA algorithm exhibited the best optimization stability and 

solution accuracy. The simulation running time was the lowest, only 5.32% of other 

intelligent algorithms. 

Accuracy, precision, recall, F1 score, and specificity were used as performance 

indicators to evaluate the status classification model. The proposed chatter monitoring 

model achieved an average accuracy of 97.38%, an average precision of 97.76%, an 

average recall of 97.13%, an average F1 Score of 97.14%, and an average specificity of 

98.58% on the test set. 

Compared with DCNN, Adaboost SVM, MSST-RF, and ILR-DNN, the proposed 

method improved the average accuracy by up to 8.49%, average precision by up to 10.26%, 

average recall by up to 9.87%, average F1 Score by up to 9.93%, and average specificity 

by up to 3.58%. 

Further validation of the proposed methodology across diverse machining conditions is 

necessary. In the current investigation, only vibration signals were employed for analysis, 

and the development of a multi-sensor feature fusion framework could potentially enhance 

detection precision. The conventional time-frequency feature extraction approach 

necessitates manual preprocessing procedures, which become labor-intensive when 
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handling large-scale datasets. A systematic feature importance evaluation framework can 

be established for automated selection of discriminative diagnostic features. 
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