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Abstract. Various elements including environmental, public safety, economic, and
security concerns define the evaluation of threats connected with the movement of
dangerous materials. It is imperative to undertake a comprehensive investigation to
address the multifaceted problem of risk assessment concerning the road transportation
of dangerous materials. The primary aim of this study is to present a framework for threat
assessment in this domain. To achieve this objective, an integrated approach involving
stepwise weight assessment ratio analysis (SWARA) with the multi-attributive border
approximation area comparison (MABAC) approach under the Z-number theory is
introduced. Preliminary investigations and expert opinions are taken into consideration,
and 17 risks are identified for developing the failure mode and effect analysis (FMEA)
technique for rural roads located in Cosenza, a region in southern Italy. A qualified
analysis is conducted between the outcomes of the FMEA approach implemented by Z-
SWARA-MABAC and those of the conventional FMEA method. This investigation is
undertaken to achieve sustainable mobility goals by evaluating the risks and enhancing
the safety of the transportation of dangerous substances via roadways. Therefore, it is
essential to re-evaluate the laws and measures required to mitigate hazards on the
regional road network of southern Italy.
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1. INTRODUCTION

Road safety guarantees are essential for preventing crashes and protecting lives [1-3].
This is especially critical when carrying dangerous substances, as any occurrence could
have serious consequences. The transportation of dangerous materials is a complex issue
in road transportation that requires careful consideration from various perspectives [4-5].
Hazardous substances are utilized in numerous industries as raw materials for industrial
production, such as petrochemicals used in plastic industries or various chemical derivatives
utilized in the health and cosmetic industries [6]. Consequently, the transportation of dangerous
materials is considered a critical matter for various industries to operate efficiently from an
economic standpoint [7]. However, with the growth of various industries and their need for
abundant raw materials for increased production, the escalation in the volume of transportation
of hazardous materials is indisputable [8]. Thus, particularly in developed and developing
countries, concerns about the safety of individuals who are directly and indirectly involved in
the transportation of these materials on roads arise [9]. In recent years, there has been an
increased emphasis on the transportation of dangerous substances, with a specific emphasis on
road transportation [ 10]. The transportation of dangerous substances through densely populated
and confined spaces has experienced a rise, prompting concerns about the likelihood of mishaps
and their ramifications. Moreover, the ecological consequences of transporting dangerous
substances have emerged as a significant issue. The possibility of spills or leaks occurring
during transportation has the potential to result in lasting harm to both the environment and
public health [11-12].

MCDM models are crucial in risk assessment due to their ability to handle complex
decision-making scenarios involving multiple conflicting criteria [13]. The use of
integrated fuzzy MCDM methods allows for the consideration of subjective assessments,
thereby refining risk rankings and prioritization [14]. The systematic approach of MCDM
models leads to more informed and effective risk management strategies, ultimately
contributing to better project outcomes and safety measures [15]. MCDM frameworks
facilitate the aggregation of diverse expert insights, which incorporates multiple decision-
makers to identify and prioritize alternatives [16].

The extended Z-number based MCDM methods enhance this capability by incorporating
uncertainty and reliability into the decision-making process, which is particularly important in
risk assessment. These methods provide a more nuanced approach to evaluating risks by
considering both the fuzziness of information and its reliability, thus offering a
comprehensive framework for decision-making under uncertainty. Z-numbers, introduced
by Zadeh, are used to manage the fuzziness and reliability of information, which is crucial
in risk assessment where data is often uncertain or incomplete [17]. The use of Z-numbers
in MCDM allows for a more accurate representation of uncertainty, as demonstrated in the
evaluation of driving behavior risks, where dual perspectives and credibility values are
calculated to assess risk scores [18].

The integration of Z-numbers in MCDM enhances the decision-making process by
providing additional certainty and guidance, as seen in the valuation of uncertain information,
which leads to more confident and comprehensive judgments [19]. A likelihood-based
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approach to ranking Z-numbers further refines decision-making by comparing the randomness
and reliability of information, thus supporting more informed decisions in complex scenarios
[13].

Given the multifaceted nature of the issue, it is imperative to undertake a thorough
investigation into the associated risks [20]. To this end, a comprehensive understanding
and evaluation of the processes governing the transportation of hazardous materials are
essential for effective risk prevention and mitigation [21]. The transportation of such
materials by road involves a multitude of variables, necessitating the incorporation of
various data inputs, including information on the type of materials being transported,
geometric road data, vehicle data, and other pertinent details, in the risk assessment process
[22]. Many strategies have been developed to assess the possible risks connected to the
movement of hazardous products [23-25]. Multi-criteria decision-making (MCDM) approaches
and failure modes and effects analysis (FMEA) are widely adopted techniques for assessing
risk [26-29].

Despite the extensive efforts in this domain, a number of challenges remain unsolved.
Specifically, most of the existing methods in risk assessment cannot handle the uncertainty
and reliability of information simultaneously. Classical fuzzy approaches consider only
uncertainty and do not take into account the reliability of data, which is an important factor
in decision-making. This has resulted in incomplete evaluations and unstable outcomes in
many cases.

In that respect, this paper fills these gaps by developing a new framework that incorporates
both stepwise weight assessment ratio analysis (SWARA) and multi-attributive border
approximation area comparison (MABAC) methods into the fuzzy environment. The key
novelty is using the theory of Z-number in handling uncertainty and reliability of information
together, which is an important feature of the approach for assessing risks in hazardous materials
transportation because data are often incomplete or fuzzy under real-life conditions.
Subsequently, a team of experienced technicians identified 17 potential risks associated with
the transportation of dangerous materials. To evaluate these risks and compare the outcomes of
the proposed approach, a real-life case study was conducted alongside two other approaches. It
is noteworthy that the novelty of this research lies in the utilization of the Z-number theory to
address the uncertainties associated with these factors. This approach considers the reliability
of'the factors, as well as their fuzziness, in the evaluation process. The main contributions, their
impacts, and their insights to this study are as follows:

= This paper represents a new framework that combines SWARA and MABAC methods

under a fuzzy environment. The integration of these methods into one would provide a
systematic and structured approach to the evaluation and prioritization of risks, hence
enhancing overall accuracy and consistency in risk assessments concerning the complex
domain of hazardous materials transportation.

= This paper applies the theory of Z-number, put forward by Zadeh, which accounts

simultaneously for the fuzziness and the reliability of information. The presented dual
consideration of uncertainty and reliability is an important limit of the methodologies at
present available that increases the potential applicability of the proposed framework
under real-world operative conditions characterized by incomplete, imprecise, or
uncertain data.

= The proposed framework eliminates the limitations of classical fuzzy methods, which

take into consideration only uncertainty without respect to data reliability. Overcoming
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such weaknesses, the framework gives more full and reliable risk assessments with
smaller odds on unstable outcomes and incomplete analyses.
= The framework was then validated by a real case study in which 17 potential risks
associated with hazardous materials transportation were identified and evaluated. The
practical application of the framework proves its effectiveness and adaptability to real-
world scenarios, hence providing evidence of relevance for industry professionals and
decision-makers.
= The performance of the proposed framework was compared to two different existing
approaches in order to emphasize its strengths and advantages. This comparative
analysis reinforces not only the reliability and robustness of the proposed model but also
its superiority in handling the complexities related to risk assessment under uncertainty.
The subsequent sections of this investigation are structured in an ensuing manner:
Section 2 presents a succinct compendium of the literature review. The methodologies,
comprising the fuzzy sets concept, Z-number theory, the Z-SWARA method, and the Z-
MABAC method are expounded upon in Section 3. Section 4 explores the suggested
approach. Section 5 explicates the distinguishing features of a case study. Section 6
examines the use of three strategies and discusses the ranking of the most important risks
in the road traffic of hazardous materials.

2. LITERATURE REVIEW

The transportation of dangerous materials has been the subject of valuable research [30-
35]. Deng et al. [36] proposed a generic approach for preventing dangerous chemical
accidents, which utilizes K-means clustering analysis of incident data to address the
associated challenges. To demonstrate the effectiveness of their approach, they developed
a database of dangerous chemical incidents and employed a K-means clustering algorithm
to categorize them. The results obtained revealed that the suggested approach significantly
enhances accident categorization and enables the identification of the most suitable order
of crucial objectives to prioritize, the prerequisites for accident prevention, and the
development of preventive measures. On the other hand, Hong et al. [37] utilized the
association rules mining (ARM) method to detect the contributory crash-risk effects of
hazardous material (HAZMAT) vehicle-involved accidents on expressways. They conducted a
case study and analyzed accident data from the crash database of the Korea Expressway
Corporation between 2008 and 2017. According to their findings, the use of ARM as a data
mining methodology established correlations between crashes involving hazardous
material vehicles and crucial factors that increase the risk of such incidents. Moreover, the
implementation of ARM held promise for producing easily understandable results and
valuable insights to improve the safety of expressways.

Extensive research has been conducted on the parameters that influence accidents
during the transportation of dangerous substances, the severity of injuries, and the risks that
contribute to such accidents [38-42]. Biiyiikozkan et al. [43] introduced a comprehensive and
structured MCDM approach based on the analytical hierarchy process (AHP) and VIKOR
in an intuitionistic fuzzy (IF) environment to evaluate the selection process of hazardous
waste transportation. To overcome bias, uncertainties, and partiality in decision-making
processes, they adopted a group decision-making approach using IF. The efficacy of this
proposed framework was validated by applying it to a real-world case study in Turkey. Ma
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et al. [44] analyzed the statistical distribution features of several factors, including hazardous
materials, transport crashes, driver attributes, vehicle attributes, environmental factors, and road
conditions. To handle unobserved variability among data, they proposed an ordered logit
regression model. The findings of their model estimation revealed a significant correlation
between the harshness of accidents involving dangerous material transportation and 10
elements, including violations, risky driving behaviors, and vehicle faults.

Noguchi et al. [45] developed an innovative methodology for examining accident scenarios
relating to HAZMAT transportation. Their proposed technique utilized network theory as a
means to represent the intricate crash process. The methodology employed in their research
involved the selection of accident scenarios from accident processes through the amalgamation
of the HAZMAT transportation crash network and transportation-related environmental
features based on crash statistics. The research applied the methodology to conduct a case study
on the transportation of liquefied petroleum gas (LPG) via roadways in Japan. The findings
suggested that the methodology presented for the investigation of crash scenarios had the
potential to expedite the process of risk assessment in the transport of hazardous materials while
also facilitating the transition from risk assessment to risk management. Weng et al. [46] built
a quantitative risk assessment (QRA) model to evaluate the risk of hazmat transportation
accidents. The QRA model combined the frequency and consequences of all potential accident
scenarios. An event tree, which consisted of six intermediate events, was utilized to identify the
potential accident scenarios. To prove the efficacy of the proposed QRA model in evaluating
the danger of hazardous material transportation accidents, a case study was carried out using
relevant hazmat transportation data from Shanghai. The outcomes showed that the proposed
model had reliable performance.

Ren and Yang [47] analyzed the risk factors of hazmat road transportation accidents
with a Bayesian network model, HRT-BN, developed upon Tree Augmented Naive Bayes
(TAN), reflecting dependencies such as those of accident types and rescue times. The
results point out that human factors are the main cause of slight accidents with short rescue
times, while the interaction of multiple factors results in more serious and varied accidents.
Other factors, such as seasonal and regional factors, come into play such as longer rescue
times during summer. Their analysis concluded with targeted recommendations to reduce
risks. Kanj et al. [48] proposed a novel method to enhance transportation safety related to
hazardous goods with the help of real-time information. They have worked out a hybrid
methodology called fuzzy AHP-TOPSIS (Technique for Order Preference by Similarity to
Ideal Solution) for risk analysis and optimized route selection on three criteria, namely:
cost, duration, and risk. The approach proposed aimed at finding the safest route by
assigning calculated weights to these criteria through pairwise comparisons. They
examined both static and dynamic environments where the static decisions remained fixed
while dynamic decisions changed with the flow during transport. Their outcome indicated
an enhancement of safety and reduced risks on hazardous material transportation. Hsu et
al. [49] proposed the integrated quality function deployment and multicriteria decision-
making (QFD-MCDM) framework for selecting the key drivers to 5.0 in order to enhance
supply chain resilience while concurrently handling hazardous material transportation risk.
Some of the proposed measures that will contribute to sustainability and stability of firms,
as proposed by them, include safe and inclusive working environments, customized products
and services, improved flexibility of production, enhanced control redundancy, and full
utilization of real-time data analysis. Their findings showed how the integration of 15.0 and
SCR can have a synergistic effect in mitigating HMTR. The findings also provided useful
insights and implications for enterprises from different industries.
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3. METHODOLOGY

In this section, we will outline the concepts of fuzzy set theory and Z-number theory,
followed by a discussion of the Z-SWARA and Z-MABAC methodologies. Additionally,
we will elucidate the advantages of employing the SWARA and MABAC methods in
comparison to other weighting and ranking approaches, respectively.

The SWARA method involves a hierarchical ranking of criteria, prioritizing the most
significant criteria over those of lesser importance. The participation of experts in assessing
the weight of these criteria is essential to this process. SWARA allows decision-makers to
establish priorities aligned with predefined policies, particularly in contexts where these
priorities reflect known situations. It effectively assesses the relative significance of multiple
criteria concurrently. Its versatility makes SWARA suitable for various decision-making
scenarios, and its use among researchers has notably increased in recent years. In terms of
contextual consideration, comprehensive evaluation of multiple criteria, and broad
applicability, the SWARA method presents several advantages over other methods such as
the Analytic Hierarchy Process (AHP), the Analytic Network Process (ANP), and the Best
Worst Method (BWM) [16].

The MABAC method offers several advantages in MCDM over traditional methods. It
is particularly effective in handling complex decision-making scenarios by incorporating
various innovative approaches, such as time-series analysis, fuzzy logic, and probabilistic
linguistic terms. These enhancements allow MABAC to provide more accurate and reliable
decision-making outcomes. The MABAC method can incorporate time-series data, allowing it
to handle dynamic decision-making scenarios where criteria and preferences may change over
time. This is achieved through time weights, which enhance the reliability of the decision-
making process by accounting for temporal variations. It allows for bidirectional adjustments,
enabling decision-makers to refine and adjust criteria weights and preferences dynamically,
which is not typically possible with traditional static methods [50].

Moreover, integrating fuzzy numbers and dual probabilistic linguistic term sets allows
MABAC to effectively manage uncertainty and fuzziness in decision-making. This
capability is crucial for scenarios where decision criteria are not precisely defined or are
subject to interpretation. The method's ability to incorporate fuzzy logic and probabilistic
assessments provides a more nuanced and comprehensive evaluation of alternatives, enhancing
decision accuracy [51]. Additionally, MABAC's approach of ranking alternatives based on their
distances from an approximate boundary region limits unconditional compensation among
attribute values, leading to more balanced and fair evaluations [50]. The method has been
successfully applied in various practical scenarios, such as determining winners in competitions
and selecting sustainable suppliers, demonstrating its versatility and effectiveness in real-world
applications [52].

The MABAC method offers distinct advantages in terms of robustness, flexibility, and
ease of implementation, making it a compelling choice for multi-criteria decision-making.
While methods like TOPSIS, VIKOR, and others have their strengths, MABAC’s focus on
border approximation and comprehensive evaluation positions it effectively for scenarios
where nuanced decision-making is critical.

3.1. Fuzzy Set Theory

The idea of fuzziness presents a membership function to manage many language variables
[53—55]. Within the realm of individuals' internal cognition, inference, and perception, a certain
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extent of ambiguity exists. Fuzzy sets handle sources of imprecision and uncertainty that are
non-statistical and ambiguous in nature. The fundamental descriptions of fuzzy number sets
used in this work are clarified in the next part.

Definition 1: A set 4 that is fuzzy, and is defined on the reference set X, can be
expressed through the use of Eq. (1):

A= {(x, ,uA(x))|x € X} (1)

The membership function denoted as u,(x): X — [0,1] in Eq. (1) characterizes the
fuzzy set A. The value of membership p,(x) signifies the extent to which x € X pertains
to A. The membership degree is the extent that an element, x € R, belongs to the fuzzy set
A . This parameter conveys the level of assent or conviction in x being a member of the
fuzzy set A , or the degree of conformity of x with the intended concept of the set 4 .

Definition 2: A triple (/, m, u) can be employed to denote a triangular fuzzy number 4 ,
with its membership function being articulated in Eq. (2).

0 x <l
"—‘ll I<x<m
pa(x) =4 5 2
m<x<u
u-—-m
kO xX=Uu

Definition 3: Let A = (I;, my, uy) and B = (I,, m,, u,) represent two triangular fuzzy
numbers, and let A be a positive constant. In this scenario, mathematical actions on these
fuzzy numbers are executed based on Egs. (3-7):

A@E:(ll+l2,m1 +m2,u1+u2) (3)

A®B = (. I, my.my, uyp. uy), 4

A-B= (4 —uz,my —my,uy — 1), Q)
A (lmwm

B (uz'mz' lz)' (6)

14 = Ay, my,uq) = (A, Amy, Auy), @)

Definition 4: Let A = (I;, my, uy) and B = (1,, m,, u,) denote two positive triangular
fuzzy numbers. The measure of separation among A and B is ascertained by means of Eq.

(8):

~ o~ - 2 — 2 _ 2
d(4,B) = \/((zl )% +(my ;nz) +(u1-up)?) ®)
Definition S: A triple (/, m, u) is utilized to define a triangular fuzzy number. The
change of said number to a crisp number is achieved through the utilization of Eq. (9):
l+4xXm+u
6

A= )
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3.2. Z-Number Theory

The Z-number theory was anticipated as a thorough representation of uncertainty
theory, which addresses the calculation of non-reliable numbers [56]. Unlike fuzzy theory,
the Z-number theory considers the concept of reliability. It can be merged with MCDM
approaches, such as VIKOR [57-58].

The Z-number represented as a custom pair Z = (4, B), is a type of fuzzy data that is
utilized to characterize the value of the random variable X. It is important to note that in
the aforementioned statement, 4 is a form of fuzzy constraint that is applied to the value of
the random variable X, while B is the partial dependability of probability criteria connected
with 4.

Eq. (10) presents the triad (X, 4, B) as a comprehensive constraint on X, and designates
it as Z-valuation, akin to an assignation statement:

Prob(XisA) is B (10)

This particular constraint is acknowledged as a probability constraint that connotes a
function of probability distribution. Additionally, it can be given in the following manner:

R(X):X is » poss(X =u) = uu(u) (1D

In the aforementioned equation, the symbol u, represents the membership function of
A, while u denotes a generic value of X. The function u, can be interpreted as a limitation
on R(X), signifying that it encompasses py(u), denoting the extent to which u can be
satisfied. Consequently, X presents a stochastic variable with a probability distribution
which acts as a potential restriction on X. The potential constraints and probability density
function are illustrated in Egs. (12) and (13), respectively:

R(X):X is p (12)
R(X):X is p-oprob(u<X <u+du)=pwdu (13)

In Eq. (13), the term du denotes the constituent of u's derivatives. To effectuate the
conversion of a Z-number into a fuzzy number, one must execute the ensuing mathematical
operations: If Z=(4, B) represents a Z-number (where 4 has been identified as the verbal
variable illustrated in Table 1, while B has been identified as the verbal variable accessible
in Table 2 and A = {(X,uz)|X €[0,1]} and B = {(X,uz)|X € [0,1]} denote fuzzy
triangular numbers, then the conversion of fuzzy number reliability to a certain number can
be accomplished in the following manner:

_ [ xug(x)dx
[ ug(x)dx

(14)
and the second part is added to the first part as follows:

VAR {(X,,Lljd)l,uja(x) =auze, X € [0’1]} (15)

In the aforementioned Egs. (14) and (15), a denotes the reliability weight, ug (x) is an
indicator of the degree of dependence of x € X in B, and pza(x) is an indicator of the
degree of dependence of x € X in A%.
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Table 1 Risk prioritization in FMEA with extended SWARA

Linguistics terms Membership functions
Equally-significant (ES) (1,1,1)
Moderately-less-significant (MOS) (2/3,1, 3/2)
Less-significant (LS) (2/5,1/2,2/3)
Very-less-significant (VLS) (5/2,3,7/2)
Much-less-significant (MUS) (2/7,1/3,2/5)

Table 2 Conversion guidelines of linguistics variables of reliability

Linguistic Very Weak Weak Medium Strong Very Strong
variables (VW) (W) M) (S) (VS)
TFNs (0,0,0.3) (0.1,0.3,0.5) (0.3,0.5,0.7) (0.5,0.7,0.9) (0.7,1.0,1.0)

3.3. Z-SWARA Method

Achieving best results in challenging situations depends on evaluating many
approaches of decision-making. These techniques enable methodically evaluating and
ranking many elements engaged in the decision-making process [59-61]. The technique
known as SWARA is a method for making decisions by determining values for weight that
play a pivotal role in the process [62-63]. KerSuliene et al. [64] developed this approach,
and it has a major advantage in that it allows one to evaluate the opinions of professionals
on criteria of relevance all the while figuring their relative weights. In the context of a fuzzy
environment, the fuzzy SWARA technique serves as an adapted decision-making approach
that is leveraged to calculate the weights of criteria and sub-criteria. The fuzzy SWARA
methodology operates in a way that is like to that of the SWARA method. However, it has
been extended to accommodate uncertainties in decision-making or a dearth of knowledge,
hence the term "fuzzy" [65—66]. The weights of the criteria in the fuzzy SWARA method
are established according to expert judgments, underscoring the indispensable role of
researchers in the process. To heighten the level of confidence in the resultant outcomes,
the fuzzy SWARA method has been extended to encompass the Z-SWARA technique,
which takes into account a reliability factor. The Z-SWARA methodology involves the
ensuing steps:

Step 1: Academics in the field of expertise commonly sort criteria in a descending
manner based on their level of significance, where the utmost crucial factors are assigned
greater precedence than their less noteworthy counterparts. This approach is attributed to
their vast knowledge and proficiency.

Step 2: During the preliminary assessment stage, proficient individuals should allocate
linguistic qualities to the comparative significance of criterion j concerning the preceding
j—1 criteria. Subsequently, the specialists employ Table 1 to ascertain the worth of the
primary component (F"j). Table 2 is utilized for the computation of the dependability
component (Zj). The outcome is a Z-value allocated to every individual state.

Step 3: To obtain a precise numerical value for the second aspect, which is reliability,
the utilization of Eq. (14) is deemed necessary in order to transform the Z-number that was
obtained during Step 2 into a triangular fuzzy number (TFN) as elaborated in Eq. (12).
Upon completion of the equation, the weight is subsequently integrated into the original
component as stipulated in Eq. (13).
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To determine the relative significance of linguistic variables on the j-th criteria, the Z-
number transforms by adjusting the appropriate TEN values, as presented in Tables 1-2,
respectively. Furthermore, Table 3 provides additional Z-number to TFN conversions for
a comprehensive understanding of the phenomenon.

Table 3 Guidelines are provided for transforming Z-number linguistics variables into
fuzzy numbers

Linguistics terms Membership functions Linguistics terms Membership functions
(ES, VW) (1,1,1) (ES, W) (1,1,1)

(ES, M) (1,1,1) (ES, S) (1,1,1)

(ES, VS) (1,1,1) (MOS, VW) (0.212,0.316,0.474)
(MOS, W) (0.367,0.548,0.822) (MOS, M) (0.474,0.707,1.061)
(MOS, S) (0.561,0.837,1.255) (MOS, VS) (0.636,0.949,1.423)
(LS, VW) (0.126,0.158,0.212) (LS, W) (0.219,0.274,0.367)
(LS, M) (0.283,0.354,0.474) (LS, S) (0.355,0.418,0.561)
(LS, VS) (:379,0.474,.0636) (VLS, VW) (0.092,0.104,0.126)
(VLS, W) (0.159,0.181,0.219) (VLS, M) (0.205,0.233,0.283)
(VLS, S) (0.243,0.276,0.335) (VLS, VS) (0.275,0.313,0.379)
(MUS, VW) (0.069,0.079,0.092) (MUS, W) (0.120,0.137,0.159)
(MUS, M) (0.155,0.177,0.205) (MUS, S) (0.184,0.209,0.243)
(MUS, VS) (0.209,0.237,0.275)

Step 4: To determine the coefficient Ej, refer to Eq. (16):

1 j=1 . _
Kf—{s,.+1 isqd =12 (16)

Step 5: The weight coefficient g;, which is indistinct, is established in the following

manner, considering the outcomes obtained from Step 4:
G =""j=12.,n (17)
j

where §; is TFN and ¢;= (1, 1, 1).

Step 6: Lastly, the scheming of the relative weights of the j-th evaluation criteria is
performed, which carefully considers all n evaluation criteria. This is achieved by applying
Eq. (18):

~ qj .
= =12, .. 1
W Z?:1(1]_,] R (R (18)

where W; is a TFN.

3.4. Z-MABAC Method

The MABAC method [67] is a contemporary approach to decision-making that was
formulated in 2015. Ever since its inception, the MABAC method has been extensively
utilized and adapted to tackle a plethora of problems within the realm of MCDM [68-69].
The MABAC method's foundational framework involves the assessment of the criterion
function's distance for each alternative observed from the boundary approximation domain.
The ensuing section expounds on the six-step procedure for the application of the MABAC
method.
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The Z-MABAC technique is a solution to address the issue of decision-making within
a fuzzy environment. Following the acquisition of attribute weights, the MABAC method
is utilized to compute the value of the standard function for each alternative, with the
distance of said function from the margin approximation area subsequently defined. Once
the distance of the standard function from the margin approximation area is determined,
the alternatives are ranked, and the optimal choice is selected.

Step 1: involves the construction of an initial decision matrix Z utilizing the application
of Z-numbers. In the formation of the primary decision matrix (Z), a crucial step involves
the assessment of m alternatives based on n criteria. These alternatives are appropriately
represented as vectors, denoted by A; = (X;1, Xjz, ..., Xj»), where X;; represents the value
of the j-th alternative by the i-th criterion (i = 1,2, ...,m;j = 1,2,...n):

c, C .. G,
A [X11 X1z - Xin

7= Ay | X1 Xz . Xop|, (19)
Ap |Xm1 Xmz o Xpn

Step 2: involves the conversion of Z-numbers into fuzzy numbers, with the intent of
facilitating informed decision-making. The initial decision matrix (Z) contains inherent
linguistic values (Table 4) that undergo a conversion process into fuzzy numbers, resulting
in the matrix Z.

Table 4 Language-based variables for ranking the failure modes

Linguistic Very Weak Weak Moderately Medium Moderately  Strong Very
variables Weak Strong Strong
(VW) W) MW) ™) MS) ) (VS)

TN 00D (013 (135 65 629 goag GO

In order to adequately address the language-based elements present in Z-numbers,
while the second element B is turned into a triangle fuzzy number, the initial element A
becomes a trapezoidal fuzzy number (Table 5).

A Z-number is a mathematical entity comprising two unique constituents. Within the
current framework, the Z matrix is first solved employing the centroid approach of the
second segment, subsequently amalgamating into an assemblage of trapezoidal fuzzy
numbers, designated as Z%:

G C,
Al Zall ZalZ Zaln
A, |7« VA VA (20)

o~
3
N
R
3
2
N
R
3
N
N
R

mn
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Table 5 Conversion guidelines for Z-number linguistics based variables to fuzzy numbers

Linguistics terms  Membership functions  Linguistics terms Membership function

(VW, VW) (0,0,0.32) (VW, W) (0,0,0.55)
(VW, M) (0,0,0.71) (VW, S) (0,0,0.84)

(VW, VS) (0,0,0.95) (W, VW) (0,0.32,0.95)
(W, W) (0,0.55,1.64) (W, M) (0,0.71,2.12)
(W, S) (0,0.84,2.51) (W, VS) (0,0.95,2.85)
(MW, VW) (0.32,0.95,1.58) (MW, W) (0.55,1.64,2.74)
(MW, M) (0.71,2.12,3.54) (MW, S) (0.84,2.51,4.18)
(MW, VS) (0.95,2.85,4.74) (M, VW) (0.95,1.58,2.21)
(M, W) (1.64,2.74,3.83) (M, M) (2.12,3.54,4.95)
(M, S) (2.51,4.28,5.86) (M, VS) (2.85,4.74,6.64)
(MH, VL) (1.58,2.21,2.85) (MS, W) (2.74,3.84,4.93)
(MS, M) (3.54,4.95,6.36) (MS, S) (4.18,5.86,7.53)
(MH, VH) (4.74,6.64,8.54) (S, VW) (2.21,2.85,3.16)
(S, W) (3.84,4.93,5.48) (S, M) (4.95,6.36,7.07)
(S, ) (5.86,7.53,8.37) (S, VS) (6.64,8.54,9.49)
(VS, VW) (2.85,3.16,3.16) (VS, W) (4.93,5.48,5,48)
(VS, M) (6.36,7.07,7.07) (VS, S) (7.53,8.37,8.37)
(VS, VS) (8.54,9.49,9.49)

Step 3: The process of normalizing the aggregated fuzzy matrix yields the matrix Z',
which conforms to a standard measurement range as an alternative to the conventional
[0,1]. For every benefit criterion ; in the decision matrix Z%, the trapezoidal fuzzy number
element Z~{"j= (Zij1» Zij2s Zij3) s subjected to normalization by separating the maximum
value in Z;j3:

~ Zis Zi Z:: o
Z; =( U E ) I — ), j € benefit-related criteria (21)
max;(Zij3) maxi(Zij3) maxi(Zijz)
For each j-th cost criterion in the decision matrix Z%, standardization is carried out by
separating the minimum value of Z;;; for each component Zi“j= (Zij1» Zij2r Zij3) and
subsequently taking the inverse in order:

— ini(Z:: in:(Z:: ini:(Z:: . .
Zj; =(mml( ij1) , miniZij) , ming ”1)> ,Jj € cost-related criteria (22)
Zij3 Zijz Zij1
Step 4: The computation of the constituent element of a more intricate matrix denoted
as (V) is performed through the utilization of Eq. (24):

vy =wi(C+2Z;)Cj=12,..,ni=12,..,m, (23)
P P wi.C+Z, w.C+7Zy .. wo.C+7,
v |V Va2 Van| wi.C+27Zy wyC+Zy .. wp.C+7Z,, (24)

Vmi Vmz - VUmn wi.C+Zy wyC+Zpy oo wp.C+Zn,
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Step 5: The computation of the matrix of bordering approximative fields (G) is
undertaken herein. The bordering approximative field is established as follows:

Ym |
9i = (H;'n=1vij) m,l =12, ..,m (25)

The components of the weighted matrix (7) are denoted by v;;, while m signifies the
total number of alternatives. Upon computation of the value g;, a matrix of approximative
fields is constructed per criteria G (as expressed in Eq. (26)) in the format of n, which
denotes the total number of criteria utilized in selecting the alternatives:

G = (91,92, - Gn)- (26)

Step 6: An alternative methodology for ascertaining the boundary approximative area
(Q) involves the computation of the distance matrix element:

i1 Q12 - Qin
=|" Mo T @)
qml qm2 an

The determination of the distance of every alternative from the boundary approximative
area (q;;) is achieved through the subtraction of the values of the bordering approximative
areas (G) from the corresponding elements in the heavier matrix (V):

Vi1 V12 Vin
vz U22 s Uz
e=v-Gc=|7" 7 T T-lgr g - gl 29
Vmi VUmz - VUmn
Vit1—=91 Vi2— 92 - Vin = Yn 11 G122 - Qin
0= V21791 V22792 - Van " Gn| _ Y921 422 -+ Qo
UVmi— 91 Vm2 — 92 In dm1 9m2 - Qdmn

whereas g; denotes the contiguous approximative regions for criterion C;, and v;; denotes
the constituents of the denser matrix (V).

Alternative A; may pertain to a contiguous approximative region (G), an upper
contiguous approximative region (G*), or a lower contiguous approximative region (G ).
For each i, A; is a member of the set {G V G* V G~ }. In order to identify the region where
the ideal alternative A% is located, the upper approximative area (G1) must be determined.
Similarly, the lower approximative area (G~) must be identified to represent the space
where the anti-ideal alternative (A7) is located. This is described in Fig. 1 [57].

The determination of the affiliation of alternative A; with respect to the approximative
area G, G* or G~is conducted through the utilization of Eq. (29):

G* if qij > g;
Ai €E{G lf qi; = 9i ,i=1,2,..,m. (29)
G™ if q; < g;

For a specific set, the optimal solution is chosen only if it is a member of the upper
approximating field (G*) for as many criteria as possible.
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1 Upper Approximation Area

Border
Approximation Area

Criterion Functions

Lower Approximation Area

Fig. 1 Styles and sizes for equations

Step 7: The prioritizing of the alternatives is determined through a computing of the
values of the criteria functions, as per Eq. (30). This equation involves the summation of
distances between the alternatives and the surrounding approximative fields, indicated as
(g;). To arrive at the final values of the criterion functions, one must add the elements of
the Q matrix along the rows in accordance with Eq. (30). This process ultimately facilitates
the prioritizing of the alternatives.

Si=211qj,J=12,..,ni=12,..,m (30)

4. PROPOSED APPROACH

In this particular section, the proposed methodology for prioritizing risks is introduced
by utilizing FMEA, fuzzy-SWARA-MABAC, and Z-MABAC approaches. The suggested
method is delineated in three stages. The preliminary stage of this recommended approach
entails the identification of risks within the ambit of risk evaluation by the FMEA team,
while the values of the three factors are assigned based on Table 6. Furthermore, in this
phase, the pertinent team determines the dependability of each identified risk.

Table 6 Traditional ratings for SOD factors

Rating Severity (S) Occurrence (O) Detection (D)

10 Hazardous-without-warning Very-high: " o

9 Hazardous-with-warning "failure is almost inevitable” Absolute uncertainty

8 Very-high High: High:

7 High "repeated failures” "repeated failures”

6 Moderate Moderate: Moderate:

5 Low " . : " ” . : ”
occasional failures occasional failures

4 Very-low

3 Minor Low: Low:

2 Very-minor "relatively few failures” "relatively few failures”

Remote: Remote:
1 None

"failure is unlikely” "failure is unlikely”
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In the subsequent phase, the employment of the fuzzy SWARA approach is
implemented to account for varying levels of significance pertaining to the triple criteria.
Upon identification of the most favorable and unfavorable criteria by the proficient team,
pairwise comparisons of the criteria are carried out utilizing linguistic variables. The
linguistic variables proffered by the experts are subsequently subjected to conversion into
fuzzy numbers utilizing Table 1. Subsequently, the execution of the fuzzy SWARA
mathematical model is performed on the aforementioned values, yielding the optimal
weights of the triple factors.

In the next phase of the study, the Z-MABAC method is utilized to rank the identified
risks. This methodology takes into account the differing levels of significance of the triple
criteria, according to the outputs of the initial and secondary phases. This method combines
the fuzzy values with the dependability of each criterion for the three elements of each risk,
in contrast to the conventional MABAC technique. As demonstrated in this study, this more
nuanced approach yields superior results.

In the suggested approach, Table 5 transforms the values into fuzzy numbers after the
development of the decision matrix, which consists of both fuzzy and Z-numbers.
Thereafter, various models are executed within a fuzzy environment. The outcome from
the application of these models yields an indistinguishable result from that of the primary
ranking of the identified risks in the preliminary phase. The definitive ranking of the risks
is established based on the dominance ranking theory, with the triple approaches being
juxtaposed against one another. Fig. 2 shows the application procedure of the proposed
approach.

K Identifying the potential failure modes according to the
N 1isk assessment scope

First Phase based on the » Determining the SOD factors for each failure by the
FMEA team
FMEA method » Determining the reliability of each failure by the
| FMEA team

e Running the Z-SWARA method
Second phase based on the * Converting the linguistics variables to fuzzy numbers

7-SWARA method » Obtain the coefficient

+ Calculate the symmetric fuzzy weight
/|« Calculate the relative weights of the evaluation criteria

/

+ Determining the decision matrix based on the Z- \
Number theory

Third phase base on the + Converting the Z-Numbers to fuzzy numbers using the
Table(6
Z-MABAC method L)

Implementing the MABAC approach in fuzzy

environment

[ Prioritization of the risks ]

%

Fig. 2 An overview of the proposed methodology



494 S. VAHABZADEH, S. S. HAGHSHENAS, S. J. GHOUSHCHI, G. GUIDO, ET AL.

5. CASE STUDY

The research region falls in the province of Cosenza's municipality of Rende (Fig. 3).
[70]. The territory of the city of Rende has an extension of 55 sq km and is located north
of Cosenza between the municipalities of Montalto Uffugo, Castiglione Cosentino,
Castrolibero, Cosenza, San Vincenzo La Costa, San Fili, Marano Principato, Rose [71].

Fig. 3 Location of the municipality of Rende (CS)

Rende has a population of about 36,500 inhabitants. Within the modern city, which
developed downstream from the historic center, numerous commercial activities have
sprung up in recent decades and public services and equipment of general interest, both
public and private, are concentrated. To the north-east of the municipal area, there is also
an industrial zone, which represents a strong attraction pole for commercial vehicles. This
zone, localized in Contrada Lecco, is part of the city's Industrial Development Area, and
therefore characterized by a high volume of vehicles which, on a daily basis, transport
freights with origin or destination in the urban area of the city of Rende [72-73].

The main road axes are oriented along the South-North direction, also influenced by
the morphology of the territory. However, significant vehicular flows also occur on the
transversal routes along the East-West axis (particularly on State Road 107), which cross
the city, connecting locations on the Ionian coast with those on the Tyrrhenian coast, and
vice versa. Within the municipal territory of Rende, there is an interchange of the A2
Mediterranean Motorway (Cosenza Nord-Rende), which provides a connection to State
Road 107 Silana-Crotonese.

In the urban area, Provincial Road 241 (formerly State Road 19/19bis) plays an
important role, serving as the structural axis of Rende's settlement development along the
Crati plain. The A2 Motorway and SP241 simultaneously function as collectors for supra-
municipal traffic, particularly for the Montalto Uffugo-Cosenza connection, and as primary
roads connecting Cosenza and Rende.

Some roads serve as transversal links but face significant performance issues (low
capacity values compared to high demand peaks), leading to instances of congestion at
times, especially on routes connecting to the university campus, which accommodates
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thousands of daily trips. A strong polarization of people's mobility between the territories
of Cosenza and Rende is evident.

The estimation of vehicular traffic volumes affecting the area was derived from on-site
surveys and an analysis of data from the "15th General Census of Population and Housing
regarding commuter movements for study or work purposes" (ISTAT). The analysis
reveals that the area is affected by a total of 10,320 internal trips (with origins and
destinations within the municipal territory), 21,497 inbound trips (with origins outside the
municipal territory and destinations within it), and 6,050 outbound trips (with origins
within the municipal territory and destinations outside it).

The total number of road accidents occurred in the last 5 years (2020-2024) in the study
area is equal to 482, involving 735 injured and 5 dead.

Fig. 4 shows the heavy vehicles impact on traffic flow in the whole study area. The
percentage of heavy vehicles on the total volume of vehicles observed in the road network
varies from 3% (secondary roads) to 30% (access/exit roads to the industrial area).

Vehicles =
Heavy vehicles mumm—

Traffic zones LIl LTZ Rende

Fig. 4 An overview of traffic flows on the road network in the case study
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Among the goods transported in the case study area, a share between 5% and 8% is
related to hazardous substances, which are mainly toxic waste, electronic equipment with
release of polluting substances, exhausted vegetable oils. The transportation of these types
of substances in the area is due to the presence of a waste storage and treatment plant. These
values lead to an analysis of the effects that the transport of dangerous substances can
generate on the environment and human health.

6. RESULTS

This specific section focuses on the outcomes of the suggested strategy used to assess
possible risks resulting from the transporting of hazardous substances on highways. In
accordance with the initial phase of this approach, the team responsible for FMEA
endeavors to detect and pinpoint all plausible risks that may surface during the process.
Besides this, the team also defines triple factor values for every identified risk, which are
shown in Table A.1 in the Appendix.

It is worth noting that identifying the 17 risks related to the carriage of hazardous
substances was not a linear process. To begin with, we conducted a critical review of related
literature to identify widely reported risks in the transportation of hazardous materials.
Complementary to this were expert consultation sessions with persons with substantial
experience in logistics, transportation safety, and hazardous materials handling. Their input
was important to ascertain that the identified risks were not only of practical relevance but
also representative of realistic situations. We analyzed historical data on past incidents and
accidents involving dangerous goods to further support and consolidate this selection process.
The following risks were fully identified through a multi-step process, as shown in Table A.1.
These risks could be used as a basis for the next steps in assessing and ranking risks.

The Z-number theory is applied aptly to accommodate the uncertainty imbued
inherently in these factors. In this way, dependability and ambiguity of these factors are
remarkably acknowledged. Table A.2 illustrates the Z-number values of the triple factors
of each risk based on input from the FMEA team.

Following the use of the SWARA approach in the second phase of the study's
methodology, the evaluation of risks described in Table 7 is carried out for each decision-
maker by determining the values of coefficient k& and the weights ¢ and w derived using
Egs. (16-18).

Table 7 The weights of the threat factors by SWARA

Team - Risk Cpmparatwe Coefficient Recalculated weight Weight
number factor importance
S 1 1 1 1.000 1.000 1.000 0.428 0.444 0.466
T™M-1 (0] 0.285 0333 04 1.2851.333 1.4 0.714 0.750 0.778 0.306 0.333 0.362
D 04 05 0666 14 1.5 1.6660.429 0.500 0.556 0.183 0.222 0.259
S 1 1 1 1.000 1.000 1.000 0.414 0.425 0.440
T™-2 D 0.285 0.333 04 12851333 14 0.714 0.750 0.778 0.295 0.319 0.342
0] 0.222 0.25 0.2851.222 1.25 1.2850.556 0.600  0.636 0.230 0.255 0.280
(0] 1 1 1 1.000 1.000 1.000 0.434 0.454 0.483
T™™-3 S 04 05 0666 14 1.5 1.6660.600 0.667 0.714 0.260 0.303 0.345
D 0222 0.25 0.285 1.222 1.25 1.2850.467 0.533  0.584 0.202 0.242 0.282
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The transformation of linguistic variables into triangular fuzzy numbers is accomplished
during this stage. Upon successful conversion, the coefficient k; from Eq. (16), the fuzzy weight
q; from Eq. (17), and the final weight of the factors in the form of fuzzy numbers w; from Eq.
(18) can be ascertained. Table 8 includs the final fuzzy weight of the main criteria for each
decision-maker (DM).

Table 8 Ultimate SWARA weights of the threat factors

Risk factors Ultimate weights
S 0.3680 0.3910 0.4176
(0] 0.3238 0.3477 0.3757
D 0.2275 0.2612  0.2949

Following the application of the SWARA and Z-number approaches in the third phase
of the study methodology, the rate of the coefficient k and the weights of ¢ and w were
calculated for every decision-maker assessing the offered risks in Table 9. Throughout this
particular procedure, the linguistic variables undergo a transformation into triangular fuzzy
numbers by virtue of the equations that have been explicitly outlined in Tables 1-2.

Once fuzzy numbers have been generated from the linguistic variables, the coefficient,
fuzzy weight, and ultimate weight of the components in the structure of fuzzy numbers are
all determined. Table 10 shows each decision-maker's final fuzzy weight for every
important criteria.

Table 9 The weights of the risk factors by Z-SWARA

Team Risk Comparative

number factor _importance Coefficient Recalculated weight Weight

S 1 1 1 1.000 1.000 1.000 0.407 0.419 0.438
T™M-1 O 0.205 0.233 0.283 1.205 1.233 1.283 0.799 0.811 0.830 0.317 0.340 0.364
D 0.3350.418 0.561 1.335 1.418 1.561 0.499 0.572  0.622 0.203 0.240 0.272
S 1 1 1 1.000 1.000 1.000 0.379 0.385 0.395
TM-2 D 0.1590.181 0.219 1.159 1.181 1.219 0.820 0.847 0.863 0.311 0.326 0.341
[6) 0.12 0.137 0.159 1.12 1.137 1.159 0.708 0.745 0.770 0.268 0.287 0.304
(0] 1 1 1 1.000 1.000 1.000 0.419 0.436 0.463
T™-3 S 0.3350.418 0.561 1.335 1.418 1.561 0.641 0.705 0.749 0.268 0.308 0.347
D 0.184 0.209 0.243 1.184 1.209 1.243 0.515 0.583  0.633 0.216 0.254 0.293
Table 10 Final Z-SWARA weights of the threat factors
Risk factors Final weights
S 0.3522 0.3712 0.3939
o 0.3355 0.3549 0.3776
D 0.2439 0.2739 0.3025

Upon the completion of normalizing the fuzzy assessment matrix, which is represented
in Table A.3, the ensuing step involves deriving the weighted normalized matrix Z-
SWARA. This is accomplished by assimilating the weights of the distinct threat factors, as
elaborated in Table A.4.

Finally, after the completion of the normalization process for the final weights, the risks
are subjected to a ranking procedure utilizing the fuzzy SWARA-MABAC, Z-MACAB,
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and FMEA techniques. This particular section of the study implements three distinct
approaches in accordance with Table A.3—A.4, whereby the outcomes are subsequently
presented, while also considering the general dependability of the risks and the inherent
uncertainty related with the SOD variables. Upon conclusion of this analysis, the various
options are meticulously compared and contrasted by means of their respective rankings,
which are presented in Table 11.

Based on the findings presented in Table 11, it can be determined that the FMEA
approach identified risk modes R14, R7, and RS as the top three risks, with RPN scores of
280.77, 186.666, and 144.444, respectively. These risks are deemed critical and necessitate
the implementation of corrective or preventive measures. Conversely, risk mode R1, with
an RPN score of 37.333, is ranked last and is currently not in need of corrective actions
due to financial constraints. Additionally, the fuzzy SWARA-MABAC approach ranked
risk modes R12, R13, and R7 as the top three risks, with scores of S1,=0.1313, §,3=0.1140,
and S7=0.1040, respectively. Risk mode R2, with a score of $,=—0.1656, was ranked last
using this approach. Furthermore, it is worth noting that Z-MABAC ranked risk modes
R16, R12, and R9 as the top three risks, with scores of S16=0.1350, S1,=0.1333, and
So=0.1196, respectively. Lastly, risk mode R2 has been ranked seventeenth with a score of
$>=-0.2022 by the Z-MABAC approach.

Table 11 Comparison of risk prioritization based on three approaches

Risk Conventional FMEA Fuzzy SWARA-MABAC Z-MABAC
RPN Rank Si Rank Si Rank

R1 37.333 16 -0.1258 16 -0.124 16
R2 95.333 8 -0.1656 17 -0.202 17
R3 69 12 0.0654 6 0.0917 7
R4 46.666 14 0.0212 10 -0.400 11
R5 65 13 -0.0758 15 -0.072 15
R6 125 4 0.0253 9 0.0556 8
R7 186.666 2 0.1040 3 0.1029 5
RS 144.444 3 0.0415 8 0.0472 9
R9 125 4 0.0593 7 0.1196 3
R10 83.333 9 -0.0475 14 -0.059 14
R11 120.888 6 0.0047 11 -0.013 10
R12 82.962 10 0.1313 1 0.1333 2
R13 124.444 5 0.1140 2 0.1023 6
R14 280.777 1 -0.0368 13 -0.048 12
RI15 80 11 -0.0255 12 -0.048 13
R16 100 7 0.0862 4 0.1350 1
R17 41.481 15 0.0703 5 0.1101 4

In Fig. 5, we present the outcomes of the prioritization of risks based on three different
approaches. Furthermore, we executed the assessment and prioritization of risks. The
results of the analysis highlight the distinctions in prioritization among the three proposed
approaches. In fact, the fuzzy approach has triumphantly overcome the inadequacies of the
traditional FMEA methodology and provided an absolute priority by considering different
weights for each of the 17 risks, utilizing diverse weights for prioritization, and applying
fuzzy theory to leverage uncertainty. This approach brings the subject closer to the real-
world and engages expert opinions more than ever to obtain accurate results.
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Fig. 5 A comparison between the prioritization of risks based on three different approaches

In contrast, the approach proposed in this study extends the notion of data reliability for
each criterion by employing the Z-number theory, in addition to covering the benefits of
Z-MABAC and fuzzy SWARA-MABAC techniques. The opinions of experts are
incorporated with greater accuracy in calculations, and consequently, our responses will be
more dependable. Apart from obtaining outcomes that are close to the real-world, the
proposed approach is also simple in its solution method.

6.1. Validation of Proposed Approach

This section presents two validation studies designed to evaluate the reliability and
validity of the rankings derived from the proposed Z-SWARA-MABAC approach. The first
study involved a comparative analysis with two established methods, Z-WASPAS and Z-
MARCOS, to assess the consistency and effectiveness of Z-SWARA-MABAC in prioritizing
risks associated with hazardous material transportation. The second study employed
Pearson's correlation analysis to further validate the results produced by the MCDM methods.

6.1.1. Comparative Analysis

The objective of this section is to provide empirical evidence regarding the reliability,
accuracy, and efficacy of the proposed methodology. To achieve this, a thorough comparative
analysis has been conducted, contrasting the results obtained from the Z-SWARA-MABAC
technique with those derived from established methods, specifically the extended Z-number
with Weighted Aggregated Sum Product Assessment (Z-WASPAS) and the extended Z-
number with measurement of alternatives and ranking according to compromise solution (Z-
MARCOS).

The results derived from the application of diverse methodologies underscore the efficacy
of the Z-WASPAS and Z-MARCOS approaches, as illustrated in Table 12 and Figure 6. A
detailed examination reveals that criteria A16, A12, and A9 consistently ranked first, second,
and third, respectively, across all employed methods, highlighting the robustness of these
findings. The comprehensive analysis of risk prioritization using the WASPAS and
MARCOS methodologies reveals significant parallels in the identified risks. Notably, the top
four risks consistently rank the same across all three approaches, indicating a strong
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consensus. While minor variations do exist in the prioritization of other risks, these generally
do not exceed two ranks, which is considered acceptable given the low magnitude of the
discrepancies. Therefore, it can be concluded that the proposed method is both valid and
reliable, producing results that closely align with those from the comparative methodologies.

Table 12 Risks rankings based on three various ranking methodologies

Risk Z-MABAC Z-MARCOS Z-WASPAS

'S Score Rank Score Rank Score Rank
Al -0.124 16 0.4562 15 0.591 17
A2 -0.202 17 0.4348 17 0.596 16
A3 0.0917 7 0.5382 9 0.675 8
A4 -0.4 11 0.5114 12 0.646 10
A5 -0.072 15 0.4901 13 0.604 15
A6 0.0556 8 0.5763 8 0.677 7
A7 0.1029 5 0.6157 6 0.709 5
A8 0.0472 9 0.5882 7 0.649 9
A9 0.1196 3 0.7136 2 0.718 3
Al0 -0.059 14 0.4384 16 0.606 14
All -0.013 10 0.5183 11 0.646 11
Al2 0.1333 2 0.7092 3 0.725 2
Al3 0.1023 6 0.6577 5 0.686 6
Al4 -0.048 12 0.5289 10 0.628 12
Al5 -0.048 13 0.4564 14 0.626 13
Al6 0.135 1 0.7356 1 0.736 1
Al7 0.1101 4 0.6955 4 0.718 4

The consistent identification of risks across the MABAC, WASPAS, and MARCOS
methods reinforces the robustness and validity of the proposed approach. This alignment
enhances confidence in the accuracy of the prioritization process and affirms the reliability of the
findings. By employing multiple techniques that yield consistent results, this study underscores
its credibility in risk assessment. Such agreement among diverse methodologies bolsters the
conclusion that the proposed approach is both valid and dependable for effective risk evaluation.

60
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S50

40

30

Al A2 A3 A4 AS A6 A7 A8 A9 A10 Al11 AI2 Al13 Al4 A1S Al6 Al1T
=7 -MABAC =7 -MARCOS Z-\VASPAS

Fig. 6 Chart of risks rankings based on three various ranking methodologies
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6.1.2. Pearson's Correlation

The Pearson correlation coefficient is one of the most important statistical tools that
describes the strength and direction of the linear relationship between two continuous
variables. In the MCDM framework, Pearson's correlation bears great relevance and
importance both as a useful tool in analysis and interpretation and as a support method in
decision-making for choosing the best alternative according to the preset criteria.

Usually, the decision-makers have to select the best alternative among various options on
the basis of multiple criteria. Pearson's correlation coefficient plays a very important role not
only in the selection but also in the comparison and validation of different ranking methods
applied in the MCDM frameworks. Decision-makers may employ different MCDM methods
(e.g., MABAC, WASPAS, and MARCOS). Pearson’s correlation can be used to compare the
rankings produced by these methods by analyzing the correlations among the scores derived
from different methods. This comparative analysis can highlight inconsistencies or affirm the
robustness of the rankings. Pearson's correlation is an efficient tool that can be used to verify
the relationship between ranking and scoring functions. In this way, it is possible to determine
if the rankings created by different methods of scoring are either consistent or correlated,
which gives a better understanding of the reliability of the decision-making process. The use
of Pearson's correlation in assessing the aforementioned relationship in MCDM will provide
the ability for decision-makers to assess the stability and dependability of the outcomes.
Consistent rankings from the various scoring methods confirm the validity of the decision-
making process, while inconsistencies in the rankings may signal a need to revisit criteria
weighting or the scoring methodologies themselves.

The decision-maker will be able to identify which methods yield similar results and which
may lead to divergent rankings by calculating the correlation coefficients between the
rankings produced by different methods. A high value of the correlation coefficient between
two methods will indicate that these methods produce consistent rankings, while a low
coefficient will point to significant differences. This evaluation is important for establishing
the robustness of the alternatives identified. The decision-maker could be less uncertain about
the reliability of the selections when several techniques are suggesting similar top choices.

Pearson's Correlation coefficient formula is presented below.
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The results (Figure 7) from the
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Fig. 7 Pearson's correlations between
MABAC, MARCOS, and WASPAS
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The Pearson's correlations between MABAC and the other two methods (MARCOS and
WASPAS) indicate a strong degree of alignment in the rankings produced. Specifically:

= A correlation 0f 0.9926 between MABAC and WASPAS suggests an extremely close

resemblance in the rankings generated by these two methods. This high correlation
indicates that both methods assess alternatives similarly in terms of their effectiveness
in addressing the criteria for evaluating risks.

= A correlation of 0.9657 between MABAC and MARCOS also reflects a robust

agreement, indicating that both methods yield comparable rankings for the
alternatives considered.

The consistency between MABAC and the other ranking methods suggests that the
MABAC method is generating stable and reliable rankings for the evaluation of risks
associated with transporting hazardous materials. A strong correlation implies that the
method is not only accurate but also resilient to variations in input data across different
methods. This reliability is important for risk assessment because the decision-makers should
rely on a valid and believable result.

Both MARCOS and WASPAS also show strong correlations amongst themselves, from the
Pearson correlation coefficient of 0.9608. That means the three methods operate on kindred
principles to evaluate risks, hence building a case towards the use of any of them. However,
since MABAC shows the highest correlation with WASPAS (0.9926), it positions MABAC as
a particularly accurate and effective method within this group for this specific application.

Based on the analysis of Pearson's correlation coefficients, we validate that the MABAC
method provides accurate ranking results for evaluating risks in transporting hazardous
materials. The high correlation coefficients among MABAC with the other ranking methods,
MARCOS and WASPAS, denote a high level of agreement in results from risk evaluations
and show that MABAC correctly captured the inherent relationships among risk factors.
Further, in tune with other methods and having the robustness in providing consistent
rankings, the method of MABAC is recommended to be most appropriate in this study. It
allows drawing accurate results that enhance decision-making capabilities in the realm of
hazardous material transportation and, finally, to safer and more effective risk management.

7. DISCUSSION

The current study reveals some convergences and divergences in risk prioritization by
applying different methodologies in the assessment of risk in hazardous material
transportation. FMEA, based on quantitative data and historical trends, gives operational risks
like unfitness of personnel on appropriate training in safety matters and poor maintenance of
vehicles. On the other hand, the fuzzy SWARA-MABAC approach that integrated expert
judgment listed organizational risks related to management inefficiency, such as R12 and
R13, in the highest rank order for priority. Furthermore, the Z-SWARA-MABAC method
has identified vehicle compatibility with hazardous materials (R16), drawing on an important
perspective rooted in regulatory considerations and contextual factors. The differences
among these approaches are due to their methodological frameworks. FMEA focuses
strongly on measurable factors, often disregarding such qualitative elements as organizational
culture. On the other hand, the fuzzy SWARA-MABAC method captures those qualitative
dimensions of risk. Integration of Z-number theory in the Z-SWARA-MABAC approach
introduces sophisticated modeling of uncertainty that allows the risks to be reevaluated in
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light of contextual and regulatory considerations. For example, certain risks-like R2-that have
been rated low in conventional methods start assuming great significance when viewed
through the prism of compliance and contextual relevance.

These results highlight how much the success of risk assessment depends on
methodology. While FMEA represents one systematized data-driven approach, with roots
in historical insights, the fuzzy SWARA-MABAC and Z-SWARA-MABAC methods
make use of expert opinions and uncertainty modeling in order to uncover risks that
otherwise may be overlooked. Each method adds something different, which indicates that
a comprehensive assessment framework is vital when taking into consideration the
complex nature of hazardous material transportation risks.

The study also carries practical implications for stakeholders. Transportation planners
can use these insights to enhance infrastructure and optimize routing strategies, particularly
in high-risk areas. Safety regulators can revise the priority listing of standards and training
that must be made mandatory. Logistics operators can take up risk mitigation measures
based on their particular needs, such as in-vehicle monitoring and emergency response plans.
Emergency responders can focus resources on high-hazard areas and improve multiagency
coordination. Combining findings from all three approaches gives the decision-maker a
comprehensive view of the priorities of risk and thus the safest, most efficient ways of
transporting hazardous materials.

8. POLICY IMPLICATIONS

To mitigate the critical risks associated with hazardous material transportation,
policymakers must adopt a multi-dimensional strategy informed by the study’s findings.
The integration of diverse methodologies provides a robust framework for risk assessment,
enabling targeted interventions to enhance safety and operational efficiency. Some of the
most important of these measures are as follows:

= Strengthening Training and Safety Protocols: The drivers and personnel who come into
contact with the hazardous materials are to undergo extensive training courses on safe
handling, emergency response, and compliance with local and international regulations.
This would be further developed through regular updates and practical drills in order to
avoid human error.

» Implementing Rigorous Vehicle Maintenance Standards: Vehicle safety requires
planned inspections, proper maintenance records, and real-time monitoring. It will
identify the majority of imminent risks long before they can cause an accident.
Additional utilization of telematics and predictive analytics will achieve even more
efficiencies and reliability for maintenance.

= Enhancing Regulatory Compliance: Policymakers should establish strict audits and
incentives for adhering to safety standards. Working in collaboration with transportation
companies to develop specific benchmarks with regard to regulatory compliance can
provide a culture of accountability and continuous improvement.

* Improving Risk Communication and Public Awareness: Safety risks associated with
hazardous material transportation should be made transparent. Communities will be
informed through public awareness campaigns; the involvement of local authorities and
emergency services will increase their risk management and preparedness. Public
confidence will also be aided by regular reporting on safety practices and incidents.
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» Developing Robust Contingency Plans: Contingency planning will minimize the effects
of any probable accident. To this end, comprehensive emergency response plans-
developing evacuation plans and resource allocation, among others-are to be developed
with frequent simulation tests. Coordinated collaboration between transportation
operators and emergency services ensures that responses are effective.

= Leveraging Advanced Technologies: Safety may be significantly enhanced by
technological investment. It preserves real-time monitoring systems, automatic
reporting tools, and predictive analytics that detect developing threats and guarantee
compliance. Algorithms for route planning that include risk evaluations may further
reduce exposure to high-risk zones.

These strategies will, therefore, allow stakeholders to mitigate most of the critical risks
identified in this study while engendering a safety and accountability culture in the
industry. These policies will continuously need to be evaluated and adapted to respond to
evolving challenges in hazardous material transportation, assuring long-term sustainability
and public safety.

9. CONCLUSIONS

The transportation of hazardous materials by road is a very complex issue and demands
rigorous analysis from different perspectives. This work proposed an integrated approach
that used the SWARA and MABAC methods under Z-number theory for the assessment
and prioritization of risks. By applying expert judgment, critical risks were identified and
developed in a tailored FMEA approach with regard to rural roads in Cosenza, southern
Italy. Results underlined clearly the differences between the three proposed approaches in
prioritizing risks, being more performative: the fuzzy approach treated the uncertainty and
overcame the limitations set by traditional FMEA. By using distinct weights for all criteria,
this provided a strong priority ranking that is really useful for decision making under
uncertainty. The study significantly provides new insights to enhance methodologies in risk
evaluation for transportation of hazardous material. Its results provide practical insights for
possible future applications on different roadway systems or risk assessment scenarios.

The present study predominantly relates to the conditions of rural roads in Cosenza,
Italy, and for this reason, the regional effects it may present will not be directly applicable
in other areas or networks of urban roads. The narrowness of the scope limits generalization
since the road infrastructure, traffic patterns, and regulatory environment can vary a lot
across different regions. It is further recommended that the proposed framework be put to
test in heterogeneous environments, including urban as well as other areas with different
road conditions, to ensure generalization and adaptability. Conducting comparative studies
across different geographical and regulatory contexts can provide deeper insights into the
framework’s robustness. Involving more stakeholders in expert opinions, such as local
authorities, transport companies, and affected communities, will be attempted in future work in
order to decrease the subjectivism of reliance on expert opinions. Such a mechanism would
enable the framework to embrace any change in regulation, technological development, and
changing societal expectations and remain relevantly effective for a longer period.
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APPENDIX

Table A.1 Identified risks in the process of road transport of hazardous substances

Severity Occurrence Detection
Symbols Risk names (S) ©O) (D)
TM-1 TM-2 TM-3 TM-1 TM-2 TM-3 TM-1 TM-2 TM-3
R1 Unsuitable condition of the roads 6 7 5 6 4 4 1 2 1
R2 Unsuitable meteorological conditions 4 3 4 7 5 6 5 4 4
R3 Improper packaging 8 8 7 4 2 3 3 2 4
R4 Improper loading and unloading 5 7 6 3 3 4 3 1 3
RS Lack of protective equipment 5 4 6 3 2 4 4 5 4
R6 Depreciation of vehicles 9 9 7 4 6 5 2 4 3
R7 Failure to monitor and maintain vehicles 7 7 6 4 5 3 8 6 7
R8 Failure to comply with the special requirements for 6 6 8 5 3 5 6 4 5
transporting hazardous materials by vehicle
R9 Lack of awareness of the driver 9 8 8 7 5 3 2 3 4
R10 Failure to comply with traffic regulations 4 5 6 2 5 3 4 6 5
RI1 Failure to comply with the requirements related to the 6 4 7 4 5 3 5 5 6
transportation of hazardous substances by the driver
RI2 Over transport 5 8 7 2 3 2 4 5 7
R13 Poor management of facilities 4 7 5 3 5 2 8 6 7
R14 Inadequate safety training 8 6 5 7 6 6 7 6 8
R15 Tllegal operation 5 5 6 2 4 3 6 4 5
R16 Vehicle does not match hazmat 8 9 8 4 6 2 3 2 4
R17 Natural disaster 3 2 3 1 2 2 9 10 9
Table A.2 The decision matrix that utilizes Z-numbers
Severity Occurrence Detection
Symbols S) (0) (D)
TM1 T™M2 T™M3 T™M1 T™2 T™M3 T™M1 T™M2 T™M3
R1 MW)  (MSM)  (M,M) MW)  (MWM) MM) (VW,VW) (W,W) (VW,W)
R2 (M,W) MW, W)  (M,S) (S,M) (MS,S) (M,VS) (MS,W) (M,M) (MW,S)
R3 (S.S) (VS,S) M,S) MW,VW)  (W,W) (MW,M) (W, W) W,W) (MW,M)
R4 (MS,M) (S.S) (MS,W) (W,VW) MW, W)  (M,M) (W,VW) (VW W)  (MW.M)
RS (MW, W) (W,W) MSM) MW,VW) (WM) (MWM) (W,VW)  (MW,W) (MW.,M)
R6 (VS,S) (H,VS) (S,VS) MW, W)  (MS,M) (M,M) (W, W) MW, W)  (MW,M)
R7 (S,M) (MS,S) M,S) (M,W) (M,M) (MW,S) (S,M) (MS,S)  (MS,VS)
R8 (MS,S) MS,M)  (S,VS) (M,M) (W,M) (MS,S) (M, W) (MW, M) M,S)
R9 (VS,VS) (S.9) (S,VS) MS,W) (MW, W) (W,M) (W, W) WM)  (MW,M)
R10 MW,M)  (MW,W) (M,W) (W,W)  (MW,W) (MW,M) (MW,W) (MM) (MW,M)
R11 MVW)  (MWM) (MS,S) (MW,W) (MW,W) (W,M) MW,W)  (MW,M)  (M,M)
R12 (MW, W) (S,.M) (MS,S) (W,VW) (W, VW) (W, VW) (MW, M) (M,M) (MS,S)
R13 M, W) (S.M) M,S) (W,VW)  (M,W)  (W,M) (S,M) (M,M) (M,S)
R14 (S,M) MM)  (MW,S) (MS,M) (M,M) (M.S) (M,M) (M,M) (S.S)
R15 MW,VW) (MWM)  (M,M) WM)  (MWM)  (W,M) MW)  (MWM) (MW,S)
R16 (S,H) (VS,VS)  (S,VS) (MW, W) (M,M) (W,M) (W, W) W,W) (MW,M)
R17 (W,VW)  (WVW)  (W,W) VW,VW) (W, W) (W, W) (VS,S) (VS,VS) (VS VS)
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Table A.3 The matrix of normalized fuzzy evaluations
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Symbol S (6] D

RI 05029 06126 07377 04109 05216  0.6502 02275 02700  0.3440
R2 04538 05604  0.6820 03238 04146 05346 02958 03919 05013
R3 0.6010 07038 07934 04856  0.6018 07225 02351 03048  0.4030
R4 05765 06908 08073 04607 05751  0.6936 02351 02961 03833
RS 04415 05344 06542 04856 06018 07225 02427 03222 0.4226
R6 0.6501 07559  0.8352 03860 04949  0.6213 02427 03222 0.4226
R7 05519 06647 07795 04109 05216  0.6502 03565 04616 05701
RS 05765 06908 08073 04109 05216  0.6358 02806 03745 04816
RY 0.6501 07559  0.8352 04358  0.5483  0.6647 02351 03048  0.4030
R10 04293 05344 06542 04856  0.6018 07225 02654 03571  0.4620
RII 04783 0585 07099 04856 06018 07225 02654 03571  0.4620
RI12 05274 06386 07516 05354 06553 07514 02958 03919 05013
RI3 05274 0638 07516 04856  0.6018 07080 03261 04267  0.5308
R14 05029 06126 07238 03611 04681 05924 03261 04267  0.5308
RIS 04293 05344 06542 05105  0.6286 07369 02654 03571  0.4620
R16 0.6501 07559  0.8352 04607 05751  0.6936 02351 03048  0.4030
R17 03680 04301 05428  0.5604 _ 0.6687 _ 0.7514 04323 0.5225 _ 0.5897

Table A.4 Weighted normalized purpose approach matrix

Symbol S [6) D

RI 04462 05237 06120 04764 05694 06757 02439 02794  0.3303
R2 04148 04953 05845 03355 04264 05422 02947 03729 04580
R3 05569  0.6451 07194 05642  0.6493 07368 02502 03061 03779
R4 05085 05334 06021 05345 06179 07077 02502 02983 03582
RS 04049 04681 05486 05566 06466 07368 02551 03147  0.3825
R6 06202 07167 07879 04364 05325 06419 02551 03170  0.3901
R7 04938 05828  0.6718 04663  0.5629 06734 03675 04627  0.5584
RS 05371 0.6339 07307 04589  0.5560  0.6545 02872 03654  0.4488
R9 06231 07182 07879 05164  0.6063 06966 02502 03077 03832
R10 03895 04595 05395 05459 0.6377 07327 02740 03470 04267
RII 04274 05010 05852 05510 06431 07356 02740 03470  0.4267
RI2 04768 05594  0.6437  0.6260  0.6937 07551 03064 03901 04797
RI3 04694 05528  0.6353  0.5620  0.6468 07260 03293 04159  0.5003
R4 04540 05397  0.6273 03998 04964 06099 03339 04202  0.5046
RIS 03928 04609 05390  0.5481  0.6506 07425 02723 03477 04302
R16 0.6476 07311 07879 05160  0.6113 07077 02502 03061 03779
R17 03522 03874 04449  0.6141 _ 0.6914 07551 04633 05478 _ 0.6050




