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Abstract. This paper deals with an analysis of a two-dimensional viscous fluid flow 

between the two parallel plates inclined with respect to the horizontal plane, where the 

lower plate is heated and the upper one is cooled. The temperature difference between the 

plates is gradually increased during a certain time period after which it is temporarily 

constant. The temperature distribution on the lower plate is not constant in x-direction, 

there is a longitudinal sinusoidal temperature variation imposed on the mean temperature. 

We have investigated the wave number and amplitude influence of this variation on the 

subcritical stability and the onset of the Rayleigh-Bénard convective cells, by direct 

numerical simulation of 2D Navier-Stokes and energy equation. 
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1. INTRODUCTION 

The Rayleigh-Bénard flow is a type of natural convection. It is one of the classical 

problems in fluid mechanics where a fluid is typically bounded by bottom and top walls 

which are heated and cooled, respectively (Fig. (1)). In this research, the fluid is subjected 

to the spatial temperature modulation at the lower wall and a small inclination of the both 

walls with respect to the horizontal plane. The reason for this convection is the temperature 

gradient in the vertical direction, which causes instable density stratification and, 

consequently, the fluid motion. 
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Fig. 1 Formation of Rayleigh-Bénard cells 

Rayleigh gave the first solution of the problem of the conducting state stability when 

the fluid in a gravitational field is bounded from above and below with constant but 

unequal temperatures. He obtained the critical value of a dimensionless parameter at 

which the flow starts. This parameter is named after him: the Rayleigh number. Another 

parameter, which measures the relative strength of the non-linearity in the momentum 

equations, is the Prandtl number. They are defined in the following way: 
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where g is gravitational acceleration, β is thermal expansion coefficient, T1 is temperature 

of lower plate and T2 is the temperature of upper plate, l = 2H is the distance between the 

plates, υ is kinematic viscosity and a is thermal diffusivity. This is a non-dimensional 

parameter for the measure of the buoyancy/diffusive forces ratio. In the above definition 

of the Rayleigh number, the fluid properties are calculated at mean temperature 

Tm = (T1+T2)/2 as the best reference temperature. In our calculation T1 is a temporal and 

x-direction variable function as, according to Eq. (1), is the Ra number.  

The value of the critical Rayleigh number according to the linear stability theory is 

Rac = 1708 at wave number qc = 3.117. Beyond this value the fluid starts moving thus 

forming counter-rotating two-dimensional cells, the cross-section of which is almost 

square. The cellular flow becomes considerably more complicated as the Ra increases. 

The two-dimensional cells break up in three-dimensional cells, which appear hexagonal 

in shape when viewed from above. With larger Ra numbers, the cells multiply, become 

oscillatory and, finally, turbulent. The flow becomes turbulent at Ra = 104 and Pr = 1, for 

water Pr = 7 there is Ra = 105, and for higher Pr numbers there is Ra = 106-107. 

Most of the above is valid for small temperature differences between the plates when 

the so-called Oberbeck-Boussinesq approximation is valid. In the Oberbeck-Boussinesq 

approximation all the fluid properties are considered constant except density, which is 

assumed to be a linear function of temperature: 

 2 2[1 ( )]T T      (2) 

where ρ2 is fluid density at upper plate, T is fluid temperature. One of the first papers that 

analyzed the Rayleigh-Bénard flow with variable viscosity is that of Tipelkirch et al. [1]. 

Thereafter, many works have appeared treating the Rayleigh-Bénard flow with temperature 

dependant viscosity. Some of the authors have treated basic parameters [2,3], variable 

fluid viscosity [4,5], different enclosures [6,7,8], two-phase flows [9,10], etc. Some 

modern approaches to numerical solution can be found in the recent papers [8,10,11]. 
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Probably the first work where the Rayleigh-Bénard flow was treated through assuming 

all the fluid properties as a function of temperature was that of Paolucci et al. [12]. The 

working fluid was air, its dynamic viscosity and thermal conductivity following the 

Sutherland law. The work of Fröhlich et all [13] and Severin and Herwig et al. [14] 

followed, which is the most recent work on the Rayleigh-Bénard convection considering 

all the fluid properties variable and angle-inclined [15-18]. Severin and Herwig calculated the 

critical Reynolds number using the method of asymptotic expansions and the results were 

valid only for small heat transfer rates. 

In this paper we consider a fluid flow for the Rayleigh number below the critical 

value against the wave number very close to the critical one. The numerical simulation of 

2D Navier-Stokes equation in vorticity-stream function form is carried out for temperature-

dependant thermophysical properties. In those cases there is spatial temperature modulation 

at the lower wall with small angle γ, where δm is amplitude and qm is wave number of the 

temperature modulation around some average value at the lower plate. 

2. MATHEMATICAL MODEL 

At the Rayleigh-Bénard convection we can use three different approaches: Boussinesq 

approximation, low Mach number approximation, and compressible Navier-Stokes 

equations. The incompressible Navier-Stokes equations for Bousinesq approximation, 

continuity and energy equation read: 
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where kwjviuv


  is velocity vector, p pressure, a thermal diffusivity and υ is 

kinematic viscosity. For the case of the fluid flow between two parallel plates inclined at 

an angle γ, relative to the horizontal plane, force g


 may be expressed as: 

 sin cosg g i g j     

At this point in the research, considering the limited computational resources, the 

problem will be considered only in 2D domain. The boundary conditions are: 

 ( , , ) 0, ( , , ) 0u x y H t u x y H t      (4) 

 ( , , ) 0, ( , , ) 0v x y H t v x y H t      (5) 

 2 1( , , ) , ( , , )T x y H t T T x y H t T      (6) 

For the plane flow in the vorticity stream-function formulation we have: 
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Having in mind that per definition p and  υ, and that for plane flow we 

have kjviuv


0 , and x for any physical value , we obtain the following 

vorticity equation: 

 2 2( ) sin ( ) cos ( )
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t dy dx
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Since 0 0x y z zi j k i j k           in two dimensional fluid flow, our equation 

after projection onto z direction becomes: 
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where we have denoted   z. The problem can be made dimensionless by using the 

following characteristic scales: L = H for length, T = H2/a for time and V = a/H for velocity. 

After rendering those equations dimensionless, we change the variables introduced in 

order to transform the physical domain into the computational one which is adopted to 

the Fourier-Chebyshev approximation, namely   x*  2 and   y  . The flow 

variables are reduced by scale factor to obtain the following coordinate transformation: 
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Substituting the above coordinate transformation in the vorticity equation, we have: 
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or in the following forms: 
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If we multiply this equation with H4/a2 the above equation yields: 
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Non-dimensional temperature is defined with: 
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Rayleigh number by Eq. (1) and Prandtl number as ratio of kinematic viscosity to 

thermal diffusivity: 

 Pr
a


  (17) 

Now, after substitution of Eqs. (17) and (16) in (15) we have: 
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Instead of continuity equation the definition of vorticity is used here: 

     (19) 

After scalar product with k we obtain: 
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and after multiplication with L/V we obtain the above equation in dimensionless form: 
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The energy equation can be transformed in the following way: 
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and dividing the equation by T1-T2, it yields: 
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Substituting the expressions for coordinate transformations: 
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and after dividing by a/H2 we obtain the energy equation in non-dimensional form: 
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The nondimensional Oberbeck-Bousinesq system of equations to be solved (18), (21) 

and (27): 
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The boundary conditions are the following: 
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And the initial conditions will be defined later. We have two boundary conditions for 

stream function and none for vorticity. The problem is solved by influence matrix 

method [19, 20], so that the first two equations can be solved simultaneously, and the 

numerical method is described in detail [21]. We describe here only the numerical method 

used for energy equation. 

3. SOLUTION PROCEDURE 

The above set of equations should be solved simultaneously in time, so we describe 

the procedure only for the energy equation. For the solution of the described problem we 

use the Fourier-Chebyshev pseudo-spectral method, with the Fourier-Galerkin method 

for approximation in homogeneous x-direction and the Chebyshev collocation method for 

non-homogenous y-direction. Eq. (16) in developed form is: 
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Where S* is source term, which, in our case, is zero. The Fourier approximation in 

streamwise direction can be expressed by trigonometric polynomials in exponential form: 
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Here 
* *( , )y t  designate Fourier coefficients for the exponential form of trigonometric 

polynomials in Eqs. (30)-(35) for any physical value  and 1i . In the following, we 

will always refer to dimensionless quantities; consequently * are suppressed from 

superscript, and after substitution of Eqs. (30), (31), (34) and (35) in (29), we obtain: 
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After differentiation: 
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If multiply both the sides with the same weight function as the basis functions, we 

have: 
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If we apply the orthogonality condition, so that inner product of exponential functions 

yields: 

 

1, 2,

2

0

( , )( , ) ( , )( , ) ( , )

0 for
( , )

2 for

K K K
ikx ilx ikx ilxk

k k

k K k K k K

ikx ilx ikx ilx

y t e e B y t e e B y t
t

k l
e e e e

k l







  


 




  



  



 (39) 

Our system of equations is reduced to: 
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For approximation in y-direction we use the Chebyshev-collocation method in the 

following way: 
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where )2(

,ijd  are elements of the Chebyshev differentiation matrix. The boundary points 

j = 0 and j = Ny are not included in the above system of equations. If we designate: 
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For discretisation in time, the second order finite difference method in generalized 

form yields: 
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i

x
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t
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d y y S y S y

N N
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    

      

    

 

  

 



   




       

    

 



, cos , 1,..., 1, , 0,1,...,
2

jx
j y n t

y

y j N t n t n N
N


     

 (43) 
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With these values the above system of equations becomes: 

 1 2 1 2 1 22, 0, 0, 1, 0, . . , 1i e                 (44) 

We use the semi-implicit Adams-Bashworth backward differentiation method for 

which we have: 

 

1

2 1 (2) 1

,

0

1

1 1

3 ( )
( ) ( )

2

4 ( ) ( )
( ) 2[ ( ) ( )]

2

,..., , cos , 1,..., 1, , 0,1,...,
2 2

yn N
k j n n

k j j i k j

i

n n

k j k jn n n

k j k j k j

jx x
j y n t

y

y
k y d y

t

y y
S y B y B y

t

N N
k y j N t n t n N

N


 

 





 





 

  


 
  



       



 (45) 

The values on the right hand side are known, and the values on left hand side are 

unknown and have to be calculated for each time step. Values 
1n

k


 have to be calculated 

for each wave number k = 0,…,Nx/2, and each collocation point yj = cos(j / Ny), 

j = 1,…,Ny. The generalized form of a set of Eqs. (43) can be solved for γ1=0, γ2=0, in the 

following way: 

 

2 (2) 1 2 (2)

, ,
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1 1 1
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i i

n n n n n
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t t
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t
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N

 
     


   





 

  

    
         

    


    



     

 

, 0,1,..., tn t n N 

 (46) 

If introduce the following matrices: 

 
(2)

1 , 4 ,

1,..., 1 1,..., 1
[ ] , [ ]

0,..., 0,...,

x x

i j i j

y y

i N i N
I D d

j N j N


   
 

 
 (47) 

and scalars: 

 
2 2

1 0 1

(1 ) 1
, (1 ),

2 2
k k

t t t

  
     

  
      

  
 (48) 

The above system of equation is reduced to the following form: 

 

1 1

1 1 4 0 1 4 1 1

1 1

1 1

[ ] [ (1 ) ]

(1 ) 2 ( ) ( )

,..., , , 0,1,...,
2 2

n n n

k k k

n n n n
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x x
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N N
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       

 

 



 

     

   

    

 (49) 
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where: 

 
0 0 0[ ( ),..., ( )] , [ ( ),..., ( )] , [ ( ),..., ( )]n n n T n n n T n n n T

k k k N k k k N k k k Ny y S S y S y B B y B y      (50) 

If we introduce the following notation: 

 1 1 1 4 0 0 1 4 1 1 1[ ], [ (1 ) ],B I D B I D B I              (51) 

We finally obtain these matrix equations: 

 

1 1 1 1

1 0 1 1 1(1 ) 2

0,..., 2, , 0,1,...,

n n n n n n n

k k k k k k k

x n t

B B B I S I S B B

k N t n t n N

       

      

   
 (52) 

This system of equations should be supplemented by boundary conditions. The 

horizontal walls are assumed to be isothermal with non-dimensional temperatures θhot = 1 

and θcold = 0 at the bottom and top walls: 

 

2 2
2

1 2

1 2
1

1 2

( )
( 1) , ( 1) 0

( )

( )
( 1) , ( 1) 1

( )

cold

hot

T T
T y T y

T T

T T
T y T y

T T






    




      



 (53) 

The generalized Robin boundary conditions have the form: 

 

( 1) ( 1)

( 1) ( 1)

y y g
y

y y g
y


  


  

  

  


   




     



 (54) 

After the implementation of the Chebyshev collocation method we have: 

 

(1)
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0

(1)

,
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j

N
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j

j
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N
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

  


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 

 



  (55) 

In these equations N = Ny. Boundary conditions on the upper and lower plates can be 

represented in this way: 

 

,

,

( ,1, ) ( , )

( , 1, ) ( , )

K
ikx

k

k K

K
ikx

k
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g x t g y t e
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
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
 (56) 
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If we multiply by eilx and implement orthogonality condition (39) we get: 

 

(1)

0 0, ,

0

(1)

, ,

0

( , ) ( , ) ( )

( , ) ( , ) ( )

cos , 1,...,

N
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
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

 
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

  (57) 

In our case we have: 
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
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 
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 

 (58) 
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



 
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  

  

 
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 
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 (59) 

System of equations (52) and (59) can be solved by direct methods: 

 

1 1 1 1 1

1 1 1 1

1 1

6

(1 ) 2
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2

n n n n n n n
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n n x
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 (60) 

If we introduce the following notation: 
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 (61) 

The system is reduced to: 

 

1 1

0,..., , 0,1,...,
2

n n

k k

x
t

A F

N
k n N

  

 
 (62) 

This system of equations should be solved in a given time step prior the solution of 

momentum equation in the vorticity-stream function form Eqs. (16) and (19), and the 

calculated values of θn+1 should be used in Eq. (16). The system of Eqs. (16), (19) and 

(25) is solved for each time step n = 0,1,…,Nt for all wave numbers k = 0,1,…,Nx/2. 
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4. INITIAL AND BOUNDARY CONDITIONS 

We consider the initial condition for our simulation for the case of the Rayleigh-Bénard 

convection: 

 
*

( , , 0) 0, , ( , ,0) 0, , ( , ,0) 0

( , ) {( , ) R| 0 2 , 1 1}

x y t x y x y

x y D x y x y

  



   

        
 (63) 

The temperature at the lower plate is raised gradually according to the following law: 

 
( , 1, ) (1 sin cos )sin 0, 0 / 2

( , 1, ) (1 sin cos ), / 2

m m m m

m m m m

x y t q x q x t t

x y t q x q x t

     

    

       

     
 (64) 

The temperature at the lower wall is not constant in x-direction, it depends on qm- 

wave number modulation, amplitude δm and frequency ω. Rayleigh number Ra measures 

average temperature gradient, while the additional spatial modulation is characterized by 

small amplitude δm and wave number qm. In the absence of forcing (δm = 0), convection 

cells with wave number qc, bifurcate only for Ra above critical Rayleigh number Rac. 

The onset of convection is characterized by parabolic linear stability - neutral curve in 

parameter space with Ra on abscise and q on ordinate axis. The neutral curve has its 

minimum at critical wave qc = 3.117 and Rayleigh number Rac = 1707.8. 

In contrast, for δm = 0, convection is unavoidable for any finite Ra in the simplest case 

in the form of “forced cells” with wave vector qm. The main goal of the present work is to 

provide direct numerical simulation of cells and their stability in presence of forcing with 

small amplitude δm ≈ 0 (0.01) and in ratio qm / qc = 1.2. The stability of the forced cells 

strongly depends on ratio qm/qc. It is very important to emphasize that our Ra number 

varies temporally and spatially, since temperature at the lower wall is described by the 

Eq. (64), while temperature difference T1-T2 in Eq. (1) varies with time t and x-

coordinate. Our idea is to show the evolution of stream function, vorticity, velocity and 

temperature field in the transition period 0  t  , for ω = 1. The values we have chosen 

are subcritical values Ra=1000, qm=3.7 according to linear stability analysis, for Pr = 7, 

Δt = /300, δm = 0.01, number of Fourier modes K = 96, number of nodes Nx = 192, 

number of Chebyshev collocation points Ny = 192. 

5. RESULTS OF THE NUMERICAL SIMULATION  

In a thin layer of the fluid heated from below, convection occurs as a steady pattern of 

two dimensional cells. The two-dimensional convection cells and stability properties are 

investigated in detail in [22] and [23]. For the heated layer corresponding to Ra > Rac the 

stable roll patterns occur only within a band of wave number centered approximately about 

critical wave number qc. Within the stable band, the cells realized do not necessarily have a 

preferred length scale. Indeed, their wavelengths appear to be dictated by the initial 

conditions used to select the cells and by the manner that the basic state temperature is 

prescribed spatially and temporally. The band is bounded on both sides by instabilities that 

pertain to changing the wavelength of the cells but without changing the form. As the 

induced cells acquire wave length too large or too small, instability will occur to shift their 

length scale back to a value close to the critical one. As the value of Ra increases, the cells at 

some point will become unstable and the convection structure will converge to a pattern with 

a more complex spatial and temporal structure. 
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In this section we present the results of numerical simulation obtained by our 2D 

pseudo-spectral method developed in MATLAB code for the Navier-Stokes equation in 

stream function-vorticity formulation and energy equation, with the initial and boundary 

conditions described above and the walls inclined for 1 angular degree. In Fig. (2) we have 

shown the vorticity distribution for 4 instants of non-dimensional time t = /2, , 3/2 and 

2. Since we have chosen qm = 3.7, such number of the pair of cells can be seen at t = /2 at 

the lower wall. This is the moment when temperature on the lower plate reaches its final 

value with its modulation in x-direction. The distribution in vorticity is not noticeably 

perturbed. The maximal and minimal values of vorticity are between -11 and 3. In the next 

instant of time t =  we can see an increase in the vorticity intensity, where it attains the 

values in the range from -30 to 12, but the distribution is already obviously perturbed in the 

direction of lifted walls. In the next instant of time t = 3/2 we can see even more vorticity 

distribution deformation, and the jump in the range of the values from -52 to 33. At t = 2, 

the convective terms in energy equation start to transport vorticity in upwards left direction 

and the external vorticity values increase further -75  ω  85, although the temperature at 

the lower wall is temporarily constant now, but with modulation in x-direction. 

The results of numerical simulation for stream function are given in Fig. (3). We can see 

that the range of values is increased not only for time period when temperature at the lower 

wall increases but also when the temperature attains its constant value. The spatial stream 

function distribution is slightly changed in time period 0  t  /2, but afterwards /2  t   

convective terms attain values that significantly change the stream function’s intensity and 

distribution. The distribution pattern is more perturbed with the passage of time. 

The results of numerical simulation for velocity in x-direction are given in Fig. (4). 

The u-velocity keeps its form in time period 0  t  /2, but afterwards /2  t   

buoyancy effect becomes significant, and convective terms attain values that significantly 

change the intensity and distribution of u-velocity. In time period /2  t   distribution 

pattern has been changing and becomes partly disordered. The range of values is 

increasing between -12 and 14. The fluid heating through the lower wall and fluid cooling 

through the upper wall are not in balance so that the increase in kinetic and thermal energy 

in the fluid flow is remarkable. The range of values in t = 3/2 is -22  u 25, and in t = 2 

is-47  u  31, and the position of the extremely values is pushed from the lower wall 

toward the middle of the channel and to the direction of the lifted wall. The lower wall with 

its temperature modulation is the source of momentum in the initial stages and later the 

external values are shifted to the middle of the channel. The values near the lower wall 

are constantly increased. The lower wall serves as a source of momentum in x-direction 

and feeds the momentum in the middle of channel. 

In Fig. (5) we have shown the v-velocity evolution in period of time 0  t  2. We 

can see that the values of v-velocity constantly increase and that the upflow and downflow 

for t  /2 at the center of the channel are disturbed. In this case both buoyancy and shear 

have a destabilizing effect on the flow pattern and traveling cells are possible flow 

structures at t  /2.  
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Fig. 2 Non-dimensional vorticity evolution in the forced Rayleigh-Bénard convection 
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Fig. 3 Non-dimensional stream function evolution in the forced Rayleigh-Bénard convection 



194 S. AYED, G. ILIĆ, P. ŽIVKOVIĆ, M. VUKIĆ, M. TOMIĆ 

 

 

Fig. 4 Non-dimensional u-velocity evolution in the forced Rayleigh-Bénard convection 
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Fig. 5 Non-dimensional v-velocity evolution in the forced Rayleigh-Bénard convection 
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We can see that the convection is unavoidable for Rayleigh number Ra = 1000, for 

δ = 0.01 (forced RBC flow) for each instant of time in the form of forced cells with wave 

number qm = 3.7 as can be seen in Fig. 5. These forced cells develop instability against 

resonant modes for Ra > Rac=1708 in wide range of qm/qc; in our case it is qm/qc = 3.7/3.12. 

Only for qm in vicinity of qc the forced cells remain stable up to fairly large Ra>Rac. In the 

case of inclined walls this cell has lost its stability at t  /2, in spite of the fact that our qm 

= 3.7 is in the vicinity of the critical wave number, and Rayleigh number Ra = 1000 is 

significantly below critical value Rac = 1708. In our simulation the instability is reached at 

lower values of Ra at the value of wave number which is close to the critical one. We have 

Ra < Rac but a periodic roll solution exists, since we have δm ≠ 0. For δm = 0 the periodic roll 

solution can exist only if Ra > Rac.  

Exploring the stability regime of cells is a demanding task, and even more difficult is 

the pattern selection, i.e. understating which is spontaneously chosen by system 

dynamics. The compression of the cells in the interior, which accompanies the enhanced 

cells curvature, causes the wave number in the cell center to exceed the instability 

boundary and leads to the formation of the dislocation pairs. The defects then travel 

toward the wall by climbing in the direction opposite to that of gravity acceleration. The 

result of this process is reduction of qm to the values less than qc and thus to the re-

stabilization of the pattern. However, the domain walls emit new cells, which gradually 

re-compress the ones in the center and thus lead to persistent time dependence. 

6. CONCLUSIONS 

In this paper, DNS of the Rayleigh-Bénard convection (RBC) is performed. In 

addition to the applied temperature gradient, the parallel walls are inclined and a 

sinusoidal temperature modulation with amplitude δm and wave number qm is introduced 

at the lower plate. While in the unforced RBC the heat conduction state becomes unstable 

at critical Rayleigh number Rac against convection cells with wave number qc, the forced 

cell solutions with wave number qm exist at any given Ra. Various destabilization 

mechanisms acting on the forced cells depend sensitively on the ratio qm/qc; here the 

results of simulation when this ratio is 1.2 are presented. Additional spatial forcing 

appears at upper plate and in the horizontal direction as the walls are inclined. This opens 

up new possibilities, in particular when the system is exposed to the presence of non-

equal forcing wave numbers imposed at the two confining plates. It should be also 

mentioned that even in the absence of an applied uniform temperature gradient, a pure 

temperature modulation leads to periodic convection patterns. 
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