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Abstract. This paper proposes the use of metaheuristic optimization algorithms to tune 

the Proportional-Derivative (PD) learning rules within the framework of Iterative 

Learning Control applied to low-cost Takagi-Sugeno Proportional-Integral (PI)-fuzzy 

controllers for tower crane system payload position control. Four PD learning rules are 

considered: direct rule with current (in the iteration domain) control error, direct rule 

with previous control error, indirect rule, and open-closed-loop rule. The fuzzy 

controllers are tuned by the Extended Symmetrical Optimum method applied to the linear 

PI controllers, and then by the modal equivalence principle. Set-point filters are included 

for overshoot reduction. A unified design approach is formulated for all four PD learning 

rules in terms of optimally computing the gains in the iteration domain using 

metaheuristic optimization algorithms that solve optimization problems with objective 

functions expressed as the sum of the squared control error multiplied by time, where the 

two variables are the parameters of the PD learning rules. Seven popular metaheuristic 

optimization algorithms are implemented. Real-time experimental results from ten 
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iterations of these optimization algorithms support the performance comparison of the 

fuzzy control systems. 

Key words: Iterative Learning Control, Metaheuristic algorithms, Proportional-Derivative 

learning rules, Proportional-Integral-fuzzy controllers, Tower crane systems 

1. INTRODUCTION 

Iterative Learning Control (ILC) performance improvement of the control system by 

performing repeated experiments (iterations or trials or cycles). According to [1], the 

collected data from previous experiments is used in an iterative way. A systematic way to 

design ILC structures is the optimal tuning [2]. The Proportional-Derivative (ΡD) learning 

rule is a representative component in several ILC structures, with recent applications given 

in [3] and [4]. 

For better readability, the nomenclature of all symbols used in this paper is included at 

the beginning of the supplementary appendix given in [5] and organized in Table 1, which 

describes the abbreviations, variables, and parameters. 

A classification of optimal ΙLC is given in [6], several data-driven ILC techniques are 

reviewed in [7], and recent applications to wafer stages, ball screw feed-drive systems, 

turntable systems and a combination with immune deep reinforcement learning are 

reported in [8], [9], [10] and [11], respectively. General classifications of ILC are given in 

[10] and [12] as direct ILC (i) and indirect ILC (ii), which combine ILC with feedback 

control loops: (i) ILC computes the control signals or improves their computation strategy; 

(ii) the controllers generate the control signals and ILC updates some parameter gains 

and/or variables of the control loops including reference inputs (or set-points) and 

controller tuning parameters. 

The fusion of fuzzy control and ΙLC was coined by the authors back in 2006 [13] and 

continued in [14] to exploit the advantages of both control strategies. This has resulted in 

several low-cost Proportional-Integral (ΡΙ)-fuzzy controllers, and fuzzy logic has been 

incorporated into the learning rules specific to ILC. Another way of mixing fuzzy control 

with ΙLC is the approximation of the unknown dynamics of the controlled processes, 

considering fuzzy models to cope with the nonlinear mechanisms of the processes, and 

further the inclusion in adaptive ΙLC structures. The most recent applications of adaptive 

structures deal with high-speed trains [15], permanent magnet synchronous motors [16], 

multi-agent systems [17], [18], and treating the sampling period as a parameter to 

compensate for its influence on the control system performance using the optimization-

based design [19]. 

Building upon authors’ recent approaches to the performance improvement of fuzzy 

control systems for tower crane (TC) systems, using ILC with (a) direct PD learning rule 

with current (in the iteration domain) control error and the two parameters (i.e. the gains) 

optimally tuned using the metaheuristic Grey Wolf Optimizer (GWO) given in [20], (b) 

direct PD learning rule with previous control error using the metaheuristic Slime Mould 

Algorithm (SMA) [21] and (c) indirect PD learning rule using SMA [22], the new 

contributions of this paper are: 
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▪ A new ILC-based fuzzy control system structure, with the notation (d), derived from 

the open-closed-loop ILC with direct PD learning rule formulated in [23] for linear 

systems and a continuous-time derivative term. 

▪ The systematic performance improvement of ILC-based fuzzy control systems for 

TC systems focusing on payload position control is proposed using the four PD 

learning rules (a), (b), (c) and (d) specified above, with seven popular metaheuristic 

optimization algorithms involved in tuning the two PD gains: GWO, SMA, Particle 

Swarm Optimization (PSO) [24], Gravitational Search Algorithm (GSA) [25], 

Charged System Search (CSS) [26], Whale Optimization Algorithm (WOA) [27], 

and African Vultures Optimization Algorithm (AVOA) [28]. These learning rules 

are combined with Takagi-Sugeno PI-fuzzy controllers leading to a new generation 

of low-cost fuzzy controllers. 

▪ A novel unified design approach for all four PD learning rules. This approach optimally 

computes the gains of each learning rule in the iteration (or the experiment) domain 

using metaheuristic optimization algorithms that solve optimization problems with 

objective functions expressed as the sums of squared control errors multiplied by time 

and the variables represented by the two gains of the PD learning rules. 

▪ The control system performance comparison based on real-time experimental 

results after a few iterations (namely, ten ones) of the metaheuristic optimization 

algorithms on the TC system laboratory equipment. 

The main advantage of these new contributions with respect to the state-of-the-art is 

the fact that the novel design approach does not require any complicated computations for 

the optimal ILC in order to guarantee convergence. These computations become even more 

complicated as PI-fuzzy controllers are involved, whose models must be considered in the 

design, and they are avoided in the proposed design approach. 

The Takagi-Sugeno PI-fuzzy controllers are designed by the fuzzification of the linear 

PI controllers tuned by the Extended Symmetrical Optimum (ESO) method [29], [30], 

applied to a simplified process model using the modal equivalence principle [31]. The ESO 

method is advantageous as it offers a tradeoff to the empirical performance indices of the 

control systems using only one design parameter, and set-point filters are included for 

overshoot reduction. The stability of the fuzzy control system is ensured by using modeling 

based on fuzzy basis functions. 

Although not shown in the paper, the proposed controllers reject constant load type 

disturbances. The presence of the integral block in the fuzzy controller structure helps in 

this regard. However, after rejecting the disturbances, the ranking of the ILC-based fuzzy 

controllers will not remain similar. 

The paper treats the following topics: the control system structures and the design 

approach are presented in the next section. The ΤC system and its model are briefly 

described in Section 3. The experimental results are given in Section 4, and the conclusions 

are highlighted in Section 5. 

2. ILC-BASED FUZZY CONTROL SYSTEM STRUCTURES AND UNIFIED DESIGN APPROACH 

2.1. Control System Structures 

The Single Input-Single Output (SISO) fuzzy control system structure with direct PD 

learning rule with current control error is shown in Fig. 1 (a), where: r – the reference input 
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or the set-point, assumed to be repetitive, u – the control signal, d – the disturbance input 

also assumed to be repetitive, e – the control error, y – the controlled output, F – the set-

point filter, C – the fuzzy controller, P – the controlled process (namely, a SISO sub-system 

of the TC system), M – the memory block, kp and kd – the proportional gain and the 

derivative gain of the PD learning rule, k – the index of the current sampling interval or the 

discrete time index, q–1 – the backward shift operator in the iteration domain, and j – the 

subscript that indicates the current iteration (or cycle or trial or experiment). The expression 

of the ΡD learning rule used in Fig. 1 (a) is expressed as follows after adapting the PD 

learning rules given in [13] and [20]: 

 )],()([)()()( ]1[][][]1[][ kekekkekkuku jjdjpjj −− −++=  (1) 

where the control error is 

 ).()()( ][][ kykrke jj −=  (2) 

 

Fig. 1 Structures of fuzzy control systems with: direct PD learning rule with current control 

error (a) (adapted from [20]), direct PD learning rule with previous control error 

(b) (adapted from [21]), indirect PD learning rule (c) (adapted from [22]), and open-

closed-loop PD learning rule (d) 

The structure of SΙSΟ fuzzy control system with direct PD learning rule with previous 

control error is shown in Fig. 1 (b), with the following rule obtained by adapting the PD 

learning rules given in [13] and [21]: 

 )].()([)()()( ]1[][]1[]1[][ kekekkekkuku jjdjpjj −−− −++=  (3) 
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The structure of SΙSΟ fuzzy control system with indirect PD learning rule is shown in 

Fig. 1 (c), with the following rule obtained by adapting the PD learning rule given in [22]: 

 )],()([)()()( ]1[][][]1[][ kekekkekkrkr jjdjpjj −− −++=  (4) 

and it outlines a second notation for the set-point, namely r[j](k) indicating the set-point 

produced by the ILC algorithm and applied to the control loop, different to r(k), which 

indicates the set-point of the control system. 

The structure of SΙSΟ fuzzy control system with open-closed-loop PD learning rule is 

shown in Fig. 1 (d), where the following new PD learning rule is obtained by adapting the 

PD learning rule given in [23] to a discrete time formulation: 

 )].()([)()()( ]2[]1[][]1[][ kekekkekkuku jjdjpjj −−− −++=  (5) 

As specified in the previous section, C is a low-cost Takagi-Sugeno PI-fuzzy controller, 

and its design and tuning start with the tuning of the linear PI controller. A simplified model 

of the controlled process (P) with the following transfer function with respect to the control 

signal is used: 

 )],1(/[)( sTsksP P +=  (6) 

with the parameters kP (the process gain) and T (the small or parasitic time constant) partly 

known in the process model, and partly obtained, as in [22], by least-squares identification 

making use of input-output data obtained after real-time experiments conducted on the real 

process. Using these control system structures and models, the unified design approach is 

described in the next subsection. 

2.2. Unified design approach 

PI controllers are recommended in [29] and [30] to control the processes with transfer 

functions of type (6). The transfer function of the (linear) PI controller is 

 )],/(11[)( sTksC iC +=  (7) 

where kC is the controller gain and Ti is the controller integral time constant. 

As mentioned in the previous section, the ESO method [29], [30] is successful in tuning 

the PI controller parameters because it ensures a convenient tradeoff to a set of empirical 

control system performance indices. The tradeoff is achieved using a single design 

parameter, , within the range 1 <   20, as shown in Fig. 2, which illustrates the empirical 

performance indices σ1 – overshoot, 
= Ttt rr /ˆ  – normalized rise time, 

= Ttt ss /ˆ  – 

normalized settling time, both times defined in the unit step modification of r, and φm – 

phase margin. 

The PI tuning conditions specific to the ESO method are [30] 

 .  ),  /(1  == TTTkk iPC
 (8) 

and the transfer function of one simple version of set-point filter F, which improves the 

performance by the cancellation of a zero in the closed-loop transfer function with respect 

to r, is [30] 

 ). 1/(1)( sTsF +=  (9) 
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Fig. 2 Empirical performance indices versus design parameter β [30] 

The control system performance is next improved by replacing the linear PI controller 

with the Takagi-Sugeno PI-fuzzy controller illustrated in Fig. 3 (structure and input 

membership functions), with: z–1 − the backward shift operator in the discrete time domain, 

TISO-FB − the Two Inputs-Single Output fuzzy block, e(k) – the control error, u(k) – the 

control signal, e(k) − the increment of the control error, and u(k) − the increment of the 

control signal. The subscript [j] is dropped out in Fig. 3 for the sake of simplicity. 

 

Fig. 3 Low-cost Takagi-Sugeno PI-fuzzy controller structure and input membership 

functions (adapted from [22]) 

The recurrent expression of the incremental discrete-time PI controller is obtained using 

Tustin’s discretization method 

 )],( )([)( kekeKku P +=  (10) 

with the parameters [14], [32] 

 ),2/( 2  ),/5.01( sisisCP TTTTTkK −=−=   (11) 

where Ts > 0 is the sampling period, which is set to meet the requirements of quasi-

continuous digital control. 

TISO-FB uses the weighted sum defuzzification method, and the inference engine uses 

the MAX and MIN operators. The TISO-FB rule base consists of two rules, R1 and R2, 

which are defined as follows to enable the low-cost design and implementation of the fuzzy 

controller [22], [32]: 
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where the parameter , 0.25    0.75, is inserted to further diminish the overshoot. 

The modal equivalence principle [31] is next applied leading to the following tuning 

condition [32]: 

 . ee BB =
 (13) 

To summarize, the parameters of the low-cost PI-fuzzy controller are , which is set to 

ensure the trade-off to the empirical performance indices of the linear control system, , 

which is set in relation to the overshoot alleviation, and Be, which is set in relation to Fig. 

3 to ensure the firing of both rules, possibly taking into account stability constraints [14], 

or optimally tuned [32]. 

After showing in Section 2 in [5] that it is not possible to guarantee the stability of the 

fuzzy control system due to the saturation and dead zone static nonlinearities placed on the 

process inputs, a Lyapunov-based stability analysis is offered, using the Takagi-Sugeno 

fuzzy model of the process and fuzzy basis functions. This analysis is important because it 

avoids the popular parallel distributed compensation based on solving linear matrix 

inequalities. The stability analysis, supported by [33] and [34], is easy for the user and is 

included in one of the steps of the design approach. 

As pointed out in Section 1, the gains kp and kd of the ΡD learning rules in the four ILC-

based fuzzy control system structures are obtained as the solutions to the following 

optimization problem, which is processed using [20], [21] and [22]: 

 ,),(
1

)(  ),(minarg
1

2

][

* 
=


==

sN

k

j
D

kke
N

JJ ρρρρ
ρρ

 (14) 

where D2 is the feasible domain of the parameter vector , * is the optimal parameter 

vector, i.e. the vector solution to the optimization problem, with the expressions 

 ,][  ,][ *** T

dp

T

dp kkkk == ρρ  (15) 

T indicates matrix transposition, J() is the objective function, and Ns is the number of data 

samples, which sets the width of the time horizon, NsTs. 

The optimization problem expressed in (14) is solved in this paper using seven 

metaheuristic optimization algorithms. An important issue in this regard is to map the 

optimization algorithms onto the optimization problem. These algorithms operate with a 

total number of N agents, and each agent is assigned to a position vector Xi[j] 

 ,...1 ,] ...  ... [ ][][

1

][][ NiDxxx qTq

ji

f

jijiji == ρX  (16) 

where: f

jix ][
 – the position of ith agent in fth dimension, f=1…q, q=2 in this particular case, 

j – the index of the current iteration in both ILC (Fig. 1) and the optimization algorithms, 

j=1…jmax, and jmax – the maximum number of iterations. PSO is mapped onto (14) in terms of 
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 , ,...1 ),( , *

,][][ ρPρρX ==== Bestgjiji NiJS  (17) 

where Si[j] is the fitness function specific to PSO, and Pg,Best is the best swarm position 

vector. GSA, CSS, GWO, WOA and SMA are mapped onto (14) in terms of 

 ,)(minarg ,...1 ),( , *

][
...1

][][ max
ρXρρX ====

=
ji

Ni
jiji JNiJS  (18) 

where Si[j] is the fitness function specific to GSA, CSS, GWO, WOA and SMA. AVOA is 

mapped onto (14) in terms of 

 , ,...1 ),( , *1

][][][ max
ρXρρX ==== BV

jjiji NiJS  (19) 

where Si[j] is the fitness function specific to AVOA, and 1

][ max

BV

jX  is the first best vector 

solution obtained at the iteration jmax. In all algorithms, the search domain is the feasible 

domain D2 in (14). 

The unified design approach applied to the ILC-based fuzzy control systems with the 

four PD learning rules consists of the following steps, which are obtained after organizing 

the steps given in [20], [21] and [22]: 

Step 1. The sampling period Ts is set. The performance specifications imposed to the 

fuzzy control system are expressed in terms of the optimization problem expressed in (14). 

The associated dynamic regime is defined in order to assess the objective function values 

through experiments conducted on the real-world process. 

Step 2. The value of jmax is set. 

Step 3. The values of the parameters ,  and Be of the Takagi-Sugeno PI-fuzzy controller 

are set. The tuning condition (13) is applied to obtain the value of Be. An experiment is 

conducted to check the stability condition of the fuzzy control system given in Theorem 1 in 

[5], and only those controller parameters that satisfy the stability condition are used next. 

Step 4. The parameters specific to the metaheuristic optimization algorithms are set, 

and the algorithms are applied to compute the values of the gains *

pk  and *

dk . 

The above steps are actually a quick and useful guide to easily tuning the controllers. 

Steps 1 to 4 are applied to the TC system in order to validate the proposed design approach 

in a payload position control example. Details of the TC system equipment are given in the 

next section. 

3. TOWER CRANE SYSTEM 

The laboratory equipment involved in conducting the experiments and assessing the 

efficiency of the fuzzy controllers and design approach proposed in this paper is built 

around the TC system with technical information given in [35], and it is presented in detail 

in Section 1 of the supplementary appendix given in [5]. A photo of the laboratory 

equipment is illustrated in Fig. 4. 

The TC system equipment is a Multi Input-Multi Output system focused on controlling 

the cart position, the arm angular position, and the payload position. A relatively simple 

control approach is to separately design three SISO control systems to control each position 

(output). To keep the paper to a reasonable length, only the results for the payload position 

control are presented; moreover, the payload position control is the most challenging out 
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of the three SISO ones. A diagram with details of the equipment and its communication 

with a computer are presented in Fig. 1 given in [5]. 

 

Fig. 4 Photo of tower crane system laboratory equipment [36] 

The description of the TC system equipment and its modeling carried out in [36], with 

hardware and software details given in [37], is supported by [38], which was used in the 

derivation of the state equation of payload position dynamics. Using the information given 

in this section, in [5], and the theoretical results proposed in Section 2, the experimental 

validation is carried out in the next section. 

4. EXPERIMENTAL RESULTS AND COMPARISON 

The real-time experiments were conducted on the TC system experimental setup 

described in the previous section and [5] to apply the novel unified design approach 

formulated in Section 3 to the four ILC-based fuzzy control systems with PD learning rules. 

As mentioned in the previous sections, the payload position control is considered in this 

paper, therefore the controlled output y in Section 2 is actually the payload position y3 (m) 

= x9 (m) of the TC system as described in [5]. 

4.1. Application of Design Approach 

Aspects concerning the steps of the design approach are highlighted as follows. The 

dynamic regime used to evaluate the value of the objective function defined in (14) is 

characterized by: zero initial conditions, no disturbances applied, but arbitrary disturbances 

can appear, and the reference input is next given as a reference trajectory along with the 

TC system responses. The objective function is evaluated using the sampling period set to 

Ts = 0.01 s, the width of the time horizon is set to 70 s, corresponding to a number of Ns = 

70/0.01 + 1 = 7001 data samples. 

Applying least-squares identification, the parameters of the process transfer function in 

(7) obtain the values kP = 0.2505 and T = 0.0533 s. Setting the design parameter =9, the 

tuning conditions specific to the ESO method given in (8) lead to the parameters of the 

linear PI controller kC = 24.99 and Ti = 0.48 s. Applying (11), the parameters of the discrete-
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time PI controller are KP = 11.8531 and  = 0.0211. Setting the parameter of the PI-fuzzy 

controller Be = 0.04, the other parameter results from (13), Be = 8.410–4. The third 

parameter of the PI-fuzzy controller is set to  = 0.2550. These parameter values guarantee, 

via the stability analysis in [5], the stability of the fuzzy control system. 

The feasible domain of  is set by modifying the domains used in [20-22] to obtain the 

unified domain 

 }.1.01.0|{}1.01.0|{ −−= ddpp kkkkDρ
 (20) 

The initial parameters of the four PD learning rules are different to those used in [20-22]: 

 ,0 ,0 ]0[]0[ == dp kk  (21) 

where the subscript 0 is forced to capture the situation without ILC, namely without the PD 

learning rule in Fig. 1. This ensures a fair comparison of the control system structures, the 

PD learning rules, and the optimization algorithms on actually 1 + jmax iterations. The 

maximum number of iterations is set to jmax = 10 to ensure the low-cost implementation, 

and for the same reason, the number of agents for all seven metaheuristic optimization 

algorithms is set to N = 10. 

In the context of ensuring the full transparency of the experimental validation and 

comparison results, the non-random parameters specific to the seven optimization algorithms 

are set as follows: the weight parameters of PSO: c1 = c2 = 0.3, a linear decrease of the inertia 

weight parameter w[j] of PSO with the bounds wmax = 0.9 and wmin = 0.4: 

 ,)( maxminmaxmax][ jwwjww j −−=  (22) 

the exponential decrease law of the gravitational constant g[j] of GSA: 

 ,max/

0][

jj

j egg
−

=  (23) 

with the initial value g0 = 100, the exponent parameter  = 8.5 and the parameter at the 

denominator of the force GSA = 10–4 to avoid possible divisions by zero, each agent in CSS 

is considered as a charged sphere of uniform volume charge density with radius a = 1, the 

CSS acceleration and velocity parameters ka[j] and kv[j], respectively: 

 ),/1(2),/1(2 max][max][ jjkjjk jvja +=−=  (24) 

and the parameter at the denominator of the separation distance CSS = 10–4 to avoid possible 

divisions by zero, the threshold in the position update equation specific to SMA z = 0.03, 

and the parameter in the fitness weight of each slime mould specific to SMA SMA = 10–3 

to avoid possible divisions by zero, and the controlling parameters specific to AVOA set 

to: P1 = 0.6, P2 = 0.4, P3 = 0.6, AVOA = 0.8, AVOA = 0.2, and AVOA = 2.5. 

The results of the comparison may be different for parameter settings other than the 

values specified above. Additional details on the implementation of the optimization 

algorithms are given in [32] and [39-41], where it is also highlighted that these parameter 

settings ensure a good trade-off to exploration and exploitation. In the same context of 

ensuring full transparency, the data processed in the statistical analysis conducted to 

compare the performance of all four control system structures and seven optimization 

algorithms is freely available in the Data_FUME_2.m Matlab file [42]. 
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4.2. Experimental Results, Comparison and Discussion 

The optimization algorithms were run 30 times. All results are presented in averaged 

values. The results obtained after conducting the variance (ANOVA) test of the minimum 

objective function Jmin evaluated after running these seven optimization algorithms on the 

four ILC-based fuzzy control system structures are presented in Fig. 5, with the general 

notation M-Q, where M indicates the PD learning rule, namely M  {C, P, I, O}, C – direct 

rule with current control error (Fig. 1 (a)), P – direct rule with previous control error (Fig. 1 (b)), 

I – indirect rule (Fig. 1 (c)), and O – open-closed-loop rule (Fig. 1 (d)), and Q indicates the 

optimization algorithm, namely Q  {PSO, GSA, CSS, GWO, WOA, SMA, AVOA}. 

Fig. 5 and Table 2 given in [5] show that the best Jmin is achieved by the indirect PD 

learning rule and five optimization algorithms for this process and this fuzzy controller, in 

the following descending order, with small differences: I-WOA, I-GSA, I-CSS, I-GWO 

and I-PSO. 

The average values of the optimal parameters of the four PD learning rules obtained 

after running the seven optimization algorithms are presented in Table 2 given in [5]. 

Typical responses of the fuzzy control system before and after the application of the four 

PD learning rules and an optimization algorithm are shown in Figs. 2 to 5 in [5]. The 

performance improvement offered by ILC combined with metaheuristic optimization 

algorithms is clearly highlighted. 

The main results of the non-parametric statistical tests conducted on the 28 cases (four 

ILC-based fuzzy control system structures multiplied by seven optimization algorithms) 

are presented in Tables 3 and 4 given in [5]. These results show that the best performance 

is exhibited by the indirect PD learning rule and three optimization algorithms, namely I-

CSS, I-GWO and I-WOA, followed by the same rule and other two optimization 

algorithms, namely I-GSA and I-PSO, again with small differences. 

The following performance indices were considered for comparison: rise time, settling 

time, percent overshoot, steady-state error, and mean sum of squared control signals. 

Accordingly, experiments were conducted to compare the performance of the control 

system structures and the results are summarized in Table 5 given in [5] both initially and 

after 10 iterations. 

The results show significant improvement of the rise time, settling time, overshoot and 

mean sum of squared control signals after ten iterations over the same indices calculated 

initially. A numerical comparison and a discussion of the experimental results are given in 

Section 3 of [5]. The comparison and the discussion provide suggestive evidence of the 

advantages and disadvantages of the four controllers whose PD learning rules are tuned 

using different metaheuristic optimization algorithms; they also show which one performs 

better or best. 

The results of the comparison carried out in [5] cannot be generalized to any controlled 

process. However, experience in controlling certain processes can be used and incorporated 

into the fuzzy control rules. Such representative processes include the finite element 

formulation for piezoelectric active laminated shells [43, 44], biomedical systems including 

image processing [45], natural language processing [46], spiking neural P systems [47], bed 

combustion processes [48], human well-being and resilience [49], complex planetary 

gearboxes [50], bin packing [51], telesurgical robotic systems [52], VANETs [53], robust 

evolving cloud-based controllers [54], cloud computing systems for traffic management 

[55], cognition processes [56], and friction compensation in haptic interfaces [57]. 



578 R.-E. PRECUP, R.-C. ROMAN, E.-L. HEDREA ET AL. 

 

Fig. 5 ANOVA test of minimum objective function J for all four ILC-based fuzzy control 

system structures and seven optimization algorithms 
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5. CONCLUSIONS 

This paper proposed the performance improvement of low-cost fuzzy control systems 

with four Proportional-Derivative (PD) learning rules in the context of Iterative Learning 

Control (ILC) in terms of optimally tuning the two PD parameters (or gains) using seven 

metaheuristic algorithms. A unified design approach is formulated, and the performance 

improvement is proved and compared by real-time experimental results that correspond to 

payload position control of tower crane systems. 

As specified in Section 1, the first advantage of the design approach proposed in this paper 

is the avoidance of complicated computations specific to the classical optimal ILC 

approaches in relation to the need to guarantee convergence. 

As shown in Fig. 3 given in [5], the average objective function changes quickly as the 

iterations go by (fast decrease of the objective function J). This is especially true for the 

ILC-based fuzzy control system structure with an indirect PD learning rule, optimized by 

five algorithms, which ensure the average Jmin = 0.0062. The value of J remains practically 

constant after iteration 1. Although the use of metaheuristic algorithms usually requires 

many evaluations of J and thus is generally a limitation, these results clearly show the fast 

decrease of J after only iteration 1, which is the second advantage of the design approach. 

The same conclusion is drawn after examining the evolution of the average values of the 

parameters kp and kd of the PD learning rules in Fig. 4 [5]. 

The stability analysis of the four control systems performed in [5] can also be performed 

in a different approach in the context of data-driven control, since ILC can also be 

considered as a data-driven control technique. This can be seen as related to the 

optimization problem solved by the authors for optimal reference input tracking, and the 

results given in the book [36] can be used as a starting point for different approaches to 

stability analysis. 

Future research will be focused on the further reduction of the number of evaluations 

of the objective function. Incorporating gradient information into data-driven control is 

expected to be a viable solution and suggests another avenue for future study. 
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