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Abstract. The stability study of the differential pulse code modulation system with the 

special focus on a predictor is given in this paper. Moreover, sufficient stability 

conditions for a linear prediction (recursive) filter are derived. The corresponding 

mathematical inequalities for the commonly used second-order predictor are derived. A 

method off probability estimation for the predictor coefficients is given, both 

deterministic and stochastic. It allows the design of the differential pulse code 

modulation system with the linear predictor whose coefficients meet the technical 

requirements. Finally, the probability of stability values for the specific second-order 

predictor are computed and compared with the corresponding values of the Signal-to-

Quantization Noise Ratio (SQNR). The correlation between these values is verified for 

different frame lengths. This could be crucial for the optimal choice of predictor 

coefficients. Useful conclusions are drawn regarding the stability and performances of 

the system. 

Key words: Normal distribution, Probability density function, Differential pulse code 
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1. INTRODUCTION 

Differential Pulse Code Modulation (DPCM) is one of the most effective transmission 

signal techniques widely used in telecommunications and signal processing. Speech [1–3], 

and image coding [4–8], video stream data compression [9], medical research [10–14] are 

some of the various DPCM applications. Adaptive DPCM (ADPCM) is a DPCM which 
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includes backwards adaptive quantization and/or backwards adaptive prediction [1, 3, 9]. 

In recent decades, new specific types of DPCM systems have been discovered such as 

clustered DPCM [7] and hybrid DPCM [8].  

The prediction and development of prediction models for applications in various fields 

has become increasingly important in recent years [15, 16]. Linear prediction [1, 2, 17–20] 

where the prediction of the current sample is computed as a linear combination of the 

previous samples, is the basis of any DPCM system. A historical survey of linear prediction 

can be found in [21]. 

The DPCM transmission system is a nonlinear feedback system. Due to the negative 

closed loop [16], although essentially a telecommunication system, DPCM is also suitable 

for control systems analysis. In this context, specific properties of this system, especially 

its linear part (recursive, prediction filter) have already been considered. A sensitivity 

analysis for DPCM prediction filter of arbitrary order has been performed yet. A robustness 

analysis for the first and second-order prediction filter is presented in [22]. 

Beside above mentioned sensitivity and robustness, one of the most important 

properties of any real system is stability. Some stability analyses of the DPCM transmission 

system have already been done for the commonly used second-order predictor [23]. It was 

found that the stability of the predictor, which is the linear part of DPCM system, is a 

sufficient condition for the stability of the whole system. 

In practice, every system is imperfect in some way [24]. This means that the system 

parameters are not deterministic but stochastic variables. In this case, the classical methods 

of stability analysis are not applicable, since we only know with what probability the 

system is stable. For these reasons, we introduced a new term: “probability of stability” 

[25, 26]. We have already proposed the method of stability estimation for the first-order 

predictor [27]. In this paper, probability of stability estimation method is presented and 

proven for the commonly used second-order predictor. A correlation is established between 

the processing quality parameter, the Signal-to-Quantization Noise Ratio (SQNR), and the 

Probability of Stability (PS). This can be very important when designing a DPCM system. 

The optimal choice of values for the predictor coefficients guarantees better performance 

of the system. 

The rest of this paper is structured as follows. In Section 2, we explain the theoretical 

background of the DPCM system. In Section 3, we analyse the stability of the linear part 

of this system (prediction filter) and give the stability conditions. Numerical results for the 

second-order predictor are given in Section 4. Appropriate values for probability of 

stability and SQNR are determined. We analysed the results and found the correlation 

between these parameters in Section 5. Concluding remarks and ideas for future work are 

considered in Section 6. 

2. DPCM SYSTEM – THEORETICAL BACKGROUND 

DPCM is a method of converting an analog signal to a digital signal by sampling the 

analog signal and then quantizing the difference between the actual sample value and its 

predicted value. The predicted value of the actual sample is based on the previous sample or 

samples. The basic concept of DPCM - coding a difference, is based on the fact that most 

source signals have significant correlation between successive consecutive samples, so the 

quantizer uses redundancy in sample values which in turn means a lower bit rate [1, 3, 28]. 
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The block diagram of a DPCM/ADPCM encoder is shown in Fig. 1a. It consists of the 

quantizer, the inverse quantizer, and predictor. The linear prediction filters in encoder (Fig. 

1a) and decoder (Fig. 1b) are of the special interest for further stability analysis. Fig. 1a 

also shows the additional subsystem for the adaptive prediction (buffer and predictor 

coefficients estimator connected with dashed lines), which forms an ADPCM encoder [1, 

13]. The main idea of DPCM is to form the difference dn between the current sample xn 

and its predicted value nx̂ : 

 ˆ
n n nd x x  . (1) 

This difference is quantized and transmitted. Let us en denote the quantization error which 

occurs due to quantization of the difference dn. For the linear predictor, the predicted value 

nx̂  is calculated as a linear combination of the previously quantized reconstructed samples 

yn-i. The operation of the DPCM system with the k-th order predictor is described by the 

following equations: 

 ˆ
n n n n n ny d e x x e      (2) 

 
1

ˆ
k

n i n i

i

x a y 



 , (3) 

where ai, i = 1, 2,…, k are predictor coefficients. 

 

Fig. 1 DPCM/ADPCM system, a) Encoder, b) Decoder 
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Correlation coefficients ρi indicate the degree of correlation between i successive 

samples [1, 13]. In a DPCM system, the values of predictor coefficients are predetermined 

according to the class of signals under consideration and are known for both the encoder 

and decoder, but they are suboptimal. In Fig. 1, the predictor coefficients ai, i=1,2,…, k are 

adapted according to ρi, i=1,2,…, k for each frame. The predictor coefficients could be 

determined from the correlation coefficients using the Levinson-Durbin algorithm for 

predictors of arbitrary order [2]. The functional dependencies between these coefficients 

for the second-order predictor are well known [20], and given by: 

 
  2

1 2 2 1

1 22 2

1 1

1
,

1 1
a a

   

 

 
 

 
. (4) 

DPCM systems are nonlinear feedback systems. In addition to the predictor, which is a 

linear element, the system contains a quantizer as a nonlinear element.  

The well-known parameter – SQNR, is used to evaluate the quality of the reconstructed 

signal at the output of the ADPCM system [13, 29]: 
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, (5) 

where L is the number of frames and M is a frame length. 

The stability analysis of the whole DPCM system is very difficult, but it is known that 

an element with nonlinear static characteristic with saturation stabilizes the system [30]. 

Consideration of the stability of the prediction filter is very important in the design of the 

system. The basic requirement is that the predictor coefficients are located inside stability 

region in parametric space or very close to this region.  

The aim of this paper is to consider the stability of the prediction filter with the 

commonly used second-order predictor, although the proposed method is also applicable 

to higher order predictors with some alternative methods. We will also investigate in what 

way stability is related to the SQNR in this paper. 

3. STABILITY ANALYSIS OF THE LINEAR PREDICTION FILTER 

It is well known that the predictor is an essential part of any DPCM/ADPCM system 

and its coefficients have a great impact on the system performances [2, 18, 20]. 

We will consider the stability of the prediction filter with k-th order predictor.  

The relation for the k-th order predictor is given by Eq. (3), i.e.: 

    
1

ˆ
k

i

i

i

X z a z Y z



 
  
 
 , (6) 

in z-domain. Transfer function of the predictor is: 
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Transfer function of the prediction (recursive) filter in the encoder has the following form: 
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Transfer function of the prediction filter in the decoder is: 

  
 

1
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1
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Prediction filters are stable if all the poles of the transfer functions in Eqs. (8), (9) lie 

inside the unit circle, i.e., if the characteristic Eq. (which is the same for the both filters): 

 
1

1 0
k

i

i

i

a z



  , (10) 

has all its zeroes inside the unit circle. Eq. (10) can be written as: 

 
1

0
k

k k i

i

i

z a z 



  . (11) 

The stability conditions of the system described by the characteristic Eq. (11) can be 

determined using various stability criteria (Jury test, Routh-Hurwitz criterion, etc. [31]). 

We will use the Routh-Hurwitz stability criterion in this paper. The bilinear transformation 

z=(1+s)/(1-s) is a mapping unit circle inside the z-plane into the left half of the s-plane. 

After applying the bilinear transformation onto Eq. (11), we obtain: 

 1

1 1 0... 0k k

k kb s b s b s b

     , (12) 

where b0, b1,…, bk are functions of the predictor coefficients a0, a1,…, ak, i.e.: b0=Φ0(a1,…, 

ak),…,bk=Φk(a1,…, ak). 

Remark 1: Other more general forms for the bilinear transformation can be found in 

the literature, but in its application in the analysis of system stability in the z-domain, the 

above-mentioned and very similar one z=(s+1)/(s-1) occurs most frequently. We have 

obtained absolutely the same result if we apply it. It should be noted that both are special 

cases of the more general form z=m(1+s)/(1-s) for m=1 and m=-1 respectively, where m is 

an arbitrary real number [31]. In this more general case, the region of stability in the z-

plane was not a unit circle, but a circle of radius m. One more general form of the bilinear 

transformation is z=(1+Ts/2)/(1-Ts/2) [32]. This form changes absolutely nothing, because 

sample period T has no influence on the analysis. In our case T=2. 
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The prediction filter (described with characteristic Eq. (11) in z-plane) is stable if all 

the zeroes of the characteristic Eq. (12) are inside the left half of s-plane. We form Hurwitz 

determinant Dk for Eq. (12):  
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The necessary condition for the stability of the prediction filter in Eq. (11) is that all 

coefficients b0, b1,…, bk  are greater than zero and the sufficient condition is that all 

diagonal sub-determinants Di, i=1,2,…, k, are greater than zero: 
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 (14) 

The stability region of the prediction filter in Eq. (11), Sk, can be determined by the 

above inequalities for the first-order predictor up to the k-th order predictor. 

In the case of the first-order predictor, the stability region S1 is given by the: 

 
11 1a   . (15) 

For the second-order predictor, the stability region S2, in the parametric space a1, a2 is 

given by conditions: 

 
1 2

1 2

2

1 0,

1 0,

1.

a a

a a

a

  

  

 

 (16) 

The stability region S2, is the triangle shown in Fig. 2. 

Remark 2: For the second order, the stability of the system can of course be easily 

determined, but because of the possible application of this method for higher-order 

predictors, we have given general conditions here by using the Routh-Hurwitz criterion 

[31]. We have also applied the Jury stability test mentioned above and obtained the same 

system of inequalities. For a third-order predictor, for example, applying both stability 

criteria results in the following system of inequalities: a1+a2+a3<1, a1-a2+a3>-1, a1a3+1>-

a2+a3
2 and it defines the stability region S3. 
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Fig. 2 The stability region of the second-order prediction filter 

Previous stability analysis was performed under the assumption that the system 

parameters, i.e., the predictor coefficients are deterministic. This is true if the DPCM 

system is perfect unlike all real systems. Sometimes these imperfections have no any 

visible effect on the system performances, but in many cases this effect cannot be 

neglected. Some system properties such as stability or dynamical response are directly 

dependent on them. Mathematically, the imperfections are fluctuation of the system 

coefficients around the nominal values of the coefficients [25, 33]. 

The system can be either stable or unstable for constant parameter values. When the 

predictor coefficients are stochastic, they have some distribution. The most common 

distribution in the case of a real system design is the normal distribution. All calculations 

in this paper are performed for this type of distribution. 

We now assume that the system is stable with a certain probability. This is the reason 

why we need to introduce the term: probability of stability instead of the traditional stability 

of the system. The probability of stability is defined as follows: 

  1 1, ,
k

k k
S

P f a a da da   , (17) 

where    1

1

, ,
k

k i i

i

f a a f a


  is the total density function and Sk is the stability region. 

Based on this, we can estimate the stability of an arbitrary order prediction filter. The 

proposed method can also be used for the third and higher-orders predictors, but the 

calculation of the integrals for the probability of stability becomes more complicated 

because the stability regions for which the integrals are calculated become more complex 

(see Eq. 17). In this sense, in addition to classical integration, it is possible to use the 

approximate method as a Monte Carlo to calculate complex integrals for probability 

estimation. 

4. NUMERICAL RESULTS – SECOND-ORDER PREDICTOR 

The most common predictors are those of the first and second order. The second order 

is usually an optimal order since the prediction gain often goes into saturation for higher 
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order predictors [2] and this is the reason why we are focused on the second order in this 

paper. 

Stability analysis in the case of the first-order predictor was studied in [27]. The most 

important fact we verified is that the prediction filter is always stable in the whole range of 

possible values for the predictor coefficient a1. When the system is not deterministic, i.e., 

when the parameter a1 is stochastic, we obtained the probability of stability of the 

prediction filter for different values of the variance.  

In this paper, we perform a stability analysis for the second-order predictor. We analyze 

a recorded speech signal of length L=10200 samples with different frame lengths, M=10, 

20,…,150 samples. The ADPCM system shown in Fig. 1 was used to obtain the means and 

standard deviations of the predictor coefficients. The input signal is divided into frames of 

length M which are buffered. For each frame, the predictor coefficients a1 and a2 are first 

calculated, which are used to process the samples of that frame. In this way, we obtain 

round (L/M) pairs of coefficients a1 and a2 values that are adjusted for the corresponding 

frames. We form sets of coefficients a1 and a2 values obtained for all frames and determine 

their means and standard deviations, 
1 2 1 2, , ,a a   , respectively. Based on these values 

and relations, we calculate the probability of stability, PS. We set the obtained means of the 

predictor coefficients 
1a and 

2a  as fixed predictor values (DPCM system), reprocess the 

signal and obtain the SQNR value. In this way, for the obtained values of predictor 

coefficients a1 and a2, we calculated the mean and standard deviation and SQNR for all 

values of M (Table I). For illustration, the distributions of the coefficients a1 and a2 for two 

of eight values of the frame length (M=10 and M=150), are shown in Figs. 3 and 4, 

respectively. Normal (Gaussian) distributions with the same means and standard deviations 

are also shown for comparison. 

From these figures (as well as for other values of frame length), it can be easily 

demonstrated that the mean (nominal) values of the predictor coefficients  1 2,a a  are 

located into the region described by Eq. (16). This means that the linear prediction filter is 

stable if we assume that the predictor coefficients are deterministic, i.e., their values are 

equal to the desired (nominal) values. 

Since the DPCM system is imperfect in practice, the predictor coefficients cannot be 

perfectly matched to their projected values. 

 

Fig. 3 The probability density function of predictor coefficients a1 and a2 for M=10 
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Fig. 4 The probability density function of predictor coefficients a1 and a2 for M=150 

The probability density function (PDF) for normal distribution is given as [25, 33]: 

 

2 2

1 1 2 2

1 2

1 21 2

1 1 1 1
( , ) exp ,

2 22 2

a a a a
f a a

    

     
      
     

 (18) 

where σ1 and σ2 are the standard deviations, while 
1a  and 

2a  are the mean values of the 

predictor coefficients a1 and a2, respectively.  

The probability of stability for the second-order system is derived from: 

 

 
2

2

1 2 1 2

1 2 1 2

,

( , )

S

S

f a a da da

P

f a a da da

 

 





 

, (19) 

where S2 is the stability region of the prediction filter with the second-order predictor, while 

the integral in the denominator represents the total probability and is equal to 1. This gives 

the probability of stability form suitable for calculations.  

The probabilities of stability and the signal-to-quantization noise ratios for different 

frame lengths are given in Table 1.  

Table 1 The probability of stability (PS2) and the signal-to-quantization noise ratio 

(SQNR) of the second-order prediction filter for different values of frame length 

M 

[sample] 
10 20 30 40 50 60 100 150 

ā1 0.984 1.125 1.220 1.231 1.281 1.329 1.377 1.419 

σ1 0.228 0.226 0.220 0.211 0.220 0.219 0.216 0.214 

ā2 -0.228 -0.288 -0.351 -0.356 -0.399 -0.439 -0.485 -0.524 

σ2 0.199 0.215 0.213 0.219 0.221 0.218 0.216 0.204 

PS2 0.790 0.699 0.664 0.658 0.644 0.634 0.629 0.629 

SQNR 

[dB] 
17.22 17.48 17.57 17.60 17.67 17.73 17.90 17.96 
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5. DISCUSSION 

As we can see, the prediction filter is stable with some probability, unlike the ideal case 

when the predictor coefficients are perfectly adjusted. When the deviation from projected 

values of predictors is increasing, the probability of stability of the prediction filter is 

decreasing. However, the probability of stability is also decreasing when mean values of 

the predictor coefficients are approaching the limits of stability region S2. Thus, we see that 

the probability of stability is the highest for M=10 samples (about 79%), although standard 

deviations of the parameters are not so small, but the mean values of coefficients are deep 

into the stability region. For M=150 we have the similar standard deviations (0.214, 0.204), 

but the probability of stability of the prediction filter is the smallest (62.9%). Therefore, 

the mean (desired) values of the predictor coefficients are closer to the boundary of the 

stability region more than in any other case.  

The stability analysis presented above is a generalization of the classical stability 

considered at the beginning of this section. In the deterministic case (σ=0) we obtain a 

probability of stability equal to 100%, corresponding to the previous analysis for perfect 

systems. 

We can see that the SQNR increases from M=10 up to M=150 while the probability of 

stability steadily decreases for the same range of frame lengths. We can conclude that 

SQNR is directly correlated with (1-PS) (“probability of instability”). This is a very 

interested and useful conclusion. Systems where some important performance parameters 

(such as SQNR) are set close to the maximum may be approaching the limits of stability. 

Fig. 5 shows the measured dependencies of the signal-to-quantization noise ratio and the 

probability of stability on frame length, respectively. The aim is to optimally select the 

predictor coefficients in order to achieve the best system performance. The values obtained 

for the stability probabilities as well as the corresponding values for the signal noise can 

help with predetermined technical conditions. 

 

Fig. 5 Dependencies of SQNR and PS2 on M 

6. CONCLUSIONS 

Complete stability study of the prediction filter with the most commonly used second-

order predictor was presented in this paper. It means that we gave relations describing the 



 Stability Analysis of the Second-Order DPCM Prediction Filter and Correlation ... 11 

stability region via predictor coefficients, and then verified stability of the prediction filter 

for a concrete signal and obtained values for predictor coefficients. Finally, we generalized 

the stability study for a real system when the predictor coefficients are not perfectly 

adjusted (they are normally distributed around the projected value). Probability estimation 

was performed for the different frame lengths. The correlation between PS and SQNR is 

given in the case of the second-order predictor in this paper. An increase in the value of the 

signal processing quality parameter, SQNR, with an increase in frame length is associated 

with a decrease in the probability of stability of the system, PS2. This is very important 

information that has not yet been utilized so to achieve the best possible system 

performance when designing the system and selecting the predictor coefficient values. 

Further stability study could be probability of stability estimation of the whole DPCM 

system. It must include a quantizer, the nonlinear part of the DPCM system. Anyway, the 

stability analysis of the prediction filter with predictor is the basis for this analysis. 

Finally, the stability estimation of the prediction filter with predictor of higher order 

could be performed using the proposed method with classical integration as in this paper 

or by numerical integration using Monte Carlo method and find the correlation also 

between PS and SQNR values.  

This paper should form the basis for further research and application in today's popular 

science fields (machine learning, deep neural networks) where prediction models is very 

important. 
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