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Abstract. This study explores the dynamic behavior and vibration stability of a complex 

moving mechanical oscillator coupled with a three-part viscoelastically connected 

continuous beam-foundation system. Elastic waves generated by the oscillator can 

destabilize the system, a scenario common in high-speed trains and vehicles. The paper 

presents an improved analytical approach, focusing on the effects of a variable primary 

stiffness suspension on vibration stability. Using the D-decomposition method and the 

principle of the argument, instability intervals are determined for varying stiffness 

configurations, highlighting the benefits of nontraditional suspension systems in 

improving local stability. 
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1. INTRODUCTION 

The rapid expansion of road and railway transport has intensified the need for a detailed 

analysis of the dynamic effects of physical parameters on the stability of mechanical 

systems. Vibration instability, often resulting from energy transfer through anomalous 

Doppler waves [1, 2], is a particular concern when high-speed trains exceed the 

propagation speed of elastic waves within railway structures. This phenomenon has been 

extensively studied, particularly in simple mechanical models, leading to further 

investigations into more complex systems under moving loads. Michaltsos [3] analyzed 

the linear dynamic response of a simply supported beam subjected to a moving load with 

constant magnitude and variable velocity. The study examines the effects of acceleration 

and deceleration on the beam's behavior under both a single-axle load and a two-axle 
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vehicle model, with damping considered for the latter. Subsequent studies, such as those 

by Kim [4] and Śniady [5], incorporated additional factors like rotary inertia and axial 

compressive forces into the stability analyses, enriching the understanding of these 

dynamic systems. Basu and Rao [6] derived analytical solutions for the steady-state 

response of an infinite beam on a viscoelastic foundation under a constant-velocity moving 

load. Similarly, Froio et al. [7] explored the steady-state response of a uniform, infinite 

Euler-Bernoulli beam on a Pasternak foundation subjected to a constant-velocity moving 

load. They obtained a universal closed-form solution using a Fourier transform, capable of 

representing the response for any set of beam and foundation parameters. Mazilu presented 

significant results in [8], addressing the interaction between a vehicle, simplified to a two-

mass oscillator, and a slab track modeled as an infinite structure composed of elastically 

supported double Euler-Bernoulli beams. To carry out the time-domain analysis, a semi-

analytical method was developed, leveraging the remarkable properties of the slab track's 

time-domain Green's functions. Meanwhile, Karimi and Ziaei-Rad [9] studied the 

nonlinear coupled vibration analysis of a beam with moving supports under the action of a 

moving mass. Researchers such as Verichev and Metrikine [10, 11, 12] successfully 

applied the D-decomposition method to define stability regions for systems with moving 

masses along beams. Similarly, Dimitrovová and Varandas [13] examined the transient 

dynamic response of a beam supported on a foundation with a sudden change in stiffness 

and subjected to a constant-velocity moving force, utilizing finite integral transformations. 

In a related study, Dimitrovová [14] proposed a repetitive procedure for determining 

oscillation frequencies induced by a moving mass. Additionally, Erbas et al. [15] 

performed a three-dimensional analysis of near-resonant regimes of a point load moving 

uniformly along the surface of a coated elastic half-space. Svedholm et al. [16] contributed 

valuable insights into the behavior of loads moving on beams of finite length, while Lee 

and Renshaw [17] introduced a new solution technique for solving the moving mass 

problem in nonconservative, linear, distributed parameter systems using complex 

eigenfunction expansions. All these works underscored the importance of advanced 

analytical methods, such as complex eigenfunction expansions and finite integral 

transformations, for understanding the interactions between continuous and discrete 

systems. These methods are critical for analyzing the dynamic challenges posed by high-

speed trains, where the interaction between the moving oscillator (train) and the supporting 

structure (rail) produces complex responses. Stojanović et al. [18] conducted an in-depth 

analysis of the vibration stability of a coupled bogie system moving uniformly along a 

flexibly supported infinite high-order shear deformable coupled beam system on a 

viscoelastic base. 

This paper presents a model of a complex coupled system with four supports, featuring 

varying suspension configurations. The stability of vibrations is analyzed by examining the 

interaction between an infinite beam and a complex mechanical oscillator moving 

uniformly. Building upon the work of Stojanović and Petković [19], which explored the 

stochastic stability of complex finite beam and beam-foundation systems, this study 

extends the analysis to a high-order shear deformable model of an infinite beam system 

subjected to a moving oscillator. Stability regions for the complexly coupled mechanical 

oscillator are determined for different stiffness moduli of the primary suspension, 

providing a comprehensive analysis of vibration stability in relation to varying suspension 

configurations. 



 Dynamic Stability Analysis of a Coupled Moving Bogie System 3 

2. MODELING OF THE COMPLEX MOVING OSCILLATOR 

The model of the complex foundation system is illustrated in Fig. 1. In this 

configuration, the rail is represented as a supported infinite beam, while the slab and base 

are modeled as additional beams with free boundary conditions. These elements are 

interconnected by viscoelastic spring-damping components, which are crucial for capturing 

the real behavior of the track structure. These viscoelastic connections account for both 

stiffness and damping, significantly influencing the system's dynamic response to moving 

loads. To accurately capture the behavior of the multilayer beam system, the high-order 

shear deformable beam theory (also known as the Reddy-Bickford beam theory) is 

employed. This advanced theory extends beyond the classical beam theory by 

incorporating the effects of shear deformation and rotational inertia. The Reddy-Bickford 

theory allows for a more realistic and detailed representation of the coupled mechanical 

interactions between the beam layers in the system.  

The interaction between the infinite coupled beam-layer system is described by the 

following set of equations. 

 Ψ1+kf3(w1-w2)+νf3(ẇ1-ẇ2)=p(x,t), (1) 

 Φ1=0, (2) 

 Ψ2+kf2(w2-w3)-kf3(w1-w2)+νf2(ẇ2-ẇ3)-νf3(ẇ1-ẇ2)=0, (3) 

 Φ2=0, (4) 

 Ψ3+kf1w3-kf2(w2-w3)+νf1ẇ3-νf2(ẇ2-ẇ3)=0, (5) 

 Φ3=0, (6) 

where 

Ψi=Ci1ẅi-Ci2(φi
'+wi

'')-Ci3ẅi
''+Ci4wi

(4)
+Ci5φ̈

i

'+Ci6φ
i
''', 

Φi=Di1φ̈
i
-Di2φ

i
''+Di3(φi

+wi
')+Di4ẅi

'+Di5wi
''',  i=1, 2, 3, 

and where Cik and Dij are constants obtained and documented in the paper by Stojanović 

and Petković [20] in the form for one beam (appropriate indices need to be added for each 

beam individually) and can be utilized for all others. E and G are the Young’s modulus and 

the shear modulus of the beam material; ρ is the mass density of the beam material; kfi and 

νfi are the stiffness moduli and the viscosity shear moduli of the foundation per unit length. 

wi(x, t)  are vertical deflections of the beams and φ
i
(x,t) are the angles of rotation of the 

cross-section of the beams. The following notation was used to write the expression 

ẅi=
∂

2
wi

∂t2
,  wi

'=
∂wi

∂x
,   wi

''=
∂

2
wi

∂x2
, φ̈

i
=

∂
2
wi

∂t2
,  φ

i
'=

∂wi

∂x
, φ

i
''=

∂
2
wi

∂x2
.  

Right hand side of Eq. (1) represents the reaction of the bogie system and has the 

following form 

 p(x,t)=-δ(x-vt-d3) (m
d

2
w2

01

dt2
+L̃214) -δ(x-vt-d2) (m

d
2
w2

02

dt2
+L̃223) 



4 V. STOJANOVIĆ, L. DIMITROV, P. TOMOV, D. LI, V. NIKOLIĆ 

 -δ(x-vt-d1) (m
d

2
w1

01

dt2
+L̃112) -δ(x-vt) (m

d
2
w1

02

dt2
+L̃121) . (7) 

w1
01(t),  w1

02(t), w2
01(t), w2

02(t), are the vertical displacements of the masses (wheels); 

w1
0(t), w2

0(t) are the vertical displacements of the centers of mass of the bars that represent 

the bogies’ bodies, and w0
0(t) is the vertical displacement of the bar that represents the car’s 

body. θ0,  θ1, and 𝜃2 are the angles of rotation of the bars around their centers of mass. 

M0,  M1 and J0,  J1 are the masses and moments of inertia of the bars; k0 and ϵ0 are the 

stiffness modulus and the damping factor of the primary suspension; k1 and ϵ1 are the 

stiffness modulus and the damping factor of the secondary suspension. The Dirac delta-

function is designated with δ (∙). The factors ζ1,   ζ2,   ζ3, and ζ4 are multipliers for the 

stiffness modulus of the primary suspension.  

 

Fig. 1 Complexly coupled mechanical oscillator 

Together with Eqs. (1-3) the following set of Eqs. (8-13) represent the full form of the 

dynamic equilibrium of complex moving oscillator 

 M1

d
2
w2

0

dt2
-L̃214-L̃223+L̃2 =0, (8) 

 (J1+M
1
r1

2)
d

2
θ2

dt2
+L̃214

ζ4

ζ3+ζ4

dL-L̃223

ζ3

ζ3+ζ4

dL=0, (9) 
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 M1

d
2
w1

0

dt2
-L̃112-L̃121+L̃1=0, (10) 

 (J1+M
1
r2

2)
d

2
θ1

dt2
+L̃112

ζ2

ζ1+ζ2

dL-L̃121

ζ1

ζ1+ζ2

dL=0, (11) 

 M0

d
2
w0

0

dt2
-L̃1-L̃2=0,  (12) 

 J0

d
2
θ0

dt2
+(L̃2-L̃1)

dL0

2
=0,  (13) 

w2
01(t)=w(vt+d3,t),   w2

02(t)=w(vt+d2,t), 

w1
01(t)=w(vt+d1,t), w1

02(t)=w(vt,t),  

 lim
|x-vt|→∞

wi(x,t)=0, lim
|x-vt|→∞

φ
i
(x,t)=0, (14) 

where 

L̃ijp=ζpk
0
(wi

0j
-wi

0+θilij(-1)
j+1)+ϵ0

d

dt
(wi

0j
-wi

0+θilij(-1)
j+1), 

L̃1=k
1
(w1

0-w0
0-θ0

dL0

2
-r2θ1)+ϵ1

d

dt
(w1

0-w0
0-θ0

dL0

2
-r2θ1) , 

L̃2=k
1
(w2

0-w0
0+θ0

dL0

2
+r1θ2)+ϵ1

d

dt
(w2

0-w0
0+θ0

dL0

2
+r1θ2) , 

l11=
ζ2

ζ1+ζ2

dL,l12=
ζ1

ζ1+ζ2

dL,l21=
ζ4

ζ3+ζ4

dL, 

l22=
ζ3

ζ3+ζ4

dL, r1=l22-
dL

2
, r2=l11-

dL

2
. 

By using a moving reference system ξ=x-vt the previous equations can be rewritten. It 

is now possible to analyze the characteristic equation of vibrations by applying integral 

transforms to the modified system of equations 

Wsi(ξ,s)=∫ wi(ξ,t) e-stdt
∞

0

,    Φsi(ξ,s)=∫ φ
i
(ξ,t) e-stdt,    

∞

0

 

Ŵk,si(k,s)=∫ Wsi(ξ,s)e-ikξdξ
∞

-∞

,    Φ̂si(k,s)=∫ Φsi(ξ,s)e-ikξdξ  
∞

-∞

 

W1
01(s)=∫ w1

01(t)e-stdt
∞

0

,    W1
02(s)=∫ w1

02(t)e-stdt
∞

0

, 

W2
01(s)=∫ w2

01(t)e-stdt
∞

0

,     W2
02(s)=∫ w2

02(t)e-stdt
∞

0

, 

W0
0(s)=∫ w0

0(t)e-stdt,
∞

0

W1
0(s)=∫ w1

0(t)e-stdt,
∞

0

 W2
0(s)=∫ w2

0(t)e-stdt,
∞

0
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Θ0=Θ
0
(s)=∫ θ0(t)e

-stdt,  
∞

0

Θ1=Θ
1
(s)=∫ θ1(t)e

-stdt,  
∞

0

 

Θ2=Θ
2
(s)=∫ θ2(t)e

-stdt. 
∞

0

 

By using the procedure given in Stojanović et al. [18] we are presuming that the initial 

conditions of the problem Eqs. (1-3) and Eqs. (8-13) are insignificant (the initial conditions 

do not have an impact on the system stability because of the fact that the governing 

equations are linear) and with keeping in mind that: 

 W1
02(s)= W(0,s), W1

01(s)= W(d1,s) ,W2
02(s)= W(d2,s) ,W2

01(s)= W(d3,s),  

the application of the transforms results in the system of algebraic equations after 

elimination Φ̂si(k,s) in the present form 

F(k,s) Ŵk,s(k,s)=e-id1k(-ζ2k0 W(d1,s) -ms2 W(d1,s) -sϵ0 W(d1,s) 

+ζ2k0W1
0(s)+sϵ0W1

0(s)-
ζ2

2
Θ1k0dL

ζ1+ζ2

-
ζ2Θ1sϵ0dL

ζ1+ζ2

) 

+e-id2k(-ζ3k0 W(d2,s) -ms2 W(d2,s) -sϵ0 W(d2,s)+ζ3k0W2
0(s) 

+sϵ0W2
0(s)+

ζ3
2
Θ2k0dL

ζ3+ζ4

+
ζ3Θ2sϵ0dL

ζ3+ζ4

) 

+e-id3k(-ζ4k0W (d3,s)-ms2W(d3,s)-sϵ0W(d3,s) 

+ζ4k0W2
0(s)+sϵ0W2

0(s)-
ζ4

2
Θ2k0dL

ζ3+ζ4

-
ζ4Θ2sϵ0dL

ζ3+ζ4

) 

 -ms2W(0,s)-sϵ0W(0,s)+ζ1k0W1
0(s)+sϵ0W1

0(s)+
ζ1
2
Θ1k0dL

ζ1+ζ2

+
ζ1Θ1sϵ0dL

ζ1+ζ2

, (15) 

M1s2W2
0(s)-ζ3k0 W(d2,s) -ζ4k0 W(d3,s) -sϵ0 W(d2,s) -sϵ0 W(d3,s) 

+ζ3k0W2
0(s)+ζ4k0W2

0(s)-k1W0
0(s)+k1W2

0(s)-sϵ1W0
0(s)+2sϵ0W2

0(s) 

+sϵ1W2
0(s)+Θ2k1 (

ζ3dL

ζ3+ζ4

-
dL

2
)+

ζ3
2
Θ2k0dL

ζ3+ζ4

-
ζ4

2
Θ2k0dL

ζ3+ζ4

 

 +
1

2
Θ0k1dL0+Θ2sϵ1 (

ζ3dL

ζ3+ζ4

-
dL

2
)+

ζ3Θ2sϵ0dL

ζ3+ζ4

-
ζ4Θ2sϵ0dL

ζ3+ζ4

+
1

2
Θ0sϵ1dL0=0, (16) 

Θ2J1s2+Θ2M1s2 (
ζ3dL

ζ3+ζ4

-
dL

2
)

2

-
ζ3

2
k0dL W(d2,s)

ζ3+ζ4

+
ζ4

2
k0dL W(d3,s)

ζ3+ζ4

 

-
ζ3sϵ0dLW(d2,s)

ζ3+ζ4

+
ζ4sϵ0dLW(d3,s)

ζ3+ζ4

+
ζ3

2
k0dLW2

0(s)

ζ3+ζ4

-
ζ4

2
k0dLW2

0(s)

ζ3+ζ4

+
ζ3sϵ0dLW2

0(s)

ζ3+ζ4
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 -
ζ4sϵ0dLW2

0
(s)

ζ3+ζ4

+
ζ3
3
Θ2k0dL

2

(ζ3+ζ4)
2 +

ζ4
3
Θ2k0dL

2

(ζ3+ζ4)
2 +

ζ3
2
Θ2sϵ0dL

2

(ζ3+ζ4)
2 +

ζ4
2
Θ2sϵ0dL

2

(ζ3+ζ4)
2 =0, (17) 

M1s2W1
0(s)-ζ2k0 W(d1,s) -sϵ0 W(d1,s) -ζ1k0 W(0,s) -sϵ0 W(0,s) 

+ζ1k0W1
0(s)+ζ2k0W1

0(s)-k1W0
0(s)+k1W1

0(s)-sϵ1W0
0(s)+2sϵ0W1

0(s) 

+sϵ1W1
0(s)-Θ1k1 (

ζ2dL

ζ1+ζ2

-
dL

2
)+

ζ1
2
Θ1k0dL

ζ1+ζ2

-
ζ2

2
Θ1k0dL

ζ1+ζ2

-
1

2
Θ0k1dL0 

 -Θ1sϵ1 (
ζ2dL

ζ1+ζ2

-
dL

2
)+

ζ1Θ1sϵ0dL

ζ1+ζ2

-
ζ2Θ1sϵ0dL

ζ1+ζ2

-
1

2
Θ0sϵ1dL0=0,  (18) 

Θ1J1s2-
ζ1

2
k0dLW(0,s)

ζ1+ζ2

+
ζ2

2
k0dLW(d1,s)

ζ1+ζ2

-
ζ1sϵ0dLW(0,s)

ζ1+ζ2

+
ζ2sϵ0dLW(d1,s)

ζ1+ζ2

 

+
ζ1

2
k0dLW1

0(s)

ζ1+ζ2

-
ζ2

2
k0dLW1

0(s)

ζ1+ζ2

+
ζ1sϵ0dLW1

0(s)

ζ1+ζ2

-
ζ2sϵ0dLW1

0(s)

ζ1+ζ2

+
ζ1

3
Θ1k0dL

2

(ζ1+ζ2)
2

 

 +
ζ2
3
Θ1k0dL

2

(ζ1+ζ2)
2 +Θ1M1s2 (

ζ2dL

ζ1+ζ2

-
dL

2
)

2

+
ζ1
2
Θ1sϵ0dL

2

(ζ1+ζ2)
2 +

ζ2
2
Θ1sϵ0dL

2

(ζ1+ζ2)
2 =0,   (19) 

M0s2W0
0(s)+2k1W0

0(s)-k1W1
0(s)-k1W2

0(s)+2sϵ1W0
0(s)-sϵ1W1

0(s) 

-sϵ1W2
0(s)+Θ1k1 (

ζ2dL

ζ1+ζ2

-
dL

2
) -Θ2k1 (

ζ3dL

ζ3+ζ4

-
dL

2
)+Θ1sϵ1 (

ζ2dL

ζ1+ζ2

-
dL

2
) 

 -Θ2sϵ1 (
ζ3dL

ζ3+ζ4

-
dL

2
)=0, (20) 

Θ0J0s2+
1

4
dL0(k1+sϵ1) 

 [
2(ζ1+ζ2)(ζ3+ζ4)(W2

0(s)-W1
0(s))+dL((ζ1+ζ2)(ζ3-ζ4)Θ2-(ζ1-ζ2)(ζ3+ζ4)Θ1)

(ζ1+ζ2)(ζ3+ζ4)
+2Θ0dL0]=0. (21) 

The beam-foundation reaction is mathematically represented by the function F(k,s), which 

appears on the left-hand side of Eq. (15). We obtain the following system of algebraic 

equations with respect to the Laplace-displacements of the contact points ws(0,s),  
ws(d1,s),  ws(d2,s),  ws(d3,s) after using the inverse Fourier transform over k to the system 

of Eqs. (34-40), and eliminating W0
0, W

1

0
, W2

0, Θ0, Θ
1
, Θ2 and subsequently setting 

ξ=0,   ξ=d1,   ξ=d2,   ξ=d3 

 𝐆 ∙ws[(0, d1, d2, d3), s]=0 ⇔ [

g
11

⋯ g
14

⋮ ⋱ ⋮
g

41
⋯ g

44

]

{
 

 
ws(0,s)

ws(d1,s)

ws(d2,s)

ws(d3,s)}
 

 
={

0

0

0

0

}. (22) 
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We get the system of integrals that can be seen in the Eq. (22) as a result of the 

application of the inverse Fourier transform. System of algebraic Eqs. (15-21) possesses a 

non-trivial solution provided that the determinant of the matrix G satisfies the condition 

 det G=0, (23) 

In the following sections the model stability is analyzed by investigating the 

eigenvalues of the characteristic Eq. (23). 

3. SOLUTION METHOD AND STABILITY CRITERIA  

Having at least one root of the characteristic Eq. (23) with a positive real part can lead 

to instability in the vibration of the complex moving oscillator. This equation is an integral 

equation corresponding to the Laplace variables and the issue of finding its complex roots 

is crucial for the model under study. To simplify the solution, the D-composition method, 

presented in Stojanović et al. [18], was used. In this approach, k0 is treated as a complex 

parameter, and the straight lines = iΩ is mapped onto the complex plane k0. The D-

decomposition divides the complex plane k0 into regions with different numbers of roots 

for Eq. (23), focusing on those with Re(s)>0. By using the D-decomposition method we 

can determine a relative variation of the number of the unstable roots possessing the 

stiffness k0, however not the number itself. In order to find the number of unstable roots for 

any single value of stiffness k0 we are applying the argument principle, explained in 

Stojanović et al. [18]. Parametric analyses are performed for the super-critical case when the 

complex moving oscillator system’s velocity is higher than the certain critical velocity vcr, 

because in sub-critical case (v< vcr), there seems not to be any crossing point of the D-

decomposition curves and the positive part of the real axes. This may indicate that in the 

sub-critical case the number of unstable roots (roots with a positive real part) of the 

charactieristic equation does not change with the stiffness of the supports of the complex 

moving oscillator k0. On the other hand, in the super-critical case, the number of unstable 

roots starts varying the moment when k0 passes the critical values of the stiffness. 

4. RESULTS AND DISCUSSION 

The D-decomposition curves were derived using the same model parameters as in 

Stojanović et al. [18]. The referent case (referred to as Case 1) represents the traditional 

primary suspension system, where the stiffness k0 is defined with factors 

ζ1=ζ2=ζ3=ζ4=1. Variations in primary suspension stiffness for other cases are outlined in 

Table 1. For different values of k0, the D-decomposition curves and the corresponding 

number of unstable roots were computed at supercritical velocity. The dynamic stability of 

the system was thoroughly analyzed, focusing on the instability that arises due to 

supercritical velocity. Fig. 2 illustrates the D-decomposition curves for the referent case, 

while Table 2 provides details on the number of unstable roots for different intervals of k0. 
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Table 1 Varying non-dimensional parameter of the primary suspension 

Varying 

factor 
ζ1 ζ2 ζ3 ζ4 

Case 1 1 1 1 1 
Case 2 8 1 1 1 
Case 3 1 8 1 8 
Case 4 1 8 1 4 

In this case a stable region (with no unstable roots) was identified within the stiffness 

range k0∈(3.067, 5.074)×107 N/m. It is important to note that for the selected supercritical 

velocity, other intervals of k0 exhibit varying numbers of unstable roots, from which the 

instability intervals were calculated. This reference case represents the classical coupled 

moving oscillator model. 

Table 2 Review of instability regions (v=1.12vcr) 

k0×[107N/m] 0 2.573 3.067      5.074      5.076        +∞ 

Case 1    4   2  0  2     4 

 

Fig. 2 D-decomposition curves (Case 1) 

In Case 2, where the first suspension has a higher stiffness (ζ1=8, while the other factors 

remaining ζ2=ζ3=ζ4=1), the stable region shifts to k0∈(2.8834, 5.0793)×107 N/m (see 

Table 3). The factor ζ1 was selected after numerous numerical experiments showed no 

significant changes in dynamic stability within the range 1<ζ1<8. Complete stable region 

is determined according to obtained D-decomposition curves depicted in Fig.3. The 

complete stable region was determined based on the D-decomposition curves shown in Fig. 

3. These results demonstrate that adjusting the stiffness of the suspension can expand the 
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stability range and shift it toward lower stiffness values. This comparison highlights the 

advantages of the proposed varying stiffness model in controlling stability regions. 

Table 3 Review of instability regions (v=1.12vcr) 

k0×[10
7
N/m]    0 0.4691  1.5851  2.8365 2.8834 5.0793 7.1094    +∞ 

Case 2 4 2 4 2 0 2 4 

 

Fig. 3 D-decomposition curves (Case 2) 

In Case 3, where the stiffness factors were chosen symmetrically (ζ1=ζ3=8 and 

ζ2=ζ4=1), the stable regions are distributed across two distinct intervals: 

k0∈(0.5077, 1.6516)×107N/m and k0∈(2.6090, 6.1575)×107 N/m. Compared to Case 1, 

where the stable region was limited k0∈(3.067, 5.074)×107 N/m, Case 3 shows a 

significantly larger stability range, as depicted in Fig. 4. Finally, in Case 4 the last 

suspension has reduced stiffness, with the ζ - factors defined as ζ1=1, ζ2=8, ζ3=1, ζ4=4. The 

results for this case are presented in Table 5 and illustrated in Fig. 5. In this configuration, 

the stable regions are found in the intervals k0∈(0.9368, 1.9278)×107 N m⁄  

and  k0∈(2.3176, 5.7494)×107 N m⁄ . Compared to the reference Case 1, there is a clear 

expansion of the stability range. However, in comparison to Case 3, the overall stable 

region is slightly smaller. Nevertheless, the stability zones are shifted to lower values of 

the stiffness coefficient k0, indicating that stability can be achieved at reduced stiffness. 

These findings emphasize the potential benefits of varying the stiffness coefficients in the 

primary suspension system. The results suggest that further exploration and deeper 

investigation into this approach could yield additional insights and improvements in 

dynamic stability. 
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Table 4 Review of instability regions (v=1.12vcr) 

k0×[10
7
N/m]    0 0.4394  0.5077  1.6516 2.6090 6.1575 6.2844    +∞ 

Case 3 4 2 0 2 0 2 4 

 

Fig. 4 D-decomposition curves (Case 3) 

Table 5 Review of instability regions (v=1.12vcr) 

k0×[10
7
N/m]    0  0.4709   0.9368   1.9278  2.3176 5.7494 6.2270    +∞ 

Case 3 4 2 0 2      0     2   4 

 

Fig. 5 D-decomposition curves (Case 4) 
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5. CONCLUSIONS 

The study presented a detailed analysis of the stability of a complex coupled mechanical 

system, specifically focusing on the effects of varying stiffness in the primary suspension 

system under moving loads. Through the use of D-decomposition curves, the stability 

regions were identified for different configurations of suspension stiffness, revealing 

significant insights into the dynamics of the system. The results showed that varying the 

stiffness of the primary suspension significantly affects the stability of the system. In the 

referent case (case 1), a stable region was identified within the stiffness range 

k0∈(3.067, 5.074)×107 N/m. However, when the stiffness of the first suspension was 

increased in case 2, the stability region shifted slightly and expanded, demonstrating the 

potential benefits of tuning the system’s stiffness parameters. Case 3, where the suspension 

was symmetrically adjusted, exhibited a significantly larger stability range compared to 

Case 1, with stability occurring in two distinct regions. This indicates that symmetric 

variations in stiffness can lead to broader stability domains. And in Case 4, where the 

stiffness of the last suspension was reduced, the stable regions were shifted to lower 

stiffness values, allowing for stability at reduced stiffness values. Though the overall stable 

area was slightly smaller than in Case 3, the findings suggest that varying suspension 

stiffness can optimize stability even at lower stiffness values. 

Overall, this research highlights the importance of carefully adjusting suspension 

stiffness to enhance the dynamic stability of mechanical systems under moving loads. The 

results suggest that further exploration of suspension stiffness variations could offer 

valuable strategies for improving the stability and performance of complex mechanical 

systems in real-world applications, particularly in the context of transportation 

infrastructure. 
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