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Abstract. Traffic accidents cause huge financial, human, and emotional losses every 

year. With increased urbanization and population growth, safety problems are also 

increasing. This study develops a novel approach by integrating Support Vector Machine 

(SVM) with advanced meta-heuristic algorithms to build a classification model of the 

number of vehicles involved in a traffic accident and the ranking of factors contributing 

to the accident, which is essential for improving transportation safety management. For 

this purpose, nine factors contributing to impacting road safe transport in urban areas 

of Cosenza, southern Italy, are assessed and ranked through the application of a 

stochastic approach. These features were determined using machine learning techniques, 

including SVM, combined with some metaheuristic optimization methods involving the 

Cuckoo Search Algorithm (CSA), Multi-verse Optimizer (MVO), and Whale Optimization 

Algorithm (WOA). With the SVM-WOA algorithm offering a great accuracy value, the 

results reveal that these approaches are successful in detecting elements influencing 

traffic safety management in road transportation. 
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  1. INTRODUCTION 

Traffic accidents pose a severe challenge globally in terms of great economic losses, 

human fatalities, injuries, and even serious emotional and psychological effects on people 

and society. Growing urbanization and population seem to increase the need for ensuring 

better road safety and adopting effective traffic management strategies [1, 2]. 

Basically, improvement in road safety relates to the identification and understanding of 

various factors leading to traffic accidents. The value of such knowledge is quite substantial 

for decisions and steps transportation professionals need to take while designing and 

implementing appropriate measures to minimize the risk of accidents and make roads safer 

[1, 3]. Conventional methods for traffic accident prediction, most of them rooted in 

statistical models and regression analysis, normally operate under the assumption of linear 

relationships between contributing factors and accident occurrences. These models assume 

linear relationships, which often fail to capture the nonlinear dynamics of real-world traffic 

systems. These limitations have consequently made advanced computational methods, 

including techniques of artificial intelligence (AI) and machine learning (ML), increasingly 

embraced by researchers in their struggle to improve predictive modeling capability [4]. 

The nature of complexity in such approaches means they are very good at unraveling 

complex patterns and relationships that may exist yet remain obscure in high-dimensional 

data, an attribute particularly appropriate in the context of traffic accident prediction. 

Among these, support vector machines (SVMs) have drawn significant attention due to 

their capability to deal with nonlinear and high-dimensional input effectively. SVMs are 

grounded in statistical learning theory. They also perform with a great deal of consistency 

compared to conventional statistical models that not only stress better accuracy but also 

generalized capability. Other researchers have focused on improving the prediction capability 

of the SVMs using metaheuristic optimization algorithms [5]. The metaheuristic algorithms 

are inspired by natural phenomena such as evolutionary processes and swarm behavior that 

provide ways of improving the parameters used by the SVMs with the aim of increasing their 

predictive accuracy and efficiency. A wide range of metaheuristic methods, each with distinct 

advantages and constraints, have been effectively used to optimize SVM models in several 

areas, including the crucial space of traffic accident prediction [6-8]. 

This is notwithstanding the fact that all these highly remarkable achievements have 

been recorded over the recent years in the area of traffic accident prediction using SVMs 

combined with metaheuristic optimization. Besides, many challenges persist. First, the 

computational complexity of developing processes for the SVM models makes it difficult 

to deploy them in real situations and further scalability is hard, especially when united with 

metaheuristic optimization [5]. Second, the volume and quality of the input data, including 

real-time traffic flow and weather, fundamentally influence the accuracy of prediction 

models [9]. Consequently, this implies that, with increasing urgency for finding a solution 

to such problems, computation-efficient algorithms that can emerge patterns from big 

quantities of data in real-time and provide predictions with real timescales are in need [10].  

This study addresses known limitations in traffic accident prediction research and offers 

a multifarious contribution. At first, the research improves the ability to predict by 

combining SVMs with a number of metaheuristic optimization techniques. By 

systematically comparing various algorithms, their pros and cons are made clear, making 

it easy to pick the most appropriate optimization method for any given traffic situation. 
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The study also looks at urban roads in Cosenza, which is in southern Italy, in a way that 

is specific to that area. This shows how local factors can affect predicting accidents. As a 

result, the most important factors that can cause accidents can be found and ranked, meeting 

the need for safety solutions that are tailored to the specific situation. 

Lastly, this study fills in a gap in the existing body of work by applying new 

developments in theoretical modeling to real-world problems that have to do with 

scalability and high-dimensional computational complexity. This means that there are now 

even better algorithms that can handle large amounts of traffic data while still being 

accurate. These algorithms can give policymakers and transportation engineers useful 

information that they can use to make the roads safer.   

2. LITERATURE REVIEW 

From traditional statistical methods to state-of-the-art AI systems, this literature review 

investigates the development of methodologies in traffic accident analysis and prediction, 

therefore stressing important trends and possible future directions of study. The application 

of conventional methods, such as traditional statistics and economic methods, has proved 

helpful in understanding traffic. Sipos et al. [11] performed a spatial econometric analysis, 

especially spatial autocorrelation and geographically weighted regression, to find the 

geographical trend of traffic accidents. This would show how the spatial factors affect the 

probability of occurrence of accidents. Lord and Mannering [12] conducted a thorough 

study and evaluation of the different statistical methods used to look at crash-frequency 

data. This showed how important it was to choose the right methods for each situation. 

Vedagiri and Killi [13] used surrogate safety measures like time-to-collision and post-

encroachment time in analyzing uncontrolled intersections in mixed traffic streams. This 

illustrates how the more general approaches may be used to evaluate traffic safety across 

particular situations. Also, Sawalha and Sayed [14] looked at it from the temporal point of 

view. They applied regression analysis on crash data from major arterial roads to develop 

how safety varies over time and the impacts of actions on that variation in safety changes. 

Traditional statistical methods can be applied under various circumstances, as shown by 

Dell'Acqua and Russo's [15] work in developing the safety performance function for low-

volume roads by negative binomial regression. All these functions take into account the 

difficulties arising from fluctuating road and traffic conditions. 

The introduction of data mining and ML has opened up new possibilities for forecasting 

and analyzing traffic accidents. Li et al. [16] used data mining techniques such as 

association rule mining and decision trees to determine the causes of one category of 

pointless catastrophic traffic accidents, thereby demonstrating the usefulness of this type 

of method in processing crash data. Pourroostaei Ardakani et al. [17] elaborated further on 

this by showing the practicality of ML techniques with the use of models like Random 

Forest (RF) to carry out predictions on road car accidents. They underlined how these 

techniques raised forecast accuracy, which would help to produce more accurate and 

efficient traffic safety rules. Wang et al. [18] proposed a more advanced strategy based on 

multi-view multi-task spatiotemporal networks, incorporating convolutional neural 

networks and graph convolutional networks, where various kinds of data and various tasks 

are effectively combined for a global prediction. 
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Researchers have also concentrated on improving predicting models and handling 

natural data difficulties in traffic accident research. Guido et al. [19] studied feature 

selection methods including information gain and correlation-based feature selection as 

well as screening the possible factors regarding safety management, indicating their 

contribution to the improvement of predictive accuracy. Advanced data modeling, such as 

that using, for example, the SARIMA model of Deretić et al. [20], has made it possible to 

forecast traffic accidents based on historical patterns. Dimitrijevic et al. [21] used the RF-

based classifier to include both proactive and reactive accident data in their models as well 

as improve the accuracy and location-specific forecasts of short-term crash risk prediction. 

Danesh et al. [22] developed data leveling methods including random under-sampling and 

SMOTE and applied metaheuristic optimization approaches, including the Genetic 

Algorithm, to guarantee unbiased model performance, thereby addressing the issue of 

imbalanced datasets in crash prediction. 

A growing area of study in recent years is also the combination of traditional statistical 

methods with AI techniques. The hybrid model proposed by Dong et al. [23] combined a state-

space framework with support vector regression. This model showcased the potential of 

merging statistical and ML techniques to enhance the prediction of traffic accidents. The model 

took into consideration both temporal and spatial dynamics present in the data. Mannering and 

Bhat [24] provided a review of the analytic methods in accident research, including 

conventional and upcoming techniques. They also provided a glimpse of future directions for 

the same. The practical implementation of ML in real-world applications is reflected in a case 

study carried out by Sufian et al. [25] on traffic accident prediction using heterogeneous urban 

data, where they employed various ML models and showed their practical implementation. 

3. METHODOLOGY 

Traffic accident prediction and factor analysis involve navigating complex, often non-

linear relationships within high-dimensional datasets. While traditional statistical methods 

are indeed useful, they capture the underlying complexity rather inadequately. So, in this 

study, the power of ML is used; i.e. SVMs that have high recognition for handling nonlinear 

and high-dimensional data with great efficiency. To enhance the predictive capabilities of 

SVMs, we couple them with nature-inspired metaheuristic optimization techniques to tune 

model parameters for efficient performance optimization. 

The theoretical underpinning of SVM and the adopted metaheuristic algorithms in this 

paper, namely, the Cuckoo Search Algorithm (CSA), Multi-Verse Optimizer (MVO), and 

Whale Optimization Algorithm (WOA), will be included in the following sections. This also 

encompasses the methodological framework related to data preparation, model construction, 

and evaluation. The approach, with its integration of SVMs and metaheuristic optimization, 

shall provide a robust and accurate means toward the prediction of the number of vehicles 

involved in a traffic accident and the identification of those significant factors that determine 

such accidents for the development of appropriate road safety measures. 

3.1. Support Vector Machine 

Artificial intelligence (AI) and ML approaches are being used by many academics and 

industry sectors, which are changing how we approach complex problems and enhancing 

operational efficiency [26-29]. SVM is a successful ML algorithm developed by Cortes 
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and Vapnik in 1995 [30]. It is a supervised learning algorithm used in regression and 

classification tasks. SVMs are linear classifiers that maximize the margin between two 

classes by creating a classification hyperplane in the center of the maximum margin. The 

objective is to identify the optimal hyperplane in an n-dimensional space. Two labels are 

assigned for classification: +1 for cases above the hyperplane and -1 for those below. Eq. 

(1) displays a collection of sample sets utilized in the process of learning data for 

categorization [31]:  

 𝑆 = {(𝑥𝑖 , 𝑦𝑖)𝑖=1
𝑛 |𝑥𝑖 ∈ 𝑅𝑁 , 𝑦𝑖 ∈ {−1,1}, 𝑖 = 1,2, . . . . . . , 𝑙} (1) 

Here, xi marks the data and yi is the target variable for the i-th sample.  

Determined by applying current support vectors and constraints, the ideal hyperplane 

is the one with the biggest margin among the produced hyperplanes. Eqs. (2) and (3) 

express constraints [32]: 

 𝑀𝑖𝑛
1

2
‖𝑤‖2 (2) 

 𝑠. 𝑡.  𝑦𝑖(𝑤𝑥𝑖 + 𝑏) ≥ 1 (3) 

where w denotes the weight vector and b denotes the bias vector [30].  

Subsequently, after taking into account an error coefficient, the constraints are 

reformulated and rectified based on Eqs. (4) and (5). The purpose of this error coefficient 

is to enhance the precision of categorization [33]: 

 𝑀𝑖𝑛
1

2
‖𝑤‖2 + 𝑐 ∑ 𝜀𝑖                      (𝜀𝑖 ≥ 0)𝑛

𝑖=1  (4) 

 𝑠. 𝑡. {
𝑦𝑖(𝑤𝑥𝑖 + 𝑏) ≥ 1 − 𝜀𝑖

𝑐 ≥ 0
            (𝑖 = 1,2,3, . . . . . . , 𝑛) (5) 

The penalty coefficient is denoted by the symbol c. Next, the Lagrange approach is 

employed to address classification difficulties in SVM. These problems are formulated as 

a dual optimization problem, which is based on Eq. (6) [34]: 

 {
𝑊(𝑎) = ∑ 𝑎𝑖 −

1

2

𝑛
𝑖=1 ∑ 𝑎𝑖

𝑛
𝑖,𝑗=1 𝑎𝑗𝑦𝑖𝑦𝑗𝐾(𝑥𝑖 , 𝑥𝑗)

𝑠. 𝑡. ∑ 𝑎𝑖𝑦𝑖(0 ≤ 𝑎𝑖 ≤ 𝑐; 𝑖 = 1,2,3, . . . . , 𝑛)𝑛
𝑖=1

 (6) 

The function K is a mathematical function referred to as the kernel function. Various 

types of kernel functions are available including the linear (LIN), radial basis function 

(RBF), and polynomial (POL). Parameters gamma (𝛾) and d define the several kinds of 

kernels for RBF and POL. Here, d denotes the degree term of the polynomial (POL) kernel 

function, while gamma (𝛾) is used for both RBF and polynomial kernels [35].  

The main responsibility of the kernel is to convert the input data into the needed 

structure. The accuracy of categorization could change depending on the knowledge about 

the application of several kernel functions in pertinent situations. Eqs. (7-9) provide 

respectively the formulas of certain kernel functions, including LIN, RBF, and POL [36]: 

 𝐺(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖
𝑡𝑥𝑗 (7) 

 𝐺(𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝(−𝛾‖𝑥𝑖 − 𝑥𝑗‖
2
) (8) 

 𝐺(𝑥𝑖 , 𝑥𝑗) = (−𝛾𝑥𝑖
𝑡𝑥 + 1)𝑑 (9) 



6 S. S. HAGHSHENAS, M. H. M. SERAJI, S. S. HAGHSHENAS, ET AL. 

3.2. Whale Optimization Algorithm 

The metaheuristics algorithms are considered very important in the area of engineering, 

especially because many practical problems require complex system and process 

optimization for which other methods have proven inefficient [37-40]. The Whale 

Optimization Algorithm (WOA) is a metaheuristic algorithm that uses swarm behavior to 

solve continuous optimization challenges. It is straightforward to develop and robust, 

comparable to nature-inspired algorithms [41]. The WOA model involves the humpback 

whale population in a complex search space, with individual whale positions as choice 

variables and distance between them and food as the objective cost. The movement of an 

individual whale is determined through three processes: encircling prey, spiral bubble-net 

feeding technique, and prey search. This method is comparable to nature-inspired 

algorithms due to its simplicity and robustness [42]. 

Humpback whales surround their prey after sensing where it is. The WOA method 

supposes the target prey, or in close approach to the optimal solution, is the current best 

candidate solution. While the remaining search agents change their locations to be closer 

to the ideal search agent, it aims to identify the best search agent. Mathematically, this 

behavior is expressed by the following equations [41]: 

 �⃗⃗� = |𝐶 . 𝑋∗⃗⃗ ⃗⃗  (𝑡) − 𝑋 (𝑡)| (10) 

 𝑋 (𝑡 + 1) = 𝑋∗⃗⃗ ⃗⃗  (𝑡) − 𝐴 . �⃗⃗�  (11) 

 𝐴 = 2𝑎 . 𝑟 − 𝑎  (12) 

 𝐶 = 2 ∙ 𝑟  (13) 

where 𝑋∗⃗⃗ ⃗⃗   denotes the current best position, 𝑋  represents the position of the current whale, 

t indicates the recent iteration, 𝐴  and 𝐶  are coefficient vectors, 𝑎  represents a linearly 

decreasing value ranging from 2 to 0 during the iterations, and 𝑟  is a random number 

uniformly distributed between 0 and 1 [40]. The symbol ‘‘| |’’ denotes the absolute value, 

and element-wise multiplication is shown by “⋅” [41]. 

A mathematical equation is used to simulate the spiral movement pattern observed between 

humpback whales and their prey, resembling the helix-shaped motion of these whales [42]: 

 𝑋 (𝑡 + 1) = 𝐷′⃗⃗⃗⃗ 𝑒𝑏1. cos(2𝜋𝑙) + 𝑋∗⃗⃗ ⃗⃗  (𝑡) (14) 

 𝑋 (𝑡 + 1) = {
𝑋∗⃗⃗ ⃗⃗  (𝑡) − 𝐴 . �⃗⃗� 𝑖𝑓 𝑝 < 0.5

𝐷′⃗⃗⃗⃗ 𝑒𝑏1. cos(2𝜋𝑙) + 𝑋∗⃗⃗ ⃗⃗  (𝑡) 𝑖𝑓 𝑝 ≥ 0.5
 (15) 

where 𝐷′⃗⃗⃗⃗  represents the distance of the ith whale to the prey, b denotes a constant defining 

the spiral shape, l is a random number in [–1, 1], whereas p is a randomly chosen value that 

falls within the range of -1 to 1 [42]. 

In the exploration phase of prey search, global optimizers are utilized. If the value of A 

is greater than 1 or less than -1, the search agent is updated according to a randomly selected 

search agent, replacing the current best search agent [42]: 

 �⃗⃗� = |𝐶 . 𝑋𝑟𝑎𝑛𝑑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑋 | (16) 

 𝑋 (𝑡 + 1) = 𝑋𝑟𝑎𝑛𝑑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑋 . �⃗⃗�  (17) 
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where 𝑋𝑟𝑎𝑛𝑑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is selected arbitrarily from the whales in the current iteration [42]. 

3.3. Cuckoo Search Algorithm 

The Cuckoo Search Algorithm (CSA) is a metaheuristic optimization technique 

inspired by the brood parasitism behavior observed in certain cuckoo species. In nature, 

some cuckoos lay their eggs in the nests of other host birds, relying on the host to raise 

their offspring. However, there is a probability that the host bird may detect and discard 

the foreign eggs [43]. Three basic guidelines defined by CSA help to replicate cuckoo 

behavior [44]:  

1. Each cuckoo lays one egg in a randomly chosen host nest; the number of available 

nests remains constant.  

2. High-quality eggs will be reserved for the next generation. 

3. Host birds run the chance of seeing and discarding alien eggs. 

A constant switch parameter Pa balances the global search (exploration) and local 

search (exploitation) that define CSA. Levy fly [44] is proposed to implement it for the 

global exploration: 

 𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝛼 ⊕ Levy(𝑠, 𝜆) (18) 

where α is the scale factor, ⊕ denotes entry-wise multiplications, λ (1 < λ < 3) is the power 

coefficient, Levy (s, λ) is the characteristic scale, which may be computed as 𝑥𝑖
𝑡  and 𝑥𝑖

𝑡+1,  
respectively. 

 Levy(𝑠, 𝜆) ≈
𝜆Γ(𝜆).sin(𝜋𝜆 2⁄ )

𝜋

1

𝑠1+𝜆,          (𝑠 ≫ 𝑠0 ≫ 0) (19) 

Formulated in Eq. (19), Γ symbolizes the gamma function, s0 is the initial step size of 

Levy flight, and s represents the step size of Levy flight [45]: 

 𝑠 =
𝑈

|𝑉|1 𝜆⁄  (20) 

U and V denote random values following normal distribution: 

 𝑈~𝑁(0, 𝜎2), 𝑉~𝑁(0,1) (21) 

where σ is the variance of the normal distribution followed by U, which is computed as 

follows [45]: 

 𝜎2 = [
Γ(1+𝜆)

𝜆Γ((1+𝜆) 2⁄ )
∙
sin (𝜋𝜆 2⁄

2(𝜆−1) 2⁄ ]
1 𝜆⁄

 (22) 

One may arrange the local search for CSA as follows [45]: 

 𝑥𝑖
𝑡+1 = {

𝑥𝑖
𝑡 + 𝛼𝑠 ⊗ 𝐻(𝑝𝑎−∈) ⊕ (𝑥𝑗

𝑡 − 𝑥𝑘
𝑡), 𝑟 > 𝑃𝑎

𝑥𝑖
𝑡  , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (23) 

where 𝐻(𝑝𝑎−∈) is the Heaviside function, ∈ is a random integer taken from the uniform 

distribution, where 𝑥𝑗
𝑡 and 𝑥𝑘

𝑡  are two solutions acquired via random permutation. 
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3.4. Multi-Verse Optimization 

MVO is a metaheuristic technique exploring search space by simulating wormholes, 

black holes, and white holes. An inflation rate between exploitation and exploration 

balances wormhole to black-white hole ratios. In this context, candidate solutions are 

universes; decision variables are things or components found within those universes. The 

inflation rate controls the likelihood of finding both white (exploration) and black holes 

(exploitation); i.e. low rates indicate the best chance of a black hole and high rates indicate 

the highest possibilities. A roulette wheel selection mechanism is used in MVO to solve 

the analytical model and exchange the items between the worlds of black and white hole 

tunnels. The solution space exhibits a random global representation as [46]: 

 𝑈 =

[
 
 
 
𝑥1

1 𝑥1
2 ⋯ 𝑥1

𝑑

𝑥2
1 𝑥2

2 ⋯ 𝑥2
𝑑

⋮ ⋮ ⋮ ⋮
𝑥𝑛

1 𝑥𝑛
2 … 𝑥𝑛

𝑑]
 
 
 

 (24) 

In this context, U symbolizes the world, n denotes the frequency of search components, 

d represents the measurements of control parameters, and 𝑥𝑖
𝑗
 represents the jth parameter 

of the i-th world, which follows the form described below [46]: 

 𝑥𝑖
𝑗
= {

𝑥𝑘
𝑗
              𝑟1 < 𝑁𝐼(𝑈𝑖)

𝑥𝑖
𝑗
              𝑟1 ≥ 𝑁𝐼(𝑈𝑖)

 (25) 

where Ui represents the ith world, NI represents the normalized inflation rate, 𝑟1 represents 

a random integer between 0 and 1, and 𝑥𝑘
𝑗
 represents the jth variable of the kth world, 

selected using the roulette wheel scenario.  

The operational mechanism of the transferred items via wormholes is shown as follows 

[46]: 

 𝑥𝑖
𝑗
= {

{
𝑥𝑗 + 𝑇𝐷𝑅 ∙ [(𝑢𝑏𝑗 −) ∙ 𝑟4 + 𝑙𝑏𝑗]                𝑟3 < 0.5

𝑥𝑗 − 𝑇𝐷𝑅 ∙ [(𝑢𝑏𝑗 −) ∙ 𝑟4 + 𝑙𝑏𝑗]                𝑟3 ≥ 0.5
𝑟2 < 𝑊𝐸𝑃

𝑥𝑖
𝑗
                                                                                             𝑟2 ≥ 𝑊𝐸𝑃

 (26) 

here 𝑥𝑗 is the jth variable of the optimum world; WEP (Wormhole Existence 

Probability) and TDR (Traveling Distance Rate) are coefficients; ubj and lbj indicate the 

upper and lower limit of jth variable, 𝑥𝑖
𝑗
 indicates the jth parameter of the ith world; 𝑟4, 𝑟3, 

and 𝑟2 are accidental numbers belonging to [0, 1]. WEP takes the following form and 

enhances the exploitation [46]: 

 𝑥𝑖
𝑗
= 𝑊𝐸𝑃 = 𝑚𝑖𝑛 + 𝑡 × (

𝑚𝑎𝑥−𝑚𝑖𝑛

𝑇𝑚𝑎𝑥
) (27) 

where the variable i represents the current repetition, 𝑇𝑚𝑎𝑥  represents the greatest repetition 

frequency, and "min" and "max" represent the lowest and maximum values of the 

controlled variables. The acquisition of TDR is done in the following manner [46]: 

 𝑇𝐷𝑅 = 1 −
𝑡(1 𝑝⁄ )

𝑇𝑚𝑎𝑥
(1 𝑝⁄ ) (28) 
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where, p represents the level of precision achieved during the iterations of exploitation. As 

the value of p increases, the exploitation/local search process becomes faster and more 

precise. 

4. CASE STUDY 

The proposed method for analyzing road accidents in Italy was tested using a dataset 

of 564 accident records from the Regional Road Accident Center (CRISC) of the Calabria 

region, covering the years 2001-2020. CRISC acquires on its platform the accidents 

recorded by ISTAT in the regional territory. ISTAT, the Italian National Institute of 

Statistics, is the primary source of official statistical data in Italy, responsible for gathering 

and producing information about the Italian economy and society. The data is gathered 

through a monthly survey involving various authorities, such as traffic police, carabinieri, 

and municipal police, who use the ISTAT CTT/INC model known as "Road Accidents" to 

document each accident involving a vehicle on the road network that resulted in injuries [47]. 

The survey parameters include road accidents, fatalities, and injuries. Road accidents 

involve accidents on a road open to public traffic, resulting in injuries or fatalities to one 

or more individuals and involving at least one vehicle. Fatalities include individuals who 

perish immediately or within 24 hours following the accident, while injuries are 

categorized as serious or minor injuries [47]. 

A comprehensive total of data on accident accidents were meticulously documented 

and assessed across urban and rural areas of the Calabria region, in southern Italy (Fig. 1). 

These accidents have been categorized and grouped based on several criteria (Table 1). 

 

Fig. 1 Accident sites in the Calabria region for the years 2001-2020. (Source: CRISC 

Regione Calabria) 
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Table 1 Accident database fields were analyzed 

Data field type Data field Description 

Human 

characteristic 

Driver Gender Male or Female 

Driver Age Young, Middle-age, Old 

Vehicle 

characteristic 
Vehicle type Motorcycle, Car, Bus, Truck, Other 

Road 

Road type 

Two carriageways, More than two 

carriageways, One two-way 

carriageway, One one-way 

carriageway; 

Road signal 

Absent, Horizontal, Temporary 

construction, Vertical, Vertical and 

horizontal; 

Road surface 
Dry, Wet, Icy, Snow, covered, 

Slippery; 

Environment 

Date light Daylight and Nighttime 

Weather conditions 
Clear/Sunny, Hail, Rain, Snow, 

Fog, Strong wind, Other; 

Location Urban area 
Intersection, 

Non-intersection, Others; 

Accident 

characteristic 
Number of vehicles 

Number of vehicles involved, one 

or more than one. 

5. MODELLING PROCESS  

This study used a binary classification method to identify patterns and correlations 

between different input elements and the number of vehicles involved in accidents. The 

objective of the binary classification model was to determine whether any correlation 

between daylight, location, road type, road surface, road signs, weather conditions, types 

of vehicles, driver age, and driver gender against the number of vehicles as the dependent 

variable. Identifying the control parameters and performance indices are the major steps of 

algorithms to reach the optimal binary model [48].  

In this regard, the current study developed and compared four machine-learning 

algorithms; i.e. SVM, SVM-CSA, SVM-WOA, and SVM-MVO. The input dataset 

consisted of nine factors related to the number of vehicles in the urban area of Cosenza, 

southern Italy. Data were classified by two classes: '1', in the case when at most one car 

participated in an accident, and '2' in the case with at least two or more involved vehicles. 

The main class separation criterion considered was based on taking into account the 

minimum number of vehicles involved in an accident.  

The best classification models were developed and compared, and the sensitivity 

analysis was carried out to determine the relevance of an effect independently exerted by 

each factor. The confusion matrix's accuracy and error in binary classification modeling 

are practical performance indicators. Data normalization is essential for data-driven system 

modeling methods, as greater scale factors might lead to computational deviations. All data 

undergoes min-max normalization prior to modeling. 
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5.1. Correlation Analysis 

This study highlights that computing and controlling the parametric correlation of 

independent input datasets are of prime importance in providing correct results and to avoid 

misinterpretation of the data. Pearson's correlation coefficient, sometimes also referred to 

as the bilateral correlation coefficient or Pearson product-moment correlation coefficient, 

is one of the most useful methods to assess linear connections between variables. Eqs. 

(2932) depict the relationships of Pearson's correlation coefficient [49]. 

 𝜌 = 𝑟 =
𝑆𝑃𝐷𝑥𝑦

√𝑆𝑆𝑋.𝑆𝑆𝑌
 (29) 

 𝑆𝑃𝐷𝑥𝑦 = ∑𝑥𝑦 −
(∑𝑥)(∑𝑦)

𝑛
 (30) 

 𝑆𝑆𝑋 = ∑ 𝑥𝑖
2𝑛

𝑖 −
(∑𝑥𝑖)

2

𝑛
 (31) 

 𝑆𝑆𝑌 = ∑ 𝑦𝑖
2𝑛

𝑖 −
(∑𝑦𝑖)

2

𝑛
 (32) 

Here, X and Y constitute the independent parameters; SSX and SSY respectively show the 

standard deviation of X and Y. Moreover, SPDxy expresses the covariance between variables 

X and Y. Denoted as ρ(r), Pearson's correlation coefficient is a statistical evaluation 

spanning -1 and +1. The strength of the association between the two independent variables 

is found by means of these coefficient magnitudes. Furthermore, the positive and negative 

signs of these coefficients point accordingly to the direction of the link, either direct or 

reverse. While a correlation value close to 0 suggests a poor association between two 

independent factors, a correlation number close to 1 denotes a significant relationship 

between them [50]. It should be noted that the Python package Seaborn [51] was used to 

obtain the results presented in Fig. 2. 

 

Fig. 2 Pearson correlation matrix with circle markers 
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Fig. 2 shows the Pearson correlation coefficient matrix for the dataset, visualized using 

a grid of colored circles. The strength and nature of the link between variables including 

daylight (DL), location (L), road type (RT), road surface (RS), road signs (SG), weather 

conditions (WC), vehicle type (VT), driver age (DA), and driver gender (DG) each circle's 

size and color intensity reflect. Red shows positive correlations; blue shows negative 

correlations; the lack of a circle denotes no noteworthy correlation. We regard as "strong" 

any ρ whose absolute value exceeds 0.85 for modeling needs. Not one of the coefficients 

in this matrix surpasses this level, though. This graphic depiction highlights important 

relationships including the modest negative correlation between vehicle type and location 

(r = -0.485) and the modest positive correlation between vehicle type and daylight hours 

(r = 0.516), so enabling a quick and easy knowledge of the relationships between variables. 

Without consulting numerical data, the visual signals given by the colored circles help 

one to recognize patterns and connections in this correlation matrix. The study of the data 

shown in the table suggests that most correlations are near zero, thereby implying 

essentially linear connections among them. For example, the rather evident moderate 

negative correlation between daylight and location (r = -0.311) indicates that the location 

factor usually tends to drop as daylight rises. Correspondingly, the modest positive 

connection between daylight and driver age (r = 0.349) suggests that older drivers are more 

likely to be on the road during daylight hours. For initial research, this representation is a 

useful tool since it helps scientists rapidly identify important relationships and concentrate 

on areas that might call for more study. Though two variables may be related, this does not 

guarantee one thing causes another. 

5.2. SVM Modelling 

This work developed a binary classification model in MATLAB using SVM to estimate 

the involved vehicle count. In this research, the number of accidents was the dependent 

variable; DL, L, RT, RS, SG, WC, VT, DA, and DG were the independent variables. The 

good performance of an SVM model depends on the exact control parameter selection and 

appropriate architecture of the model. Therefore, we aimed to find an optimum SVM model 

for a multi-class classification issue concerning the number of cars involved in accidents 

by means of an iterative hyperparameter tuning strategy, often known as manual 

hyperparameter tuning or a guided variation of grid search [52]. In fact, specific 

relationships for determining control parameters do not exist or are limited, hence; we use 

the try and error technique to determine them [53,54]. This procedure involved systematic 

adjustment of important parameters: the kernel function, the box constraint (C), and the 

kernel scale; i.e. for the RBF kernel. While conventional grid search investigates all 

hyperparameter combinations within preset ranges, our approach includes flexibility 

depending on insights obtained from each experimental iteration, therefore matching 

suggestions in the literature for successful hyperparameter tuning in SVM models [55]. 

Model effectiveness was found by performance throughout training, validation, and test 

sets. The primary goal was to optimize test set accuracy by precisely matching model 

complexity with generalization capacity, hence lowering the risk of overfitting [56]. The 

experimental path is summed in Table 2, which also offers an understanding of the 

justification for every hyperparameter change. 
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Table 2 Empirical analysis of SVM hyperparameter tuning 

No. 
Kernel 

function 

Box 
constraint 

(C) 

Kernel 

scale 

(for 
RBF) 

Train 

accuracy 

Validati
on 

accuracy 

Test 

accuracy 
Notes/observations 

1 Linear 
1 

(default) 
- 85.73 88.67 80.00 

Baseline linear kernel; 

satisfactory but 

suboptimal performance. 

2 RBF 
1 

(default) 
auto 89.20 84.67 86.00 

Transition to RBF kernel; 

improved test accuracy, 

yet evidence of mild 
overfitting (Train > 

Validation). 

3 RBF 0.1 auto 84.13 80.67 82.00 

Decreased C to reduce 
overfitting; successful in 

reducing overfitting but 

at the cost of slightly 
diminished test accuracy. 

4 RBF 10 auto 91.07 79.33 88.00 

Increased C; substantial 

test accuracy 

improvement, but 
overfitting exacerbated. 

5 RBF 10 0.1 92.13 74.00 72.00 

Decreased KernelScale; 

induced severe overfitting 
(high Train, low 

Validation/Test). 

6 RBF 10 10 86.00 87.33 84.00 

Increased KernelScale; 

successful overfitting 
mitigation, yet a minor 

decline in test accuracy. 

7 RBF 5 10 85.47 80.67 84.00 

Further C reduction; 
overfitting further 

curtailed, but no test 

accuracy gain. 

8 Polynomial 1 N/A 85.47 80.67 76.00 

Explored polynomial 
kernel; inferior test 

accuracy compared to 

RBF. 

9 Polynomial 0.1 N/A 90.53 80.67 82.00 

Decreased C for 

polynomial kernel; 

marginal improvement 
but still lags behind RBF. 

10 Polynomial 10 N/A 91.60 83.33 78.00 

Increased C for 

polynomial kernel; led to 
overfitting and decreased 

test accuracy. 

11 RBF 7.5 10 84.93 83.33 80.00 

Further C fine-tuning for 

RBF; overfitting 
reduction, but test 

accuracy slightly lower. 

12 RBF 8.75 10 85.47 83.33 74.00 
Additional C fine-tuning; 

test accuracy dropped. 

13 RBF 10 5 87.60 84.67 84.00 

Adjusted KernelScale; 

notable validation 

accuracy improvement, 
test accuracy maintained. 
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14 RBF 12 5 86.80 86.00 84.00 

Slight C increase; minor 

Train/Validation 

improvement, and no 
change in Test. 

15 RBF 15 5 87.60 82.00 90.00 

Further increased C; 

significant improvement 
in Test accuracy, but a 

slight decrease in 

Validation. 

16 RBF 12 5 86.53 82.00 88.00 

Decreased C slightly; 

reduced overfitting, 

maintained high Test 

accuracy. 

17 RBF 13.5 5 86.46 87.33 86.20 

Further C fine-tuning; 

improved Validation, 

slight Test accuracy 
decrease. 

With test accuracy of 86.2% and a solid balance between training and validation 

accuracy, Experiment 17 turned out to be the most fascinating configuration based on the 

series of tests. This underscores a key characteristic of predictive models: their capacity to 

generalize appropriately to the test set [57]. Furthermore, showing less overfitting than 

other configurations with the same test accuracy, it suggested a more stable model.  

Analyzing the final model's confusion matrix and receiver operating characteristic (ROC) 

curve would assist us to understand its performance even further as seen in Figs. 3 and 4. 

 

Fig. 3 Confusion matrices for the training data (a) and testing data (b) 

According to Fig. 3a, the 17th binary classification model for the train properly 

identified 165 occurrences of the first class labeled "1," hence implying the participation 

of only one vehicle in the accident. But it wrongly classified eighteen second-class cases 

(that is, involving two or more vehicles) as belonging to the first class designated "1". 
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Notably, the model was able to classify the train set with a great degree of accuracy, more 

especially 86%. The binary classification findings for the test data point to 21 instances 

belonging to the second class with the label "2" and 22 cases as properly classified as 

belonging to the first class with the label "1" (Fig. 3b). Under labels "1" and "2," the 17th 

model, however, incorrectly projected 6 instances from the second class and 1 case from 

the first class. In test data categorization, the 17th model therefore obtained a reasonable 

accuracy of 86%. SVM is shown in the paper to be a consistent method for system 

modeling – more notably, for accident prediction. 

 

Fig. 4 ROC curve of best SVM model for training dataset (a), and testing dataset (b) 

The performance of model 17th was evaluated using the ROC curve, a probability-

based curve. The model's AUC was higher than other developed models, ranging from 0 

to 1. AUC values between 0 and 1 indicate the model's performance. AUC values less than 

0.5 indicate the model's inadequacy, while values above 0.5 indicate the model's 

effectiveness in training, testing, and total ROC curve [58]. This indicates the model's 

superiority in classification problems. 

By means of this empirical investigation, we methodically traversed the 

hyperparameter space employing a directed network search strategy akin to that applied in 

other studies on SVM-based traffic safety assessment models [59]. This resulted in the 

discovery of an ideal SVM configuration balancing generalization with model complexity. 

Based on the chosen configuration, which underlying the RBF kernel, promising 

performance on the test set indicates its possible efficiency in estimating the number of 

vehicles involved in crashes depending on supplied criteria. 
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5.3. SVM-WOA 

A predictive model was developed in the MATLAB environment using a mix of WOA 

and SVM. The WOA algorithm was employed to optimize some parameters of the SVM 

in order to maximize the performance of the SVM model. In the modeling process, a 

random selection is made where 75% of the dataset (375 data points) is designated as the 

training dataset, while the remaining 25% (125 data points) is allocated as the testing 

dataset [60]. 

When using the SVM algorithm for modeling, all data with labels "1" and "2" were 

classified into two classes. Defining the control parameters of WOA will help one to 

efficiently establish and maximize the SVM model's parameters. The capacity of the model 

to converge fast and precisely is much influenced by these values. Although exact 

correlations to define these criteria are not known, past studies and professional opinions 

have helped to create ranges for every one of them. This covers the count of whale 

populations (between 5 and 60) and the iterations (between 10 and 200). The most 

appropriate choices then were selected by means of experimentation and improvement [61]. 

The model also underwent k-fold cross-validation, a technique whereby the data was 

split into K subgroups. One of the K-1 samples was set aside for validation at each iteration 

under this strategy; the other K-1 sample was set aside for training. The method was 

repeated K times, once for training and once for validation using every subset of data. Thus, 

choosing the average result of this K validation helped to define the last estimate. The 

determination of the k-fold value depends on the volume of data and the opinion of experts 

rather than on a specific technique. This present work used a k-fold value of 3. Furthermore, 

chosen were three distinct kernel functions: notably RBF, POL, and LIN. For SVM-WOA, 

a total of 48 models were constructed; 16 models were generated for each kernel function 

dependent on the number of control parameters. Table 3 shows 16 models related to RBF 

as an alternate category as the most optimal models were linked to the RBF kernel function.  

Table 3 The performance of training and testing models is determined by the different 

control parameters 

No. iterations populations Training Accuracy (%) Testing Accuracy (%) 

1 5 10 86.67 85.60 

2 5 50 88.00 84.00 

3 5 100 87.73 87.20 

4 5 200 87.47 84.80 

5 20 10 86.13 83.20 

6 20 50 88.00 86.40 

7 20 100 86.40 85.60 

8 20 200 89.07 84.80 

9 40 10 86.67 84.00 

10 40 50 86.13 84.20 

11 40 100 85.60 84.00 

12 40 200 88.53 86.40 

13 60 10 86.93 86.20 

14 60 50 87.20 84.60 

15 60 100 89.33 86.40 

16 60 200 89.07 88.00 
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After building several models and assessing their accuracy, all the models were ranked 

simply using a basic ranking system [62]. The scores are given based on the accuracy 

percentage as a performance indicator, in a scale from 1 to 16. Here, 16 denotes the highest 

and 1 represents the lowest performance. These scores will be given according to the 

performance of each model with respect to other models. After assigning the scores for all 

performance metrics, the sum of the scores across all indicators gives the total score of 

each model. Then, ranking is done by comparing total scores to determine which model 

has the highest cumulative score and hence is the best performing. This will ensure that 

with this scoring and ranking system, multiple dimensions of performance will be 

considered to properly evaluate all models comprehensively and make a balanced 

comparison, prioritizing both training and testing accuracy. Table 4 lists the ranking results. 

Table 4 Ranking of developed models 

MLP-

WOA 

model 

number 

Iterations Populations 

Rating for 

accuracy of 

training 

Rating for 

accuracy of 

testing 

Total 

rank 

1 5 10 8 12 20 

2 5 50 13 8 21 

3 5 100 12 15 27 

4 5 200 11 11 22 

5 20 10 6 7 13 

6 20 50 13 14 27 

7 20 100 7 12 19 

8 20 200 15 11 26 

9 40 10 8 8 16 

10 40 50 6 9 15 

11 40 100 5 8 13 

12 40 200 14 14 28 

13 60 10 9 13 22 

14 60 50 10 10 20 

15 60 100 16 14 30 

16 60 200 15 16 31 

Table 4 shows that the best performance of model number 16 has a rank of 31 out of 

the total 15 training and 16 testing accuracy ratings. Therefore, it implies that at rank 31, 

the model reaches an ideal point for balancing between training and testing accuracy. The 

total rank of model number 15 comes next with a rank of 30 and performs less compared 

to model 16. The remaining models have shown various degrees of performances, the least 

successful mix of training and testing accuracy ratings of models with numbers 5 and 11. 

With the total ranking of 28, model number 12 has the third highest total ranking, indicating 

that it has a good balance between its training and testing accuracy. Model 16 has the best 

model in terms of a total rank measure for both training and testing accuracy. 

Based on Fig. 5, the 16th binary classification model accurately identified 163 instances 

of the first class labeled "1" in an accident, indicating the involvement of only one car. 

However, it incorrectly classified 8 instances of the second class, indicating involvement 

of two or more vehicles, as "1". The model achieved a high level of accuracy, specifically 
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89.1%, in categorizing the training dataset. The test data showed that 52 cases were 

correctly identified as "1" and 58 as "2", but the model incorrectly predicted 3 cases and 

12 cases from the second class. The 16th model achieved a satisfactory accuracy of 88% 

in classifying the test data, demonstrating the reliability of the combination of WOA and 

SVM for system modeling. 

 

Fig. 5 Confusion matrices for the training data (a) and testing data (b) 

5.4. SVM-CSA 

A predictive model was developed by combining CSA and SVM in the MATLAB 

environment. In the CSA algorithm, the optimum performance of the SVM model was 

achieved after optimizing its parameters. The same datasets used in the SVM analysis were 

used to develop SVM-CSA modeling, comprising 75% of the dataset containing 375 data 

as training datasets and 25% as 125 data as a test dataset [59]. All the data were labeled as 

two classes, which were "1" and "2". The best setting of the SVM model had been chosen 

in the SVM analysis section. The determination of control parameters of CSA was done, 

which plays an important role in the convergence of the model. Since there is no relation 

that precisely determines such parameters, the approach to be followed was the same as in 

the model SVM-WOA. Therefore, the same population number and number of iterations 

were considered. The best parameters were selected based on a trial-and-error approach. 

In addition, the three different types of kernel functions including RBF, POL, and LIN 

were used. According to the number of control parameters, a total of 16 models were built 

and their outcomes are displayed in Table 5. 

Following the construction of several models and the evaluation of their accuracy, a 

straightforward ranking method was employed to rank all the models [62]. The ranking 

outcomes are presented in Table 6. 
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Table 5 The performance of training and testing models is determined by the different 

control parameters 

No. iterations populations Training Accuracy (%) Testing Accuracy (%) 

1 5 10 85.07 83.20 

2 5 50 87.47 85.60 

3 5 100 87.07 86.40 

4 5 200 87.73 87.20 

5 20 10 85.60 84.80 

6 20 50 90.10 88.00 

7 20 100 88.80 86.40 

8 20 200 88.80 88.80 

9 40 10 90.13 87.20 

10 40 50 89.60 87.30 

11 40 100 87.70 86.40 

12 40 200 88.53 85.60 

13 60 10 88.27 88.80 

14 60 50 88.53 88.00 

15 60 100 86.93 84.80 

16 60 200 87.07 85.00 

Table 6 Ranking of developed models 

MLP-WOA 

model 

number 

Iterations Populations 

Rating for 

accuracy of 

training 

Rating for 

accuracy of 

testing 

Total 

rank 

1 5 10 4 8 12 

2 5 50 8 11 19 

3 5 100 7 12 19 

4 5 200 10 13 23 

5 20 10 5 9 14 

6 20 50 15 15 30 

7 20 100 13 12 25 

8 20 200 13 16 29 

9 40 10 16 13 29 

10 40 50 14 14 28 

11 40 100 9 12 21 

12 40 200 12 11 23 

13 60 10 11 16 27 

14 60 50 12 15 27 

15 60 100 6 9 15 

16 60 200 7 10 17 

The ranking of the created models based on their performance in training and testing is 

presented in Table 6. The model with the highest performance is model number 6, which 

has a total rank of 30. This rank is determined by combining a training accuracy rating of 

15 and a testing accuracy rating of 15. The model's exceptional total rank indicates that it 

has achieved the most optimal balance between training and testing accuracy compared to 

all the analyzed models. Models 8 and 9, which come after model number 6, have a total 
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rank of 29, making it the second highest. This model exhibits robust performance in both 

domains but is slightly lower than model number 6. The remaining models exhibit a variety 

of performance levels. Model number 1 has the lowest total rank of 12, indicating the least 

effective combination of training and testing accuracy ratings. Conversely, model number 

10 possesses a total rank of 28, which is the third highest. This suggests that the model 

achieves a commendable equilibrium between training and testing accuracy. 

Model number 6 is deemed the superior model based on the total rank measure, which 

considers both training and testing accuracy. The remaining models exhibit different levels 

of achievement, with certain models demonstrating exceptional training accuracy, others 

showcasing superior testing accuracy, and some striking a harmonious equilibrium 

between the two. 

 

Fig. 6 Confusion matrices for the training data (a) and testing data (b) 

Based on Fig. 6a, the sixth binary classification model accurately identified 165 

instances of the first class labeled "1" (indicating the involvement of only one car in the 

accident). However, it incorrectly classified 8 instances of the second class (indicating 

involvement of two or more vehicles) as belonging to the first class labeled "1". It is 

important to note that the model was able to categorize the training dataset with a high level 

of accuracy, specifically 90.1%. 

According to Fig. 6b, the binary classification results for the test data indicate that 55 

cases belonging to the first class with label "1" and 55 cases belonging to the second class 

with label "2" were correctly identified. However, the sixth model incorrectly predicted 4 

cases from the first class and 11 cases from the second class, with labels "1" and "2" 

respectively. As a result, the sixth model achieved a satisfactory accuracy of 88% in 

classifying the test data. The investigation demonstrates that the combination of CSA and 

SVM is a dependable methodology for system modeling, specifically in anticipating 

accident occurrences. 
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5.5. SVM-MVO 

The present work designed a prediction model using the MATLAB environment, which 

integrates MVO with SVM. Parameters of the SVM model were tuned using the MVO 

technique in order to achieve the highest performance. The SVM-MVO modeling 

technique utilizes the same dataset as SVM analysis, with 75% of the data allocated for 

training and the remaining 25% for testing [59]. Based on the entire dataset, the two 

categories were designated as "1" and "2". Applying the same approach as the SVM-WOA 

model, the control parameters of the MVO were determined through a process of rigorous 

experimentation. Three unique kernel functions were utilized, and a total of sixteen models 

were produced, depending on the number of control parameters being considered. The 

results of these models are presented in Table 7. 

Table 7 The performance of training and testing models is determined by the different 

control parameters 

No. iterations populations 
Training Accuracy 

(%) 

Testing Accuracy 

(%) 

1 5 10 85.87 84.00 

2 5 50 88.53 86.40 

3 5 100 88.80 85.60 

4 5 200 86.13 84.80 

5 20 10 87.20 84.80 

6 20 50 87.73 86.40 

7 20 100 88.80 87.20 

8 20 200 89.60 87.20 

9 40 10 85.87 84.00 

10 40 50 88.27 87.20 

11 40 100 88.27 86.40 

12 40 200 88.00 87.20 

13 60 10 86.93 84.00 

14 60 50 88.27 87.20 

15 60 100 88.80 87.00 

16 60 200 89.00 87.20 

Following the construction of several models and the evaluation of their accuracy, a 

straightforward ranking method was employed to rank all the models. The ranking 

outcomes are presented in Table 8. It displays the models' relative rankings according to 

their performance in both training and testing. Model 8 attained the highest level of 

equilibrium between training and test accuracy, resulting in a total rank of 32. Model 16, with 

a rating of 31, demonstrates robust performance in both domains, but slightly below that of 

Model 8. Model 8, widely regarded as the leading model, has distinct degrees of achievement. 

According to Fig. 7, which shows the confusion matrix, the 8th binary classification 

model accurately identified 162 instances of the first class labeled "1" in an accident, with 

a high level of accuracy of 89.6%. However, it incorrectly classified 6 instances of the 

second class, indicating the involvement of two or more vehicles, as "1". The model was 

able to categorize the training dataset with a satisfactory accuracy of 87.2%. The third 

model achieved a satisfactory accuracy of 87.2% in classifying the test data. 
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Table 8 Ranking of developed models 

MLP-WOA 

model 

number 

Iterations Populations 

Rating for 

accuracy of 

training 

Rating for 

accuracy of 

testing 

Total 

rank 

1 5 10 6 11 17 

2 5 50 13 14 27 

3 5 100 14 13 27 

4 5 200 7 12 19 

5 20 10 9 12 21 

6 20 50 10 14 24 

7 20 100 14 16 30 

8 20 200 16 16 32 

9 40 10 6 11 17 

10 40 50 12 16 28 

11 40 100 12 14 26 

12 40 200 11 16 27 

13 60 10 8 11 19 

14 60 50 12 16 28 

15 60 100 14 15 29 

16 60 200 15 16 31 

 

Fig. 7 Confusion matrices for the training data (a) and testing data (b) 

6. RESULT AND DISCUSSION 

Each year, many people die as a result of road traffic crashes. Therefore, knowing the 

impact of various contributing factors on the number of road accidents and taking the 

necessary measures to reduce accidents can have a significant impact on increasing the 

level of road safety. In this research, four ML methods, namely SVM, SVM-WOA, SVM-

CSA, and SVM-MVO were employed to conduct the binary classification modeling. After 

multiple modeling, the best model was selected based on the accuracy of the modeling 
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performance. A comparison was made between the best models based on the accuracy of 

training and testing, as shown in Fig. 8. 

 

Fig. 8 Comparison between the best SVM, SVM-CSA, MLP-WOA, and SVM-MVO 

models for training and testing accuracies 

Based on Fig. 8, the SVM-CSA model demonstrated superior performance compared 

to the other best models in forecasting the number of accidents. It achieved training and 

testing accuracies of 90.1% and 88%, respectively, which were greater than the accuracies 

of the other three models. It is important to note that all models demonstrated satisfactory 

levels of accuracy and robustness. Therefore, it can be inferred that they are dependable 

modeling systems for predicting the occurrence of crashes. These models can serve as 

valuable tools for analyzing road safety in the field of transportation engineering. 

The occurrence of road accidents can result in significant economic and human 

detriment to society. Consequently, evaluating the influence of factors that affect the 

frequency of accidents can offer engineers engaged in road safety management a 

comprehensive understanding. To evaluate the influence of daylight (DL), location (L), 

road type (RT), road surface (RS), road signs (SG), weather conditions (WC), vehicle type 

(VT), driver age (DA), and driver gender (DG) on estimating the number of cars involved 

in accidents, a sensitivity analysis was conducted. This sensitivity analysis utilizes the 

cosine amplitude approach as described by [63]: 

 𝑟𝑖𝑗 =
∑ (𝑥𝑖𝑘×𝑦𝑗𝑘)𝑛

𝑘=1

√∑ 𝑥𝑖𝑘
2 ∑ 𝑦𝑖𝑘

2𝑛
𝑘=1

𝑛
𝑘=1

 (33) 

where rij represents the strength of the relationship, n denotes the number of datasets, and 

xik and yij represent the input parameters and anticipated output, respectively. 
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Fig. 9 Results of sensitivity analysis obtained from the SVM-CSA model 

Additionally, the individual conditional expectation (ICE) plot (Fig. 10) was used to 

achieve a deeper understanding of the relationship between the most influential predictor 

variable (vehicle type) identified in Fig. 9 and the expected result (number of vehicles involved 

in an accident).  ICE plots show, for individual instances, how a model prediction would 

change if the value of one feature varied, while the other features remained constant [64]. 

 

Fig. 10 Individual conditional expectation plot for vehicle type and multi-vehicle 

accident probability 
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The ICE plot visualizes the effect of vehicle type on the probability of multi-vehicle 

accidents. At an aggregated level, the increase in probability tends to follow the change 

from "Bus/truck/other" via "Cars" towards "Motorcycles." However, the individual ICE 

lines behave quite differently, showing that this is moderated by other factors that vary 

across the instances. In the ICE plot, the three-colored lines correspond with the three 

categories of vehicle type: blue for "Bus/truck/other", red for "Cars", and orange for 

"Motorcycles". Also, the Partial Dependence Plot (PDP) (black line) shows the average 

effect of one feature on model predictions, holding all other features constant. The PDP is 

an overall picture of the dependence that the model has on a particular feature and is 

obtained by averaging the lines from ICE plots [64, 65]. Figs. 9 and 10 demonstrate that 

the model analysis yields results reflecting the influence of the examined components, 

hence confirming the dependability of the findings. Furthermore, the following remarks 

can also be made.  

The vehicle type was found to have the most imperative impact on the number of cars 

involved in accidents. This points to the indication that some types of vehicles are more 

prone to accidents and could further enhance the devastating effects of these accidents as 

well [61]. Indeed, further confirmation of this finding has been made through ICE plot 

analysis, which shows that the highest average predicted probability of involvement in 

multi-vehicle accidents is for motorcycles, followed by cars, and then buses/trucks/other 

vehicles. The fact that the type of vehicle has a relatively consistent effect on the prediction 

for motorcycles, given the diversity of instances in this class, would therefore imply 

inherent characteristics or patterns of traffic that put them at higher risk. This is especially 

present in multi-vehicle accidents. With the increase in electric motorbikes and scooters, 

the demand for focused interventional policies, such as customized training programs and 

improvements in the road structure, also increases [66-68]. 

Therefore, we can conclude that this would form a possible basis on which specific 

traffic patterns may be examined as a function of the vehicle type. Motorcycles, having the 

highest relative risk, might be expected to have accidents due to their lane changing and 

higher speeds through congested traffic. Such accidents, in particular, could be radically 

minimized through the introduction of advanced technologies related to adaptive cruise 

control and warning systems. Such an approach would result in fewer road accidents, more 

even flow conditions of traffic, and reduced costs arising from these road accidents. 

Furthermore, location is also a very important factor; i.e. topography and features of 

any area or a part of the road can result in more frequent accidents within these areas, 

requiring further research and focused solutions. Bad weather, like rain or fog, also has a 

great impact on accident rates; that is the meaning of teaching drivers how to behave in 

traffic management systems capable of adapting to diverse situations [66, 69]. Driving 

factors, such as gender and age, further influence involvement in accidents; this might be 

due to differences in either driving style or the tendency toward risk exposure. These 

factors could be addressed through strategic teaching programs and sensitization processes 

effectively [66]. The nature of the road is another factor, with different roads being risky 

to different measures. Improved road design, traffic control, and signage can help 

drastically reduce these risks [66]. In general, diurnal daylight conditions, with increased 

visibility at night, accentuate the occurrence of accidents. Therefore, priorities regarding 

improved street lighting, marks for visibility, and awareness campaigns are needed [70]. 

Additionally, road surface conditions and signage, although having a relatively smaller 

impact compared to other factors, still play a role in road safety. Guaranteeing safety to 
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drivers actually depends mainly on proper maintenance, appropriate signs, and an 

unobstructed view [71-73].  

One of the significant limitations in the proposed approach is that it cannot operate with 

incomplete data; therefore, full and accurate data availability is crucial for the successful 

implementation of this approach. Moreover, the results and interpretations obtained from 

this study relate only to the urban road conditions of Calabria; thus, applications in other 

areas or other types of road scenarios are not directly possible. Nevertheless, this research 

proved that classification techniques can be a strong tool in the prediction of the number 

of vehicles involved in traffic accidents, thus providing important information to 

transportation engineering. 

Finally, some of the future directions of research could be extension of applicability by 

testing the proposed approach in a wide range of regions and road conditions to enhance 

generalizability. Future studies may investigate the implications of emerging trends faced 

by accident prediction models with respect to electric scooters and autonomous vehicles. 

The interaction between environmental factors, vehicle types, and driver characteristics 

would provide deeper insights into the causation of an accident. Longitudinally, evaluation 

studies that determine the long-term effectiveness of interventions such as infrastructure 

improvement, training programs, and publicity should help revise and prioritize road safety 

measures. 

7. CONCLUSIONS 

This study applied a binary classification approach to model the relationship between 

various factors and the number of vehicles involved in road accidents in the urban area of 

Cosenza, southern Italy. Variables such as DL, L, RT, RS, SG, WC, VT, DA, and DG were 

considered as input factors for the analysis. For this purpose, four machine learning models, 

namely SVM, SVM-CSA, SVM-WOA, and SVM-MVO, have been developed and 

compared to choose the best predictive model. The classification process distinguished 

between single-vehicle and multi-vehicle accidents. Model performance was assessed 

using confusion matrices and ROC curves. Among the evaluated models, SVM-CSA 

achieved the best performance, with a 90.1% increase in training accuracy and a high test 

accuracy of 88%, outperforming the other techniques. The sensitivity analysis revealed that 

the factor "vehicle type" had the highest influence, while "road signs" had the least. These 

findings underline the effectiveness of advanced machine learning techniques in 

establishing the key accident-related factors, therefore providing useful insights into 

improvement in road safety and transportation safety management strategies. 
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